Introduccion a la Fotografia 3D

UBA/FCEN Marzo 27 — Abril 12 2013
Clase 5 : Lunes Abril 8

Gabriel Taubin

Brown University

s
EmE BROWN




= |ntroduction

* The Mathematics of 3D Triangulation

= 3D Scanning with Swept-Planes

= Camera and Swept-Plane Light Source Calibration

» Reconstruction and Visualization using Point Clouds
» Combining Point Clouds Recovered from Multiple Views



= Swept-plane scanner produces a colored point cloud: a set of 3D points

= Problem: how to render a point cloud to make it look like as a continuous
surface?

= Splatting: render points as overlapping colored disks
= |f normal vectors are measured as well, render points as shaded ellipses

*See the SIGGRAPH 2009 course: Point Based Graphics — State of the Art and Recent Advances by Markus Gross.



5% \\{“

\83;%&\\

= Swept-plane scanner produces a colored point cloud: a set of 3D points

= Problem: how to render a point cloud to make it look like as a continuous
surface?

= Splatting: render points as overlapping colored disks
= |f normal vectors are measured as well, render points as shaded ellipses

*See the SIGGRAPH 2009 course: Point Based Graphics — State of the Art and Recent Advances by Markus Gross.



fg.-‘

Visualizing Point Clouds: i
Splattmg W|th normal vectors and colors

_;i.- % I
‘\ /5.'
J") g\\ 1
4 Y AR
E /’{f‘ i,

n\ ‘w’«’@*

| "
W
.<’ %‘ %

‘*. ¥ \\\‘\\‘ \- \‘\-,.4 \
il , ?{* l' A
“&’{”’i. _t
| r{’;%';“ ==k
:%“:/‘:7':}. g’f 268
AT "' W

ly I/ 7
'I//il'i'/'@) l[l"‘l
43

A I/ /’/
’f/ ‘i,/'m




No standard file format to store
point clouds

Point = (x,y,z) plus (R,G,B) and/or
(Nx,Ny,Nz)

It is easy to create an ad-hoc file
format

Scene graph based file format:
VRML

International standard: ISO/IEC
14772-1:97 VRML’ 97

PointSet node includes coordinates
(x,y,z) and optional colors (R,G,B),
but no normals

PointSet {
coord Coordinate {
point [

0-12, 100,
-2 3-1

]
}

color Color {

color [
100, 010, 110
]

}

}



IndexedFaceSet node designed to store
a polygon mesh can be used to store
point clouds with optional colors and/or
normal vectors

Store point coordinates as vertices
Store point colors as colors per vertex

Store point normal vectors as normals
per vertex

Degenerate polygon mesh with no faces
Is valid VRML syntax

IndexedFaceSet {
coord Coordinate {
point [

0-1 2,

0 0,
3-1

1
-2
]

}
colorPerVertex TRUE

color Color {
color [
100,
010,
110

]

}
normalPerVertex TRUE

normal Normal {
vector [
100,
010,
001
]
}
}



4| j3DPGP
FILE VIEWPOINT SHOW

CENE GRAPH RELOAD |  HOME |

ENE GRAPH

Appearance
Material

Coordinate

Color

Normal
TextureCoordinate

SELECTED NODE

IndexedF aceSet [ nW=678555 nE=0 nF=0]
name
con TRUE
color SFNode
colorindex MFInt32 [0]
colorPerVertex TRUE
convex TRUE
coord SFNode
coordindex MFInt32 [0]
creaseAngle 0.0
normal SFNode
normallndex MFInt32 [0]
normalPerVertex TRUE
solid TRUE
texCoord SFNode
texCoordIndex MFInt32 [0]

L") DAData\OrientedPoi




Tno=1

-
(") D:AData\OrientedPoi

SCENE GRAPH

Shape
Appearance
Material

Coordinate

Color

Normal
TextureCoordinate

SELECTED NODE
IndexedF aceSet [ nW=678555 nE=0 nF=0]

name
con

color

colorindex
colorPerVertex
convex

coord

coordindex
creaseAngle
normal
normallndex
normalPerVertex
solid

texCoord
texCoordindex

null

TRUE

SFNode

MFInt32 [0]

TRUE

TRUE

SFNode

MFInt32 [0]

0.0

SFNode

MFInt32 [0]

TRUE

TRUE

SFNode

MFInt32 [0]




.Wf. o

Visualizing Point Clouds: )
BYO3D Java Viewer 7'\

j3DPGP

FILE VIEWPOINT SHOW

SCENE GRAPH v RELOAD | HOME |

SCENE GRAPH

Shape
Appearance
Material

TextureCoordinate

SELECTED NODE

IndexedFaceSet [ n\V=678555 nE=0 nF=0]

name null

co TRUE
color SFNode
colorindex MFInt32 [0]
colorPerfertex TRUE
convex TRUE
coord SFNode
coordindex MFInt32 [0]
creaseAngle 0.0

normal SFNode
normallndex MFInt32 [0]
normalPerVertex TRUE
solid TRUE
texCoord SFNode
texCoordindex MFInt32 [0]

nS=1%

D:\Data\OrientedPoints\ram\ramSmooth.bpa (C) Gabriel Taubin 1993-2009




.Wf. o

Visualizing Point Clouds: )
BYO3D Java Viewer 7'\

j3DPGP
FILE VIEWPOINT SHOW

SCENE GRAPH v RELOAD | HOME |

SCENE GRAPH

Shape
Appearance
Material

TextureCoordinate

RENDER »
PAINT P ’ SELECTED NODE
SELECT » | 4 3 d & -‘ & IndexedFaceSet [ n\V=678555 nE=0 nF=0]
ALL VERTICES T . LA & ) name null
v SELECTED VERTICES g - o ; o LTS
EDGES - * A A color SFNode
) CELEETED RS X 4 . S | colorindex MFInt32 [0]
lorPenfert
DEPTH EDGES colerrerierex TRUE
convex TRUE
NORMALS
- coord SFNode
: coordindex MFInt32 [0]
v FACES creaseAngle 0.0
. ¥ SELECTED FACES y A : normal SFNode
FACE CENTERS : : 4 normalindex MFInt32 [0]
v POLYLINES . _' . 7 y ; normalPerVertex TRUE
i v MATCHES N 2 solid TRUE
BACKFACES G R ) '% fy texCoord SFNode
4 N . texCoordIndex MFInt32 [0]

nF= :
nS= o

7

D:\Data\OrientedPoints\ram\ramSmooth.bpa (C) Gabriel Taubin 1993-2009




Point Clouds

1zing
BYO3D Java Viewer

iIsua

SHOW

FILE VIEWPOINT

| HOME

v RELOAD

SCENE GRAPH

x
o
<X
o
(U3
w
=

Shape

Appearance

Material

Coordinate

Color

TextureCoordinate

ELECTED NODE

w

=0 nF=0]
null

678555 nE:

=

IndexedFaceSet [ n

name

TRUE

SFNode

color

MFInt32 [0]
TRUE
TRUE

colorindex

colorPerfertex

convex

SFNode

coord

MFInt32 [0]

0

coordindex

0

creaseAngle

SFNode

normal

MFInt32 [0]
TRUE

normallndex

normalPerVertex

TRUE

solid

SFNode

texCoord

MFInt32 [0]

texCoordindex

5ot
R et
i

<

(C) Gabriel Taubin 1993-2009

DAData\OrientedPointstramiramSmooth.bpa




4| j3DPGP
FILE VIEWPOINT SHOW

CENE GRAPH RELOAD |  HOME |

ENE GRAPH

Appearance
Material

Coordinate

Color

Normal
TextureCoordinate

SELECTED NODE

IndexedF aceSet [ nW=678555 nE=0 nF=0]
name
con TRUE
color SFNode
colorindex MFInt32 [0]
colorPerVertex TRUE
convex TRUE
coord SFNode
coordindex MFInt32 [0]
creaseAngle 0.0
normal SFNode
normallndex MFInt32 [0]
normalPerVertex TRUE
solid TRUE
texCoord SFNode
texCoordIndex MFInt32 [0]

L") DAData\OrientedPoi




._“ I dinosaur j

M. Zwicker, M. Pauly, O. Knoll, M. Gross. Pointshop 3D: An Interactive
System for Point-Based Surface Editing. ACM SIGGRAPH, 2002



8 00 MeshLab v1.3.2_64bit |

hFexowms e D BODB@~- 5> X~>0

8 O O el

Proje

FOV: 60 Mesh: angel-25k-i5s009.ply
FPS: 1333 Vertices: 40560

Faces: 81052

MP




8 00 MeshLab

MeshLab is an open source, portable, and extensible system for the processing and editing of unstructured 3D triangular meshes.

The system is aimed to help the processing of the typical not-so-small unstructured models arising in 3D scanning, providing a set of tools for editing, cleaning, healing,
inspecting, rendering and converting this kind of meshes.

The system is heavily based on the VCG library developed at the Visual Computing Lab of ISTI - CNR, for all the core mesh processing tasks and it is available for Windows,
MacOSX, and Linux. . The MeshLab system started in late 2005 as a part of the FGT course of the Computer Science department of University of Pisa and most of the code
(~15k lines) of the first versions was written by a handful of willing students. The following years FGT students have continued to work to this project implementing more and
more features. The proud MeshLab developers are listed here.

This project is actively supported by the 3D-CoForm project.

Other projects that have previously supported MeshLab are listed here.

Download Latest Version (03 August 2012) V1.3.2 (changes)

Remember that, whenever you use MeshLab in a official/commercial project or in any kind of research, you should:

e Explicitly cite in your work that you have used MeshLab, a tool developed with the support of the 3D-CoForm project,
« Post a couple of lines in the users' forum describing the project where MeshLab was used.

Adopted License, acknowlegments and other legal issues are detailed here.
Features

Interactive selection and deletion of portion of the mesh. Even for large models.
Painting interface for selecting, smoothing and coloring meshes.
Input/outputin many formats:
o import:PLY, STL, OFF, OBJ, 3DS, COLLADA, PTX, V3D, PTS, APTS, XYZ, GTS, TRI, ASC, X3D, X3DV, VRML, ALN
export:PLY, STL, OFF, OBJ, 3DS, COLLADA, VRML, DXF, GTS, U3D, IDTF, X3D
Point Clouds support. Now 3D files that are composed only by points are well supported in PLY and OBJ format.
U3D support; MeshLab is the first open source tool to provide direct conversion of 3D meshes into the U3D format. Now you can create pdf, like this with 3D objects
with just MeshLab and LaTeX.
Mesh Cleaning Filters:
o removal of duplicated, unreferenced vertices, null faces
o removal of small isolated components
o coherent normal unification and flipping
o erasing of non manifold faces
o automatic filling of holes
Remeshing filters:
o High quality edge collapse simplification (even with texture coords preservation)
Surface reconstruction from points (a ball pivoting variant, marching cubes and poisson's reconstruction)
Subdivision surfaces (loop and butterfly)
Feature preserving smoothing and fairing filters
Holes filling
Various Colorization/Inspection filters
o Gaussian and mean curvature




= [ntroduction

* The Mathematics of 3D Triangulation

= 3D Scanning with Swept-Planes

= Camera and Swept-Plane Light Source Calibration
» Reconstruction and Visualization using Point Clouds

» Combining Point Clouds Recovered from Multiple
Views



Whole object cannot be
scanned from only
one camera view

Multiple scans must be
merged to cover the
whole object surface




Whole object cannot be
scanned from only
one camera view

Multiple scans must be
merged to cover the
whole object surface

* Each point cloud scan is generated with respect to a different
camera coordinate system



Whole object cannot be
scanned from only
one camera view

Multiple scans must be
merged to cover the
whole object surface

Each point cloud scan is generated with respect to a different
camera coordinate system

Relative position and orientation of each scan with respect to a
global coordinate system must be determined to produce a single
merged point cloud



int Cloud Scans

O
al




Complex Models May Require 100s of Scans

Appearance

http://www.research.ibm.com/pieta







* Incremental registration and merging
* Followed by global relaxation to remove accumulated errors




* Incremental registration and merging
* Followed by global relaxation to remove accumulated errors




* Incremental registration and merging
* Followed by global relaxation to remove accumulated errors




* Select at least 3 pairs of corresponding points, but ideally N>>3

Fixed




Merging Two Point Cloud Scans

* Select at least 3 pairs of corresponding points, but ideally N>>3

User input is OK for
small models

Fixed



* Select at least 3 pairs of corresponding points, but ideally N>>3
* Solve in close form for the matching rigid body transformation
* Refine solution using the lterative Closest Point Algorithm (ICP)

»
£z ’-F N Sl
i SN s
: v,
.
»

Fixed

P. Besl, N.D. McKey, A method for Registration of 3D Shapes.
IEEE Transactions on PAMI, 1992



Given N pairs of corresponding 3D points (p,,q,),..-,(P,,q,) we
are looking for a rotation matrix R and a translation vector T' so that

Rp;+T=q; j=1,.,n

In general, solution does not exists: solve in the Least-Squares sense

Now we are looking for the minimizer of the quadratic energy function

ERT) = 13" | Ro o7

This problem has a closed form solution

R=V'U, T=g-Rp
Where 1 P

_ I I B N IR _ ¢
P=—X P d=— 4 M=—% (p,-P)a;-)

And M =UAV' is the Singular Value Decomposition (SVD) of M



lterative Closest Point Algorithm (ICP)

1. Automatically select N points ps..., P,
2. Find closest corresponding points ¢,,-...4,

3. Solve in close form for the matching rigid body transformation which
minimizes the energy function

ERT) = %E; | Rp, +T‘%H2

4. Repeat 1-3 while until convergence




Finding Closest Points

*  Problem: find the point of the set D ={p,,..., p, } closest to the
point ¢

* Naive algorithm: sequential search O(N)

* Too expensive if the same computation must be performed for many
points ¢,,...,q,

e Efficient algorithm requires space partition data structure
Quadtree/Octree, BSP tree




