Chapter 2

Representation of a Three-Dimensional
Moving Scene

I will not define time, space, place and motion, as being well known
to all.
— Isaac Newton, Principia Mathematica, 1687

The study of the geometric relationship between a three-dimensional (3-D) scene
and its two-dimensional (2-D) images taken from a moving camera is at heart the
interplay between two fundamental sets of transformations: Euclidean motion,
also called rigid-body motion, which models how the camera moves, and per-
spective projection, which describes the image formation process. Long before
these two transformations were brought together in computer vision, their theory
had been developed independently. The study of the principles of motion of a ma-
terial body has a long history belonging to the foundations of mechanics. For our
purpose, more recent noteworthy insights to the understanding of the motion of
rigid objects came from Chasles and Poinsot in the early 1800s. Their findings led
to the current treatment of this subject, which has since been widely adopted.

In this chapter. we will start with an introduction to three-dimensional Eu-
clidean space as well as to rigid-body motions. The next chapter will then focus
on the perspective projection model of the camera. Both chapters require famil-
iarity with some basic notions from linear algebra, many of which are reviewed
in Appendix A at the end of this book.
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2.1 Three-dimensional Euclidean space

We will use E? to denote the familiar three-dimensional Euclidean space. In gen-
eral, a Euclidean space is a set whose elements satisfy the five axioms of Euclid.
Analytically, three-dimensional Euclidean space can be represented globally by a
Cartesian coordinate frame: every point p € E? can be identified with a point in
R* with three coordinates
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Sometimes, we may also use [X, Y, Z]T to indicate individual coordinates instead
of [X1, X2, X3]". Through such an assignment of a Cartesian frame, one estab-
lishes a one-to-one correspondence between E? and B2, which allows us to safely
talk about points and their coordinates as if they were the same thing.

Cartesian coordinates are the first step toward making it possible measure dis-
tances and angles. In order to do so, E* must be endowed with a metric. A precise
definition of metric relies on the notion of vecror.

‘Definition 2.1 (Vector). I/n Euclidean space, a vector v is determined by a pair
of points p, q € B3 and is defined as a directed arrow connecting p to q, denoted

v = pq.

The point p is usually called the base point of the vector v. In coordinates, the
vector v is represented by the triplet [v7, v2, v3]T € B, where each coordinate is
the difference between the corresponding coordinates of the two points: if p has
coordinates X and g has coordinates Y, then v has coordinates’

v=Y-X RS

The preceding definition of a vector is referred to as a hound vector. One can
also introduce the concept of a free vector, a vector whose definition does not
depend on its base point. If we have two pairs of points (p, ¢) and (p’, ') with
coordinates satisfying ¥ — X = Y’ — X', we say that they define the same free
vector. Intuitively, this allows a vector v to be transported in parallel anywhere in
[£3. In particular, without loss of generality, one can assume that the base point is
the origin of the Cartesian frame, so that X = 0 and Y = v. Note, however, that
this notation is confusing: ¥ here denotes the coordinates of a vector that happen
to be the same as the coordinates of the point ¢ just because we have chosen the
point p to be the origin. The reader should keep in mind that points and vectors are
different geometric objects. This will be important, as we will see shortly, since a
rigid-body motion acts ditferently on points and vectors.

! Note that we use the same symbol © for a vector and its coordinates.
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The set of all free vectors forms a linear vector space® (Appendix A), with the
linear combination of two vectors v. u € R? defined by

av + Bu = [avy + Buy. avs + Bus. avg + IH-H.;;]T eR® Va,deR.

The Euclidean metric for E?® is then defined simply by an inner product® (Ap-
pendix A) on the vector space R®, It can be shown that by a proper choice
of Cartesian frame. any inner product in E? can be converted to the following
canonical form

(u,v) = ulv=uyv) + ugve + ugvs, Yu,v € R>. (2.1

This inner product is also referred to as the standard Euclidean metric. In most
parts of this book (but not everywhere!) we will use the canonical inner prod-
uct (u,v) = uTv. Consequently, the norm (or length) of a vector v is ||v| =
V (v, v) = /v + vi + vZ. When the inner product between two vectors is zero,
i.e. (u,v) = 0, they are said to be orthogonal.

Finally, Euclidean space E? can be formally described as a space that, with re-
spect to a Cartesian frame, can be identified with R¥ and has a metric (on its vector
space) given by the above inner product. With such a metric, one can measure not
only distances between points or angles between vectors, but also calculate the
length of a curve* or the volume of a region.

While the inner product of two vectors is a real scalar, the so-called cross
product of two vectors is a vector as defined below.

Definition 2.2 (Cross product). Given rwo vectors u,v € R?, their cross product
is a third vector with coordinates given by

UgV3 — U3V
uXv= |uzv — w3 e R3.
U1 V2 — U
It is immediate from this definition that the cross product of two vectors is

linear in each of its arguments: u % (av + fw) = au x v+ Fu x w, Yo, 3 € R.
Furthermore, it is immediate to verify that

(uxvu) = wxv,v) =0, wuxv=—-vXu

Therefore, the cross product of two vectors is orthogonal to each of its factors,
and the order of the factors defines an orfenration (if we change the order of the
factors, the cross product changes sign).

INote that the set of points does not.

*In some literature, the inner product is also referred to as the “dot product.”

*1f the trajectory of a moving particle p in E2 is described by a curve () : t 1— X(t) e Rt €
[0, 1], then the total length of the curve is given by

1
1r()) = fﬂ 13 (e)] de.

where X(t) = dii (X(t)) € B3 is the so-called tangent vector to the curve.
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If we fix u, the cross product can be represented by a map from R? to R3:
v u X v. This map is linear in v and therefore can be represented by a matrix
(Appendix A). We denote this matrix by @ € R**3, pronounced “u hat” Tt is
immediate to verify by substitution that this matrix is given by’

0 —U3 U9
T s e = e S 2.2)
—Uz Uy 0

Hence, we can write u x v = wwv. Note that 7 is a 3 x 3 skew-symmetric matrix.
ie. u* = —1 (see Appendix A).

Example 2.3 (Right-hand rule). It is immediate to verify that for ¢; = [1,0,0]7, ex =
[0, 1, OIT € R®, we have e; X ey = [0.0, l]"“ = e4. That is, for a standard Cartesian
frame, the cross product of the principal axes X and ¥ gives the principal axis Z. The

cross product therefore conforms to the right-hand rule. See Figure 2.1. [ ]
3 Z
.
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Figure 2.1. A right-handed (X, Y, Z) coordinate frame.

The cross product, therefore, naturally defines a map between a vector u and
a3 x 3 skew-symmetric matrix . By inspection, the converse of this statement
is clearly true, since we can easily identify a three-dimensional vector associated
with every 3 x 3 skew-symmetric matrix (just extract u;, is. ug from (2.2)).

Lemma 2.4 (Skew-symmetric matrix). A matrix M € R**? is skew-symmetric
if and only if M = @ for some u € B3,

Therefore, the vector space R and the space of all skew-symmetric 3 x 3 matri-
ces, called s0(3),° are isomorphic (i.e. there exists a one-to-one map that preserves
the vector space structure), The isomorphism is the so-called hat operator

A:RY S 50(3); w7,

3In some literature, the matrix @ is denoted by u x or [u] «.
“We will explain the reason for this name later in this chapter.
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and its inverse map, called the vee operator, which extracts the components of the
vector u from a skew-symmetric matrix ., is given by

V:so(3) =R u—u' =u.

2.2 Rigid-body motion

Consider an object moving in front of a camera. In order to describe its motion
one should, in principle, specify the trajectory of every single point on the object,
for instance, by specifying coordinates of a point as a function of time X ().
Fortunately, for rigid objects we do not need to specify the motion of every point.
As we will see shortly, it is sufficient to specify the motion of one (instead of
every) point, and the motion of three coordinate axes attached to that point. The
reason is that for every rigid object, the distance between any two points on it
does not change over time as the object moves. See Figure 2.2.

Figure 2.2. A motion of a rigid body preserves the distance d between any pair of points

re 2
(p,q) on it.

Thus, if X (#) and Y (#) are the coordinates-of any two points p and ¢ on the
object, respectively, the distance between them is constant:
| X (t) — Y (f)|| = constant, VieR. (2.3)

A rigid-body motion (or rigid-body transformation) is then a family of maps that
describe how the coordinates of every point on a rigid object change in time while
satisfying (2.3). We denote such a map by

g(t): R® = R% X s g(t)(X).

If instead of looking at the entire continuous path of the moving object, we
concentrate on the map between its initial and final configuration, we have a
rigid-body displacement, denoted by

g: RRSRY: X e g(X).

Besides transforming the coordinates of points, g also induces a transformation on
vectors. Suppose that v is a vector defined by two points p and g with coordinates
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v =Y — X then, after the transformation g. we obtain a new vector’

u=g.(v) = g(Y) - g(X).

Since g preserves the distance between points, we have that ||g.(v)|| = |[v|| for
all free vectors v € B3,

A map that preserves the distance is called a Euclidean transformation. In the
3-D space, the set all Euclidean transformations is denoted by E(3). Note that
preserving distances between points is not sufficient to characterize a rigid object
moving in space. In fact, there are transformations that preserve distances, and yet
they are not physically realizable. For instance, the map

[ X1, Xo, Xa)T s [Xa, Xo, —Xs]

preserves distances but not orientations. It corresponds to a reflection of points in
the XY -plane as a double-sided mirror. To rule out this kind of maps.® we require
that any rigid-body motion, besides preserving distances, preserves orientations
as well. That is. in addition to preserving the norm of vectors, it must also preserve
their cross product. The map or transformation induced by a rigid-body motion is
called a special Euclidean transformation. The word “special” indicates the fact
that a transformation is orientation-preserving.

Definition 2.5 (Rigid-body motion or special Euclidean transformation). A
map g : R? — R is a rigid-body motion or a special Euclidean transformation if
it preserves the norm and the cross product of any two vectors,

1. norm: ||g.(v)|| = ||lv||, Yv € B3,
2. cross product: g.(u) x g.(v) = gu(u x v), Yu,v € R,
The collection of all such motions or transformations is denoted by SE(3).

In the above definition of rigid-body motions, it is not immediately obvious that
the angles between vectors are preserved. However, the inner product (-, -) can be

expressed in terms of the norm || - || by the polarization identity
1 2 2
{(u,v) = - (flw+v]|* = [Ju—v|?) (2.4)
and, since ||u+ v|| = [|g+ (1) + g+ (v)||, one can conclude that, for any rigid-body

motion g,
(u,0) = (go(u), g« (v)), Vu,v e R®. (2.5)

In other words, a rigid-body motion can also be defined as one that preserves both
the inner product and the cross product.

"The use of g. here is consistent with the so-called push-forward map or differential operator of g
in differential geometry, which denotes the action of a differentiable map on the tangent spaces of its
domains.

51n Chapter 10, however, we will study the important role of reflections in multiple-view geometry.
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Example 2.6 (Triple product and volume). From the definition of a rigid-body motion,
one can show that it also preserves the so-called triple product among three vectors:

(ge(u), g.(v) % gu(w)) = (u,v X w).

Since the triple product corresponds to the volume of the parallelepiped spanned by the
three vectors, rigid-body motion also preserves volumes. [ |

How do these properties help us describe a rigid-body motion concisely? The
fact that distances and orientations are preserved by a rigid-body motion means
that individual points cannot move relative to each other. As a consequence, a
rigid-body motion can be described by the motion of a chosen point on the body
and the rotation of a coordinate frame attached to that point. In order to see this,
we represent the configuration of a rigid body by attaching a Cartesian coordinate
frame to some point on the rigid body, and we will keep track of the motion of
this coordinate frame relative to a fixed world (reference) frame.

To this end, consider a coordinate frame, with its principal axes given by three
orthonormal vectors ey, €3, e3 € R3; that is, they satisfy

T - 1 for i=},
etes == L :
€; ¢4 | { 0 for i ?é 7, (2.6)
The vectors are ordered so as to form a right-handed frame: e, x es = ey. Then,
after a rigid-body motion g, we have

g.(e)Tg.(e;) = 8ijy  guler) % ga(e2) = gu(ea). 2.7

That is, the resulting three vectors g.(e1), g-(¢2), g.(€e3) still form a right-handed
orthonormal frame. Therefore, a rigid object can always be associated with a
right-handed orthonormal frame, which we call the object coordinate frame or
the body coordinate frame, and its rigid-body motion can be entirely specified by
the motion of such a frame.

In Figure 2.3 we show an object, in this case a camera, moving relative to a
world reference frame W : (XY, Z) selected in advance. In order to specify
the configuration of the camera relative to the world frame W, one may pick a
fixed point 0 on the camera and attach to it an object frame, in this case called
a camera frame.” C : (z,y. z). When the camera moves, the camera frame also
moves along with the camera. The configuration of the camera is then determined
by two components:

1. the vector between the origin o of the world frame and that of the camera
frame, g(o). called the “translational” part and denoted by 7;

2. the relative orientation of the camera frame C, with coordinate axes
(z.y.z), relative to the fixed world frame W with coordinate axes
(X.Y, Z), called the “rotational” part and denoted by R.

9Here. to distinguish the two coordinate frames. we use lower-case z, y, z for coordinates in the
camera frame.



22 Chapter 2. Representation of a Three-Dimensional Moving Scene

Figure 2.3. A rigid-body motion between a camera frame C: (z,%,z) and a world
coordinate frame W: (X, Y, Z).

In the problems we consider in this book, there is no obvious choice of the
world reference frame and its origin o. Therefore. we can choose the world frame
to be attached to the camera and specify the translation and rotation of the scene
relative to that frame (as long as it is rigid), or we could attach the world frame
to the scene and specify the motion of the camera relative to that frame. All that
matters is the relative motion between the scene and the camera; the choice of the
world reference frame is, from the point of view of geometry, arbitrary.'”

If we can move a rigid object (e.g., a camera) from one place to another, we
can certainly reverse the action and put it back to its original position. Similarly,
we can combine several motions to generate a new one. Roughly speaking, this
property of invertibility and composition can be mathematically characterized by
the notion of “group™ (Appendix A). As we will soon see, the set of rigid-body
motions is indeed a group, the so-called special Euclidean group. However, the
abstract notion of group is not useful until we can give it an explicit representation
and use it for computation. In the next few sections, we will focus on studying in
detail how to represent rigid-body motions in terms of matrices.'' More specif-
ically, we will show that any rigid-body motion can be represented as a 4 x 4
matrix. For simplicity, we start with the rotational component of a rigid-body
motion,

2.3 Rotational motion and its representations

2.3.1 Orthogonal matrix representation of rotations

Suppose we have a rigid object rotating about a fixed point 0 € E3. How do we
describe its orientation relative to a chosen coordinate frame, say 1W? Without
loss of generality, we may always assume that the origin of the world frame is

!0The human vision literature, on the other hand, debates whether the primate brain maintains a
view-centered or an object-centered representation of the world.
"'The notion of matrix representation for a group is introduced in Appendix A.
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the center of rotation o. If this is not the case, simply translate the origin to the
point 0. We now attach another coordinate frame, say C', to the rotating object,
say a camera. with its origin also at 0. The relation between these two coordinate
frames is illustrated in Figure 2.4,
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Figure 2.4. Rotation of a rigid body about a fixed point o and along the axis w. The coor-

dinate frame W (solid line) is fixed, and the coordinate frame C' (dashed line) is attached
to the rotating rigid body.

The configuration (or “orientation”) of the frame ' relative to the frame W is
determined by the coordinates of the three orthonormal vectors 1y = g.(€e1), 72 =
g.(€e2), 13 = g.(e3) € R? relative to the world frame W, as shown in Figure 2.4.
The three vectors 7.7, 3 are simply the unil vectors along the three principal
axes x, y, z of the frame C, respectively. The configuration of the rotating object
is then completely determined by the 3 x 3 matrix

Ry = [r1,m2,ms] € R¥73,
with 71,72, 73 stacked in order as its three eolumns. Since 7y, r2, r3 form an
orthonormal frame, it follows that
P N { (1] ’rgi f;j Vi, j e {1,2,3)}.
This can be written in matrix form as
R Ron= e Br—tls

Any matrix that satisfies the above identity is called an orthogonal matrix. It fol-
lows from the above definition that the inverse of an orthogonal matrix is simply
its transpose: R} = RY . Since 1. 72, 73 form a right-handed frame, we further
have the condition that the determinant of R,,. must be +1.'2 Hence R, is a
special orthogonal matrix, where as before, the word “special” indicates that it is

12This can easily be seen by computing the determinant of the rotation matrix det(R) = r{ (r2 x
r3), which is equal to +1.
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orientation-preserving. The space of all such special orthogonal matrices in B3*3
15 usually denoted by

S0(3) = {R e R¥? | RTR=I,det(R) = +1}.

Traditionally, 3 x 3 special orthogonal matrices are called rotation matrices for
obvious reasons. It can be verified that SO(3) satisfies all four axioms of a group
(defined in Appendix A) under matrix multiplication. We leave the proof to the
reader as an exercise. So the space SO(3) is also referred to as the special or-
thogonal group of B?, or simply the rotation group. Directly from the definition,
one can show that rotations indeed preserve both the inner product and the cross
product of vectors.

Example 2.7 (A rotation matrix). The matrix that represents a rotation about the Z-axis
by an angle @ is

cos(f) —sin(f) 0
Rz(0) = |sin(d) cos(8) O
0 0 1

The reader can similarly derive matrices for rotation about the X -axis or the Y -axis. In the
next section we will study how to represent a rotation about any axis. m

Going back to Figure 2.4, every rotation matrix R,,. € SO(3) represents a
possible configuration of the object rotated about the point o. Besides this, R,,.
takes another role as the matrix that represents the coordinate transformation from
the frame C' to the frame W . To see this, suppose that for a given a point p € E?,
its coordinates with respect to the frame W are X, = [.\'—l"_...\'gu-..-‘fawlr -
R3. Since 1, ra, s also form a basis for R?, X, can be expressed as a linear
combination of these three vectors, say X ,, = X + Xoora + Xgerg with
[ X1y Xoo, Xa.]T € R?. Obviously, X, = [Xj., Xoc, Xac|T are the coordinates
of the same point p with respect to the frame C'. Therefore, we have

Xy =X5,11 +Xaens -+ Xers = Ry X

In this equation, the matrix I?,,. transforms the coordinates X .. of a point p rela-
tive to the frame C' to its coordinates X, relative to the frame W. Since R, is a
rotation matrix, its inverse is simply its transpose.

Kot Xy — T X

we

That is, the inverse transformation of a rotation is also a rotation: we call it R,
following an established convention, so that

Rew=R;! =RT

we*
The configuration of a continuously rotating object can then be described as a
trajectory R(t) : ¢ — SO(3) in the space SO(3). When the starting time is
not £ = 0, the relative motion between time f» and time f; will be denoted as
R(ts, ;). The composition law of the rotation group (see Appendix A) implies

R(ta,ty) = R(ta. t1)R(t1.10). Vip <t <tz € R.
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For a rotating camera, the world coordinates X, of a fixed 3-D point p are
transformed to its coordinates relative to the camera frame C' by

X(-[t) = R(_-m (t)xm-

Alternatively, if a point p is fixed with respect to the camera frame has coordinates
X ... its world coordinates X () as a function of # are then given by

Xu'(t) = Ru-'c‘({)Xr_"

2.3.2 Canonical exponential coordinates for rotations

So far, we have shown that a rotational rigid-body motion in E? can be represented
by a 3 x 3 rotation matrix £ € SO(3). In the matrix representation that we have
so far, each rotation matrix 1 is described by its 3 x 3 = 9 entries. However,
these nine entries are not free parameters because they must satisfy the constraint
RT R = I. This actually imposes six independent constraints on the nine entries,
Hence, the dimension of the space of rotation matrices SO(3) should be only
three, and six parameters out of the nine are in fact redundant, In this subsection
and Appendix 2.A, we will introduce a few explicit parameterizations for the
space of rotation matrices.

Given a trajectory R(f) : B — SO(3) that describes a continuous rotational
motion, the rotation must satisfy the following constraint

R(t)R* (t) = I.

Computing the derivative of the above equation with respect to time t and noticing
that the right-hand side is a constant matrix, we obtain

‘R()RT(t) + R&)R*(t) =0 = R@)R% @) = —(RE)RY(1))*.

The resulting equation reflects the fact that the matrix R(¢)R” (t) € R**% is a
skew-symmetric matrix. Then, as we have seeri in Lemma 2.4, there must exist a
vector, say w(t) € R3, such that

R(t)R™ () = &(¢t).
Multiplying both sides by R(¢) on the right yields
R(t) = B(t)R(t). (2.8)

Notice that from the above equation, if R(ty) = I for t = to, we have R(ty) =
(). Hence, around the identity matrix 7. a skew-symmetric matrix gives a first-
order approximation (o a rotation matrix:

Rlto + dt) ~ I + G(to) dt.

As we have anticipated. the space of all skew-symmetric matrices is denoted by

50(3) = {@ e R¥3 |w e R}, (2.9)
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and following the above observation, it is also called the tangent space at the
identity of the rotation group SO(3)."7 If R(f) is not at the identity, the tangent
space at R(t) is simply so(3) transported to R(t) by a multiplication by R(t)
on the right: R(t) = &(¢)R(t). This also shows that, locally, elements of SO(3)
depend on only three parameters, (w1.ws. w3).

Having understood its local approximation. we will now use this knowledge to
obtain a useful representation for the rotation matrix. Let us start by assuming that
the matrix & in (2.8) is constant,

R(t) = BR(t). (2.10)

In the above equation. R(t) can be interpreted as the state transition matrix for
the following linear ordinary differential equation (ODE):

#(t) = Bx(t), =«(t) e R (2.11)
It is then immediate to verify that the solution to the above ODE is given by
z(t) = e“tz(0), 2.12)
where e¥! is the matrix exponential

i (B (@t)"
e —I+u..fl-+—2!"‘+"-+—n'!'—

4 (2.13)
The exponential ¢“* is also often denoted by exp(t). Due to the uniqueness of
the solution to the ODE (2.11), and assuming R(0) = T is the initial condition for
(2.10), we must have

R(t) = e“%. (2.14)

To verify that the matrix ¢“* is indeed a rotation matrix, one can directly show
from the definition of the matrix exponential that
(e;:f)—l = E,—-:;: = {,&“'1 = (c:or)'r.

Hence (¢24)Te®* = [ It remains to show that det(e“*) = +1, and we leave this
fact to the reader as an exercise (see Exercise 2.12). A physical interpretation of
equation (2.14) is that if ||w|| = 1, then R(t) = e“* is simply a rotation around
the axis w € R® by an angle of t radians. 4 In general, ¢ can be absorbed into w,
s0 we have R = e® for w with arbitrary norm. So, the matrix exponential (2.13)
indeed defines a map from the space so(3) to SO(3), the so-called exponential
map

exp: s0(3) — SO(3); W oo

Note that we obtained the expression (2.14) by assuming that the w(t) in (2.8)
is constant. This is, however, not always the case. A question naturally arises:

13Gince SO(3) is a Lie group, so(3) is called its Lie algebra.
l4\We can use either ¢=?, where # encodes explicitly the rotation angle and ||w|| = 1, or more
simply e* where [|w|| encodes the rotation angle.
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can every rotation matrix R € SO(3) be expressed in an exponential form as in
(2.14)? The answer is yes, and the fact is stated as the following theorem.

Theorem 2.8 (Logarithm of SO(3)). For any R € SO(3), there exists a (not
necessarily unique) w € R? such that R = exp(@). We denote the inverse of the
exponential map by © = log(R).

Proof. The proof of this theorem is by construction: if the rotation matrix I? # [
is given as
T P2 e
R=|ra1 73 703
T3l T3z 733
the corresponding w is given by

._.:IEEi@:l) A i o 4 N
|j==secs ( 3 el ~ Zsm(lwl) 722 2| )

If R = I, then |lw| = 0, and Wf"ﬂ is not determined (and therefore can be chosen

arbitrarily). O

The significance of this theorem is that any rotation matrix can be realized by
rotating around some fixed axis w by a certain angle ||w||. However, the expo-
nential map from so(3) to SO(3) is not one-to-one, since any vector of the form
2kmw with k integer would give rise to the same R. This will become clear after
we have introduced the so-called Rodrigues’ formula for computing R = e,

From the constructive proof of Theorem 2.8, we know how to compute the
exponential coordinates w for a given rotation matrix 2 € SO(3). On the other
hand, given w, how do we effectively compute the corresponding rotation matrix
R = ¢“? One can certainly use the series (2.13) from the definition. The following
theorem, however, provides a very useful formula that simplifies the computation
significantly.

Theorem 2.9 (Rodrigues’ formula for a rotation matrix). Given w € R, the
matrix exponential R = e* is given by

& = I+ opsin(lll) + s (1= cos([l). (2.16)

Proof. Lett = ||w| and redefine w to be of unit length. Then, it is immediate to

verify that powers of & can be reduced by the following two formulae
P=wwt =T G==5.

Hence the exponential series (2.13) can be simplified as

~ B ittt
TR T IS s L T e Lo i i e D s
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The two sets of parentheses contain the Taylor series for sin(t) and (1 — cos(t)).
respectively. Thus, we have et = I + @sin(t) + &*(1 — cos(t)). O

Using Rodrigues’ formula, it is immediate to see that if ||w|| = 1, = 2kx. we
have

eEerW =T

for all k € Z. Hence, for a given rotation matrix R € SO(3), there are infinitely
many exponential coordinates w € R3 such that ¥ = R. The exponential map
exp : so(3) — SO(3) is therefore not one-to-one. It is also useful to know that
the exponential map is not commutative, i.e. for two &y, @2 € s0(3).

oWl a2 3,!: 24 7{__ ew1+u2?
unless @1we = Waldy.

Remark 2.10. In general, the difference between w1Ws and Wol, is called the
Lie bracket on so(3), denoted by

[Ql,a:)] = 61(32 ‘—{::‘2&], Val,az (S 30(3).

From the definition above it can be verified that [©1, @] is also a skew-symmetric
matrix in so(3). The linear structure of so(3) together with the Lie bracket form
the Lie algebra of the (Lie) group SO(3). For more details on the Lie group struc-
ture of SO(3), the reader may refer to [Murray et al., 1993]. Given &, the set of
all rotation matrices e®!,t € R, is then a one-parameter subgroup of SO(3), i.e.
the planar rotation group SO(2). The multiplication in such a subgroup is always
commutative, since for the same w € R3, we have

e&l‘hﬂﬁ.’.g o ewtg P_i:‘f-. P (:’-w“l-l-h), V'!l- falc R,

The exponential coordinates introduced above provide a local parameterization
for rotation matrices. There are also other ways to parameterize rotation matrices,
either globally or locally, among which quaternions and Euler angles (or more
formally, Lie-Cartan coordinates) are two popular choices. We leave more de-
tailed discussions to Appendix 2.A at the end of this chapter. We use exponential
coordinates because they are simpler and more intuitive.

2.4 Rigid-body motion and its representations

In the previous section, we studied purely rotational rigid-body motions and how
to represent and compute a rotation matrix. In this section, we will study how
to represent a rigid-body motion in general, a motion with both rotation and
translation.

Figure 2.5 illustrates a moving rigid object with a coordinate frame C attached
to it. To describe the coordinates of a point p on the object with respect to the
world frame W, it is clear from the figure that the vector X ,,, is simply the sum of
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P
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. o7
Y s
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Figure 2.5. A rigid-body motion between a moving frame €' and a world frame W,

the translation 7%, € R? of the origin of the frame C' relative to that of the frame
W and the vector X .. but expressed relative to the frame W. Since X . are the
coordinates of the point p relative to the frame C, with respect to the world frame
W, it becomes R, X ., where I1,,. € SO(3) is the relative rotation between the
two frames. Hence, the coordinates X ,, are given by

Xn! = R?i!r.‘X(‘. b= Tﬂm- (2 I ?}

Usually, we denote the full rigid-body motion by gy = (Ruye, Tie), o simply
g = (R.T) if the frames involved are clear from the context. Then g represents
not only a description of the configuration of the rigid-body object but also a
transformation of coordinates between the two frames. In compact form, we write

X ywc(xc)-

The set of all possible configurations of a rigid body can then be described by the
space of rigid-body motions or special Euclidean transformations

SE3) = {g=(R,T)| R SO(3),T c R3}.

Note that ¢ = (R, T) is not yet a matrix representation for SE(3)."> To obtain
such a representation, we need to introduce the so-called homogeneous coordi-
nates. We will introduce only what is needed to carry our study of rigid-body
motions.

2.4.1 Homogeneous representation

One may have already noticed from equation (2.17) that in contrast to the pure
rotation case, the coordinate transformation for a full rigid-body motion is not

5For this 1o be the case, the composition of two rigid-body motions needs Lo be the multiplication
of two matrices. See Appendix A.
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linear but aﬂ?ne.'ﬁ Nonetheless, we may convert such an affine transformation to a
linear one by using homogeneous coordinates. Appending a “1” to the coordinates
X = [X1, Xy, X3]T € R? of a point p € E? yields a vector in R*, denoted by

Xy
o (X0 X 4
*o[E] |8 e
1

In effect, such an extension of coordinates has embedded the Euclidean space E?
into a hyperplane in R* instead of R3. Homogeneous coordinates of a vector v —
X (¢) — X (p) are defined as the difference between homogeneous coordinates of
the two points hence of the form

™
o vl o [X(@]| _ | X(@)] _ |ve 1
il e e e
) 0
Notice that in R?, vectors of the above form give rise to a subspace, and all linear
structures of the original vectors v € R® are perfectly preserved by the new rep-

resentation. Using the new notation. the (affine) transformation (2.17) can then be
rewritten in a “linear” form

= o Xur — fzun.‘ T"H’C XC — X
X-u.'-“[ 1 j[_[ 0 l ][1}_9"';:xra

where the 4 x 4 matrix g,,. € R"*" is called the homogeneous representation of
the rigid-body motion gue = (Rue; Twe) € SE(3). In general, if ¢ = (R.T),
then its homogeneous representation is
- R pd x4

= [0 i] e R**%, (2.18)
Notice that by introducing a little redundancy into the notation, we can repre-
sent a rigid-body transformation of coordinates by a linear matrix multiplication.
The homogeneous representation of ¢ in (2.18) gives rise to a natural matrix
representation of the special Euclidean transformations

SE(3) = {g = [f} ﬂ [R € 50(3),T € R"‘} C R

Using this representation, it is then straightforward to verify that the set SE(3) in-
deed satisfies all the requirements of a group (Appendix A). In particular, Yg, g»

19We say that two vectors wu, v are related by a linear transformation if u = Aw for some matrix A,
and by an affine transformation if u = Aw + b for some matrix A and vector b, See Appendix A.
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and g € SE(3), we have

R, I}} [Hg 1"2] - [Hlﬂg RT5 + T

s‘rlﬁe:[o il 5 1 ]-esg(s}

and

L [R T]“ [RT ~_RIT
y — —

e 0 1 } e SE(3).

Thus, 7 is indeed a matrix representation for the group of rigid-body motions
according to the definition we mentioned in Section 2.2 (but given formally in Ap-
pendix A). In the homogeneous representation, the action of a rigid-body motion
g € SE(3) ona vectorv = X (¢) — X (p) € R® becomes

9.(v) = gX(q) — §X(p) = gv.
That is, the action is also simply represented by a matrix multiplication. In the
3-D coordinates, we have g, (v) = Ruw, since only rotational part affects vectors,
The reader can verify that such an action preserves both the inner product and

the cross product. As can be seen, rigid motions act differently on points (rotation
and translation) than they do on vectors (rotation only).

2.4.2 Canonical exponential coordinates for rigid-body motions

In Section 2.3.2, we studied exponential coordinates for a rotation matrix R &€
SO(3). Similar coordinatization also exists for the homogeneous representation
of a full rigid-body motion g € SE(3). For the rest of this section, we demonstrate
how to extend the results we have developed for the rotational motion to a full
rigid-body motion. The results developed here will be extensively used throughout
the book. The derivation parallels the case of a pure rotation in Section 2.3.2.
Consider the motion of a continuously moving rigid body described by a
trajectory on SE(3): g(t) = (R(t), T(t)), or in the homogeneous representation

o) = [F) TO] eme

From now on, for simplicity, whenever there is no ambiguity, we will remove the
bar “~” to indicate a homogeneous representation and simply use g. We will use
the same convention for points, X for X, and for vectors, v for 0, whenever their
correct dimension is clear from the context.

In analogy with the case of a pure rotation, let us first look at the structure of
the matrix

i) = [FORE 10 = RORIEIE

; } e R4, (2.19)

From our study of the rotation matrix, we know that R(t)R” (t) is a skew-
symmetric matrix; i.e. there exists () € so(3) such that &(t) = R(t)R” (1).
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Define a vector v(t) € R? such that v(t) = T(z) — &(¢)T(¢). Then the above
equation becomes

9(g~ (1) = Fgﬂ ”g']} A

If we further define a matrix & £ B! to be
w(t) ()
&= Y.
then we have

a(t) = (9(t)g~1 (1)) g(t) = E(t)a(t), (2.20)

where é‘ can be viewed as the “tangent vector” along the curve of g() and can be
used to approximate g(t) locally:

g(t +dt) = g(t) + 5(:)9_(5):315 = (I 35 E(i-)dt) g(t).

A 4 x 4 matrix of the form of € is called a fwist. The set of all twists is denoted by

se(3) = {g= [:]J E} ' &€ so(3).ve R:s} C R4,

The set se(3) is called the tangent space (or Lie algebra) of the matrix group
SE(3). We also define two operators “V” and “A” to convert between a twist

& € se(3) and its twist coordinates & € IR as follows:

o v]Y 1 o]t W v
o 6 || s v dx4d
oo =l ew ][5 3] e

In the twist coordinates &, we will refer to v as the linear velocity and w as the
angitlar velocity, which indicates that they are related to either the translational
or the rotational part of the full motion. Let us now consider a special case of
equation (2.20) when the twist Eis a constant matrix

t) = Eg(t).

We have again a time-invariant linear ordinary differential equation, which can be
integrated to give

g(t) = e¥g(0).

Assuming the initial condition g(0) = I, we may conclude that

g(t) = e,

where the twist exponential is

@)2 (E)"
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By Rodrigues’ formula (2.16) introduced in the previous section and additional
properties of the matrix exponential, the following relationship can be established:

= E‘:" (I —e“)ovtww v
=il el , if w=#0. 2.22)
: i # (

If w = 0, the exponential is simply e€ = [ g T ] It is clear from the above

expression that the exponential of 55 is indeed a rigid-body transformation matrix
in SE(3). Therefore, the exponential map defines a transformation from the space
se(3) to SE(3),

exp: se(3) = SE@3); € ef,
and the twist € € se(3) is also called the exponential coordinates for SE(3), as
is@ € so(3) for SO(3).

Can every rigid-body motion g € SE/(3) be represented in such an exponential
form? The answer is yes and is formulated in the following theorem.

Theorem 2.11 (Logarithm of SE(3)). For any gy € SE(3), there exist (not
necessarily unique) twist coordinates § = (v, w) such that g = exp(&). We denote
the inverse to the exponential map by £ = log(g).

Proof. The proof is constructive. Suppose g = (12, T'). From Theorem 2.8, for the

rotation matrix R € SO(3) we can always find w such that e = R.If R # I, i.e.
[|lwl|| # 0, from equation (2.22) we can solve for v € R? from the linear equation

(I — e®)aw +wwly

[[«ll
If R = I, then ||wl|| = 0. In this case, we may simply choose w = 0,v=T. O

=T (2.23)

As with the exponential coordinates for rotation matrices, the exponential
map from se(3) to SFE(3) is not one-to-one. There are usually infinitely many
exponential coordinates (or twists) that correspond to every g € SFE(3).

Remark 2.12. As in the rotation case, the linear structure of se(3), together with
the closure under the Lie bracker operation
—

W X Wy XUs—Wwe X

[ngz] =66 — & = 0 0 € se(3),
makes se(3) the Lie algebra for SE(3). The two rigid-body motions g1 = et and
g2 = €& commute with each other, g,gs = g2y, if and only if [€,, &) = 0.

Example 2.13 (Screw motions). Screw motions are a specific class of rigid-body motions.
A screw motion consists of rotation about an axis in space through an angle of # radians,
followed by translation along the same axis by an amount d. Define the pitch of the screw
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motion to be the ratio of translation to rotation, i = d/8 (assuming # # 0). If we choose a
point X on the axis and w £ B? to be a unit vector specifying the direction. the axis is the
set of points L = {X + pw}. Then the rigid-body motion given by the screw is

et i TR iy

= SE 2.
g 0 1 € SE(3). (2.24)

The set of all screw motions along the same axis forms a subgroup SO(2) x B of
SE(3), which we will encounter occasionally in later chapters, A statement, also known
as Chasles’ theorem. reveals a rather remarkable fact that any rigid-body motion can be
realized as a rotation around a particular axis in space and translation along that axis,. m

2.5 Coordinate and velocity transformations

In this book, we often need to know how the coordinates of a point and its veloc-
ity change as the camera moves. This is because it is usually more convenient to
choose the camera frame as the reference frame and describe both camera motion
and 3-D points relative to it. Since the camera may be moving, we need to know
how to transform quantities such as coordinates and velocities from one camera
frame to another. In particular, we want to know how to correctly express the lo-
cation and velocity of a point with respect to a moving camera. Here we introduce
a convention that we will be using for the rest of this book.

Rules of coordinate transformations

The time # € R will typically be used to index camera motion. Even in the discrete
case in which a few snapshots are given, we will take ¢ to be the index of the
camera position and the corresponding image. Therefore, we will use g(t) =
(R(t), T'(t)) € SE(3) or

o= [ "] esew

to denote the relative displacement between some fixed world frame W and the
camera frame C' at time ¢ € R. Here we will ignore the subscript “cu™ from
the notation geq,(£) as long as it is clear from the context. By default, we assume
g(0) = I, i.e. attime t = 0 the camera frame coincides with the world frame. So
if the coordinates of a point p € E* relative to the world frame are X, = X (0),
its coordinates relative to the camera at time ¢ are given by

[X(®) = R()Xo +T(0),] (2.25)

or in the homogeneous representation,
X (t) = g(t) Xo. (2.26)
If the camera is at locations g(t1), g(f2), ..., () at times t1.ta, . ...t Te-

spectively, then the coordinates of the point p are given as X (t;) = g(t;) X .1 =
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1,2....,m, correspondingly. If it is only the position, not the time, that matters,
we will often use g; as a shorthand for g(t;), and similarly 1?; for R(t;), T} for
T'(t;), and X ; for X (¢;). We hence have

| Xi=RiXo+ T | (227)

When the starting time is not £ = 0, the relative motion between the camera
at time {2 and time ¢; will be denoted by g(t2.%1) € SE(3). Then we have the
following relationship between coordinates of the same point p at different times:

X(t2) = gl(ta, 1) X (t1), Yti.t2 €R.

L =1y
Figure 2.6. Composition of rigid-body motions. X (£1), X (£2), X (t3) are the coordinates
of the point p with respect to the three camera frames at time ¢ = &1, 2, £, respectively,

Now consider a third position of the camera at f = #3 € IR, as shown in Figure
2.6. The relative motion between the camera al t3 and #5 is g(t3, o), and that
between {3 and 77 is g(t3,71). We then have the following relationship among the
coordinates:

X (t3) = g(ts, t2) X (t2) = g(ts, l2)g(t2,t1) X (1).
Comparing this with the direct relationship between the coordinates at t5 and {,,
X (t3) = g(ts, t1) X (t1),
we see that the following compaosition rule for consecutive motions must hold:
g(ts, t1) = g(t3,t2)g(t2, t1).

The composition rule describes the coordinates X of the point p relative to any
camera position if they are known with respect to a particular one. The same
composition rule implies the rule of inverse

9_1(12: 1(’1) 7 g(tltt‘!)-:
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since g(t2, t1)g(t1.t2) = g(t2.t2) = I. In cases in which time is of no physical
meaning, we often use g;; as a shorthand for g(¢;.#;). The above composition
rules then become (in the homogeneous representation)

{Z = G5 X5 Ui = 0505k 9,—;] = G- (2.28)

Rules of velocity transformation

Having understood the transformation of coordinates, we now study how it affects
velocity. We know that the coordinates X (#) of a point p € E? relative to a
moving camera are a function of time {:

X(t) = gew(t) Xo.
Then the velocity of the point p relative to the (instantaneous) camera frame is
X () = gew(t) Xo. (2.29)

In order to express X (t) in terms of quantities in the moving frame, we substitute
Xo by g, (t) X (t) and, using the notion of twist, define

VS, ) = gew(t)gnl(t) € se(3), (2.30)

where an expression for g, (t)g,. (¢) can be found in (2.19). Equation (2.29) can
be rewritlen as

X(t) = VE,(6) X (¢). (2.31)

Since V¢

e

(#) is of the form

Ve, () = ['“"g-) 'L'E]t)] ;

we can also write the velocity of the point in 3-D coordinates (instead of
homogeneous coordinates) as

X (t) = 3(t) X (t) + v(t). (2.32)

The physical interpretation of the symbol ﬁ‘& is the velocity of the world frame
moving relative to the camera frame, as viewed in the camera frame, as indicated
by the subscript and superscript of V5. Usually, to clearly specify the physical
meaning of a velocity, we need to specify the velocity of which frame is moving
relative to which frame, and which frame it is viewed from. If we change the loca-
tion from which we view the velocity, the expression will change accordingly. For
example, suppose that a viewer is in another coordinate frame displaced relative
to the camera frame by a rigid-body transformation g € SE(3). Then the coordi-
nates of the same point p relative to this frame are Y () = g X (f). We compute
the velocity in the new frame, and obtain

Y(’i) 7 g;},_-.,,(t)gc_u} (!)g_]Y(t) = g]?(_:”_q_lY(t).
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So the new velocity (or twist) is

V=gVigl
This is the same physical quantity but viewed from a different vantage point. We
see that the two velocities are related through a mapping defined by the relative
motion g; in particular,

adgy : se(3) — se(3); EH ygy_].

This is the so-called adjoint map on the space se(3). Using this notation in the
previous example we have V' = ad,(V5,). Note that the adjoint map transforms
velocity from one frame to another. Using the fact that ge., (t)gue(t) = 1, it is
straightforward to verify that

FO -1 _ -1 = . -1 18 =0 (A
l;(:ur 5 gcu’gcu: = _gw,-grm; — _.‘J’cw(!}wcﬂurc )gcw == n'r‘i.",fmr.-(_lv);m:)'

Hence V5, can also be interpreted as the negared velocity of the camera moving
relative to the world frame, viewed in the (instantaneous) camera frame.

2.6 Summary

We summarize the properties of 3-D rotations and rigid-body motions introduced
in this chapter in Table 2.1:

= [ Rotation 503) | Rigid-body motion SE(3) |
Matrix representation || I2 : { RR=1- gi= A
det(R) =1 0L 1
Coordinates (3-D) X =RX, X =RXq+T
Inverse R-1=RT < S0 L
L U 1 -
Composition Ry —RiiRi% ik = 9693k
Exp. representation R = exp(@) Oi= exp(g )
Velocity X =56X X =8X+v
Adjoint map @ +— RGRT £ gbgt

Table 2.1. Rotation and rigid-body motion in 3-D space.
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2.7 Exercises

Exercise 2.1 (Linear vs. nonlinear maps). Suppose A, B. (. X = B™*" Consider the
following maps from B"*" — B"*" and determine whether they are linear or not. Give
a brief proof if true and a counterexample if false:

(a) X — AX+XB,
(b) X — AX+BXC,
(©) X — AXA-B,
d X — AX+XBX.

Note: Amap f : R" — R™, o+ f(z), is called linear if f(az + By) = af(z)+ 3f(y)
foralla,8 € Rand =,y € B".

Exercise 2.2 (Inner product). Show that for any positive definite symmetric matrix S €
R*?, the map (-, -)s : R® x B* — R defined as

(u,v)s =u"Sv, Yu,veR®
is a valid inner product on R, according to the definition given in Appendix A.

Exercise 2.3 (Group structure of SO(3)). Prove that the space SO(3) satisfies all four
axioms in the definition of group (in Appendix A).

Exercise 2.4 (Skew-symmetric matrices). Given any vector w = [wi, w2, wa|T € B, we

know that the matrix & is skew-symmetric: i.e. &7 = —&. Now for any matrix A € R**3
with determinant det(A) = 1, show that the following equation holds:
ATGA = 4710, (2.33)

Then, in particular, if A is a rotation matrix, the above equation holds.
Hint: Both A™()A and A~(-) are lincar maps with w as the variable. What do you need
in order to prove that two linear maps are the same?

Exercise 2.5 Show that a matrix M € R¥*? is skew-symmetric if and only if u” Mu = 0
for every u € R®.

Exercise 2.6 Considera 2 x 2 matrix

= cosf) —sinf
"= | sin@ cos® |-

What is the determinant of the matrix? Consider another transformation matrix

T sinfl  cosé

*~ | cos® —sing |
Is the matrix orthogonal? What is the determinant of the matrix? Is Rz a 2-D rigid-body
transformation? What is the difference between R; and i5 ?

Exercise 2.7 (Rotation as a rigid-body motion). Given a rotation matrix i S0(3),
its action on a vector v is defined as Rv. Prove that any rotation matrix must preserve both
the inner product and cross product of vectors. Hence, a rotation is indeed a rigid-body
motion.

Exercise 2.8 Show that for any nonzero vector u € B?, the rank of the matrix i is always
two. That is, the three row (or column) vectors span a two-dimensional subspace of B®.




2.7. Exercises 39

Exercise 2.9 (Range and null space). Recall that given a matrix A € R™"*", its nul
space is defined as a subspace of " consisting of all vectors & € R" such that Az = 0. It
is usually denoted by null(A). The range of the matrix A is defined as a subspace of R™
consisting of all vectors y € ™ such that there exists some z € R" such that y = Az. It
is denoted by range(A). In mathematical terms,

null(4) = {zeR”|Az =0},
range(A) = {yeR™ |FzeR",y= Ax}.

I. Recall that a set of vectors V' is a subspace if for all vectors =,y € V' and scalars
«, B € B, ax + [y is also a vector in V. Show that both null(A) and range(A4) are
indeed subspaces.

2. What are null(&) and range(&) for a nonzero veclor w € ®*? Can you describe
intuitively the geometric relationship between these two subspaces in %? (Drawing
a picture might help.)

Exercise 2.10 (Noncommutativity of rotation matrices). What is the matrix that
represents a rotation about the X -axis or the Y -axis by an angle #? In addition to that

I. Compute the matrix Ry that is the combination of a rotation about the X -axis by
= /3 followed by a rotation about the Z-axis by 7 /6. Verify that the resulting matrix
is also a rotation matrix.

2. Compute the matrix R that is the combination of a rotation about the Z-axis by
7 /6 followed by a rotation about the X-axis by 7 /3. Are R, and Ra the same?
Explain why.

Exercise 2.11 Let & € SO(3) be a rotation matrix generated by rotating about a unit
vector w by @ radians that satisfies R = exp(@#f). Suppose R is given as

0.1729 —0.1468 0.9739
R= 0.9739 0.1729 —0.1468
—0.1468 0.9739 0.1729

e Use the formulae given in this chapter t0 compute the rotation axis and the
associated angle.

e Use Matlab’s function =ig to compute the eigenvalues and eigenvectors of
the above rotation matrix K. What is the cigenvector associated with the unit
eigenvalue? Give its form and explain its meaning.

Exercise 2.12 (Properties of rotation matrices). Let B € SO(3) be a rotation matrix
generated by rotating about a unit vector w € R? by @ radians. That is, R = el

I. What are the cigenvalues and eigenvectors of @7 You may use a computer software
(e.g.. Matlab) and try some examples first. If you cannot find a brute-force way to
do it, can you use results from Exercise 2.4 to simplify the problem first (hint: use
the relationship between trace. determinant and eigenvalues).

(S

. Show that the eigenvalues of R are 1, ¢, e " where i = /=1 is the imaginary
unit. What is the eigenvector that corresponds to the eigenvalue 1?7 This actually
gives another proof for det(e”?) =1 -¢* - e7* = +1, not —1.
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Exercise 2.13 (Adjoint transformation on twist). Given a rigid-body motion g and a
twist £,

92[}; 5”6813(3), 5:[? g]esew),

show that gaq_l is still a twist. Describe what the corresponding w and v terms have

become in the new twist. The adjoint map is sort of a generalization to RGRT = Rw.

Exercise 2.14 Suppose that there are three camera frames Cly, Cy, C and the coordinate
transformation from frame Cly to frame C; is (R;, T} 1) and from Cy to Cs is (R2, T3).
What is the relative coordinate transformation from €' to > then? What about from (s
to 1?7 (Express these transformations in terms of R1. T} and R, T5 only.)

2.A  Quaternions and Euler angles for rotations

For the sake of completeness, we introduce a few conventional schemes to param-
eterize rotation matrices, either globally or locally, that are often used in numerical
computations for rotation matrices. However, we encourage the reader to use the
exponential parameterizations described in this chapter.

Quaternions

We know that the set of complex numbers C can be simply defined as C = R+ Ri
with i = —1. Quaternions generalize complex numbers in a similar fashion. The
set of quaternions, denoted by H., is defined as

H=C+Cj, withj?=—landi-j=—j-i. (2.34)
So, an element of H is of the form
q=qo+qt+(q2+4qg3)j = qo+qri+ 25 +q3if.  qo,q1.q2,q3 € R. (2.35)

For simplicity of notation, in the literature ij is sometimes denoted by k. In gen-
eral, the multiplication of any two quaternions is similar to the multiplication of
two complex numbers, except that the multiplication of i and j is anticommu-
tative: j = —ji. We can also similarly define the concept of conjugation for a
quaternion:

g=qo+qi+qi+q3ij = §=qo— qi—qoj— qaij. (2.36)
It is immediate to check that
T =qg +a; + ¢ + . (2.37)

Thus, ¢g is simply the square of the norm ||¢|| of ¢ as a four-dimensional vector
in R*. For a nonzero g € H, i.e. ||q|| # 0, we can further define its inverse to be
=5 q .
g =——. (2.38)
llqlf?
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The multiplication and inverse rules defined above in fact endow the space R*
with an algebraic structure of a skew field. In fact H is called a Hamiltonian field,
or quaternion field.

One important usage of the quaternion field Hl is that we can in fact embed the
rotation group SO(3) into it. To see this, let us focus on a special subgroup of H,
the unit quaternions

S*={qeH||q*=q +d +¢+ai=1}. (2.39)

The set of all unit quaternions is simply the unit sphere in R?, To show that % is
indeed a group. we simply need to prove that it is closed under the multiplication
and inverse of quaternions; i.e. the multiplication of two unit quaternions is still
a unit quaternion, and so is the inverse of a unit quaternion. We leave this simple
fact as an exercise to the reader.

Given a rotation matrix R = e’ with |lw|| = 1 and t € R, we can associate
with it a unit quaternion as follows:

q(R) = cos(t/2) + sin(t/2)(wyi + waj + waij) € S°. (2.40)

One may verify that this association preserves the group structure between SO(3)
and §%:

g(R™Y) =q '(R), q(R1R3) = q(R1)q(R2), VR, Ry, Ry € SO(3). (2.41)

Further study can show that this association is also genuine: i.e. for different ro-
tation matrices, the associated unit quaternions are also different, In the opposite
direction, given a unit quaternion ¢ = qo + @1 + qaj + qaij € S, we can use the
following formulae to find the corresponding rotation matrix R(q) = e¥:

gm/ sin(t/2), t#0,

0, (Lo m=123 @4

t = 2arccos(qo), Wm = {
However, one must notice that according to the above formula, there are two unit
quaternions that correspond to the same rotation matrix: R(q) = R(—¢), as shown
in Figure 2.7. Therefore, topologically, % is a double covering of SO(3). So
S0O(3) is topologically the same as a three-dimensional projective plane RIP?,

Compared to the exponential coordinates for rotation matrices that we studied
in this chapter, in using unit quaternions §° to represent rotation matrices SO(3),
we have less redundancy: there are only two unit quaternions that corresponding
to the same rotation matrix, while there are infinitely many for exponential coor-
dinates (all related by periodicity). Furthermore, such a representation for rotation
matrices is smooth, and there is no singularity, as opposed to the representation
by Euler angles, which we will now introduce.

Euler angles

Unit quaternions can be viewed as a way to globally parameterize rotation ma-
trices: the parameterization works for every rotation matrix practically the same
way. On the other hand. the Euler angles to be introduced below fall into the cat-
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Figure 2.7. Antipodal unit quaternions g and —q on the unit sphere 8% C R* correspond to
the same rotation matrix.

egory of local parameterizations. This kind of parameterization is good for only
a portion of SO(3), but not for the entire space.

In the space of skew-symmetric matrices so(3), pick a basis (1,02, W3),
i.e. the three vectors wy,ws, wy are linearly independent. Define a mapping (a
parameterization) from R? to SO(3) as

a: (a1,a9,03) — expla@ + asws + azls).

The coordinates (a1, aa.a3) are called the Lie-Cartan coordinates of the first
kind relative to the basis (), @9, ©3). Another way to parameterize the group
SO(3) using the same basis is to define another mapping from R% to SO(3) by
B: (B1.f2.8s) — exp(Bidr)exp(Baiz) exp(Bais).
The coordinates (31, 32. 33) are called the Lie-Cartan coordinates of the second
kind.
In the special case in which we choose wy.ws, w3 to be the principal axes
Z,Y, X, respectively, i.e.
w =[0,01T=2 w=[0,10"=y, ws=[10,0"=z,
the Lie-Cartan coordinates of the second kind then coincide with the well-known
ZY X Euler angles parameterization, and (31, 32,/33) are the corresponding
Euler angles, called “yaw.” “pitch.” and “roll.” The rotation matrix is defined by
R(Bh, B2, B3) = exp(/12) exp(32y) exp(fFsT). (2.43)
More precisely, R(3), 32, #3) is the multiplication of the three rotation matrices
cos(B1) —sin(81) O cos(F2) 0 sin(fs) 1 0 0
sin(31) cos(Br) 0], 0 1 0 .10 cos(83) —sin(fs)] -
0 0 1 —sin(f2) 0 cos(32) 0 sin(8s) cos(8a)

Similarly, we can define the Y Z X Euler angles and the ZY Z Euler angles. There
are instances for which this representation becomes singular, and for certain ro-
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tation matrices, their corresponding Euler angles cannot be uniquely determined.
For example, when > = —w/2 the ZY X Euler angles become singular. The
presence of such singularities is expected because of the topology of the space
SO(3). Globally, SO(3) is like a sphere in R*, as we know from the quaternions,
and therefore any attempt to find a global (three-dimensional) coordinate chart is
doomed to failure.

Historical notes

The study of rigid-body motion mostly relies on the tools of linear algebra. El-
ements of screw theory can be tracked back to the early 1800s in the work
of Chasles and Poinsot. The use of the exponential coordinates for rigid-body
motions was introduced by [Brockett, 1984], and related formulations can be
found in the classical work of [Ball. 1900] and others. The use ol quaternions
in robot vision was introduced by [Broida and Chellappa, 1986b, Homn, 1987].
The presentation of the material in this chapter follows the development in
[Murray et al., 1993]. More details on the study of rigid-body motions as well
as further references can also be found there.
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