
EN 292s34 / CS 220: 3D Photography and Geometry Processing

Assignment 1: Introduction to Geometry Processing

Instructor: Gabriel Taubin∗

TA: Douglas Lanman†

6 February 2007

Introduction

This assignment will introduce basic geometry processing for polygon meshes. After completing
this homework you should have a good understanding of the type of algorithms, data structures,
and coding practices expected for this course – especially with regard to the Java framework
we’ll provide. In particular, you’ll be implementing a variety of fundamental operations including
selection, deletion, and classification of vertices, edges, and faces. The methods developed in this
problem set will form the foundation for further assignments focusing on more advanced topics
such as compression and filtering.

1 Getting Started: Selection Operations

Before you begin this assignment, you should first read the j3DPGP application guide [5]. Once
you can successfully compile and run the application, you should begin familiarizing yourself with
the following five files.

IfsDesktopPanels.java
IfsPanel.java
IfsPanelColors.java
IfsPanelOptions.java
IfsPanelSelection.java

The first four files can be used to modify the basic user interface in j3DPGP. In general, you
shouldn’t need to modify any of these classes. Instead, the majority of modifications will be made
directly to the IfsPanelSelection class.

∗taubin@mesh.brown.edu
†dlanman@brown.edu

1



Assignment 1: Introduction to Geometry Processing EN 292s34 / CS 220 (Spring 2007)

To get you started, we’ve already implemented the clear and invert functions for vertices, edges,
and faces. For example, to select all the edges in a mesh, clear the current selection and then invert
(i.e., the inverse of an empty edge selection list contains all the edges in the mesh). Take a look
at the selectEdges callback in the IfsPanelSelection class. Notice how the clearEdgeIndex
and invertEdgeIndex methods of the Selection class were used to implement these operations.
As you can see, the basic clear and invert operations can be implemented using methods already
existing with the j3DPGP support classes.

1.1 Dilate and Erode

Now that you’re familiar with the format of the IfsPanelSelection class, let’s implement a new
selection mode. Many times you want to slightly increase or decrease the current selection. We
can formalize this behavior as the dilate and erode operations. For example, we can define vertex
dilation as the operation which appends all the vertices that share an edge with a currently-selected
vertex to the selection list. Similarly, we can define face erosion as the operation that removes all
the faces that share an edge with an unselected face from the selection list. The remaining dilation
and erosion operations can be defined in a similar manner.

For this problem we expect you to first define the expected behavior of each operation you
implement. At a minimum, we require you to implement vertex dilation, face dilation, and face
erosion. If you feel more ambitious, modify the user interface and implement the additional opera-
tions of edge dilation, edge erosion, and vertex erosion. Note that we leave the specific definition of
these operations up to you. Try to be consistent and have the results provide useful modifications
to the selection list. For example, if all the current faces are selected, should a face erosion do
nothing or should it unselect faces containing border edges?

1.2 Connected Components

After the previous warm-up problem you should have a fairly robust set of selection behaviors.
One operation we’d like to add to this set is the ability to find additional components that are
connected to the current selection. For example, if you select a single vertex on cow npf.wrl, the
connected vertices button should select all the vertices connected to this point (note that the cow
contains several components, which will be revealed by this operation).

As discussed in class, in order to determine connected components we’ll need to partition the
mesh. In the case of connected vertices, this partition will be performed on the primal graph.
Alternatively, determining connected faces will require partitioning the dual graph. Note that we
have provided an efficient partition routine with the Partition class (which uses the Union-Find
data structure discussed in class [1, 2]).

For this problem we expect you to determine connected faces by implementing the selectCon-
nectedFaces callback. To get you started with the problem, we’ve provided a complete implemen-
tation of selectConnectedVertices. As before, you should describe in your write-up how you
define connected faces and provide a pseudocode description of your implementation. In addition,
please include several screen captures for cow npf.wrl and indicate the connected components.

2 Classification: Is it Boundary, Regular, or Singular?

This problem will require classifying vertices, edges, and faces as either boundary, regular, or sin-
gular. Begin by reviewing the relevant course notes [3]. Afterwards, we recommend that you first
implement the classification operations for edges. Recall that a boundary, regular, or singular edge

2



Assignment 1: Introduction to Geometry Processing EN 292s34 / CS 220 (Spring 2007)

is defined has having one, two, or three or more incident faces, respectively. Notice that your classifi-
cation routines should be invoked by the SELECT BOUNDARY, SELECT REGULAR, or SELECT SINGULAR
cases within the selectVertices, selectEdges, and selectFaces callbacks. Once you have im-
plemented edge classification, face and vertex classification should follow directly – except for the
special case of isolated singular vertices. (Think about what we discussed in class for handling this
case.)

For this problem we expect you to first define the behavior of each classification operation.
In general classification should be performed on the entire mesh, although you can modify this
behavior as desired. As before, strive for consistency and handle as many special cases as possible.
Please hand in a pseudocode description along with your solution, as well as several screenshots
for cow npf.wrl (similar to those provided at the beginning of this assignment). For certain cases
cow npf.wrl may not provide sufficient examples to demonstrate or debug your code. We’ll provide
additional meshes on the course website as needed.

3 Efficient Deletion for Polygonal Meshes

Up to this point all of the operations you have implemented have only modified the selection lists.
For this problem you will be implementing efficient deletion for polygon meshes. To get you started
we’ve already provided an implementation of face deletion using the deleteSelectedFaces call-
back. Unlike the previous problems, deleting vertices, faces, or edges will require updating all the
associated properties of the mesh. That is, removing a vertex will require updating the coordinate
indices for each face in order to rebuild the connectivity. After examining our face deletion imple-
mentation, you’ll notice that you have to take care to update all the properties supported by our
limited VRML’97 format – including normal and color bindings, texture coordinates, and selection
lists.

For this problem we expect you to implement vertex and edge deletion using the deleteSe-
lectedVertices and deleteSelectedEdges callbacks, respectively. Once again, begin by defining
the behavior of each operation. Provide sufficient documentation of your results using pseudocode
descriptions and screenshots. Finally, take care to achieve a natural interface. For example, you
may find it cumbersome to maintain selection lists or other properties upon deletion. Document
any assumptions or quirks specific to your implementation.

4 Topological Operations: Cutting Edges and Faces

For this problem we will add another critical operation: cutting selected edges and faces. Similar
to deletion, cutting an edge or face will require updating the property bindings. We have not
provided you with an implementation of either edge of face cutting, although we expect their
implementation will follow the approaches you developed in the previous problem. As always,
you should begin by defining the behavior of edge and face cuts. For example, cutting the set of
currently selected faces should duplicate vertices and edges such that the selected region becomes
one or more connected components disconnected from the unselected faces. As with classification,
this will require traversing both the primal and dual graphs.

For this problem we expect you to provide a pseudocode description of your implementation,
as well as supporting images documenting the results. In addition, please save several modified
meshes so we can confirm your results.

3



Assignment 1: Introduction to Geometry Processing EN 292s34 / CS 220 (Spring 2007)

Submission Instructions

You should submit clear evidence that you have successfully implemented as many features as
possible. In particular, you should submit: (1) an archive named j3DPGP-HW1-Lastname.zip
containing the modified source code, (2) a typeset document similar to this assignment handout
documenting your implementations, and (3) provide modified meshes as WRL files demonstrating
the algorithm output. In particular, please include modified meshes showing cutting and deletion,
and describe in your write-up what modifications were performed. Final solutions should be emailed
to the TA at dlanman@brown.edu. (Please note that we reserve the right to request a 15 minute
demonstration of your implementation if the submitted documentation is insufficient to verify
correctness.)

Finally, note that the best submissions will be asked to present a short demo in class and answer
student questions regarding their solution. Remember that this assignment will lay the foundation
for future problems sets and possible final projects – devote the necessary time to familiarize yourself
with the j3DPGP framework.

References

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, Second Edition. The MIT Press and McGraw-Hill, 2001.

[2] Robert Endre Tarjan. Data Structures and Network Algorithms. CBMS-NSF Regional Confer-
ence Series in Applied Mathematics, 1983.

[3] Gabriel Taubin. Course notes on surfaces representations. http://mesh.brown.edu/3dpgp/
pdfs/01-SurfReps.pdf.

[4] Gabriel Taubin. Course notes on the half-edge data structure. http://mesh.brown.edu/3dpgp/
pdfs/02-HalfEdge.pdf.

[5] Gabriel Taubin. The j3DPGP application. http://mesh.brown.edu/3dpgp.

4


