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Abstract

Reconstructing the shape of an object from images is an important
problem in computer vision that has led to a variety of solution strate-
gies. This survey covers photometric stereo, i.e., techniques that exploit
the observed intensity variations caused by illumination changes to re-
cover the orientation of the surface. In the most basic setting, a diffuse
surface is illuminated from at least three directions and captured with
a static camera. Under some conditions, this allows to recover per-pixel
surface normals. Modern approaches generalize photometric stereo in
various ways, e.g., relaxing constraints on lighting, surface reflectance
and camera placement or creating different types of local surface esti-
mates.

Starting with an introduction for readers unfamiliar with the sub-
ject, we discuss the foundations of this field of research. We then sum-
marize important trends and developments that emerged in the last
three decades. We put a focus on approaches with the potential to be
applied in a broad range of scenarios. This implies, e.g., simple capture
setups, relaxed model assumptions, and increased robustness require-
ments. The goal of this review is to provide an overview of the diverse
concepts and ideas on the way towards more general techniques than
traditional photometric stereo.
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pp. 149–254, 2013.
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Notation

n normal
X a 3D point
P set of 3D points (i.e. a

patch or mesh)
L radiance
Ls incoming (source) radi-

ance
ω direction vector
D light matrix/vector
ωin/out incoming/outgoing direc-

tion vector
Ω solid angle
dω differential solid angle
ρ BRDF or diffuse constant
c, C arbitrary constant (scalar

or matrix)
M number of images
I image intensity
f camera response
θ, φ angles (typically zenith

and azimuth)
p, q coordinates of the gradi-

ent
σ standard deviation
N normal distribution
Z depth map/height field
(u, v) 2D coordinates
N normal map/normal field

(possibly in matrix nota-
tion)

E error (matrix, measure,
etc.)

R reflectance map or albedo
matrix

P number of pixels/patches
S, T factorization of the radi-

ance matrix
A transformation matrix
B arbitrary matrix
B† pseudoinverse of B
α, µ, ν parameters
λ, γ parameters
r inner matrix dimension
DR reflection vector
ϕ angle
D,K factorization of L
Φ lobe function
M general model
W reciprocal pair matrix
o general observation
K error free radiance matrix
H indicator matrix
v viewing direction
W intensity profile matrix
w intensity profile
m mixing coefficients
S the unit sphere in R3

M manifold
Φ embedding
d distance score
τ projection operator
Ψ Haar-Wavelet
hi EMOR basis function
ξ shadow function



1
Introduction

The shape of an object, its reflectance, and the incoming illumination
define the image that the object forms in our eyes or on a camera
sensor. Even for a uniformly colored, diffuse object, the shading typ-
ically changes depending on the local orientation of the surface and
the properties of the incoming light. Highlights form on glossy or spec-
ular surfaces, providing additional cues about the surface shape and
reflectance as well as the illumination. Humans are remarkably good
at deducing such information from images even under very general con-
ditions (Thompson et al. [2011]). In contrast, recovering one or several
of these individual components is a much more difficult task for a com-
puter system.

To solve such inverse problems, different techniques exist such as
shape from defocus (Pentland [1987]), shape from texture (Blostein and
Ahuja [1989]), or (multi-view) stereo (Seitz et al. [2006]). In this sur-
vey, we direct our attention to photometric approaches. These exploit
the intensity variations caused by illumination changes. Typically, the
input is a set of images of an object or scene under a varying set of
lighting conditions, and the output is the 3D shape, e.g. encoded as a
field of surface normals.
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152 Introduction

The goal of classic photometric stereo is to recover the surface orien-
tation from a known combination of reflectance and lighting in multiple
images. Starting from this, a rich body of literature was developed that
generalizes the problem and its solution in various directions. Many
of these approaches assume a controlled capture setup because well-
behaved input data is crucial for inverse problems. These requirements
constrain the application mostly to the research community and pro-
duction settings. In this survey, we put a focus on approaches with
a potential to broaden this applicability, e.g., through simple capture
setups or relaxed requirements.

1.1 Scope of this survey

Shape and appearance reconstruction have connections to different
fields in computer vision, computer graphics, optimization theory,
statistics, optics, etc. We will only cover those areas that are most
relevant for this survey. These are approaches that rely on varying illu-
mination in multiple images to recover at least the surface orientation
and possibly even reflectance and illumination.

That excludes for example the large area of shape from shading
approaches that operate on single images (Zhang et al. [1999], John-
son and Adelson [2011], Oxholm and Nishino [2012], Han et al. [2013])
and the related works on intrinsic image decomposition (e.g. Barron
and Malik [2012, 2013]). These are highly ill-posed problems and their
solution requires strong regularization. Using multiple images provides
more information and better constrains the result space. Some works
(e.g. Magda et al. [2001], Koppal and Narasimhan [2007], Liao et al.
[2007]) exploit the fall-off in radiance with the distance from a near
point light or more general changes in the apparent source intensity
(e.g. Davis et al. [2005]). Our focus will be on illumination variations
caused by directional changes in the incident light. We also do not
consider purely specular surfaces (Healey and Binford [1986], Bonfort
and Sturm [2003], Tarini et al. [2005], Chen et al. [2006], Nehab et al.
[2008], Weinmann et al. [2013]) or the specialized approaches for face
(Debevec et al. [2000], Zhou et al. [2007], Ghosh et al. [2011]) and dy-
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namic performance (Ahmed et al. [2008], Vlasic et al. [2009], Wu et al.
[2012]) capturing. Similarly, we will mention only a few approaches that
require highly complex capture setups because they have less potential
to be adapted for unconstrained environments

In many modern works ideas from different disciplines get com-
bined, e.g. when silhouette constraints are merged with photometric
cues in certain multi-view approaches. This makes a clear distinction
to other fields difficult at times. We include such cases in our discussion
if it suits the overall perspective.

1.2 Overview

We begin this survey with an introduction for readers unfamiliar with
photometric stereo methods in Chapter 2. It serves as a tutorial and to
promote awareness for the challenges present in practical applications of
such techniques. Before proceeding to the main part, we briefly discuss
some early works in Chapter 3 that laid the foundations for present-day
research.

Finding an optimal categorization of photometric approaches to
structure this survey is not trivial. We decide for a selection scheme
based on common challenges among the algorithms such as unknown
lighting in Chapter 4, complex reflectance in Chapter 5, or extremely
uncontrolled conditions in Chapter 9. Within each category we aim at
presenting relevant representatives instead of cluttering the exposition
with lists of similar approaches.

Finally, we conclude the survey in Chapter 10 with a summary of
the most important concepts and our views on future developments.



2
Background

This chapter summarizes some theoretical and practical background
information to make the survey more self-contained. It aims to be an
introduction for readers unfamiliar with photometric reconstruction
methods. In §2.1 and §2.2, we establish some notation that is used
throughout this work and introduce a few formulas that will be refer-
enced later. We then explain the challenges arising in real-world setups
and discuss about the accuracy to be expected from photometric stereo
in §2.3 and §2.4. The results obtained from such techniques are typi-
cally estimates of the surface gradient or orientation. If the actual 3D
geometry, e.g. represented as a height map, is required, such a normal
field has to be integrated. §2.5 presents common strategies towards that
end.

2.1 Light-Matter-Interaction

When light interacts with matter on a macroscopic level, i.e. discount-
ing wave-like effects, it can be absorbed, transmitted, or reflected. Al-
though all of these effects occur simultaneously, we will here only con-
sider the fraction of light that is reflected.
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Let X ∈ R3 be a surface point with normal n ∈ S := {Y ∈
R3, ‖Y ‖ = 1}. The solid angle of an object with respect to a point
X is the surface area of its projection onto a unit sphere around X.
Let Ls(ωin) be the incoming radiance from an infinitesimal solid angle
dωin centered around the direction ωin ∈ S. The irradiance on a small
patch around P coming from the whole hemisphere of directions Ω is
the integral ∫

Ω
Ls(ωin)〈n, ωin〉 dωin. (2.1)

The total radiance L(ωout) leaving X in the direction ωout is then given
as

L(ωout) =
∫

Ω
ρ(ωout, ωin)Ls(ωin)〈n, ωin〉dωin, (2.2)

where the function ρ is the proportionality factor between the radiance
leaving the surface point and the irradiance caused by incoming light
from ωin. Nicodemus et al. [1977] calls ρ the bidirectional reflectance-
distribution function (BRDF). A detailed look into these radiometric
topics is provided, e.g., in Chapter 4 of Forsyth and Ponce [2011].

2.2 Lambertian photometric stereo

Many photometric stereo techniques, cf. §4.1, consider the special case
of Lambertian reflectance, i.e. ρ(ωout, ωin) = ρ/π, and a single point
light source Ls(ωin) = c δ(ωin − ωs) from direction ωs. In this case, the
outgoing radiance is independent of the direction ωout and the integral
in Equation 2.2 vanishes:

L = ρc

π
max

(
〈n, ωin〉, 0

)
. (2.3)

The clamping of negative dot products will be implicitly assumed from
here on.

Observing a Lambertian surface point M times under varying light
directions ωin, which we denote as direction vectors D1, . . . , DM ∈ R3,
and source strength c1, . . . , cM yields radiance values

L =
(
L1, . . . , LM

)T = ρ

π

(
nTD1c1, . . . , n

TDMcM
)T =: ρ

π
D · n, (2.4)

where the scaled row vectors ciDi form the M × 3 light matrix D.
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Expressing the Lambertian image formation using matrix notation
makes all tools from linear algebra available to study the photometric
stereo problem. For M ≥ 3 and three linearly independent directions,
the linear system is overdetermined but has full rank. Thus, DTD is
invertible and the pseudoinverse (DTD)−1DT exists. Multiplying Equa-
tion 2.4 from the left

(DTD)−1DTL = ρ

π
(DTD)−1DTD · n = ρ

π
n (2.5)

allows to compute the normal from D and L:

n = (DTD)−1DTL

‖(DTD)−1DTL‖
(2.6)

2.3 Error sources

In a real setup, photometric stereo techniques have to deal with vari-
ous sources of error. We believe that these need to be understood to
achieve the goal of broader applicability and dedicate this section to
the discussion of the most common ones. In addition, a couple of simple
experiments will provide an intuition about the impact of some of the
errors.

2.3.1 Noise

All photometric techniques rely on radiance measurements. Like with
any other measurement process, the observed values might be subject
to noise. One can reduce its impact by capturing additional data, e.g.
averaging multiple images under the same conditions. Whether its in-
fluence can be neglected, however, depends on the specific application
and setting.

Sometimes, the noise levels for specialized equipment like cameras
for industrial inspection or microscopy are provided in their specifica-
tion sheet, cf. Point Grey Research, Inc. [2015]. For consumer cam-
eras, however, such data is rarely available. Nevertheless, these cam-
eras are regularly used in computer vision applications and will play
a central role in bringing photometric methods to a broader audience.
Quantifying sensor noise precisely requires highly controlled conditions,
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planar sphere

1/20s 1/10s 1/8s dark bright

mean (%) 27.8 56.7 71.6 28.4 48.2
deviation (%) 0.5 0.8 1.0 0.6 0.8

Table 2.1: Statistics computed over a small patch in the green channel of 51 images
from an 18 megapixel consumer sensor (Canon EOS 700D). The experiment for the
planar target is repeated for three different exposure times and a patch of 16 × 16
pixel. For the sphere, the exposure time is 1/10s and the patch size is 10× 10 pixel.
Results are listed in percent of the full sensor range.

cf. European Machine Vision Association [2010]. Instead, we ask what
the noise levels are in an experimental setup (in situ) with a consumer
camera in a darkened room containing a high-quality, but not excep-
tional light source and a real object.

Noise levels depends very much on the sensor model, as shown by
the data in Point Grey Research, Inc. [2015]. Table 2.1 gives an im-
pression of the noise behavior for the Canon EOS 700D. For exposure
times of 1/20s, 1/10s, 1/8s, we repeatedly captured 51 raw images of a
planar reflectance standard under constant illumination. The left part
of Table 2.1 shows the statistics computed in the green channel of a
small patch in that image stack. We notice a clear dependence of the
standard deviation on the mean intensity.

To exclude effects of exposure time changes, we keep it fixed at
1/10s and perform a second experiment with a diffuse sphere. Statistics
are now computed over two patches corresponding to dark and bright
regions on the sphere. The right part of Table 2.1 shows a similar
relationship of mean and standard deviation. This indicates that it
does not depend on the exposure time. Overall, we observe that in
reasonably exposed images the noise level is below 1% of the full sensor
range.

2.3.2 Shadows

The argumentation in §2.2 leading to the solution of the photometric
stereo problem in Equation 2.6 implicitly assumes that the surface is
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not in shadow in any of the images. If something blocks the light, the
observed radiance will vanish independent of the orientation of the
surface. Thus, Equation 2.6 is not fulfilled and any solution based on
that model will be incorrect. Similar restrictions also apply for more
advanced lighting and reflection models than the Lambertian one.

As we will see in §6.1, shadows still convey some information about
the scene that can be exploited. In general, however, it is important to
either avoid shadows already during capture. One solution is, e.g., to
place the light source close to the camera. This can lead, however, to ill-
conditioned inverse problems if the lights become too similar. Another
strategy is to detect and address shadows after capture, e.g. excluding
those observations from further computations.

2.3.3 Interreflections

The exitant radiance at a point according to Equation 2.2 depends
on the incoming radiance from all directions. The integral vanishes
in Equation 2.3 for a single point light source. This is, however, only
strictly valid for an isolated surface patch in empty space or convex
objects in general. In all other cases, the incoming radiance at a point
p will consist of the radiance exiting the light source and the radiance
leaving any other surface point in the direction towards p. These global
illumination effects are usually not modeled in the kind of inverse prob-
lems studied here. Whether this leads to significant errors depends on
the scene geometry and reflectance, e.g. a mirror reflecting light onto p.
In practice, at least the effects of interreflections from the environment
can be reduced by covering non-target surfaces with black cloth. This
is, however, not easily possible in uncontrolled scenarios.

2.3.4 Camera

As discussed above, noise is present in any measurement process. In
the case of modern photometric techniques, the measurement device is
a camera and as such has some additional sources of systematic error.
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Falloff

One kind of error is introduced by the optical system of the camera. So
called vignetting leads to reduced image intensities in peripheral regions
compared to the center. One way to address this issue is by calibrating
the falloff based on an evenly illuminated gray card. Another possibility
is to reconstruct only in small regions—in terms of the image plane—
where the falloff can be assumed constant.

Radiance to pixel conversion

The camera transforms continuous radiance L into digital pixel values
I. Most cameras use a sensor with an added color filter array. Thus, in-
dividual sensor elements capture contributions either of the red, green,
or blue channel. These contributions have to be interpolated over the
image plane to produce a full-sized, colored image with RGB informa-
tion at each pixel. Effects introduced by this interpolation are relatively
small compared to other errors (and can often be avoided by using raw
image data).

Discounting any color space conversions or image processing such as
sharpening filters, a simple model of the transformation from radiance
to pixel intensity is given by the camera response curve f(L) := I.
If raw values are available, the response is usually a clamped, linear
function

f(L) = min
(
max(αL− Idark, 0), Isat

)
(2.7)

for a certain scaling α that depends on the sensor and the quantization
resolution (ranging from 10 to 14 bit for typical consumer cameras).
Idark accounts for the nonzero output level that is present even if no
light actually reaches the camera, e.g. with the lens cap attached.

If raw values are not available, the response of the camera is non-
linear and has to be calibrated. Lots of methods for this task exist, e.g.
based on calibration targets (Grossberg and Nayar. [2004]), stacks of
differently exposed images (Debevec and Malik [1997], Robertson et al.
[1999, 2003], Kim et al. [2008]), color edges in a single image (Lin et al.
[2004]), or probabilistic color de-rendering (Xiong et al. [2012]).
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Ignoring non-linear responses is almost never a viable option since
it can lead to drastically different results. We illustrate this with a short
example for a simplified setting. Let n = (0, 0, 1) and assume that the
light forms an angle θ ∈]0, π/2[ with the z-axis in two images and shines
from above in the third:

D =

sin θ 0 cos θ
0 sin θ cos θ
0 0 1

 , D−1 =


1

sin θ 0 − cos θ
sin θ

0 1
sin θ − cos θ

sin θ
0 0 1

 . (2.8)

The ensuing radiance values are

L = (L1, L2, L3) = (cos θ, cos θ, 1). (2.9)

Applying photometric stereo as in §2.2 on the non-linear pixel intensi-
ties I = f(L) yields a normal ñ which deviates from the true normal n
by an angle of

acos
(
〈ñ, n〉

)
= acos

(〈D−1f(L), n〉
‖D−1f(L)‖

)
= acos

( f(1)
‖D−1f(L)‖

)
. (2.10)

Figure 2.1 shows the angular error for varying θ and γ in the commonly
assumed—though often oversimplifying—gamma curve response model
f(x) = xγ . The systematic deviations from the true normal illustrate
the importance of applying the correct inverse response prior to any
photometric reconstruction.

Camera motion

Accurate correspondences between pixels in all images are important
for photometric stereo. If no image alignment is applied as preprocess-
ing, the use of a solid tripod and remote trigger are essential. The
impact of this error depends on the scene content, e.g. it would not
matter for a homogenous plane.

In multi-view settings such as discussed in Chapter 8 the camera
is moved on purpose and its position is often assumed to be known.
If this knowledge is inaccurate, e.g. due to bad pose estimation, the
projection of a 3D point will occur at the wrong pixel, thus breaking
correspondence. Combining pixels from multiple images will then mix
information from different surface points leading to erroneous results.
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Figure 2.1: Impact of the non-linear response on photometric stereo. Left: Example
setup with two light directions at an angle θ with the normal and the third shining
from above (D3 = −n). Right: The angular deviation of the reconstructed normal if
the intensities are not linearized properly.

2.3.5 Light source

For those algorithms relying on calibrated light sources, their position
and intensity become another set of observables that are again subject
to noise. Many ways to measure these have been proposed. The ap-
proaches differ in accuracy, capture setup, lighting model, additional
constraints, and in the intended application, e.g., renderings in aug-
mented reality, shape reconstruction, or image-based relighting. For
photometric stereo applications, it is often assumed that the light is a
simple point light source and that its location is known very precisely.

Some works exploit cast shadows (Panagopoulos et al. [2011]), sam-
ple the complete incoming light field (Sato et al. [1999], Kanbara and
Yokoya [2004]), or estimate the light source from stationary images
(Winnemoeller et al. [2005]). Approaches that minimize an intensity
error compare actual images of a scene with known geometry and re-
flectance against renderings obtained from the current light estimate
(Hara et al. [2005], Weber and Cipolla [2001], Xu and Wallace [2008]).
These are, however, unsuited in contexts where the shape is to be re-
constructed in a later step.

We narrow down the discussion to the estimation of point light
sources based on target objects of known, usually spherical, geometry.
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If space allows to place the light far away from the scene, techniques
to recover its overall direction have been proposed by Dosselmann and
Yang [2013], Wang and Samaras [2002], Wong et al. [2008], or Zhou
and Kambhamettu [2002]. If the light cannot be placed sufficiently far
away, however, its direction is not constant for every scene point, and
the irradiance falls off with the square of the distance. Masselus et al.
[2002] and Powell et al. [2001] demonstrate that some of the ideas
used for recovering infinitely distant illumination can be readily used
to estimate positions of near point light sources if applied to multiple
spheres. The framework of Zhou and Kambhamettu [2004] is even able
to triangulate an area light source by placing a specular sphere at
different locations in the scene.

Here, we assume a single point light source and perform a small
experiment to asses the influence of the camera on reconstructions ob-
tained from a mirroring sphere. We also try to give a rough idea of
the errors that one can expect in such a standard lab setting. For this
experiment, we keep the light fixed at approximately 4m distance and
move a reflective sphere to 20 different positions spread about 25 cm
around the center of the scene. Each sphere leads to a highlight that
is observed by the camera (in our case a Canon 700D with a 110mm
lens). Given the radius and the position of the spheres, we can com-
pute the light direction for each of the highlights by shooting a ray
towards the sphere and reflecting it around the normal at the intersec-
tion point. Taking the perspective projection of the lens into account,
the rays through the highlight pixels will fan out slightly. If we instead
make the simplifying assumption of a purely orthographic camera—an
assumption applied by many photometric stereo methods—these rays
will all be parallel.

To compare both models, we create a synthetic dataset that allows
us to study them without noise or inaccuracies in the highlight detec-
tions or sphere positions. For a point light source and a perspective
camera, we analytically determine the highlight pixels and the center
of the sphere in the image. We adjusted the position of the light source
(sitting behind, above, and to the left of the camera) to match the high-
lights of the real experiment as closely as possible. We then reconstruct
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Figure 2.2: Accuracy of light direction estimation from a mirrored sphere. Each
marker is the projection of one of the 20 sphere positions onto the image plane (x-
and y-axes are in pixels). The gray value encodes the angular deviation from the
synthetic ground truth. A cross indicates the optical axis of the camera. The varying
distance of the sphere positions from the camera is not shown in this plot. Light
directions reconstructed based on a simplifying orthographic camera model show a
strong spatial dependency, both in a simulated, noise-free (left) and a real experi-
ment (middle). For a perspective reconstruction, the errors between experiment and
synthetic ground truth are all below 1.2 ◦ (right).
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Figure 2.3: Visualizing the direction of the error for the same experiments as in
Figure 2.2. For each sphere, the difference of the stereographic projections of the
reconstructed light direction and the ground truth are color mapped according to
the reference on the right.

the light direction for each sphere assuming an orthographic model.
Figure 2.2 shows the angular deviation from the directions computed
from the true perspective model. The direction of the error is visualized
in Figure 2.3. As expected the error increases towards the edges of the
field of view where the orthographic model deviates more strongly from
a perspective one.

Next, we evaluate the gap between theory and practice by com-
paring the synthetic light directions with those reconstructed from the
real experiment. For the perspective reconstruction, the deviation is
below 1.2 ◦ in all cases and does not show strong spatial variations in
Figure 2.2. This indicates that effects from an inaccurate calibration or
noisy highlight detections cause only minor errors. The same holds for
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the orthographic reconstruction which behaves similar to the simulated
case.

Nevertheless, the performance could be improved by taking erro-
neous detections into account. Aoto et al. [2012] and Ackermann et al.
[2013] allow for such inaccuracies by considering the reprojection error
in the triangulation of near light sources.

2.4 Baseline quality

Given the large number of potential error sources discussed in §2.3, one
might ask whether photometric techniques have any chance of success.
Common quality measures for the overall result of such methods are
the angular normal error, the height differences of the integrated sur-
face, or the intensity error in rendered images. Here, we use the angular
error and conduct a controlled experiment in order to provide an intu-
ition of the quality level that can be achieved. The controlled setting
thereby establishes a baseline for more complex algorithms that will be
discussed later.

Experiment

The target object is a sphere made of Spectralon, a highly Lamber-
tian material. We use a sharply defined light source with a very stable
radiance output that we place several meters away to approximate a
distant point light. To estimate the light direction, we place two mirror
spheres in the scene. Since the extent of the whole setup is small, the
respective light vectors are very similar and we just average them. The
experiment is performed with a consumer camera (Canon EOS 700D)
equipped with a 135mm telephoto lens. We took great care to avoid
the error sources listed in §2.3 as much as possible, e.g. covering all
surfaces with cloth, using raw images, averaging ten pictures for each
light position to reduce noise, etc.

Figure 2.4 contains the results for all pixels that were never in
shadow for any of the six light sources. The error in Figure 2.5 is spa-
tially varying because the real world surface has fine ridges, porous
structure, and several pronounced dents that deviate from a true



2.4. Baseline quality 165

0◦

90◦

180◦

270◦

10◦

20◦

30◦

Figure 2.4: Experimental results for all pixels that were never in shadow for any of
the six light sources. Left: The estimated light source directions in spherical camera
coordinates. Right: Color coded normals of the reconstruction and an ideal sphere
(inset).
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Figure 2.5: Comparison with an ideal sphere. Left: The spatial error distribution
(mean: 2.5 ◦, variance: 1.3 ◦) shows fine ridges and dents where the target object
deviates from an ideal sphere. Right: A cumulative histogram of the angular errors
corresponding to the reconstruction on the left.

sphere. In addition, we observe a low-frequency bias. The errors are
higher on the left and right side than on the top or bottom. One pos-
sible source for this systematic error is the deviation of the Spectralon
BRDF from a true Lambertian reflector as pointed out by Bhandari
et al. [2011]. Another lies in the configuration of light sources which
yields a non-uniform error distribution. The effect of the latter will be
confirmed through synthetic experiments below, cf. Figure 2.6.

Overall, the histogram in Figure 2.5 shows that the deviation from
ground truth is about 2.5 ◦ in general. These findings are in line with
other experiments on photometric stereo with known light sources as



166 Background

Work Technique Comparison Error

Ray et al. [1983] C sphere < 5 ◦
Tagare and deFigueiredo [1991] C sphere 4.8 ◦
Wu and Tan [2013] C+U sphere 4 ◦
Shi et al. [2010] U calibrated PS 6− 7 ◦
Favaro and Papadhimitri [2012] U calibrated PS 5− 12 ◦
Papadhimitri and Favaro [2013] U calibrated PS 2− 3 ◦
Abrams et al. [2012] S Google Earth 20 ◦
Tunwattanapong et al. [2013] S sphere > 5 ◦

Table 2.2: Evaluation results in a selection of works on calibrated (C) and uncali-
brated (U) photometric stereo. Also listed are two examples of specialized techniques
(S) with more complex models. The comparisons are either performed with another,
presumably more accurate, technique as reference or based on objects with known
geometry such as a sphere or simple models from Google Earth.

listed in Table 2.2. We conclude that in a controlled setting calibrated
photometric stereo achieves an accuracy of about 3◦ − 5◦. The table
also indicates that uncalibrated techniques differ from calibrated ones
by several degrees. If compared to ground truth geometry, however,
they achieve similar results as shown by Wu and Tan [2013]. Obviously,
the less assumptions about the target, e.g. regarding reflectance, or the
capture setup are made, the bigger these errors may become as shown
by two exemplary techniques in the bottom rows.

Error Analysis

The evaluations above and in Table 2.2 are based on empirical data.
We can also take an ab initio point of view to study the effect of the
measurement errors. Based on the assumption of known error magni-
tudes in the image intensity and light measurements, Ray et al. [1983]
present a theoretical error analysis for the Lambertian case. They as-
sume a setup with three light sources on a circle around the optical
axis. Then, the photometric stereo problem can be solved in closed
form, cf. Equation 2.6. We encode this in a function h:

n = h(I1, I2, I3, θ, φ1, φ2, φ3) (2.11)
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where φi and θ are the azimuth and zenith angles of the light
sources. A first order Taylor expansion then yields an approximation
of the error in gradient space n = (−p,−q, 1) given the deviations
dI1, dI2, dI3, dθ, dφ1, dφ2, dφ3 of the input data:

dp =
∑
i

∂h1
∂I1

dIi+
∑
i

∂h1
∂φ1

dφi+
∂h1
∂θ

dθ, dq =
∑
i

∂h2
∂I1

dIi+ . . . (2.12)

For more than three light sources, a solution h involves the pseudo
inverse and computing the derivative is non-trivial. We therefore use a
different strategy to analyze settings such as in the empirical experi-
ment above. Assuming a ground truth normal nGT and light directions
Θ̂ = (θ1, . . . , θ6), Φ̂ = (φ1, . . . , φ6), we model the observables with nor-
mal distributions

I ∼ N (D(Θ̂, Φ̂) · nGT, σI), Θ ∼ N (Θ̂, σθ), Φ ∼ N (Φ̂, σφ) (2.13)

where D(Θ̂, Φ̂) is the light matrix. Then, we draw random samples
Θ̃, Φ̃, Ĩ from each distribution and compute the resulting normal as

n = n(θn, φn) = D(Θ̃, Φ̃)†Ĩ
‖D(Θ̃, Φ̃)†Ĩ‖

(2.14)

where D† denotes the pseudoinverse.
Repeating this sampling 10000 times lets us estimate the error for

any given normal nGT for a fixed light configuration Θ̂, Φ̂. We use the
same set of normals and light directions as in the real experiment and
set σI = 0.8 %, σθ = 0.7 ◦, σφ = 1.5 ◦ to reflect the findings in §2.3. The
results in Figure 2.6 show that deviations vary spatially over the sphere
and are not isotropic. The accuracy decreases in the left and bottom
regions because they are furthest away from the light directions. We
also observe from Figure 2.6 that, given the uncertainties in the input
data, we cannot expect to obtain much better results than a 1◦ error.
This puts the error of 2.5 ◦ in the actual experiment into perspective
and concludes our attempt to establish a baseline of quality.

2.5 Integration of surface gradients

Many photometric techniques recover the gradient of a surface, i.e. its
orientation. On the other hand, it is often desirable to reconstruct the
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Figure 2.6: Results from simulated input errors through random sampling. Left:
At each pixel, corresponding to the experiment in Figure 2.5, the angular error is
averaged over 10000 random experiments. The nine pixels in red are selected for
a closer examination. Center: For each of the exemplary normals marked in the
left image, we fit a Gaussian to the stereographic projection of the reconstructed
normals over 10000 random experiments. The ellipses correspond to the 1σ, 2σ, 3σ
intervals and show the spatially varying spread induced by the light configuration
(blue) used in the experiment. Right: A histogram of all angular errors from the plot
to the very left.

actual surface, and not just its derivative. Here, we summarize some
key ideas for surface integration to complete the introductory chapter.

If the object is represented as a height field (u, v, Z(u, v)) over the
image plane, its gradient field is defined as

∇Z : R2 → R2, (u, v) 7→
(
∂Z(u,v)
∂u

∂Z(u,v)
∂v

)
=
(
Zu(u, v)
Zv(u, v)

)
. (2.15)

What we obtain from photometric stereo is a vector field

g : R2 → R2, (u, v) 7→
(
p(u, v)
q(u, v)

)
(2.16)

or, interpreted as surface normals,

N : R2 → R3, (u, v) 7→ 1√
1 + p2 + q2

(
p(u, v), q(u, v),−1

)
. (2.17)

2.5.1 Path integrals

One strategy to recover the surface is to integrate the gradient field.
Assume the photometric stereo reconstruction is perfect, i.e. p = Zu,
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q = Zv, and the gradient is differentiable. Then, the definition

Z̃(u, v) :=
∫
γ
g(w) · dw =

∫ b

a
g(γ(t)) · γ′(t) dt (2.18)

is independent of the choice of γ (which is an arbitrary path from (0, 0)
to (u, v)). Conversely, it holds that ∇Z̃ = g. Thus, the path integral
in Equation 2.18 is one way to obtain a solution. It is, however, not
unique and might differ from the true solution by an additive constant
because ∇(Z̃ + c) = ∇Z̃ = g. Examples of this approach can be found
in the works by Wu and Li [1988] or Klette and Schluens [1996].

2.5.2 Variational formulation

In practice, the reconstruction is not perfect: the recovered gradients
might differ from the true surface derivatives or they might not form
an integrable vector field. It is therefore more common, cf. Durou et al.
[2009], to define the solution in a variational framework and minimize

E(Z̃) =
∫∫ (

Z̃u(u, v)− p(u, v)
)2 +

(
Z̃v(u, u)− q(u, v)

)2
d(u, v) (2.19)

or similar error measures. Moreover, such a formulation can be incor-
porated directly into the reconstruction algorithm as shown by several
shape from shading approaches, e.g. Horn and Brooks [1986]. To avoid
outliers and discontinuities, it can be beneficial to multiply the gradient
terms with spatially varying weights as for example demonstrated by
Agrawal et al. [2006]. For practical computations it is often required
to discretize the problem, e.g. in the spatial domain. Xie et al. [2014]
show how this can be achieved by casting the integration as a mesh
deformation task.

2.5.3 Additional constraints

Another approach to obtain absolute depth from gradients is to add
additional information to guide the integration. This usually comes in
the form of known depth values Ẑ at sparse points or in the whole image
area obtained through other means, e.g. laser scanning (Horovitz and
Kiryati [2004]), active stereo methods (Nehab et al. [2005]), or depth
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cameras (Haque et al. [2014]). A possible extension of Equation 2.19
is, for example,

E(Z̃) =
∫∫ (

Z̃u − p
)2 +

(
Z̃v − q

)2 +
(
Ẑ − Z

)2
d(u, v). (2.20)

Combining normals and depth in such a way is a key part in several of
the multi-view photometric stereo methods discussed in Chapter 8.



3
Foundations

At lot of the techniques used today still rely in part on methods and
concepts developed 30 years ago. It is instructive to briefly look at some
of these early works and give credit to the ideas presented.

One of the first applications of photometry was in exploring the
surface of the Moon. Rindfleisch [1965] derives and solves a differential
equation for the distance of a surface point from the image plane that
depends on the angles of incident and emitted light. His derivation is
based on paths in the image plane, and the final integration depends
on at least one depth value along a path to be known. The paths are
chosen as straight lines that meet in the point given by the intersection
of the image plane with the ray emanating from the camera center
in the direction of the Sun. Rindfleisch assumes a certain reflection
function for the surface of the Moon that essentially depends on two
angles only. Furthermore, the camera geometry must be known and the
discussion relies heavily on the Sun as known point light source.

Inspired by that work, Horn [1970] formulates the analytical shape
from shading problem for arbitrary, but known, isotropic reflectance
and known light sources. Again, this amounts to a first order partial
differential equation. He transforms this into five ordinary differential

171
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Figure 3.1: Left: Horn [1970] numerically integrates a system of differential equa-
tions along characteristic strips. They pass through an initial curve which is required
as starting point. ( c©1970 Massachusetts Institute of Technology. Reprinted, with
permission, from Berthold K. P. Horn. Shape from shading: A method for obtaining
the shape of a smooth opaque object from one view. Technical report, MIT Artificial
Intelligence Laboratory, 1970). Right: Three iso-intensity curves in gradient space
arising from different light configurations. A pixel that exhibits these three inten-
sities corresponds to the gradient at the intersection point. ( c©1977 Massachusetts
Institute of Technology. Reprinted, with permission, from Robert J. Woodham. Re-
flectance Map Techniques for Analyzing Surface Defects in Metal Castings. PhD
thesis, Massachusetts Institute of Technology, 1977).

equations that are solved along characteristic strips grown from an
initial curve, see Figure 3.1. The theoretical formulation and the treat-
ment of several special cases that simplify the occurring equations are
truly pioneering work. Interestingly, Horn also mentions limitations of
his imaging equipment. This aspect has become even more important
today as computer vision is employed in consumer hardware with un-
known characteristics.

In his PhD thesis—supervised by Horn—Woodham [1977] combines
reflectance, illumination, and viewing geometry into a single function,
a so called reflectance map, that relates surface orientation directly to
image intensities

I(u, v) = R(nu,v). (3.1)

In general, such a relationship can only be established if each object
point receives the same incident illumination, has the same reflectance,
and is observed from the same direction. This amounts to a distant
light source, an untextured object, and an orthographic camera. The
problem of inverting Equation 3.1 in a single image is similar to the
work by Horn [1970], but instead of formulating a set of differential
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equations, Woodham defines additional constraints that can guide the
inversion process. More important than the single image case is his
extension of the photometric shape recovery problem to multiple images
under varying illumination. He coins the term photometric stereo for a
scenario of two or more independent equations

I1(u, v) = R1(nu,v)
...

IM (u, v) = RM (nu,v)

(3.2)

and explores this concept in the much cited paper Woodham [1980].
Since a unit normal nu,v can be described by two angles, Equation 3.2
is an over-determined system of M non-linear equations in two un-
knowns. Figure 3.1 shows how the intersection of the curves arising
from each equation defines a solution in gradient space. In the case of
a distant point light source c shining from direction ωi and Lambertian
reflectance ρ/π, we obtain

Ri(nu,v) = ρ

π
c 〈nu,v, ωi〉. (3.3)

Inserting into Equation 3.2 yields the formulation in Equation 2.4 which
is the basis of many subsequent works in this area.

Horn et al. [1978] pick up the concept of a reflectance map and en-
hance the previously mentioned methods to cope with spatially varying
albedo in the Lambertion case by means of ratio images

I1 = ρ(u, v)R1(nu,v)
I2 = ρ(u, v)R2(nu,v)

}
−→ I12 := I1

I2
= R1(nu,v)
R2(nu,v)

=: R12(nu,v). (3.4)

The authors also give an overview about the possibilities of shape re-
construction from shading in one, two, or three images and compare
these with stereo based methods. Several properties of the latter are
complementary to those of photometric methods and provide the mo-
tivation for more recent, hybrid approaches.

One of the biggest hindrances for the broad application of photo-
metric stereo is, however, its necessity for carefully controlled lighting
conditions. Silver [1980] notes this problem in his master’s thesis and
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Figure 3.2: Four normals are computed from each combination of light triplets.
Left: For a diffuse point all normals coincide. Right: If the point exhibits specularity
under one of the light sources (dashed) the deviation among normals is higher.
(Reprinted from E. North Coleman and Ramesh Jain. Obtaining 3-dimensional
shape of textured and specular surfaces using four-source photometry. Computer
Graphics and Image Processing, 18:309–328, 1982. Copyright 1982, with permission
from Elsevier.).

develops an approach that works under varying but otherwise unknown
light sources. It is based on a look-up scheme that relies on a reference
object with the same reflectance as the target. This allows matching
of intensity sequences between target and reference. He transfers the
normals from the known reference based on the insight that two surface
points with the same normal reflect the same amount of light. Several
modern approaches draw inspiration from this orientation consistency
as we will describe in §7.3.

These techniques rely on a known reflectance map either through
calibration or a reference object. Coleman and Jain [1982] present a
technique that works for unknown, non-Lambertian objects without
this restriction. They propose to use four known light sources even
though three would suffice in the Lambertian case. This allows them to
compute a solution for each of the

(4
3
)

= 4 combinations of three light
sources. If the surface point is Lambertian, these are very similar and
will all lead to the same albedo estimate. If the point exhibits a spec-
ularity under one of the sources, these estimates differ and the normal
with the lowest albedo is accepted. Figure 3.2 illustrates this idea. The
procedure relies on the assumption that a surface point behaves almost
diffusely under most illuminations and that specularity only arises for
a few constellations. Barsky and Petrou [2003] extend this approach
using four known light sources with different color, which simplifies
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detection of highlights if the light source color is sufficiently different
from the Lambertian surface color. If light source and surface color are
similar, they propose an alternative method to identify a specular high-
light or shadowed light source based on the direction of the erroneous
initial surface normal estimate.

One of the early approaches to consider varying view point in ad-
dition to lighting conditions is presented by Hartt and Carlotto [1989].
Their formulation is cast in a probabilistic framework and allows the
inclusion of smoothness priors and a model of image noise. Its core
is a comparison of observed intensities I with renderings of hypoth-
esized height fields Z. This is already quite similar to many modern
approaches, as we will see in the following chapters.



4
Unknown lighting

The first works on photometric methods, presented in the previous
chapter, assumed that the light source is a known quantity. This is
a realistic assumption in controlled settings such as an industrial fac-
tory or scientific laboratory. Lots of techniques have been developed to
provide this kind of input data and we briefly listed some of them in
§2.3. Ultimately, we are interested in uncontrolled settings where this
information is not accessible.

Performing an additional preprocessing step to estimate light source
positions is cumbersome and introduces another source of errors. More
importantly, equipment such as precise calibration spheres or position-
ing devices might not be available in a given acquisition setup. We will
therefore look at uncalibrated photometric stereo techniques in §4.1
and §4.2 which recover the shape and lighting at one go.

These approaches are categorized according to the lighting model
they employ. They all assume, however, an ideal camera model that
might not be adequate for some real scenarios. §4.3 presents gener-
alizations that lessen the calibration effort and allow for a broader
applicability.

176
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4.1 Point light source

One of the first methods to cope with the problem of unknown lighting
was presented by Hayakawa [1994] and gave rise to other so called
uncalibrated photometric stereo approaches. He arranges the radiance
at P pixels in M images into a matrix

L =


L1,1 . . . L1,P

. . .
LM,1 . . . LM,P

 . (4.1)

Assuming Lambertian reflectance, we know from Equation 2.4 that

L = C ·D︸ ︷︷ ︸
=:T

·N ·R︸ ︷︷ ︸
=:S

(4.2)

where the diagonal matrix C ∈ RM×M contains the source radiance,
D ∈ RM×3 represents the light directions, N ∈ R3×P is the stack of
all normals, and R ∈ RP×P contains the reflection coefficients on its
diagonal.

For given L, the goal is to find the matrix S. However, multiple
candidates T̂ , Ŝ might fulfill

L = T̂ · Ŝ. (4.3)

In fact, any invertible 3 × 3 matrix A defines a candidate pair T̂ :=
T ·A, Ŝ := A−1 ·S. Such a candidate pair can be obtained from L using
singular value decomposition. Additional constraints are necessary to
find the actual S, T .

Hayakawa proposes to use six or more pixels with the same or known
albedo, i.e.

ρ2
1 = ‖S1‖2 = 〈S1, S1〉, . . . , ρ2

6 = ‖S6‖2 = 〈S6, S6〉 (4.4)

where Si are the corresponding columns of S. Choosing the same
columns in a candidate matrix Ŝ yields

ρ2
i = ‖Si‖2 = 〈Si, Si〉 = 〈AŜi, AŜi〉 = 〈Ŝi, ATAŜi〉. (4.5)

These equations constrain the entries of the symmetric matrix B =
ATA, which has six degrees of freedom. Once this system of equations
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is solved, A can be recovered—up to an unknown rotation—from B

using singular value decomposition. Multiplying the candidate with
this transformation yields the final result S = A · Ŝ.

Techniques like the one just presented reconstruct a normal field
n(u, v) without considering an underlying surface. Instead, Belhumeur
et al. [1999] formulate the problem in terms of a height field, i.e. a
graph (u, v, Z(u, v)), with scaled normals

n(u, v) =
(
∂uZ, ∂vZ,−1). (4.6)

To define a surface, Z must satisfy the integrability constraint

∂u∂vZ = ∂v∂uZ, (4.7)

which had already been used for shape from shading, e.g. by Horn
and Brooks [1986] and Frankot and Chellappa [1988]. This provides
constraints on any normal field that belongs to a surface. Not all trans-
formed candidates A · Ŝ are able to fulfill those. Belhumeur et al. [1999]
show that for an integrable normal field S, the set of matrices A that
preserve this property is equivalent to1 0 −µ/λ

0 1 −ν/λ
0 0 −1/λ

 (4.8)

for parameters µ, ν ∈ R and λ > 0. In practice, that means that an
integrable normal field can be recovered by photometric methods only
up to such a generalized bas relief transformation if no additional infor-
mation is available. Figure 4.1 illustrates this finding with two differing
constellations of light and surface that nevertheless yield the same im-
age.

The bas relief transform not only applies to normals but also trans-
forms the diffuse albedo. Alldrin et al. [2007] exploit the fact that many
objects are composed of a small set of albedo values whose histogram
gets broadened by a bas relief transform. They define an energy based
on the entropy of the albedo distribution. Minimizing this energy yields
the parameters of the correct transform.

Favaro and Papadhimitri [2012] look at the function f(u, v) :=
〈n(u, v), ωs〉 defined over the image domain. They discover that a max-
imum of this function constrains the parameters µ, ν of the allowable
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Figure 4.1: Without further constraints, multiple combinations of shape and light-
ing can result in the same image. For a differentiable surface, this ambiguity re-
duces to the so called generalized bas relief transform. (With kind permission from
Springer Science+Business Media: Peter N. Belhumeur, David J. Kriegman, and
Alan L. Yuille. The bas-relief ambiguity. International Journal of Computer Vision,
35:33–44, 1999. Figure 2.)

general bas relief transforms to a line and the parameter λ to a semi-
circle over that line. Intersecting those curves in parameter space for
multiple extrema yields a single point which completely describes the
transform. Albedo variation can, however, make the detection of max-
ima difficult.

Finally, Drbohlav and Sára [2002] and Drbohlav and Chantler [2005]
deviate from the strictly Lambertian reflectance assumption by adding
a pure specular reflection term. This allows them to introduce the con-
sistent viewpoint constraint, which states that for the actual S, T all
light directions D must be reflected in the same viewing direction.
Given the additional assumption of surface integrability, two specular
pixels in two input images with different illumination conditions are
sufficient in Drbohlav and Chantler [2005] to resolve the general bas
relief ambiguity.

4.2 General light source

The works discussed above assume a distant point light source. That
is an idealized setting. It is often violated, e.g. by ambient light that is
hard to prevent in a real setup. Fortunately, the ideas introduced for
point lights can easily be generalized to more complicated illumination.

Yuille and Snow [1997] use a similar matrix decomposition approach
as Hayakawa but extend the shading model by a constant ambient term



180 Unknown lighting

L =


L1,1 + a1 . . . L1,P + aP

. . .
LM,1 + a1 . . . LM,P + aP

 (4.9)

They enforce the integrability constraint to resolve the ambiguity in
A up to a generalized bas relief transform. The final solution is then
defined by additionally assuming a light source with constant radiance.

Handling arbitrary unknown illumination is usually addressed by a
decomposition of incoming radiance. If the incoming illumination Ls
can be decomposed into individual components

Ls =
r∑
j=0

λjLs,j , (4.10)

this transfers to the outgoing radiance. Assuming Lambertian re-
flectance in Equation 2.2, we obtain

L =
∫

Ω

ρ

π

∑
j

λjLs,j(ωin) 〈n, ωin〉 dωin (4.11)

=
∑
j

λj

∫
Ω

ρ

π
Ls,j(ωin) 〈n, ωin〉 dωin︸ ︷︷ ︸

=:Lj(n)

(4.12)

where Lj is the radiance observed if the scene was illuminated just
by Ls,j . Under these assumptions, the matrix in Equation 4.1 can be
decomposed as

L =


λ1,1 . . . λr,1

. . .
λ1,M . . . λr,M

 ·

L1(n1) . . . L1(nP )

. . .
Lr(n1) . . . Lr(nP )

 . (4.13)

Basri and Jacobs [2001a] argue that a decomposition into spherical
harmonics represents a good approximation to the space of all possible
images of a Lambertian object. A constant illumination yields the zero
order harmonic image which corresponds to the surface albedo. The
first order harmonic images are taken under cosine lighting for each of
the three main axes and correspond to the respective components of
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the scaled normal at each pixel. Higher order decompositions reduce
the approximation error.

In a second paper, Basri and Jacobs [2001b] show how to exploit
these insights for photometric stereo reconstructions under arbitrary,
unknown illumination. They use singular value decomposition to obtain
a candidate factorization L ≈ Λ̂L̂s as the best rank r approximation
of L. Similar to the discussion about the work by Hayakawa [1994],
this factorization is only unique up to an r × r linear transformation.
Basri and Jacobs [2001b] use a normalization constraint to reduce this
ambiguity to a Lorentz transformation in the case r = 4. Enforcing
integrability again leads to a unique solution.

4.3 Other generalizations

The works discussed so far assumed an orthographic camera model
like the majority of photometric stereo approaches. Papadhimitri and
Favaro [2013] show how to incorporate a perspective camera model in
a photometric reconstruction. More importantly, they find that a per-
spective formulation of the uncalibrated photometric stereo problem,
when enforcing the integrability constraint, does not suffer from the
bas relief ambiguity. Their results indicate also that an incorrect focal
length or principal point can lead to strongly biased normals.

If in addition to a perspective camera the assumption of a direc-
tional light source does not hold, e.g. in endoscopic setups, the photo-
metric stereo problem becomes even more general. Even if the position
of the light source is known, its direction at each pixel is not because
it depends on the depth of the observed point. Furthermore, light at-
tenuation due to the 1/r2 fall-off and angle dependent emittance of the
light source lead to non-linearities in the equations. Collins and Bartoli
[2012] solve this problem in a multi step optimization procedure that
involves not only the normals as unknowns but also the depth at each
pixel. A more rigorous formulation is derived by Mecca et al. [2014]
who come up with a set of partial differential equations to encode the
constraints on the depth mapping. They present two numerical schemes
that recover the depth without separating it from its gradient, i.e. the
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normals. Integrating the differential equations requires the depth at
one or more pixels to be known from which suitable integration paths
are propagated outward.

None of these approaches considers the radiometric calibration of
the camera. It is either assumed that calibration can be performed in
a preprocessing step or is circumvented by using special cameras with
linear response. Shi et al. [2010] propose an uncalibrated photometric
stereo technique that also recovers the camera response curve. They
exploit that the ratio between color channels for a single pixel is con-
stant in a sequence of linear images but curved if a non-linear response
is present. Measuring the non-linearity of the profiles in the RGB space
allows them to define a minimization problem on the coefficients of a
polynomial response model. For photometric stereo, they automatically
select pixels with equal albedo and different normals which allows them
to remove the bas relief ambiguity as in the approach by Hayakawa
[1994].

Another aspect that is often overlooked are non-convex shapes. For
example, a point in a deep crevice will not be visible from the entire
hemisphere above its local tangent plane. In that case, some entries in
the light matrix might be missing which we briefly discuss in Chapter 6.
Such effects are a lot harder to detect and handle in the presence of ex-
tended light sources. Then, the integration in Equation 4.11 would not
be performed over all possible light directions and thus yield an atten-
uated radiance. If the light distribution can be split into a directional
light source and a constant ambient term

Ls = Ls,dir + Ls,con (4.14)

this attenuation is called ambient occlusion. Hauagge et al. [2013] es-
timate it from a set of images by studying a statistic over the pixel
intensity distribution. They derive how this statistic relates to ambient
occlusion and show its effectiveness in practice. Their approach could
be a preprocessing step for photometric stereo techniques.



5
Unknown reflectance

The appearance of a given object depends on its reflectance and the
illumination. The approaches in Chapter 4 were focused on the case
where the latter is unknown. They assume, however, that the surface
reflects light according to the Lambertian model. We will now study
the complementary setting in which the illumination is known or can
be controlled and the reflectance is unknown.

Most real surfaces have reflectance properties that are neither
purely Lambertian nor perfect mirrors. The linear equations in §2.2
no longer hold and other reflection models have to be employed. This
makes a direct inversion of the underlying formulation in Equation 2.2
more challenging as we will see in §5.2.

This chapter presents examples for the most common high-level
strategies for shape reconstruction in the presence of unknown re-
flectance. Diffuse-specular separation in §5.1 and parametric modeling
in §5.2 both have the disadvantage of model assumptions that might
not be fulfilled by an arbitrary real-world BRDF. They have, however,
been shown to work for a broad range of materials in practice. A benefit
of parametric BRDF models is that they can be used to create novel
impressions of the scene and that they fit into artists’ editing pipelines.
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The approaches based on general invariants such as symmetries in §5.3
only recover shape but are more general because they do not assume
a fixed reflectance model. The downside is that they typically require
special constellations of light source and camera during capturing.

5.1 Diffuse and specular components

A commonly followed path is to split the radiance into a diffuse and
specular contribution

L = α̂diff · Ldiff + α̂spec · Lspec. (5.1)

Nayar et al. [1989] assume that the specular term consists of a single
spike and approximate it with a delta function. That corresponds to a
BRDF

ρ(ωout, ωin) = α̂diff + α̂spec ·
δ(DR − ωin)
〈n, ωin〉

(5.2)

in Equation 2.2 where DR = −ωout+2〈ωout, n〉n is the reflection vector.
They only study the two-dimensional case and reconstruct surface ori-
entation ϕn within the plane formed by ωin and ωout. Using an extended
light source Ls(ϕ,ϕs) centered around direction ϕs yields

L = αdiff · cos(ϕs − ϕn) + αspec · Ls(2ϕn, ϕs), (5.3)

where all angles are with respect to the viewing direction Dout.
Nayar samples this function L(ϕs,i) for multiple known light source

directions as shown in Figure 5.1. If the step size equals the extent
of the light source, at most two samples i, i + 1 are affected by the
specular component because it is a delta peak. From these, αspec and an
estimate ϕn,spec of the normal can be obtained. The remaining samples
determine αdiff and ϕn,diff. They perform this computation for all i and
select the result where ϕn,diff and ϕn,spec are most similar.

Another way to deal with non-diffuse surfaces is to exploit polar-
ization. As observed by Mersch [1984], specular reflections can often
be removed using cross polarization. This requires placing polarization
filters in front of both light sources and cameras and adjusting their
polarization angle to be perpendicular (or crossed). In many cases, the
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Figure 5.1: The image intensity at a surface point with normal ϕn is a func-
tion of the source direction ϕs. If the sampling interval matches the extent of the
light source, only the samples closest to the reflection vector 2ϕn are affected by
the specular component ( c©1989 IEEE. Reprinted, with permission, from Shree K.
Nayar, Katsushi Ikeuchi, and Takeo Kanade. Determining shape and reflectance of
lambertian, specular, and hybrid surfaces using extended sources. In International
Workshop on Industrial Applications of Machine Intelligence and Vision, 1989).

specular reflection itself partially polarizes light whereas light after dif-
fuse reflection tends to be unpolarized Koshikawa [1979]. Nayar et al.
[1993] use this principle to estimate the specular term from multiple
images obtained by rotating a polarization filter in front of the camera.
Removing its contribution yields an image as if the object was diffuse.

Sato and Ikeuchi [1994b] extend the work of Nayar et al. [1989] to a
simultaneous analysis of all three color channels in RGB space. Using a
similar reflection model, they consider multiple samples in Equation 5.3
and arrive at the matrix expression

L = D·K (5.4)

:=


cos(ϕs,1 − ϕn) L(2ϕn, ϕs,1)

...
...

cos(ϕs,M − ϕn) L(2ϕn, ϕs,M )

 ·
(
αdiff,R αdiff,G αdiff,B
αspec,R αspec,G αspec,B

)
.

This model corresponds to the dichromatic reflection model in-
troduced by Shafer [1984] who notes that the specular vector
(αspec,R, αspec,G, αspec,B) usually has the same color as the light source.
Sato and Ikeuchi estimate this vector from several pixels of different
color. Then, the diffuse component (αdiff,R, αdiff,G, αdiff,B) is obtained
from similar arguments as exploited by Nayar et al. [1989]—most sam-
ples capture only the diffuse contribution. Finally, they recover the ma-
trix D from Equation 5.4 by inverting the color matrix K. To get the



186 Unknown reflectance

actual orientation ϕn, however, knowledge of the light source directions
ϕs,i is required.

Mallick et al. [2005] also assume a dichromatic reflection model
but propose to rotate the original RGB color space into an SUV color
space so that the S channel of the color space corresponds to the color
(cR, cG, cB)T = C of the light source:

LSUV = A · L (5.5)

with rotation A ∈ SO(3) and A · C = [1, 0, 0]T . The two remaining
channels U and V depend only on the diffuse reflectance component
and can be analyzed using standard Lambertian photometric stereo
methods. This allows the method to be applied to arbitrary colored or
textured surfaces as long as the color of the light source C is known or
can be estimated. Purely white surfaces can, however, not be recovered
since in this case the U and V channels contain no signal.

5.2 More complex BRDF models

Instead of approximating specular reflectance with a delta peak, more
sophisticated BRDF models allow for broader lobes and smeared out
highlights. Tagare and deFigueiredo [1991] give theoretical insights on
photometric stereo under such m-lobed reflectance maps

Ri(nu,v) =
m−1∑
j=1

ρjΦj(pTi,jnu,v) + ρm, (5.6)

Φj : R+ → R+ positive and monotonically increasing, (5.7)
pi,j ∈ S directions in the plane spanned by ωin,i, ωout, (5.8)
pTi,jnu,v scalar product with the normal, (5.9)

that encompass fore- and backscattering cases. An example configu-
ration is shown in Figure 5.2. The authors confirm experimentally
that a simple Lambertian assumption for the reconstruction of non-
Lambertian objects leads to high errors and thus motivate the use of
more sophisticated models.

While Tagare and deFigueiredo explicitly invert the photometric
stereo equation similar to §2.2, another approach is to employ non-
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Figure 5.2: Rough surfaces exhibit a mix of different reflection phenomena. They
can be modeled as a weighted sum of individual contributions such as diffuse and
specular reflection or backscattering lobes. ( c©1991 IEEE. Reprinted, with permis-
sion, from Hemant D. Tagare and Rui J. P. deFigueiredo. A theory of photometric
stereo for a class of diffuse non-lambertian surfaces. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 13, 1991).

linear optimization techniques to minimize the image intensity error

arg min
N,ρ

‖I −M(N, ρ)‖, (5.10)

where M can be any model of light transport in the scene. However,
such an optimization is not straightforward due to the possibly large
amount of parameters and their non-linear relationship.

Goldman et al. [2005] alternatingly estimate the reflectance prop-
erties ρ of a parametric BRDF model by Ward [1992] and the surface
orientation in the form of a normal field N . Varying the reflectance
parameters ρu,v at each surface point would lead to lots of unknowns,
require a huge amount of images, and affect the robustness negatively.
Instead, they recover only a small set of basis BRDFs ρj and per-pixel
mixing coefficients γu,v,j similar to Lensch et al. [2003]:

ρu,v =
∑
j

γu,v,jρj . (5.11)

The optimization still requires a good initialization, which they obtain
using Lambertian photometric stereo.

Aittala et al. [2013] also estimate spatially varying reflectance using
a parametric BRDF model—based on sums of Gaussians—and non-
linear optimization. In contrast to Goldman et al. [2005], they derive
one set of parameters at each pixel. Their technique relies on an ex-
tended light source, e.g. a LCD display, that projects a series of illu-
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mination patterns onto the target. It is primarily a BRDF acquisition
setup but also recovers surface normals for almost planar objects.

An even more challenging case of unknown reflectance is considered
by Dong et al. [2014a]. They study materials, such as skin or soap, that
exhibit subsurface scattering. Then, reflectance at a single point can
no longer be described by a four dimensional BRDF and applying pho-
tometric stereo leads to blurred results. Instead, they model outgoing
radiance as a convolution with a bidirectional subsurface scattering dis-
tribution function (BSSRDF). A non-linear optimization that involves
a blind deconvolution step recovers normals that are much closer to the
ground truth.

The complexity of the employed BRDF models in these approaches
leads to non-linear formulations that are often hard to optimize. Shi
et al. [2012b] address this by introducing a simplified reflectance model
based on a biquadratic factorization of isotropic BRDFs. They show
that it approximates the low-frequency components of other parametric
models and measured BRDFs. If the light source positions are known,
surface normals and BRDF parameters can be reconstructed by simply
alternating two linear least squares optimizations.

Ikehata and Aizawa [2014] also transform the problem of recovering
normals and BRDF into a representation that is better suited for op-
timization. They base their derivations on the multi-lobed reflectance
model introduced by Chandraker et al. [2011]

ρu,v =
m∑
j=1

Φj

(
pTj nu,v

)
(5.12)

where Φj are nonlinear functions and pj are directions along which
these functions are concentrated. The authors prove that if pj lies in
the plane spanned by the viewing and lighting direction, the whole
image formation can be represented by a bivariate function f

Li(u, v) = hi (〈nu,v, ωin,i〉, 〈ωin,i, ωout,i〉) (5.13)

with certain monotonicity constraints. These ensure the existence of an
unknown function g such that

〈nu,v, ωin,i〉 = g (〈ωin,i, ωout,i〉, Li(u, v)) (5.14)
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and thus separate the unknown normal from the nonlinear function.
Approximating g using Bernstein basis polynomials then leads to a
constrained linear problem.

Note that the above BRDF models only approximate the real re-
flectance behavior and may break down in specific cases (typical ex-
amples are anisotropic reflectance or retro-reflectance). One thus needs
to always check whether these models and techniques are applicable to
the specific reconstruction scenario at hand.

5.3 Invariants

A different approach to handle complex BRDFs is to exploit general
invariants, such as symmetries and physical properties, in the image
formation model or capture setup. Such techniques are usually inde-
pendent of any explicit parametric reflectance model. This is an ad-
vantage in terms of generality but can be a disadvantage if editing of
scene appearance is desired.

Zickler et al. [2002] use Helmholtz reciprocity, which states that a
BRDF is invariant if the incoming and outgoing directions are swapped:
ρ(ωin, ωout) = ρ(ωout, ωin). Their setup consists of a camera and a
light source which can be exchanged to acquire a reciprocal pair. The
intensity—ignoring irradiance fall-off due to the light source distance—
of a surface point in both images of a pair yields

Ir = ρ(ωin, ωout) · 〈n, ωin〉
Il = ρ(ωout, ωin) · 〈n, ωout〉

}
=⇒ 0 = 〈n, Irωout − Ilωin︸ ︷︷ ︸

=:w

〉. (5.15)

For multiple pairs, the vectors w can be stacked into a matrix W that
fulfills 0 = nTW and rankW = 2. Note that ωin, ωout are assumed to
be in a coordinate system local to the surface point X and depend on
its position in relation to the camera/light. Using the rank of W (X)
as an indicator of surface depth, this method recovers the 3D position
X. Once the correct depth is found, the normal is given by the kernel
of W (X).

Capturing reciprocal pairs requires a careful calibration and cam-
era/light placement. Zickler [2006] shows how such a calibration can
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Figure 5.3: Intensities samples for a surface point with isotropic BRDF under a
light source that moves around the optical axis. The samples exhibit a symmetry
around a particular light position, parametrized by the azimuth angle ϕg. The nor-
mal of the point lies in the plane define by ϕg and the viewing direction. ( c©2013
IEEE. Reprinted, with permission, from Zhenglong Zhou, Zhe Wu, and Ping Tan.
Multi-view photometric stereo with spatially varying isotropic materials. In IEEE
Conference on Computer Vision and Pattern Recognition [2013]).

be obtained from features in the reciprocal images themselves. It re-
mains, however, necessary to swap the light and camera for each pair.
Delaunoy et al. [2010] use the same concept as Zickler et al. [2002] but
formulate an energy over a global 3D model instead of separate depth
maps.

In many cases, other kinds of symmetries can be exploited besides
Helmholtz reciprocity. One example is bilateral symmetry for isotropic
BRDFs, i.e., symmetry across the plane of incidence

ρ(θin, φin, θout, φout) = ρ(θin, φin, θout, φin + (φout − φin)) (5.16)
= ρ(θin, φin, θout, φin − (φout − φin)), (5.17)

which was introduced in Marschner’s Ph.D. thesis (Marschner [1998]).
Alldrin and Kriegman [2007] use the concept of bilateral symmetry
based on so called isotropic light pairs. This requires a circle of light
positions—parametrized by the angle ϕ—centered about the optical
axis of the camera. For a single pixel, the radiance distribution L(ϕ)
given by these light positions exhibits a symmetry around a certain
angle ϕg depicted in Figure 5.3. This angle and the viewing direction
define a plane that contains the normal. The authors show that this
information is sufficient to recover iso-depth contours of the surface.
Further constraints are necessary to obtain the unique normal or the
absolute depth.
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Figure 5.4: Two common parametrizations of a BRDF. Top: Incoming ωin and out-
going ωout directions are encoded as azimuth in the tangential plane and zenith angle
with respect to the normal. Bottom: The incoming direction is encoded by differ-
ence angles (θd, φd) with respect to the halfway vector h = (ωout−ωin)/‖ωout−ωin‖
which is itself represented as zenith and azimuth angles (θh, φh). ωout is implicitly
defined by reflecting ωin around h.

Using this technique as initialization, Alldrin et al. [2008] present
a system that recovers not only surface orientation but also BRDFs.
This makes it possible to render novel views of captured objects un-
der different illumination. They make the additional assumption that
the reflectance is well represented by a bi-variate function. Based on
the halfangle representation introduced by Rusinkiewicz [1998], cf. Fig-
ure 5.4, Romeiro and Zickler [2010b] show that this holds if the BRDF
does not change too much for rotations of the incoming and outgoing
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directions around the halfway vector

ρ(θh, φh, θd, φd) ≈ ρ(θh, φh, θd, φ̃d). (5.18)

The technique by Alldrin et al. then relies on a set of basis materials
which are represented as data samples and thus do not depend on a
parametric model. The normals and material weights at each pixel and
the basis BRDFs for the full object are found through an alternating
optimization.

As mentioned above, bilateral symmetry alone determines only the
azimuth angle of the normals. Shi et al. [2012a] give an example of
an additional constraint to also recover the zenith angle. It is based
on the assumption of a BRDF as in Equation 5.12 with a dominant
lobe concentrated around the halfway vector Φ(hTn) = Φ̃(θh). In gen-
eral, the monotonicity θh1 > θh2 ⇒ Φ̃(θh1) < Φ̃(θh2) is broken for an
incorrect normal estimate. The approach requires light directions to
be known and distributed equally on the hemisphere to detect such
a violation. Holroyd et al. [2008] also investigate symmetries similar
to Alldrin and Kriegman [2007], but additionally consider tangents.
This makes it possible to study anisotropic materials. They define a
measure of symmetry for a pair (n, t) of normal and tangent under
three possible reflection operations. Minimizing that measure at each
pixel yields a local coordinate frame which can, for example, be used
to fit a parametric BRDF model. Their technique, however, requires
thousands of images with known light position.

The methods discussed so far required the light source positions to
be known explicitly. Chandraker et al. [2011] again use light sources
that move on a circle around the optical axis but do not require their
actual position. They exploit image derivatives both in the spatial and
in the temporal domain, i.e. neighboring pixels and successive light di-
rections, to define a ratio that is constant over time and independent
of the BRDF. From this invariant, it is possible to recover the direction
of the gradient and, similar to the idea of Alldrin and Kriegman [2007],
the iso-depth contours. The advantage of this technique is that it works
for unknown light source positions as long as they fulfil the circular mo-
tion assumption. A disadvantage in practice is that the reconstruction
involves higher-order derivatives of image intensities, which tend to be
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Figure 5.5: Narrowing down the possible normals by combining the solution spaces
of many weak constraints works even for non-linear camera responses. ( c©2010 IEEE.
Tomoaki Higo, Yasuyuki Matsushita, and Katsushi Ikeuchi. Consensus pho- tometric
stereo. In IEEE Conference on Computer Vision and Pattern Recognition [2010]).

unstable due to noise. Furthermore, additional input data is needed to
completely determine depth and normals.

As in Chapter 4, all techniques discussed here, except the one by
Alldrin and Kriegman [2007], rely on pixel values that are linearly
related to scene radiance. Higo et al. [2010] exploit three properties
present in many BRDFs which even hold for observations o under an
unknown camera response function. From known light source directions
ωi, they define a monotonicity constraint

oi > oj ⇐⇒ 〈ωi − ωj , n〉 > 0, (5.19)

a visibility constraint

〈ωi, n〉 > 0, (5.20)

and an isotropy constraint

o1 ' . . . ' ok =⇒ Vari
(
〈n, ωi〉

)
minimal. (5.21)

Figure 5.5 visualizes this abstract formulation. While each of the con-
straints is relatively weak, e.g. visibility is valid for all normals in a
half-space, combining them in a consensus manner over lots of light
directions yields very good results.



6
Outlier handling

No matter whether an approach is able to cope with unknown illumi-
nation as in Chapter 4 or with unknown reflectance as in Chapter 5, it
always assumes that the input data adheres to a fixed model or behaves
in a certain way. If these assumptions are repeatedly violated—beyond
statistical measurement errors—in a real scenario, the results become
unusable.

Several effects, e.g. shadows, interreflections, image noise, non-
linear camera response, non-ideal light sources, etc., are not accounted
for in the simple model employed by many photometric stereo meth-
ods. They are often treated as outliers, but sometimes they can even
be exploited explicitly to obtain additional information. We will dis-
cuss some examples of the latter in §6.1 and then look at more general
outlier treatment in §6.2.

The ideas from §6.2 can also be exploited in the context of Chap-
ter 5 if non-Lambertian reflectance is considered as an outlier. This is
similar in spirit to the concept of Coleman and Jain [1982] introduced
in Chapter 3. It requires, however, that sufficiently many images show
a surface point without specularity.

194
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6.1 Explicit treatment

6.1.1 Interreflections

Nearly all approaches neglect global illumination effects, i.e. light that
reaches a surface patch not directly from the source but after one or
more bounces at other surfaces. The actually observed radiance then
has a direct and indirect component L = Ldirect + Lindirect from which
only Ldirect follows the model in Equation 2.3. Nayar et al. [1990] dis-
cuss the impact of interreflections on photometric reconstruction tech-
niques. They assume the scene to consist of infinitesimal, planar patches
of Lambertian reflectance similar to radiosity approaches in computer
graphics (Goral et al. [1984]). The geometric relations between patches
can be encoded in a kernel matrix B ∈ RP×P :

B =


0 b1,2 · · ·
b2,1 0
... . . .


where bi,j encodes the transfer of energy between the interreflecting
surface patches i and j. So the observed radiance can be written as:

L = (I−RB)−1Ldirect = (I−RB)−1RND (6.1)

where I is the identity matrix, the diagonal matrix R ∈ RP×P contains
the albedo and N ∈ RP×3 the normal of each patch, and D ∈ R3×M

the light source directions. As hinted at by Figure 6.1, a standard
photometric stereo technique would result in false estimates Ñ , R̃:

R̃Ñ := L ·D−1 = (I−RB)−1RN ⇔ RN = (I−RB) · R̃Ñ . (6.2)

Nayar et al. solve this problem by iteratively updating the left hand
side with calculations of the right hand side based on estimates from
the previous iteration. Chandraker et al. [2005] study a similar prob-
lem in the context of uncalibrated photometric stereo. They are able
to show that interreflections actually resolve the generalized bas relief
ambiguity.
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Figure 6.1: Impact of interreflections on shape reconstruction. Left: A surface
point on the concave shape does not only receive light from the actual source but
also light that was reflected from other parts of the object. Middle: Traditional
photometric stereo underestimates the slope of the walls and reconstructs the wrong
shape. Right: Iterative corrections of the photometric stereo result by incorporating
the form factors of planar patches on the object ( c©1990 IEEE. Reprinted, with
permission, from Shree K. Nayar, Katsushi Ikeuchi, and Takeo Kanade. Shape from
interreflections. In IEEE International Conference on Computer Vision, 1990).

6.1.2 Shadows

Shadows are another source of inconsistencies. One distinguishes cast
shadows—generated because light towards the surface point X is
blocked by another point X̃—and attached shadows—occurring be-
cause the surface faces away from the light source, i.e.〈n, ωin〉 ≤ 0.
Daum and Dudek [1998] reconstruct surface height based on cast shad-
ows from known point light sources. They derive several constraints
based on geometric reasoning such as ’if point X is shadowed by X̃,
then all surface points on the connecting line must lie below the ray
from X to X̃’.

Chandraker et al. [2007]. use similar constraints for 3D surface
reconstruction in their ShadowCuts paper. The approach requires at
least four input images of a Lambertian scene illuminated from a com-
bination of four or more light sources, so that each surface point is
observed under at least three different, non-shadowed illuminations.
Starting from the observation that light source visibility is piecewise
constant over a surface, they propose an efficient graph cut-based ap-
proach, which determines the per-pixel light source visibility labeling
that minimizes the photometric stereo error of the scene. Their vari-
ational surface reconstruction approach combines photometric stereo
with the constraints given by the shadow labeling.
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Kriegman and Belhumeur [2001] instead study attached shadows.
They reconstruct the light positions and normals at intersection points
of shadow boundaries. Okabe et al. [2009] exploit the binary pattern
(shadowed/non-shadowed) at a pixel created by a large sequence of
light positions. The similarity between two such patterns is related to
the angular difference of the corresponding normals. This insight allows
them to recover surface orientation using dimensionality reduction in-
spired by Sato et al. [2007] (see §7.3 for a detailed description of this
paper).

In a real scene, cast and attached shadows will be present at the
same time. Sunkavalli et al. [2010] observe that the light source visi-
bility is constant in subregions of the surface. The intensities in each
region lie in a three-dimensional subspace as exploited by uncalibrated
photometric stereo methods. The overall intensity matrix thus consists
of several rank three submatrices which can be obtained using subspace
clustering techniques.

6.2 General deviations

6.2.1 Exploiting high inlier to outlier ratios

In contrast to approaches that explicitly treat specific effects, another
line of work tries to detect any deviation from the local, Lambertian
shading model and then applies photometric stereo only to the remain-
ing intensities. This usually requires many images to ensure that a
surface point is observed sufficiently often without shadows or specular
behavior.

Such a dense photometric stereo technique is proposed by Wu and
Tang [2006]. They formulate a probabilistic image formation model that
includes a binary inlier/outlier map as hidden variable. For a single
pixel in M images, they compute a set of

( M
M−1

)
normals and represent

their distribution as a covariance matrix B. The algorithm estimates an
optimal B by weighting down observations that are likely to be outliers
according to the map. After updating the weights, the whole process is
repeated until convergence. Another example of this category is given
by Verbiest and Gool [2008] who also employ expectation maximization
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Figure 6.2: A multi-view setting with 5 camera and light positions. Three of the
ten possible combinations are highlighted. For selected voxels, the normals computed
from these triplets are visualized. (Reprinted, with permission, from Mate Beljan.
Multi-view photometric stereo using a normal consistency approach. Master?s thesis,
Technische Universität Darmstadt, 2011.)

but treat the normal map as a hidden variable. Instead of the per-
pixel approach of Wu and Tang, they describe the likelihood of outlier
intensities with per-image histograms.

Beljan et al. [2012] also consider sets of normals for a single point
computed from

(M
3
)
subsets of all available images, but do so in a multi-

view setting. The simplified example in Figure 6.2 shows the spread of
these normals at different point. For each image triplet, Beljan et al.
[2012] compute the set of inlier images whose observations are consis-
tent with the hypothesized normal. Instead of studying the distribution
of these normal hypotheses, they apply RANSAC to find the one that
has the largest support. The number of inliers then provides a cue to
decide whether a voxel belongs to the true surface or not. This leads to
good results for the normals but turns out to be not very discriminative
in terms of absolute geometry.
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6.2.2 Matrix corruptions

A slightly different perspective on photometric stereo with outliers is
provided by techniques that analyze the observation matrix for errors
and missing entries. Wu et al. [2010] interpret the problem as a low
rank matrix recovery task in the presence of sparse corruptions. More
formally, they augment the matrix decomposition in Equation 4.2 with
an error matrix E that contains all outliers due to shadows or specu-
larities:

L = T · S + E =: K + E. (6.3)
As we have seen before, the rank of T · S is at most three for a Lam-
bertian surface. Under the assumption that outliers occur infrequently,
E is sparse and the task becomes

arg min
K,E

[
rank(K) + α‖E‖0

]
, s.t. L = K + E (6.4)

where ‖·‖0 is the number of non-zero entries—and thus not a true norm.
Wu et al. [2010] replace this formulation with a convex optimization
problem

arg min
K,E

[
‖K‖? + α‖E‖1

]
, s.t. L = K + E, (6.5)

which can be minimized iteratively using Lagrange multipliers with
additional penalty terms (Augmented Lagrange Multiplier method, cf.
Bertsekas and Rheinboldt [2014]). If the locations of shadows are known
beforehand, they enforce the constraints only on the remaining entries.

OnceK is recovered, standard tools such as singular value decompo-
sition can be applied to obtain the factorization S, T . Other approaches
in this field of research, e.g. by Okatani and Deguchi [2007], Okatani
et al. [2011], Eriksson and van den Hengel [2010], directly optimize for
the decomposition

arg min
S,T

‖H �
(
L− T · S

)
‖ (6.6)

with a known matrix H encoding missing entries and � being the
component-wise multiplication. Such a technique can also be applied
to cope with outliers in calibrated photometric stereo as, for example,
shown by Ikehata et al. [2012].
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Unknown lighting and reflectance

Shape reconstruction of Lambertian surfaces under unknown illumina-
tion is possible as discussed in Chapter 4. Techniques that handle more
complex BRDFs are presented in Chapter 5 but require known light
sources or special capture setups. Reconstructing objects with complex
BRDFs under unknown illumination is a much harder problem because
both constituents interact in a complex way to form the observed ap-
pearance.

To a certain extent, ideas from the previous chapters can be applied
to this setting with some modifications. For example, §7.1 extends the
idea of diffuse and specular separation in §5.1 by applying one of the
techniques for general light sources presented in §4.2 to the diffuse
component. Similarly, §7.2 is related to the handling of parametrized
BRDF models as discussed in §5.2. Incorporating the unknown light-
ing in such a formulation adds, however, several degrees of freedom
that make a robust solution non-trivial. A more general approach is
to directly study similarities in the sequence of intensity values at sin-
gle pixels. Works that exploit such so called appearance profiles are
discussed in §7.3.

200
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Figure 7.1: Techniques to remove the specular highlights from an image (left) can
be employed as preprocessing. Only the diffuse component (right) is considered for
photometric stereo ( c©2005 IEEE. Reprinted, with permission, from Robby T. Tan
and Katsushi Ikeuchi. Separating reflection components of textured surfaces using
a single image. IEEE Transactions on Pattern Analysis and Machine Intelligence,
27:178–193, 2005).

7.1 Diffuse specular separation

Low-rank factorizations of the intensity matrix as in uncalibrated pho-
tometric stereo are not easily possible in the case of non-Lambertian
reflectance. A straightforward way to deal with this problem is to sep-
arate the diffuse and specular contributions using a technique such as
the chromaticity based method by Tan and Ikeuchi [2005] shown in
Figure 7.1. Applying one of the methods in Chapter 4 to the diffuse
component then yields the desired normal field.

Tan et al. [2007] propose such a system and show that the gener-
alized bas relief ambiguity can be resolved from the additional infor-
mation present in the specular component. The approach is based on
isotropy and reciprocity constraints derived from two or more images,
but Tan and Zickler [2009], Tan et al. [2011] show how this can even
be reduced to one. Wu and Tan [2013] use a similar strategy of diffuse-
specular separation and find the optimal bas relief transform through a
constraint on the structure of the BRDF. This requires objects with suf-
ficient distribution of normal directions, e.g. a sphere, and an isotropic
BRDF that exhibits a symmetry around the halfway vector.
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7.2 Parametric models

A different approach is to define a mathematical model of image forma-
tion that encompasses all unknowns and to directly minimize a suitable
error, e.g. image intensity differences

arg min
N,ρ,Ls

‖I −M(N, ρ, Ls)‖. (7.1)

This is similar in spirit to § 5.2 but adds the incoming light distribu-
tion Ls to the unknowns. Such an approach comes at the same costs
as discussed there: complex optimization problem, susceptibility to lo-
cal optima, and dependence on a parametric model that might not
represent all real-world scenarios.

An example is the technique by Georghiades [2003]. It uses a sim-
plified Torrance-Sparrow BRDF (Torrance and Sparrow [1967]) and a
single distant light source. The optimization is, however, restricted to
a single BRDF and only allows the diffuse albedo to vary spatially. He
is able to show that the generalized bas relief ambiguity is resolved for
specular surfaces in almost all cases if at least four images are captured.

7.3 Appearance profiles

We have seen another way to approach photometric reconstruction
problems in general in Chapter 5: symmetries and general properties
of BRDFs. In the setting discussed here, reasoning about symmetries
suffers from unconstrained lighting. A much more common strategy
is to exploit general relations between observation vectors or appear-
ance profiles that encode the temporal appearance variation of a single
pixel, i.e. columns in Equation 4.1. One example is the work of Shi et al.
[2010], that uses appearance profiles to introduce a self-calibrating pho-
tometric stereo technique (see the detailed description of the paper in
§4.3).

A recurring concept in this context is orientation consistency which
states that points with similar normals have similar appearance. As-
suming an orthographic camera, i.e. constant ωout = v for all surface
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points, the radiance of a point X with normal n is given by

f−1(I) = L =
∫
ρ(v, ωin)Ls(ωin)〈n, ωin〉 dωin (7.2)

according to Equation 2.2. The right hand side depends only on the
normal and BRDF but not on the 3D position. Thus, for a point X̃ on
the surface with the same normal and BRDF as X the radiance is the
same. Moreover, if the radiance is the same, the pixel intensities are
equal, too—even for a non-linear response curve f .

Hertzmann and Seitz [2003] place one or more example objects of
known geometry, usually a sphere, in the scene to obtain reference
profiles

Wi =


I1,i,1 . . . I1,i,k
...

...
IM,i,1 . . . IM,i,k

 (7.3)

of k basis BRDFs. For a pixel j on the target object, they match its
appearance profile

wj :=
(
I1,j . . . IM,j

)T
(7.4)

against linear combinations Wim of the reference profiles to find a
corresponding point

arg min
i
‖Wimj − wj‖2, mj := W †i wj (7.5)

on the reference. Based on orientation consistency, both points are then
likely to have the same normal. Since normals for the reference object
are known, they can simply be transferred to the target, see Figure 7.2.
This approach has the added advantage to require only a minimal
amount of calibration. Ackermann et al. [2010] remove the need for
an explicit example object by replacing it with a partial reconstruction
of the scene using multi-view stereo techniques. This bootstrapping al-
lows them to apply the example-based photometric stereo idea even
in scenarios where physical access to the scene is difficult such as for
Internet images.

If the light source positions vary smoothly, derivatives of the appear-
ance profiles can be computed. Koppal and Narasimhan [2006] obtain
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Figure 7.2: The concept of appearance matching for shape reconstruction. Left:
Finding pixels with similar intensity (usually in a series of images) on the target
and a reference sphere. Right: Because of orientation consistency, normals can be
transferred between matches.

the extrema of appearance profiles from such derivatives under an oth-
erwise unknown light source. They show that most of these extrema
are due to constant constellations of viewing direction, light source,
and surface normal. This insight makes the set of extrema locations
well-suited features for the clustering of surface orientations indepen-
dent of the BRDF. This process alone, however, cannot recover the
relationship between iso-normal clusters, e.g. one facing left and one
facing right. Other techniques are needed to assign absolute orientation
to the clusters. Those can, however, benefit from the initial clustering
as prior knowledge.

Sato et al. [2007] look at appearance profiles as a whole and not just
at the locations of extrema. They argue that similar profiles—seen as
vectors inM -dimensional space—correspond to similar normals, which
they justify based on the studies of the Torrance-Sparrow BRDF model
(Torrance and Sparrow [1967]). Since normals are defined on the unit
sphere S in R3, this implies that the set of profilesM is actually a two-
dimensional manifold in RM . Thus, there should exist an embedding
Φ : RM → R3 with Φ(M) ⊂ S that preserves the intrinsic structure
of M, i.e. points that are close in terms of M correspond to normals
that are close on S. The notion of closeness onM is expressed by the
geodesic distance, which can be approximated by Euclidean distances
along a sequence of neighboring profiles.

Sato et al. [2007] then employ the Isomap non-linear dimensionality
reduction technique by Tenenbaum et al. [2000] to obtain the embed-
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ding Φ and afterward force the result vectors to have unit length. The
normal map thus recovered contains only relative orientations, e.g. a
global rotation or reflection are not considered, but can be made unique
if additional constraints, such as contours, are applied. The advantages
of this technique are its generality and a certain robustness against
non-linear camera responses. It makes, however, the assumption of a
spatially constant ratio between diffuse and specular contributions and
requires hundreds of images.

Lu et al. [2013] extend the work by Sato et al. [2007] in several
ways. They show empirically—using the MERL (Matusik et al. [2003])
database of measured BRDFs—that the geodesic distance of the profiles
is proportional to the angular difference of normals

dgeod(wi, wj) ∝ acos
(
〈ni, nj〉

)
, for |〈ni, nj〉| > 1− δ, (7.6)

and that the proportionality factor depends only on the material. They
also propose a way to estimate this factor from intensity samples ob-
tained under uniformly distributed, but unknown, point light sources.
In combination this allows to recover the P ×P matrix NTN contain-
ing the dot products of all pairs of normals. Instead of dimensionality
reduction techniques, their recovery step is based on factorizing this
matrix and removing the arising ambiguity by means of the integrabil-
ity constraint.



8
Multi-view settings

Most photometric techniques assume a fixed view point. Information
about the orientation and reflectance of a surface is recovered from
changes in the illumination. This, however, restricts the result to a sin-
gle perspective and does not allow a reconstruction of a full, e.g. 360◦,
object model. Furthermore, varying view points provide additional in-
formation. For example, observing an object from the front and side
lets us estimate its absolute position in the scene and not just the sur-
face orientation. Multiple views also introduce redundancy in surface
coverage, which can be exploited to increase robustness.

If the illumination is fixed while the camera moves, we leave the
scope defined in §1.1. Nevertheless, §8.1 discusses some stereo algo-
rithms because they can seen as complementary tools to photometric
reconstructions as noted by Horn et al. [1978]. Stereo often performs
poorly on surfaces that exhibit only little texture variation. On the
other hand, it provides a good estimate of the absolute geometry and
not only recovers surface orientation that has to be integrated as in
§2.5. Photometric techniques work well even in uniform regions but
can suffer from low-frequency distortions. Some of the approaches in
later sections will therefore combine both techniques to counter their
respective disadvantages.

206
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We will categorize the techniques relying mainly on shading varia-
tions according to the magnitude of the assumed motion of the scene
components. For small, differential changes in camera and lighting dis-
cussed in §8.2, the situation is not too different from a fixed camera and
can be addressed by per-pixel perturbations as in optical flow methods.
A second strategy is to recover an initial proxy and adjust its shape
based on photometric reasoning. This idea also gets applied in §8.3
where camera baselines are much wider and the changes in lighting are
not restricted to smooth variations.

8.1 Fixed illumination

Reconstructions from two or more views are commonly addressed by
stereo or multi-view stereo methods. The idea is to find properties that
are invariant—or almost invariant—to view-point changes such as the
color of a Lambertian surface point X under constant illumination. If
X projects to pixel τ1(X) in the first image and τ2(X) in the second,
their color will be the same. For a hypothesized point X̃ that does not
lie on the surface, the color of its projections τ1(X̃) and τ2(X̃) will differ
in general. Thus, it is possible to detect the correct position by checking
the consistency of projections with respect to the invariant. Figure 8.1
illustrates this concept. For increased robustness, small surfaces patches
are often used in favor of single points. The image intensities for a
projected patch P in two cameras i, j are then compared using metrics
such as the sum of squared differences

di,j(P) =
∑
X∈P

[
Ii
(
τi(X)

)
− Ij

(
τj(X)

)]2 (8.1)

or the normalized cross correlation. For multiple image pairs, a hy-
pothesis is either retained or discarded based on an aggregation of the
scores di,j .

Seitz et al. [2006] give a good introduction to the aspects of different
multi-view stereo approaches and provide an overview over the litera-
ture in this field. We note that almost all techniques assume a Lamber-
tian surface. Exceptions are the works by Jin et al. [2003], Soatto et al.
[2003], Jin et al. [2005], which use a rank constraint on the radiance
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camera

camera

X̃

X

surface

Figure 8.1: Concept of patch-based stereo. A hypothetical patch at the wrong
position X̃ leads to different color values in both cameras. At the correct position
X, the projection yields a red and a green pixel in both cameras.

tensor to handle specular reflectance, or the work by Yu et al. [2004],
who compare input images with renderings of an object under a sim-
plified Torrance-Sparrow model (Torrance and Sparrow [1967]). These
approaches require the illumination to be constant and do not exploit
the additional information conveyed by variations in shading.

8.2 Differential motion

Some of the first steps towards multi-view reconstructions that con-
sider shading are connected to the analysis of densely sampled video
sequences. Carceroni and Kutulakos [2001] use multiple video streams
at calibrated positions to recover the motion, shape, and Phong re-
flectance parameters (Phong [1975]) of deformable surfaces under
known point light sources.

Zhang et al. [2003] introduce a framework that encompasses the
similarity of patches seen from multiple cameras and their appearance
change caused by varying illumination. The authors recover the direc-
tion of a distant light source, the surface normals, and absolute depth—
i.e. the distance from a camera center—in an alternating optimization.
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A general theory for shape reconstruction from differential object mo-
tion is derived by Chandraker et al. [2013]. It extends optical flow to
objects of unknown BRDF under arbitrary illumination.

These works rely on relatively dense temporal sampling and smooth
object motion in order to linearize the relationship of image intensities
∆I = Ii − Ii+1. Thus, it is questionable whether they are also suited
for wide-baseline, multi-view setups.

Lim et al. [2005], while also considering video frames as input, do
not explicitly exploit this linearization. They initialize a piece-wise pla-
nar surface by triangulating tracked scene points. Projecting it into all
views yields an intensity matrix, which can be factorized to obtained
normals from uncalibrated photometric stereo. The positions of the
tracked points allow a disambiguation of the general bas relief trans-
form. Then, the surface is updated by integrating the normals into a
depth map. This surface is again projected into all views to create a
new intensity matrix. The authors iterate these steps until convergence.

Joshi and Kriegman [2007] follow the same line of thought. They de-
rive a consistency measure for Lambertian surfaces which allows them
to estimate a coarse depth map. Projecting this depth map into all
images then yields an intensity matrix, which can be factorized. They
resolve the ambiguities by comparing the pseudo normals with the nor-
mals obtained by differentiating the depth map. Lastly, the normals and
depth map are both integrated into a final surface.

Their consistency measure is based on hypothesizing planar
patches, which they project into all images and form an intensity ma-
trix for each patch. As we have seen in §2.2, this matrix has rank three
for a Lambertian surface. If the patch was at an incorrect depth, the
error of a rank three approximation to this matrix should be high. Min-
imizing this error combined with a straightforward smoothing does not
yield high quality depth maps, but is sufficient as initialization.

We observe that these techniques alternate between a depth estima-
tion and a normal estimation step. This is because photometric stereo
requires known pixel correspondences to associate the intensities to a
surface point. In traditional photometric techniques, these are trivially
defined by the fixed view point assumption.
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8.3 Wide baseline

The technique by Joshi and Kriegman [2007] was used in a video-based
reconstruction setup but does not explicitly exploit differential motion.
This example leads us to another group of algorithms that do not make
such strong assumptions about the changes in object, camera, or light
positions. We summarize the setups of some these in Table 8.1. They
allow for wider baselines between views and increased freedom in light
source movement.

Another difference is that the approaches discussed before employ
a local surface representation, i.e. defined per view. We will now look
at methods that rely on a global geometric model of the surface. This
has the advantage of providing readily available occlusion information
while the surface is deformed by the optimization.

Voxel carving

Weber et al. [2002] use a voxel representation and consider objects
on a turntable. They carve away voxels for which the predictions of
the Lambertian model—given light source positions—disagree with the
recorded intensities even for the best fitting normal. The estimated
albedo and normals can then be used to render the scene with novel
lighting.

Yang et al. [2003] develop a consistency measure based on the be-
havior in color space of a surface point observed from multiple views: it
varies linearly from the diffuse color to the color of the light source. In
contrast to other voxel-based formulations, the approach additionally
employs a smoothness constraint. This is not straightforward to de-
fine for a voxel representation, and the authors resort to extending the
disparity gradient introduce by Burt and Julesz [1980], which is origi-
nally defined between two images only. Their method does not recover
normals and actually considers mostly a setting with fixed illumination.

Treuille et al. [2004] also reconstruct a voxel representation. They
consider multiple light directions and require one or more example ob-
jects in the scene similar to Hertzmann and Seitz [2005]. Their con-
sistency measure compares appearance profiles for a candidate voxel
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Figure 8.2: Illustrating the voxel-based reconstruction by Treuille et al. [2004].
Left: One of the input images taken from multiple view points and with varying
illumination. The inset shows the reference sphere that is photographed along with
the target object under the same lighting conditions. Middle: Due to the discrete
voxel grid, the actual surface geometry cannot represent fine details. Right: The
detail information encoded by the normals can be exploited for rendering.

against those on the reference objects. Figure 8.2 illustrates that the
reconstructed normals contain much more details than the coarse voxel
approximation. This information can, however, only be exploited dur-
ing rendering because normals and voxels are not fused into a single
surface representation. A further restriction concerns the camera po-
sitions, which need to be separated from the scene by a hyperplane
to ensure the correct order during voxel processing. These restriction
are addressed by Ackermann et al. [2014] who use a continuous, local
representation instead of a global voxel model. There approach might,
however, lead to slight inconsistencies between views.

Mesh deformation

Vogiatzis et al. [2006] and Hernandez et al. [2008] represent the global
model as a triangle mesh with attached normals, which circumvents the
drawback of the method by Treuille et al. [2004]. The approach in both
works assumes Lambertian surfaces and treats specular reflections as
outliers. It relies heavily on object silhouettes to recover the camera
parameters, light directions Dk, and an initialization of the mesh P.
The mesh is then projected into the images to obtain the intensities
Ii,k per face and light direction. From these, normals N are computed
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with a standard photometric stereo approach

arg min
N

Ephoto(N ;P) = arg min
N

∑
i

∑
k

(
〈ni, Dk〉 − Ii,k

)2
. (8.2)

This step is alternated with a vertex displacement that forces the face
normals Ñ defined by the mesh vertices P to conform with the recon-
structed normals N

arg min
P

Edisp(P;N) = arg min
P

∑
i

‖ñi(P)− ni‖2· (8.3)

Birkbeck et al. [2006] also filter out specular reflections during shape
recovery but fit a specular Blinn-Phong model (Blinn [1977]) once the
final geometry is available. Thus, the final output of this algorithm is
not just the object shape but also reflectance parameters. To achieve
this, they obtain the input images and the required light calibration
from a very controlled capture system. All three techniques can draw
on initializations that are already quite close to the true surface.

Yoshiyasu and Yamazaki [2011] show that a similar approach can
succeed with a much simpler initialization, e.g. a set of spheres approxi-
mating the object as in Figure 8.3. It also operates on mesh vertices, but
converts them into an implicit surface and back to a mesh during the
optimization. This allows to handle a greater variability in topology—
implicit surfaces can, for example, self-intersect. Similar to Hernandez
et al. [2008], their technique requires silhouettes to be extracted. In fact,
if the mesh deformation is constrained solely by silhouettes—ignoring
the photometric term completely—it already provides very good re-
sults. The photometric cue is much weaker and only serves to add
some details. Such combinations are also used in dynamic performance
capture systems as proposed by Ahmed et al. [2008], Vlasic et al. [2009].

While these approaches rely on silhouettes, the general idea of de-
forming an initial reconstruction based on photometric information can
also be applied in other settings. Wu et al. [2011] reconstruct an initial
mesh using multi-view stereo and refine it with normals from uncali-
brated photometric stereo. Another way of initialization is to assume
a mostly planar target as suggested by Ruiters and Klein [2009]. They
represent geometry variations as a height field and recover spatially
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Figure 8.3: Overview of the multi-view reconstruction approach by Yoshiyasu and
Yamazaki [2011]. A basic mesh gets deformed iteratively to fulfill silhouette and
photometric constraints ( c©2011 IEEE. Reprinted, with permission, from Yusuke
Yoshiyasu and Nobutoshi Yamazaki. Topology-adaptive multi-view photometric
stereo. In IEEE Conference on Computer Vision and Pattern Recognition [2011]).

varying BRDFs similar to the approach by Goldman et al. [2005]—but
in a multi-view setting. This approach even incorporates interreflec-
tion effects in the micro-structure and is related to BTF (Bidirectional
Texture Function) acquisition techniques.

A disadvantage of approaches that project vertices into images is
that the mesh resolution is not necessarily related to image resolution.
Either a huge number of vertices has to be used or details in the images
might be lost. Park et al. [2013] therefore propose a pipeline that uses
mesh parametrization to define warpings from images onto a planar
mesh representation. Thus, fine detail—in the form of a displacement
map—can be recovered even with few mesh faces. The base mesh is
obtained by merging multi-view stereo reconstructions from all views.
Again, specular reflectance is treated as an outlier and the underlying
photometric stereo technique is the one developed by Hayakawa [1994].

Parametrized models

Similar to § 5.2 and § 7.2, heavily model-based approaches can also be
extended to multi-view settings. A very good example is provided by
Yoon et al. [2010]. Their generative model consists of a finite number
of distant light sources and shadow maps, the surface represented as
a level set, reflectance parameters for the Blinn-Phong model (Blinn
[1977]), and a set of pinhole cameras. This allows to render synthetic
images of the scene given the current parameters.
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Visibility is handled by projecting the global surface into each im-
age. Furthermore, their technique requires a model of the background
scene to prevent the surface from shrinking to an empty set during the
optimization. They also introduce an auxiliary normal field to decou-
ple the appearance computation from the surface gradient for increased
stability. The final optimization minimizes the error of all images com-
pared to the renderings from the current parameters. It has to be per-
formed in an alternating fashion—like in most other works—because of
its complexity and the coupling of shape and reflectance in the image
formation.

Special setups

Like single view photometric stereo the multi-view case often requires
quite elaborate setups.

Lu and Little [1995] present a solution in a rather special setting:
the light source and camera are co-located and the object spins around
a known axis. They derive surface orientations pointing towards the
light from intensity maxima and then exploit the known rotation angle
of the object to track them. The tracked points allow the reconstruction
of a one-dimensional slice of the BRDF. Once this is known, the surface
orientation of all other surface points can be computed from its inverse.

Zhou et al. [2013] use a ring light system with 72 LEDs to capture
30 images under varying illumination for each camera position. This
allows them to cope with arbitrary isotropic BRDFs by applying the
technique of Alldrin and Kriegman [2007] in each view. The result-
ing iso-depth contours are then associated with sparse structure from
motion points to obtain absolute depth values. The authors propagate
depth along contours from each view to merge them into a globally con-
sistent model. Once the geometry is acquired, a set of basis BRDFs and
their mixing weights can be estimated because illumination is known
from a calibration step.

Tunwattanapong et al. [2013] also require multiple light settings
for each view. The incoming radiance distributions in such a sequence
are shaped as spherical harmonics and created by an rotating arc of
LEDs. This setup allows them to recover reflectance parameters in
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addition to surface orientation. The results from each camera position
are then fused with a multi-view stereo reconstruction in a final surface
optimization, which again alternates between several stages.

Less restrictive than these systems is the setup proposed by Pater-
son et al. [2005]. It consists of a calibration target and a flash light
that is rigidly attached to the camera. They assume an almost planar
target which allows them to establish pixel correspondences by warp-
ing the images. The recovery of normals and parameters of a modified
Torrance-Sparrow BRDF model is alternated with a re-estimation of
this warp.

Another technique that relies on a special capture setup to acquire
series of images in each of multiple cameras is presented by Schuster
[2010]. He proposes a photo-consistency measure based on the fitting
error of a Cook Torrance BRDF at each hypothetical voxel and extracts
a surface using graph cuts (Boykov and Kolmogorov [2003], Lempitsky
and Boykov [2007]). As initialization, he constructs the visual hull to
obtain visibility information and computes normals based on Helmholtz
stereopsis. This requires the light and camera to swap positions, which
is approximated in this case by a hemispherical dome of 151 cameras
equipped with flash lights.

A similar setup, but augmented with several projectors for struc-
tured light acquisition, is used by Weinmann et al. [2012]. They acquire
multi-camera, multi-light image sequences of an object rotating on a
turntable. The surface is then extracted from an error function that
combines structured light consistency and Helmholtz stereopsis into a
single variational formulation.

Finally, the technique by Aliaga and Xu [2010] covers a whole range
of single or multiple camera and projector setups. They combine Lam-
bertian photometric stereo and structured light to recover oriented 3D
points of the object and the geometric calibration of the system. Even
for a single camera, they are able to formulate multi-view constraints
on the depth of the points. That is possible by exploiting the fact that
a projector can act as a virtual camera if pixel correspondences are
established.
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Over-complete representations

We observe that several of the discussed multi-view photometric stereo
methods (e.g. Joshi and Kriegman [2007], Hernandez et al. [2008],
Yoshiyasu and Yamazaki [2011]) can be modeled by up to three general
error terms

E1(X), E2(N), E3(X,N). (8.4)

The first one is tied to multi-view constraints such as silhouettes. The
second one finds optimal normals based on the current depth estimate.
It is associated to photometric constraints, i.e. surface appearance. The
third one updates the geometry based on these normal estimates. These
terms are either combined into a sum or optimized one after the other.

Such a scheme uses a two-fold representation of the shape that
includes a 3D proxy and an auxiliary normal field. It is an overcomplete
representation since in the ideal case the normal field should be defined
by the derivative of the geometry. This is sometimes described as a
convenient formulation for optimization or as a necessity for stability,
cf. Jin et al. [2004], Yoon et al. [2010]. It has the additional advantage
to allow different resolutions in the two representations as exploited
by Park et al. [2013]. Often, the representations are coupled by a soft
constraint in the spirit of E3 = ‖∂X−N‖. A popular method to perform
that merging step is presented in the work of Nehab et al. [2005]. In the
future, a better understanding of the benefits and drawbacks of such
an overcomplete formulation would be an interesting research topic.



9
Outside the lab

The previous chapters show that many of the state of the art approaches
draw on ideas and methods that have been developed ten or twenty
years ago, e.g. matrix factorization or reflectance symmetries. We ob-
serve that today, more focus is put on integrating these ideas into ready
to use systems and increasing their applicability through combination
with other techniques. Two important aspects are the robustness with
regard to non-ideal input images and the removal of requirements im-
posed on the capture setup. Thus, images downloaded from the Inter-
net provide an interesting testbed for new developments. We emphasize
this relevance by discussing some of the advances in computer vision
related to Internet data §9.1 and reconstructions under natural illumi-
nation §9.2.

The scope of this chapter is slightly broadened and incorporates
exemplary techniques from areas such as intrinsic image factorization
or inverse rendering. This is justified because ideas from other fields
on how to address some of the general challenges in uncontrolled set-
tings, e.g. radiometric camera calibration, hopefully provide insights
for photometric reconstructions as well.

218
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9.1 Internet data

9.1.1 Image collections

Snavely et al. [2006] show that it is possible to apply robust structure
from motion to images from online photo sharing sites, e.g. Flickr. They
recover the geometric camera parameters and a sparse set of 3D feature
points. This allows a user to explore the scene by 3D browsing of the
images and provides a novel way to communicate the impressions of
one or several observers. Tompkin et al. [2012] extend 3D browsing to
video sequences.

Since known camera parameters are a prerequisite for many re-
construction approaches, Snavely et al. also paved the way for works in
that area. For example, Goesele et al. [2007] present a multi-view stereo
approach for community photo collections. It relies heavily on the selec-
tion of suitable images to achieve robustness against scale differences
or occluding clutter. Furukawa and Ponce [2010] achieve robustness
through several filter steps that reason about visibility and consistency
of 3D patches. These approaches recover the full scene geometry instead
of a sparse feature set and can convey the 3D impression of the scene
even better. Goesele et al. [2010] exploit this as proxy geometry in an
image-based rendering system to achieve a more convincing browsing
experience in the presence of unreliable data. Agarwal et al. [2009] and
Frahm et al. [2010] extend the reconstruction approaches to whole city
areas using clustering techniques.

These techniques focus on the reconstruction of the 3D geometry
and try to be robust against appearance changes. Such changes, e.g.
due to varying illumination or view point, are at the heart of photo-
metric techniques and convey additional information. Garg et al. [2009]
extend results from Belhumeur and Kriegman [1998] about the space
of possible images for a given scene to photo collections. They project
all images onto a 3D model and factorize the matrix that arises from
stacking intensities at each vertex. The factorization can be interpreted
as basis images for the scene that capture variation along different axes.
While these axes often correspond to a certain meaning, e.g. mean im-
age and shading variations in the Lambertian case, there are no clear
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semantics for decompositions in more complex scenes.
A more usable separation of appearance for uncontrolled scenes is

achieved by Haber et al. [2009]. They build on a 3D model as produced
by Goesele et al. [2007] and recover the reflectance—encoded as mixing
weights per surface point with respect to a selection of Cook-Torrance
BRDFs—and illumination Ls,i in each view of an image collection. A
linearization

ρ =
∑
k

ρkΨk, (9.1)

Ls,i =
∑
l

Ls,i,lΨl (9.2)

based on Haar-Wavelets lets them formulate the outgoing radiance as

Li =
∑
k,l

ρkLs,i,l

∫
Ψk(ω)Ψl(ω) dω︸ ︷︷ ︸

=:Bk,l

=
(
ρ1, . . .

)
·B ·

Ls,i,1...

 (9.3)

The final optimization over all surface points Xj and images

arg min
∑
j,i

(
Ii(Xj)− Li(Xj)

)2 (9.4)

alternates between both unknowns ρ, Ls and yields a decomposition
that gives plausible relighting results. Figure 9.1 compares the ren-
dering results to one of the input images which was not used during
reconstruction.

Diaz and Sturm [2011] also use a 3D model to estimate illumination,
but additionally consider the camera response function. They represent
this function as a linear combination of the EMOR basis (Empirical
Model of Response; Grossberg and Nayar [2003], Grossberg and Nayar.
[2004])

f = h0 +
∑
i=1,...

αihi (9.5)

and include the coefficients αi in the lighting optimization. While this
work recovers only the diffuse albedo, it is one of the few that actu-
ally take non-linear response curves beyond a straightforward gamma
correction into account.



9.1. Internet data 221

Figure 9.1: Haber et al. [2009] first recover the geometry, e.g. using multi-view
stereo, and then estimate an environment map (left) and the reflectance properties.
Combining these constituents, they achieve synthetic renderings (right) that are
quite similar to the actually observed image intensities (middle). This approach
works even for uncontrolled image collections as found on the Internet and can be
used for relighting or appearance editing ( c©2009 IEEE. Reprinted, with permission,
from Tom Haber, Christian Fuchs, Philippe Bekaert, Hans-Peter Seidel, Michael
Goesele, and Hendrik P.A. Lensch. Relighting objects from image collections. In
IEEE Conference on Computer Vision and Pattern Recognition [2009], pages 627–
634).

9.1.2 Webcam data

Another growing source of Internet data are video sequences, e.g. from
webcams. Jacobs et al. [2007a] collect images from hundreds of web-
cams and discover that the coordinates of a principal component analy-
sis (PCA) for different cameras behave similarly over time. This allows
them to define a canonical basis and assign pixel labels with a common
meaning in all cameras. In subsequent works, Jacobs et al. [2007b, 2010,
2013a,b] are able to estimate the location of an unknown camera by
comparing PCA coordinates with those of known webcams. The depth
of individual scene points can be recovered from correlations induced
by cloud shadows. Additionally, the movement of the clouds themselves
yields cues to predict vanishing points and thus calibrate the camera
geometrically. Lalonde et al. [2008, 2010] demonstrate how the sun and
sky illumination can be exploited for such a calibration as well. They
relate azimuth and zenith angles in a geo-reference coordinate system
to pixel coordinates in the camera. Inserting this transformation into
the analytical sky model presented by Perez et al. [1993] yields a func-
tion that predicts radiance for sky pixels. The camera calibration is
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then found by an optimization that compares the predicted radiance
values to observed pixel intensities.

Apart from calibration and geo-location, webcams are also used
to decompose scene appearance and enable editing of its components.
Sunkavalli et al. [2007] analyze the intensity profiles of pixels in dense
video to identify transitions from shadow to sunlight. They find that
profiles within a scene are similar up to scale and a shift in time. This
allows them to define time-varying basis curves for the sun and sky
contribution. The corresponding coefficients with respect to this basis
are recovered similar to Lawrence et al. [2006] and constitute a de-
composition into ambient light, albedo, and sun reflectance. Sunkavalli
et al. [2008] additionally recover partial surface normals—projected on
the plane of solar movement–based on color changes. Lalonde et al.
[2009] estimate the sky appearance and sun visibility in each frame for
a collection of webcams. These cues are used to match the illumina-
tion conditions between different cameras and thus enable the transfer
of correctly lit objects. The authors also insert synthethic objects by
illuminating them according to the parameters of the underlying sky
model in each image.

9.1.3 Recovering surface orientation

Only few approaches focus on surface orientation as an important part
of scene appearance. Shen and Tan [2009] use a decomposition of illu-
mination as proposed by Basri and Jacobs [2001b] to estimate weather
conditions in Internet photo collections. This also includes computa-
tion of surface normals, but only at sparse feature points that have
been matched between images. Their approach relies on a selection of
suitable features with sufficiently Lambertian behavior and support in
close-by views.

Ackermann et al. [2012] aim for a more complete decomposition of
scene appearance. They rely on a fixed camera position as provided by
Internet webcams. At each pixel j, the direct sun light interacts with a
mixture of basis materials ρk modulated by a binary shadow function ξ.
The sky is modeled by a per-pixel additive contribution β which gives
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Figure 9.2: Exemplary results for the webcam-based reconstruction by Ackermann
et al. [2012]. Left to right: One of the input images, the recovered normal map, three
basis BRDFs below their respective material maps, and a synthetic rendering for a
novel sun position ( c©2012 IEEE. Reprinted, with permission, from Jens Ackermann,
Fabian Langguth, Simon Fuhrmann, and Michael Goesele. Photometric stereo for
outdoor webcams. In IEEE Conference on Computer Vision and Pattern Recognition
[2012], pages 262–269).

an overall radiance of

Li,j = li
(∑
k

γj,kρk(nj , ωi)ξi,j + βj
)

(9.6)

for relative sun intensity li and sun direction ωi. The non-linear depen-
dence within this large set of parameters, including normals nj , yields
a complex optimization problem. The authors decompose it into three
steps that each keep some of the variables fixed. The final result is
shown in Figure 9.2 and yields a decomposition that can be used for
relighting. This work relies heavily on a preprocessing pipeline that se-
lects suitable images from a webcam stream and calibrates the camera.

In a similar setting, Abrams et al. [2012] recover dense surface nor-
mals, albedo, and the radiometric camera calibration from outdoor we-
bcams. They exploit the known sun position with respect to a geo-
referenced coordinate system in order to arrive at a traditional pho-
tometric stereo problem for Lambertian surfaces. This task becomes
more complex through an ambient term and the non-linear response,
which is represented as a combination of EMOR (Grossberg and Nayar
[2003], Grossberg and Nayar. [2004]) basis curves. Abrams et al. [2012]
split the corresponding optimization into two alternating steps and ap-
proximate each of them with a linear subproblem which can be solved
efficiently. This allows them to use hundreds of images compared to
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the careful selection of about 50 images by Ackermann et al. [2012].
The increase in data gives better robustness to outliers that are not
captured by their image formation model.

More recently, Shan et al. [2013] have applied a related outdoor
lighting model for photometric reconstruction on community photo col-
lections. They first recover a mesh using a pipeline of structure from
motion and multi-view stereo as described in §9.1.1. Then, they esti-
mate the sun direction and sky contributions in each image and finally
compute the diffuse albedo and normal at each vertex in a non-linear
optimization. The evaluation is performed in the form of a so called
Visual Turing Test, i.e. renderings and original images are presented
to humans who have to specify which one is more realistic. Several low
resolution images actually pass that test. Visual artifacts and not re-
constructed content such as people, however, reveal the limitations of
current approaches towards relightable appearance reconstruction on
Internet data.

Finally, Jung et al. [2015] perform photometric stereo using a hand-
ful of outdoor images of a scene captured on a single sunny day by a
static camera. Their key observation is that modelling the complete sky
as light source (using a variant of an analytic sky model by Preetham
et al. [1999]) allows to overcome the restriction that the movement
of the sun on a single day contains not enough variance to recover
full normals. Using their analytic sky model and a set of 1000 normal
hypotheses, they they can compute 1000 corresponding radiance pro-
file candidates per pixel (up to a scaling factor), and compute their
correlation with the observed values in the images captured at differ-
ent times of day. Per-pixel surface normals are then assigned using an
MRF-based optimization that provides regularization and allows to fill
holes at pixels that received too few valid observations.

9.2 Natural illumination

Compared to traditional approaches that require laboratory condi-
tions, Internet images are at least two levels more challenging. It makes
sense to also think about in-between settings, e.g. a controlled outdoor
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dataset, which are not yet solved entirely.
Sato and Ikeuchi [1994a, 1995] apply their separation of diffuse

and specular components based on illuminant color (Sato and Ikeuchi
[1994b]) to outdoor images under clear skies. They normalize image
regions to simulate a uniform albedo and obtain its value from the
brightest pixels in the image sequence. Then, the angle between the
normal and the solar plane is obtained at each pixel simply as its max-
imal intensity divided by the albedo. Narasimhan et al. [2002] study
appearance variation due to weather changes in long sequences of con-
trolled outdoor data. Atmospheric scattering which depends on the
distance of the scene point from the camera allows them to compute
approximate depth for each pixel.

Hung et al. [2015] capture the environmental illumination from a
mirror sphere. Assuming a calibrated camera, they discretize the ren-
dering equation as

I =
∑
j

ρcj〈n, ωj〉, (9.7)

where cj is the light intensity from direction ωj . For each surface point,
they compute the pair (n, ρ) that best explains the observations Ii
in multiple images according to Equation 9.7. These ideas are closely
related to the work by Yu et al. [2013], who also use a mirror sphere
and discretize the illumination into a set of point light sources. They
assume a Lambertian reflectance, treat specularities as outliers, and
employ a simple heuristic to estimate self occlusion. Their results on
outdoor images expose problems due to insufficient variation of light
directions. This might be one of the reasons why most current work
on outdoor reconstructions, e.g. Oxholm and Nishino [2014], is focused
on fixed illumination settings. Especially techniques that decompose
the illumination and reflectance in images of a known shape, such as
presented by Dong et al. [2014b], show some promising advances.

If the whole light field of the scene is known, it can be decomposed
into a basis of spherical harmonics. Ramamoorthi and Hanrahan [2001]
show that those frequencies of illumination and reflectance that are also
present in the outgoing light field—which they interpret as a spherical
convolution—can be recovered from its coefficients. This task is much
harder if only parts of the light field, e.g. a single image, is available
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Figure 9.3: Laffont et al. [2013] recover the geometry from multiple images (a)
and estimate illumination parameters. Photographs are split into the reflectance (e)
and the contributions due to sun (f), sky (g), and indirect (h) illumination. Vari-
ous editing operations (b-d) can be based on such a decomposition ( c©2013 IEEE.
Reprinted, with permission, from Pierre-Yves Laffont, Adrien Bousseau, and George
Drettakis. Rich intrinsic image decomposition of outdoor scenes from multiple views.
IEEE Transactions on Visualization and Computer Graphics, 19:210–224, 2013).

and requires additional constraints or regularizing assumptions. For
example, any image of a sphere can be explained not only by the true
illumination and BRDF, but also by a perfect mirror illuminated with
that image.

Experiments conducted by Fleming et al. [2003] indicate that hu-
mans are able to match reflectance properties independent of illu-
mination and that they do so based on prior knowledge about the
behavior of natural illumination. Romeiro and Zickler [2010a] there-
fore exploit the statistics of natural illumination to define a prior
on the possible lighting Ls. Their idea is to marginalize the poste-
rior p(Ls, R|I) ∝ p(I|Ls, R)p(R)p(Ls) over the lighting to obtain the
probability p(R|I) of the reflectance R given an image I. Comput-
ing the mean of this distribution amounts to selecting a reflectance
that not only explains the image for a single illumination, but for all
illuminations—according to their probability. Lombardi and Nishino
[2012] also consider objects of known shape but additionally recover
illumination explicitly.

Laffont et al. [2012] reconstruct a point cloud of a scene using multi-
view stereo. This serves as proxy to compute the contributions of the
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sun, sky, and indirect lighting based on a measured environment map.
Once sun visibility and reflectance are computed for each 3D point, all
this information is projected into the image and propagated over all
pixels. Laffont et al. [2013] compute an intrinsic image decomposition
but allow for varying illumination between images, which makes the
technique applicable to Internet photo collections. They observe that
one of the main problems with that kind of data is the unknown camera
response. Figure 9.3 lists the components of their decomposition. Lee
et al. [2012] also decompose multiple images but do so for a video
stream with fixed illumination. Again, their algorithm is supported by
a priori known shape information—acquired from a depth camera.
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Conclusion

In this chapter, we first summarize in §10.1 the core ideas of modern
photometric stereo techniques following the main structure of the re-
view. We show how approaches can be judged by their generality with
respect to lighting, reflectance and viewpoint distribution as well as by
their robustness with respect to different real-world effects. We then
discuss future research directions for photometric stereo and related
approaches in §10.2 and conclude in §10.3 with thoughts on the future
use of photometric stereo.

10.1 Summary

(Lambertian) photometric stereo is a simple yet very powerful tech-
nique to reconstruct a surface from a couple of images taking under
varying illumination. Its essence can be captured in a handful of for-
mulae as described at the beginning of Chapter 2. Despite its simplicity,
photometric stereo yields high quality reconstructions if the scene and
the capture setup conform to the basic assumptions underlying the
technique. As described in Chapter 3, most of the fundamental con-
cepts of photometric stereo were developed in seminal works during

228
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Figure 10.1: An overview over challenges in photometric stereo. The left half of the
figure shows the progression from basic Lambertian photometric stereo as introduced
in the 1980s towards the solution of the general photometric stereo problem. The
right half of the figure lists issues that can be addressed using robustness in the
reconstruction steps.

the 1980s. Most of its limitations and shortcomings were also already
known at that time. These include, e.g. the need for specific capture
settings and calibrated capture equipment as well as the fact that out-
liers such as shadows or surface interreflections need to be treated very
carefully. Most of the research in the last decades focussed on adress-
ing these restrictions in order to generalize photometric stereo to less
constrained and less controlled settings. One could therefore ask the
question: “When will photometric stereo be solved?”

One answer to this question is that photometric stereo is solved once
we can take any arbitrary set of images of an object or scene with large
enough input variation and reconstruct a perfect model of its surface
orientation from these images. This problem can be decomposed into
two almost independent issues—on one hand handling general lighting,
reflectance and viewpoints and on the other hand being robust to var-
ious effects. We will in the following categorize and discuss these using
Figure 10.1 as visual aid.

Research towards general lighting lead to uncalibrated photometric
stereo algorithms that are oblivious to the lighting setup. A recurring
method in this context is a low-rank matrix factorization as introduced
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in Chapter 4. Simultaneously, research has advanced towards removing
the need to know the reflectance properties of the target object. General
invariants of the BRDF or reflection geometry define constraints that
are exploited by the techniques in Chapter 5. Any algorithm in these
two fields is based on assumptions and these might not be fulfilled
in practice. Whether this presents a serious problem depends on the
specific application. One way to handle them is to use robust methods.
Chapter 6 addresses this using techniques for individual error sources
and methods that are robust to outliers in general.

Combining the concepts introduced in Chapters 4-6 allows to tackle
reconstruction tasks where both, lighting and reflectance, are unknown.
One solution to this problem is to model every aspect of light transport
explicitly. In addition, Chapter 7 discusses works that exploit orienta-
tion consistency and appearance profiles. These techniques are inde-
pendent of a parametric BRDF or lighting model but require typically
a large amount of input data.

Chapter 8 adds a new perspective by considering the camera po-
sition as an additional variable. In this chapter, we collect multi-
view techniques regardless of their assumptions about illumination and
BRDF which leads to a broad variety of approaches. Again, some
ideas from the single-view setting can be transferred, e.g. heavily
parametrized models, while others are newly introduced such as re-
construction by deformation of an initial proxy mesh.

All these works demonstrate how far the field of photometric re-
constructions has evolved since its beginnings. Even very general algo-
rithms in terms of input data are, however, still restricted to capture
under controlled settings such as a laboratory. Missing robustness, re-
quirements on the capture setup, or an implicitly assumed camera cal-
ibration reduce their applicability. Related fields in computer vision
have seen a definite shift towards uncontrolled scenarios and applica-
tions in consumer products. Chapter 9 discusses these advances and
some of the first approaches to exploit photometric cues in natural
environments and even on Internet data.
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10.2 Discussion and outlook

We now discuss various aspects that are (in our subjective opinion)
important for the future development of photometric stereo.

10.2.1 Broadening the applicability

The advances in generalizing photometric stereo with respect to un-
known light or reflectance have revealed valuable insights during the
last decades. We believe, however, that significant advancements will
in the future most likely not be made along a single of these axes. In-
stead, it seems more promising to make photometric techniques ready
for applications outside the lab. The approaches for general lighting and
reflectance in Chapter 7 provide a starting point towards that end. But
to achieve a noticeable increase in applicability a greater focus on un-
controlled settings and real-world capture conditions, e.g. a consumer
camera with an attached flash unit, is required.

Another trend that can be deduced from Chapter 8 is the develop-
ment of multi-view techniques. Varying camera positions are also an im-
portant step towards less controlled scenarios. Currently, most of these
techniques are, however, not as general in the assumed lighting model
as those in Chapter 7. Furthermore, the applicability of photometric
reconstruction would benefit from research towards better radiometric
auto-calibration methods. Images taken with a consumer camera by a
casual user are meant (and made by the camera) to look good not to
be well suited for reconstruction.

Finally, we see the transition from reconstructing single target ob-
jects to complete scenes, e.g. a room, as a worth-while advancement.
While some methods, e.g. voxel-based multi-view approaches, should
be able to handle that case in theory, they are traditionally evaluated on
single objects only. Multiple objects introduce many discontinuities in
geometry and appearance which pose novel and interesting challenges.

10.2.2 How general do we have to be?

Many researchers would agree that bringing the image creation mod-
els used for photometric stereo closer to reality, e.g. by incorporating
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interreflections, while still being able to invert them or to find suitable
invariants is a worthwhile goal. It remains, however, unclear how well
the model’s assumptions must match reality in order to achieve good
results over a wide range of objects. For example, some techniques rely-
ing on a Lambertian reflectance model have shown success even when
applied to specular materials by treating specular reflections as out-
liers. Still, a drawback of very general methods might be that they are
outperformed by more specialized techniques, which can exploit prior
knowledge in their respective target areas.

Another question is how to find the best balance between building
explicit models and using more data-driven approaches. For example,
appearance profiles do not depend on a strict lighting model but might
carry not enough information if only a few input images are available.
Parametric models can be a way to work around a lack of input data
by enforcing stricter constraints at the cost of reduced flexibility.

Finally, no matter how sophisticated the theory underlying an ap-
proach is it will never completely match reality. There will always be
a case where observations do not follow all assumptions made by the
algorithm. These outliers can misguide the technique to a wrong solu-
tion if they are not properly handled, e.g. using ideas from §6.2. The
challenge is to find the balance between sufficient robustness and acci-
dentally throwing away too much information.

10.2.3 Combining different techniques

It is highly unlikely that a single algorithm or key idea will be widely
or even universally applicable. Even for different techniques from the
same general class, e.g. uncalibrated photometric stereo, it often de-
pends on the specific scene which one technique performs best. Thus,
combinations of several approaches with complementary advantages
and disadvantages seem like a promising direction. For example, the
boundaries between purely texture-based stereo approaches and pho-
tometric techniques already vanish as discussed in Chapter 8. Another
strategy could be to use a different algorithm for different parts of a
scene or depending on the object type. Then, the interesting challenge
would be to choose the best suited technique automatically.
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10.2.4 Data issues

In general, the usefulness of input images is strongly related to the
observable shading variations. If the shading does not change, e.g. be-
cause the illumination remains fixed with respect to the surface, there
is no chance of success for any photometric approach (unless shape
from shading techniques with strong assumptions on the surface prop-
erties can be employed). This might be one of the reasons why everyday
scenarios are rarely considered by photometric stereo methods. Images
captured in an office or outdoors will not display sufficient lighting
variation unless taken at different times of day. Such issues also arise
in a lab setting, but achieving consistent results over a large range of
capture conditions and target objects becomes much harder for uncon-
trolled scenarios.

The opposite of missing input data occurs for some of the ap-
proaches in Chapter 9. On Internet images, e.g. months or even years
of webcam videos, the vast amount of data would cause many tradi-
tional techniques to reach the limits of computational resources such as
memory or processing time. It is therefore crucial to reduce the amount
of input data by selecting suitable images for reconstruction. Selection
strategies not only ensure the computational feasibility but can also
increase robustness by removing non-ideal, e.g. under-exposed, images.
Estimating the value of an image for the overall reconstruction is not
yet considered by most approaches. Instead, they typically assume that
all images are equally important and beneficial.

10.3 Looking ahead

Photometric stereo, which can be simply summarized as a way to re-
construct surface orientation from a set of images with varying illu-
mination, has historically been a very important technique. Its core
ideas can be applied to a wide variety of domains including surface re-
construction, rendering, relighting as well as industrial inspection. The
transition towards more general algorithms and less controlled capture
conditions will make it ready for the demands of future application
scenarios. We are thus very confident that photometric stereo will also
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play a crucial role in the upcoming years and decades, most likely as
an integral part of comprehensive and versatile reconstruction systems.
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