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Surfaces in Mathematics
« Parametric S={p=x(u):u=(u,u,)ER’}
* Implicit S={p:f(p)=0} f:V—>R VCR (level set)

We can only operate on a surface representation
* A data structure defined by a finite number of parameters
* Efficient to perform certain geometric operations

Point clouds (surfaces represented as sets of samples)
* Positions
* Optional properties: normals, colors, etc

Polygon meshes (piecewise planar surfaces)
* vertices, edges, and faces
* Optional properties: normals, color, texture coordinates, etc.

Most applications require connectivity information

» Efficient ways to find points in close proximity to each other
Point clouds do not provide connectivity information

* Additional data structures are needed to efficiently find

neighboring points

Connectivity is explicit in polygon meshes: edges
Triangulate the point cloud to get connectivity information

* Find an interpolating or approximating triangle mesh
Many applications require watertight surfaces: continuous closed
surfaces which partition 3D space into an inside and an outside

* Point clouds are not watertight

* Polygon meshes may be watertight
Will the triangulation constructed from the point cloud be watertight ?




* Every regular Implicit surface is watertight S={p: f(p)=0}

* An Isosurface is a polygonal approximation of an implicit function
associated with a volumetric grid
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* Every regular Implicit surface is watertight S={p: f(p)=0}

* An Isosurface is a polygonal approximation of an implicit function
associated with a volumetric grid

* Marching Cubes is an algorithm to compute an isosurface from an
implicit surface evaluated on the vertices of a regular hexahedral grid

* Similar simple algorithms exists to generate isosurfaces from an
implicit function evaluated on the vertices of a tetrahedral grid

*  We will only discuss here approximation algorithms to fit implicit
surfaces to point clouds

* Algorithms related to the Poisson Equation

W.E. Lorensen, H.E. Cline. Marching Cubes:A high resolution 3D surface reconstruction algorithm.
Siggraph,1987

M. Kazhdan, M. Bolitho, H. Hoppe. Poisson Surface Reconstruction.
European Symposium on Geometry Processing, 2006
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Curve Reconstruction from Point Clouds

IsoCurves

* Oriented points

* Regular grid

* Implicit function

* Isocurve

* Grid too coarse:
Aliasing

* Finer grid
resolves topology
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Given a continuous function
f (5131, $2)

Sampled on a regular grid
G=(V,E,C)

F={f,:veV}

Compute a polygonal
approximation of a level set

Ca=Hxzf(z) = X}

Increase grid resolution if
necessary



The Marching Lines Algorithm (ML)

4 STEPS

1. Determine grid vertex
sign bits

2. Determine supporting
grid edges

3. Compute location of
Isovertices along
supporting grid edges

4. Interconnect
isovertices by table
look-up within each
cell

The Marching Lines Table

4 STEPS

1. Determine grid
vertex sign bits

2. Determine
supporting grid
edges

3. Compute location
of Isovertices
along supporting
grid edges

4, Interconnect
isovertices by
table look-up
within each cell

Choices for 6 & 9




The 4 Steps
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Determine grid vertex sign bits by = { 0 20

Determine supporting grid edges = @=———————g b, # b,

Compute location of IsoVertices along supporting grid edges
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Interconnect IsoVertices by table look-up within each cell

Related Papers & Projects

Vector Field Isosurface-Based Reconstruction From Oriented Points, by
Sibley & Taubin, Siggraph 2005 (Sketch).

Smooth Signed Distance Surface Reconstruction, by Calakli & Taubin, PG
2011 & Computer Graphics Forum 2011.

Smooth Signed Distance Colored Surface Reconstruction, by Calakli &
Taubin, chapter in State-of-the-Art Volume on Computer Graphics,
Visualization, Visual Analytics, VR and HCI, 2012.

Accurate 3D Footwear Impression Recovery from Photographs, by Andalo,
Calakli, Taubin, and Goldenstein, Proceedings of the 4th. International
Conference on Imaging for Crime Detection and Prevention (ICDP-2011).

High Resolution Surface Reconstruction from Multi-view Aerial Imagery,
Calakli, Ulusoy, Restrepo, Mundy & Taubin, 3DIMPVT 2012

REVEAL Digital Archaeology Project
Cuneiform Automatic Translation Project



Particularly Good at Extrapolating Missing Data

Implicit function framework

LI S U S A A {

Oriented Points, D
(samples from unknown surface S)

Z(f)

Computed Implicit Surface, S’

Find a scalar valued function f: D — N, whose zero
level set Z(f) = S’ is the estimate for true surface §




Implicit Curve and Surface Reconstruction

Input: oriented point set:

D={(p; n;)i=1,..,N}
contained in a bounding volume V
Output: implicit surface

S={x|f(x)=0}
with the function defined on V, such that
f(p)=0 and Vf(p)=n; V(p,n) €D
A family of implicit functions with a finite number of
parameters has to be chosen

Parameters must be estimated so that the conditions
stated above are satisfied, if not exactly, then in the
least-squares sense

Challenges

Uniform sampling

Non-uniform sampling

s,

Noisy data

Misaligned scans




General Approaches

* Interpolating polygon meshes
Boissonnat [1984], Edelsbrunner [1984]
Amenta et al. [1998], Bernardini et al. [1999]
Dey et al. [2003][2007], ...
* Implicit function fitting
Taubin [1991], Hoppe et al. [1992], Curless et al. [1996]
Whitaker [1998], Carr et al.[2001], Davis et al. [2002],

Ohtake et al. [2004], Turk et al. [2004], Shen et al. [2004]
Sibley-Taubin [2005]

Poisson Surface Reconstruction

Kazhdan et al. [2006] Manson et al. [2008]



Poisson Surface Reconstruction

. Extend oriented points to continuous vector
field v(p) defined on the whole volume, so
that

V(pi) =N,

. Integrate vector field, by minimizing

SN (p)=v(p) I dp

. Determine isolevel, by minimizing

§<f<pi>—ﬁ>2

Main problem with this approach

|
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Main problem with this approach

What kind of implicit function?

Indicator Function Smooth Signed Distance Function



Vectorfield Isosurface-Based Reconstruction From Oriented Points
P. Sibley and G. Taubin [Siggraph 2005 Sketch]

e Surface reconstruction from cloud of oriented points
* Implicit representation can deal with missing data

* Rather than fitting analytic function (RBFs, etc), and then
extract isosurface for visualization, fit isosurface directly to data

Squirrel(9K) Angel(24K) Bunny(35K) Ram(678K)




Some Methods to Capture 3D Point Clouds

Multi-Flash Camera

8 Meglalpixgl Y
. Camjera}

Beyond Silhouettes: Surface Reconstruction
using Multi-Flash Photography
D. Crispell, D. Lanman, P. Sibley, Y. Zhao and G. Taubin [3DPVT 2006]




Multi-Flash 3D Photography:

Capturing the Shape and Appearance

of 3D Objects

A new approach for reconstructing 3D objects
using shadows cast by depth discontinuities, as
detected by a multi-flash camera. Unlike existing
stereo vision algorithms, this method works even
with plain surfaces, including unpainted ceramics
and architecture.

Data Capture: A turntable and a digital camera
are used to acquire data from 670 viewpoints. For
each viewpoint, we capture a set of images using
illumination from four different flashes. Future
embodiments will include a small, inexpensive
handheld multi-flash camera

ulti-Flash Camera

o=

Turntable
Rotation

—
J =
S

Turntable

Multi-Flash
Turntable Sequence:
Input Image

Recovered
Appearance:
Phong BRDF Model

Estimated Shape:
3D Point Cloud

Recovering a Smooth Surface

The reconstructed point cloud can
possess errors, including gaps and
noise. To minimize these effects, we find
an implicit surface which interpolates the
3D points. This method can be applied to
any 3D point cloud, including those
generated by laser scanners.







SSD Continuous Formulation

* Oriented point set:
D={(p; n;)} sampled from a surface S

e Implicit surface:
S={x| f(x)=0}suchthat
f(p)=0 and Vf(p)=n; V(p,n) €D

* Least squares energy:

E()= 3 100+ 2 3 V@) -n,

“+ A [ I ()P dx

What does the regularization term do ?

Eif'( ")2+hlzv,”vf(")— '||2+£ |Hf (x)|| dx
N,‘,]‘ Di N,',] /J\DPi) — N |V’-V J X X

\_ [9Vf(x) oVf(x) dVf(x)
Hf(x) = ox| x> ox3 }

* Near data points: since the data terms dominate, the
function approximates the signed distance

e Away from data points: the regularization term
dominates and forces the gradient to be smooth and

close to constant




Role of each energy term

E(fv.M) =Y f(B) +4 X Ve -0, + 4 [ I M) dx

Quadratic energy in f, v, and M

If f, v, and M are linear functions of the same parameters,
then the minimization reduces to a least squares problem

Linear families of functions

fx) =Y foda(x)=dx)F

aEA

e Popular Smooth Basis Functions
— Monomials [Taubin’91]
— Radial basis functions [Carr et al., ‘01],
— Compactly supported basis functions [Othake et al. ‘04],
— Trigonometric polynomials [Kazhdan et al. ‘05],
— B-splines [Kazhdan et al., 06],
— Wavelets [Manson et al. ‘08],

Non-h ; t t
amarnteonegy | E(F) =F'AF =2b'F +c¢
Global minimum AF — b




We can use Independent Discretizations

* Hybrid FE/FD discretization
— Trilinear interpolant for the function f(x)
— Primal finite differences for the gradient V f(x)
— Dual finite differences for the Hessian Hf(x)

* Aslong as f(x), Vf(x), and Hf(x) are written as a
linear combinations of the same parameter vector F

Non-h ,
C?unadSarE?geir;Or;; E(F) = FtAF - 2th +C

Global minimum AF = b

Implementation

* Primal-Dual octree data structure

e Cascading multi-grid iterative solver
(conjugate gradient):
Solve the problem on a much coarser level

— Use the solution at that level to initialize the
solution at the next level

— Refine with the iterative solver

* |so-surface extraction (crack-free)
— Dual marching cubes [Schaefer 2005]



Marching Cubes on Octrees

* Non-conforming hexahedral mesh
e Results in crack problem.
* Problem solved by Dual Marching Cubes

Input point MPU Poisson D4 Wavelets SSD
cloud [Othake ‘03 ] [Kazhdan ‘06 ] [Manson ‘08 ] [Calakli“11]




SSD Surface Reconstruction

* Theoretical contributions:

— Oriented point samples regarded as samples of
Euclidean signed distance function

— Reconstruction as global minimization problem
— Yet sparse system of linear equations
* Empirical advantages:
— Robust to noise and uneven sampling density
* Future work:
— Streaming out-of-core implementations
— Parallel/Multi-core/GPU implementations
— Dynamic shapes

= Structured Lighting

= Projector-Camera Calibration

» Surface Reconstruction from Point Clouds
» Elementary Mesh Processing

» Related Projects

= Conclusion/Q & A



