Chapter 5

Reconstruction from Two Calibrated
Views

We see because we move; we move because we see.
— James J. Gibson, The Perception of the Visual World

In this chapter we begin unveiling the basic geometry that relates images of points
to their 3-D position. We start with the simplest case of two calibrated cam-
eras, and describe an algorithm, first proposed by the British psychologist H.C.
Longuet-Higgins in 1981, to reconstruct the relative pose (i.e. position and ori-
entation) of the cameras as well as the locations of the points in space from their
projection onto the two images.

It has been long known in photogrammetry that the coordinates of the projec-
tion of a point and the two camera optical centers form a triangle (Figure 5.1), a
fact that can be written as an algebraic constraint involving the camera poses and
image coordinates but nor the 3-D position of the points. Given enough points,
therefore, this constraint can be used to solve for the camera poses. Once those
are known, the 3-D position of the points can be obtained easily by triangula-
tion. The interesting feature of the constraint is that although it is nonlinear in
the unknown camera poses, it can be solved by two linear steps in closed form.
Therefore. in the absence of any noise or uncertainty, given two images taken
from calibrated cameras, one can in principle recover camera pose and position
of the points in space with a few steps of simple linear algebra.

While we have not yet indicated how to calibrate the cameras (which we will
do in Chapter 6). this chapter serves to introduce the basic building blocks of the
geometry of two views. known as “epipolar geometry.” The simple algorithms to
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be introduced in this chapter, although merely conceptual,' allow us to introduce
the basic ideas that will be revisited in later chapters of the book to derive more
powerful algorithms that can deal with uncertainty in the measurements as well
as with uncalibrated cameras.

5.1 Epipolar geometry

Consider two images of the same scene taken from two distinct vantage points. If
we assume that the camera is calibrated, as described in Chapter 3 (the calibration
matrix K is the identity), the homogeneous image coordinates = and the spatial
coordinates X of a point p, with respect to the camera frame, are related by

Az =Tl X, (5.1)

where TI = [I,0]. That is, the image @ differs from the actual 3-D coordinates
of the point by an unknown (depth) scale A € IR ... For simplicity, we will assume
that the scene is static (that is, there are no moving objects) and that the position of
corresponding feature points across images is available, for instance from one of
the algorithms described in Chapter 4. If we call x|, @5 the corresponding points
in two views, they will then be related by a precise geometric relationship that we
describe in this section.

5.1.1 The epipolar constraint and the essential matrix

Following Chapter 3, an orthonormal reference frame is associated with each
camera, with its origin o at the optical center and the z-axis aligned with the op-
tical axis. The relationship between the 3-D coordinates of a point in the inertial
“world"” coordinate frame and the camera frame can be expressed by a rigid-body
transformation. Without loss of generality, we can assume the world frame to be
one of the cameras, while the other is positioned and oriented according to a Eu-
clidean transformation g = (R,7") € SE(3). If we call the 3-D coordinates of
a point p relative to the two camera frames X; € B3 and X, € R?, they are
related by a rigid-body transformation in the following way:

Xys=RX,+T.

Now let @1, x> € R? be the homogeneous coordinates of the projection of the
A . : . i . "
same point p in the two image planes. Since X ; = A;@x;. 1 = 1, 2, this equation

! They are not suitable for real images, which are typically corrupted by noise. In Section 5.2.3 of
this chapter, we show how to modify them so as to minimize the effect of noise and obtain an optimal
solution.

2We remind the reader that we do not distinguish between ordinary and homogeneous coordinates;
in the former cuse @ € M2, whereas in the latter 22 € R? with the last component being 1. Similarly,
X € B3 or X € B* depends on whether ordinary or homogeneous coordinates are used.
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can be written in terms of the image coordinates @; and the depths A; as
Aoy = R\ + T

In order to eliminate the depths A; in the preceding equation, premultiply both
sides by T" to obtain

/\zf'wg = ?R)ﬂ .

Since the vector Tz, = T x @ is perpendicular to the vector @2, the inner
product (xy. Txs) = @o” T'@s is zero. Premultiplying the previous equation by
@l yields that the quantity = T RA;@; is zero. Since A; > 0, we have proven
the following result:

Theorem 5.1 (Epipolar constraint). Consider two images x,, @y of the same
point p from two camera positions with relative pose (R, T), where R € S0O(3)
is the relative orientation and T' € R? is the relative position. Then @, @3 satisfy

(o, T x Rzy) =0, or |@lTRzi=0. (5.2)

The matrix
E=TR eR%®

in the epipolar constraint equation (5.2) is called the essential matrix. It encodes
the relative pose between the two cameras. The epipolar constraint (5.2) is also
called the essential constraint. Since the epipolar constraint is bilinear in each of
its arguments @, and @», it is also called the bilinear constraint. We will revisit
this bilinear nature in later chapters.

In addition to the preceding algebraic derivation, this constraint follows im-
mediately from geometric considerations, as illustrated in Figure 5.1. The vector
connecting the first camera center oy and the point p, the vector connecting 0

B ()

Figure 5.1. Two projections @, @2 € RB? of a 3-D point p from two vantage points. The
Euclidean transformation between the two cameras is given by (R.T) € SFE(3). The
intersections of the line (01. 02) with each image plane are called epipoles and denoted by
e1 and es. The lines £1, £2 are called epipolar lines, which are the intersection of the plane
(01, 02, p) with the two image planes.
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and p, and the vector connecting the two optical centers 01 and 0 clearly form a
triangle. Therefore, the three vectors lie on the same plane. Their triple product,’
which measures the volume of the parallelepiped determined by the three vectors,
is therefore zero. This is true for the coordinates of the points X ;, 7 = 1,2, as
well as for the homogeneous coordinates of their projection x;, 7 = 1,2. since
X, and z; (as vectors) differ only be a scalar factor. The constraint (5.2) is just
the triple product written in the second camera frame; Rz is simply the direc-
tion of the vector o1p. and T is the vector 020; with respect to the second camera
frame. The translation 7" between the two camera centers o; and o, is also called
the baseline.

Associated with this picture, we define the following set of geometric entities,
which will facilitate our future study:

Definition 5.2 (Epipolar geometric entities).

1. The plane (01,02, p) determined by the two centers of projection 0y, 03
and the point p is called an epipolar plane associated with the camera
configuration and point p. There is one epipolar plane for each point p.

2. The projection ey (e2) of one camera center onto the image plane of the
other camera frame is called an epipole. Note that the projection may occur
outside the physical boundary of the imaging sensor.

3. The intersection of the epipolar plane of p with one image plane is a line
£,(€3), which is called the epipolar line of p. We usually use the normal
vector €1(£2) to the epipolar plane to denote this line.”

From the definitions, we immediately have the following relations among
epipoles, epipolar lines, and image points:

Proposition 5.3 (Properties of epipoles and epipolar lines), Given an essential
matrix B = T R that defines an epipolar relation between two images 1., @z, we
have:

1. The two epipoles ey, es € B3, with respect to the first and second camera
frames, respectively, are the left and right null spaces of E., respectively:

esE=0, Fe;=0. (5.3)

That is, es ~ T and ey ~ RTT. We recall that ~ indicates equality up to
a scalar factor.

2. The (coimages of) epipolar lines £1,£> € R® associated with the two image
points &y, o can be expressed as

£y ~ Emh by ~ ET:L'Q € R31 (5.4)

3 As we have seen in Chapter 2, the triple product of three vectors is the inner product of one with
the cross product of the other two.
#Hence the vector £; (£2) is in fact the coimage of the epipolar line.
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where €. €5 are in fact the normal vectors to the epipolar plane expressed
with respect to the two camera frames, respectively.

3. In each image, both the image point and the epipole lie on the epipolar line
le;=0, €x;=0, i=1,2 (5.5)

The proof is simple. and we leave it to the reader as an exercise. Figure 5.2 il-
lustrates the relationships among 3-D points, images, epipolar lines, and epipoles.

(BT)
Figure 5.2. Left: the essential matrix E associated with the epipolar constraint maps an
image point 2, in the first image to an epipolar line £2 = Ex in the second image; the
precise location of its corresponding image (22 or @4) depends on where the 3-D point (p
or p') lies on the ray (o1, @ ): Right: When (01, 02, p) and (01, 02.p") are two different
planes, they intersect at the two image planes at two pairs of epipolar lines (£1,£s) and
(£1,£5), respectively, and these epipolar lines always pass through the pair of epipoles
(C‘.| 1E2 )

5.1.2 Elementary properties of the essential matrix

The matrix E = TR & B**3 in equation (5.2) contains information about the
relative position 7" and orientation R € SO(3) between the two cameras. Matrices
of this form belong to a very special set of matrices in R**% called the essential
space and denoted by £:

s {fR| Re SO@B),T e !R3} c R33,

Before we study the structure of essential matrices, we introduce a useful lemma
from linear algebra.

Lemma 5.4 (The hat operator). For a vector T' € R? and a matrix K € R3%3,
ifdet(K)=+1land T’ = KT, thenT = KTT'K,

Proof. Since both KT(-)K and K—1(-) arc linear maps from R® to R3*3,
one may directly verify that these two linear maps agree on the basis vectors
[1,0,0]7,[0,1,0]%, and [0, 0, 1]¥ (using the fact that det(K) = 1). O
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The following theorem, due to [Huang and Faugeras, 1989], captures the alge-
braic structure of essential matrices in terms of their singular value decomposition
(see Appendix A for a review on the SVD):

Theorem 5.5 (Characterization of the essential matrix). A nonzero matrix E €

R3*3 is an essential matrix if and only if F has a singular value decomposition
(SVD) E = USVT with

Y = diag{o.0.0}
Jorsome o € Ry and U,V € SO(3).

Proof. We first prove the necessity. By definition, for any essential matrix E,
there exists (at least one pair) (R, T), R € SO(3),T € R?, such that TR = E.
For T, there exists a rotation matrix [y such that RyT" = [U 0.]|T|]]*. Define
a = RyT € R*. Since deL(Rg) — 1, we know that T = R,] ‘aRy from Lemma
5.4. Then EET = TRRTTT = TTT = RTaa’ Ry. It is immediate to verify
that

B 0 o TR Iz o o
af= |71 o o||-Im o o|=|"0o T o
0 0 0 0 0 0 0 0 0

So, the singular values of the essential matrix £ = T R are (7N 11|, 0). How-
ever, in the standard SVD of E = UXV™T, U and V are only orthonormal, and
their determinants can be ==1.° We still need to prove that U,V € SO(3) (i.e.
they have determinant 1) to establish the theorem. We already have £ = TR =
REGRyR. Let Rz(0) be the matrix that represents a rotation around the Z-axis
by an angle of 0 radians; i.e. Rz(f) = e®¢ with e3 = [0,0, 1] € R3. Then

Rz(%):{? o 3]_

Sl (B !
Then@ = Rz(+%)RZ(+%)a = Rz(+3) diag{||T||, ||T||, 0}. Therefore,

E=TR=RERs (+§) diag{||T, |||, 0} Ro R

So, in the SVD of E = USVT, we may choose U = R} Rz(+Z) and VT =
RoR. Since we have constructed both I and V as products of matrices in SO(3),
they are in SO(3), too; that is, both I/ and 1/ are rotation matrices.

We now prove sufficiency. If a given matrix E € R**3 has SVD E = ULVT
with U,V & SO(3) and £ = diag{o,o,0}, define (R,.T;) € SE(3) and
(R2, Tp) € SE(3) to be

{ (Bi,R1) = (URz(+3)=UURL(+E)VT),

(15, Ry) (URz(-%)SUT, URL(-Z)VT). (5.6)

If

JInterested readers can verify this using the Matlab routine: VD,
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It is now easy to verify that ﬁRl = ng-;, = F. Thus, E is an essential matrix.
O

Given a rotation matrix R € SO(3) and a translation vector 7' € R?, it is
immediate to construct an essential matrix £ = TR. The inverse problem, that
is how to retrieve 7" and R from a given essential matrix £, is less obvious. In
the sufficiency proof for the above theorem, we have used the SVD to construct
two solutions for (R, T'). Are these the only solutions? Before we can answer this
question in the upcoming Theorem 5.7, we need the following lemma.

Lemma 5.6. Consider an arbitrary nonzero skew-symmetric matrix P 50(3)
with T € R®. If for a rotation matrix ReS O{?) TR is also a skew- -symmetric

matrix, then R = I or R = e"7, where u = ” T Further, Tetm — T

Proof. Without loss of generality, we assume that 7" is of unit length. Since TR

is also a skew-symmetric matrix, {’]\"‘R]I — —TR. This equation gives
RTR=T. (5.7)
Since R is a rotation matrix, there exist w € R*, |w| = 1, and @ € R such

that R = e“. If § = 0 the lemma is proved. Hence consider the case 6 # 0.
Then, (5.7) is rewritten as e@Te2® = T Applying this equation to w, we get

“0Te0yy = Tw. Since ¢?’w = w, we obtain e**Tw = Tw. Slnce w is the
only eigenvector associated with the eigenvalue 1 of the mal.nx e and Tw is
orthogonal to w, T has to be zero. Thus, w is equal to either ﬂ—[ or —ﬂ-;—[, 1ie
w = -u. Then R has the form ¢?, which commutes with 7. Thus from (5.7), we
get

LR (5.8)
According to Rodrigues’ formula (2.16) from Chapter 2, we have
260 _ T+ Gsin(20) + &%(1 — cos(26)),
and (5.8) yields
@7 sin(26) + &*(1 — cos(26)) = 0.

Since ©2 and @ are linearly independent (we leave this as an exercise to the
reader), we have sin(20) = 1 — cos(26) = 0. That is, @ is equal Lo 2k or
2k + 7, k € Z. Therefore, R is equal to I or ™. Now if w = u = —|——|— then

it is direct from the geometric mcamng of the rotation e“” that r="”’T = —7.0n
the other hand, if w = —u = "T” . then it follows that ¢“T = —T. Thus, in any
case the conclusions of the lemma follow. O

The following theorem shows exactly how many rotation and translation pairs
(R.T) one can extract from an essential matrix, and the solutions are given in
closed form by equation (3.9).
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Theorem 5.7 (Pose recavery from the essential matrix). There exist exactly two
relative poses (R.T") with R € SO(3) and T € R? corresponding to a nonzero
essential matrix E € £,

Proof. Assume that (Ry,T;) € SE(3) and (R3.13) € SE(3) are both solutions
for the equatmn TR E. Then we have 11R1 = IQBZ This ymlds Tl =
ToRsRT i - Since Ty, Ty are both skew- -symmetric matrices and R, R7 is a rotation
matrix, from the preceding lemma, we have that either (R2,T5) = (R1.T}) or
(R2,T5) = (ealﬂRl, —T1) with u; = T31/||Ty||. Therefore, given an essential
matrix £ there are cxactly two pairs of (R,T') such that TR = E. Further. if £
has the SVD: E = UXVT with U,V € 50(3) the following formulae give the
two distinct solutions (recall that Rz (8) = ¢’ with e3 = [0,0,1]T & R3)

Ehi = (URg(—I—T'_}EUT URL(+3)VT), 50
(Th,Ry) = (URz(-Z)SUT,URL(-Z)VT). :
m

Example 5.8 (Two solutions to an essential matrix). It is immediate to verify that
@GRz (+I) = —eaRz (—3), since

L15a El:w1) 0L =180 B =S (1) i I,
=100 I EESOSRO| ==aTs Di ™0 AL (D
00 #0 0 o1 o e 00/l

These two solutions together are usually referred 10 as a “twisted pair,” due to the manner in
which the two solutions are related geometrically, as illustrated in Figure 5.3. A physically
correct solution can be chosen by enforcing that the reconstructed points be visible, i.e.
they have positive depth. We discuss this issue further in Exercise 5.11. ul

image plane image plane

image plane

frame 2° frame | frame 2

Figure 5.3. Two pairs of camera frames, i.e. (1.2) and (1, 2'), gencrate the same essential
matrix. The frame 2 and frame 2’ differ by a translation and a 180° rotation (a twist) around
the z-axis, and the two pose pairs give rise to the same image coordinates. For the same
set of image pairs @1 and @, = @5, the recovered structures p and p’ might be different.
Notice that with respect to the camera frame 1, the point p’ has a negative depth.
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5.2 Basic reconstruction algorithms

In the previous section, we have seen that images of corresponding points are
related by the epipolar constraint, which involves the unknown relative pose be-
tween the cameras. Therefore, given a number of corresponding points, we could
use the epipolar constraints Lo try o recover camera pose. In this section, we show
a simple closed-form solution to this problem. It consists of two steps: First a ma-
trix 2 is recovered from a number of epipolar constraints; then relative translation
and orientation are extracted from E. However, since the matrix £ recovered us-
ing correspondence data in the epipolar constraint may not be an essential matrix,
it needs to be projected into the space of essential matrices prior to extraction of
the relative pose of the cameras using equation (5.9).

Although the linear algorithm that we propose here is suboptimal when the
measurements are corrupted by noise. it is important for illustrating the geometric
structure of the space of essential matrices. We leave the more practical issues
with noise and optimality to Section 5.2.3.

5.2.1 The eight-point linear algorithm

Let E = TR be the essential matrix associated with the epipolar constraint (5.2).
The entries of this 3 x 3 matrix are denoted by

€11 €12 €13 el
B = €21 €929 E€a3 = RJX" (5.10)
€31 €32 €33

and stacked into a vector E* € RY, which is typically referred to as the stacked
version of the matrix £ (Appendix A.1.3):

; T 9
E® = [e11, €21, €31, €12, €22, €32, €13, €23, €33]° € R".

The inverse operation from E< to its matrix version is then called unstacking. We
further denote the Kronecker product & (also see Appendix A.1.3) of two vectors
x, and x» by

a=x X Ta. (5.1

Or, more specifically, if 1 = [z1.71,21]7 € B and @5 = [0, ys, 22]7 € R3,
then

a = [T122, T1Yo, T1 20, Y1 T2, Y1¥o, Y122, 2182, 2192, 2122]° € R, (5.12)

Since the epipolar constraint m{E o, = () is linear in the entries of F, using the
above notation we can rewrite it as the inner product of @ and E*:

This is just another way of writing equation (5.2) that emphasizes the linear de-
pendence of the epipolar constraint on the elements of the essential matrix. Now,
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given a set of corresponding image points [:1:{,:1:%), Ji=Ar2: S define g
matrix X € R"*? associated with these measurements to be

X lalsa - a |t (5.13)

where the jth row a is the Kronecker product of each pair (x7, @) using (5.12).
In the absence of noise, the vector £ satisfies

XE* = 0. (5.14)

This linear equation may now be solved for the vector £, For the solution to be
unigue (up to a scalar factor, ruling out the trivial solution E° = 0), the rank of
the matrix X € RY*" needs to be exactly eight. This should be the case given
n > 8 “ideal” corresponding points, as shown in Figure 5.4. In general, however,
since correspondences may be prone to errors, there may be no solution to (5.14).
In such a case, one can choose the £¥ that minimizes the least-squares error func-
tion || XE*||%. This is achieved by -choosing E* to be the eigenvector of XX that
corresponds Lo its smallest eigenvalue, as we show in Appendix A. We would also
like to draw attention to the case when the rank of X is less then eight even for
number of points greater than nine. In this instance there are multiple solutions
to (5.14). This happens when the feature points are nat in “general position,” for
example when they all lie on a plane. We will specifically deal with the planar
case in the next section.

Figure 5.4. Eight pairs of corresponding image points in two views of the Tai-He palace in
the Forbidden City. Beijing, China (photos courtesy of Jiec Zhang).

However, even in the absence of noise, for a vector £ to be the solution of
our problem, it is not sufficient that it be in the null space of X. In fact, it has
to satisfy an additional constraint, that its matrix form E' belong to the space
of essential matrices. Enforcing this structure in the determination of the null
space of X is difficult. Therefore, as a first cut, we estimate the null space of X,
ignoring the internal structure of essential matrix, obtaining a matrix, say F, that
probably does not belong to the essential space £, and then “orthogonally™ project
the matrix thus obtained onto the essential space. This process is illustrated in
Figure 5.5. The following theorem says precisely what this projection is.
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Raxa

4

Figure 5.5. Among all points in the essential space & C R**?, E has the shortest Frobenius
distance to F. However, the least-square error may not be the smallest for so-obtained £
among all points in £.

Theorem 5.9 (Projection onto the essential space). Given a real matrix F' €
R3%3 with SVD F = Udiag{ A1, A2, Aa}VT with U,V € SO(3), AL > A2 = A3,
then the essential matrix E € € that minimizes the error ||E — F||% is given by
E = Udiag{o,o,0}VT with o = (A1 + A2)/2. The subscript “f " indicates the
Frobenius norm of a matrix. This is the square norm of the sum of the squares of
all the entries of the matrix (see Appendix A).

Proof. For any fixed matrix ¥ = diag{o.0,0}, we define a subset £y, of
the essential space € to be the set of all essential matrices with SVD of
the form U XV, Uy, Vi € SO(3). To simplify the notation, define Xy =
diag{A1, A2, A3 }. We now prove the theorem in two steps:

Step 1: We prove that for a fixed ¥, the essential matrix F € Ey; that minimizes
the error || — F||3 has a solution E = USV™ (not necessarily unique). Since
E € &y, has the form E = U; XV;", we get

|E - F||? = |.ZVF —US\VT|% = |22 —UTUEV V3
Define P = UTU;.Q = VTV, € SO(3), which have the form

P11 P12 Pi3 qi1 qi2 13
P=|pn p2 p3 |, Q=| g1 gz g3 |- (5.15)
P31 P32 P33 g3l (32 (33
Then
IE-Fl} = Zx-U":SW V|3

= trace(¥3) — 2trace( PLQT B ) + trace(%?).

Expanding the second term, using ¥ = diag{o, 0. 0} and the notation p;;, g;; for
the entries of P, @), we have

trace(PEQTE,) = o (A (pr1gu1 + pr2gi2) + A2(p21a1 + pazgas))-

Since P, Q are rotation matrices, p11¢11 + p12gi2 < 1 and pa1ga1 + pazgae < 1.
Since ¥, ¥, are fixed and Ay, Ao > 0, the error ||[E — F”?r is minimized when
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Pi1g1i + Pi2giz = P21Go1 + P22gez = 1. This can be achieved when P, Q are of
the general form

cos(f) —sin(f) 0
P=Q=| sin(#) cos(d) 0
0 0 1

Obviously, P = @ = T is one of the solutions. That implies U; = U, V; = V.

Step 2: From Step 1. we need to minimize the error function only over the
matrices of the form UXVT € &, where ¥ may vary. The minimization problem
i8 then converted to one of minimizing the error function

£ =Fl} = (A = 0)? + (A2 — 0)* + (A3 — 0)2.

Clearly, the o that minimizes this error function is givenby o = (\; +\3)/2. O

As we have already pointed out. the epipolar constraint allows us to recover the
essential matrix only up to a scalar factor (since the epipolar constraint (5.2) is
homogeneous in £, it is not modified by multiplying it by any nonzero constant).
A typical choice to fix this ambiguity is to assume a unit translation, that s, ||7'|| =
| E]| = 1. We call the resulting essential matrix normalized.

Remark 5.10. The reader may have noticed that the above theorem relies on
a special assumption that in the SVD of E both matrices U and V are rotation
matrices in SO(3). This is not always true when E is estimated from noisy data.
In fact, standard SVD routines do not guarantee that the computed U and V have
positive determinant. The problem can be easily resolved once one notices that
the sign of the essential matrix E is also arbitrary (even after normalization). The
above projection can operate either on +E or —E. We leave it as an exercise
1o the reader that one of the (noisy) matrices +E will always have an SVD that
satisfies the conditions of Theorem 5.9.

According to Theorem 5.7, each normalized essential matrix £ gives two pos-
sible poses (R, T). So from +F, we can recover the pose up to four solutions.
In fact, three of the solutions can be eliminated by imposing the positive depth
constraint. We leave the details to the reader as an exercise (see Exercise 5.11).

The overall algorithm, which is due to [Longuet-Higgins, 1981], can then be
summarized as Algorithm 5.1.

To account for the possible sign change +F, in the last step of the algorithm,
the “+" and “*—" signs in the equations for /2 and 7" should be arbitrarily combined
so that all four solutions can be obtained.

Example 5.11 (A numerical example). Suppose that

cos(w/4) 0 sin(m/4) ¥z o 2
R= 0 1 0 =0 1 0 T=|0
—sin(r/4) 0 cos(w/4) V3401 82 0
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Algorithm 5.1 (The eight-point algorithm).

For a given set of image correspondences (:;r:'{-.:né), el (= 8)this
algorithm recovers (R.7T') € SE(3), which satisfy

o TTRxl =0, j=1.2...,n.

1. Compute a first approximation of the essential matrix . y
Construct X = [a',a?,....a"]" € B"*? from correspondences @] and &3 as in
(5.12), namely,

; i g g
o =z @y ER.

Find the vector E° € R? of unit length such that [[X 9| is minimized as follows:
compute the SVD of X = Uy Xy V{ and define £ (o be the ninth column of V.
Unstack the nine elements of E* into a square 3 x 3 matrix E as in (5.10). Note
that this matrix will in general nor be in the essential space.

2. Project onto the essential space
Compute the singular value decomposition of the matrix I recovered from data to
be
E = Udiag{o1.02.03} V7",

where 01 > 62 > o3 > 0and U,V € SO(3). In general, since E may not be
an essential matrix, oy # o2 and o3 # (). But its projection onto the normalized
essential space is UXV 7, where ¥ = diag{1, 1,0}.

3. Recover the displacement from the essential matrix
We now need only U and V' to extract R and T" from the essential matrix as

R=URS (:I:%) vT, T=URz (i%) suT,

08 =180
where RZ (%)= | F1 0 0
D Ol
Then the essential matrix is
o o (o )
E=TR= (/2 0 —2]|.
Qs 2 0
Since ||7'|| = 2, the E obtained here is not normalized. It is also easy to see this from its
SVD,
1
Jo 0 -1][2 0 0] [-€ 0 £
B =Uav il 110 o0i| RleeZano |8l ot
0: - 1. -0l osiomiolsl aE g

where the nonzero singular values are 2 instead of 1. Normalizing I is equivalent to
replacing the above ¥ by

¥ = diag{1,1,0}.
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It is then easy to compute the four possible decompositions ( 12, ’F) for E:

B2 " 0 0 0
3 2 2 T i
1. URZ (%) e M B L] 5 (5) SGE =0 0 1
N vz =
|81 L) B, =i1*a
= VRS -, 0 0 0]
9. URY (;) STt L0 e TR (—5) suT=o0 0 -1
z ¥2 g =2 [OI1 0y
" e R S )
3. URZ (*E) s | S W S (—3) syt =|o 0 —1
_2 g 2 01 0
[ 2 o ] 0 0 0
T (i TN\ 1T = 2 T =T
4 URT (_E) vESINOE D 0| ORs (5) stf=10 o 1
__ﬁ 0 £ 0 -1 0

Clearly, the third solution is exactly the original motion (R, f] except that the translation
T is recovered up to a scalar factor (i.e. it is normalized to unit norm). ]

Despite its simplicity, the above algorithm, when used in practice, suffers from
some shortcomings that are discussed below.

Number of points

The number of points, eight, assumed by the algorithm, is mostly for convenience
and simplicity of presentation. In fact, the matrix ¥ (as a function of (R, 7)) has
only a total of five degrees of freedom: three for rotation and two for translation
(up to a scalar factor). By utilizing some additional algebraic properties of I, we
may reduce the necessary number of points. For instance, knowing det(F) = 0,
we may relax the condition rank(X) = 8 to rank(X) = 7. and get two solutions
E{ and E3 € R? from the null space of X. Nevertheless, there is usually only one
e € IR such that

det(E; + aBs) = 0.

Therefore, seven points is all we need to have a relatively simpler algorithm. As
shown in Exercise 5.13, in fact, a linear algorithm exists for only six points if
more complicated algebraic properties of the essential matrix are used. Hence, it
should not be a surprise, as shown by [Kruppa, 1913], that one needs only five
points in general position to recover (R, 7). It can be shown that there are up to
ten (possibly complex) solutions, though the solutions are not obtainable in closed
form, Furthermore, for many special motions, one needs only up to four points to
determine the associated essential matrix. For instance, planar motions (Exercise
5.6) and motions induced from symmetry (Chapter 10) have this nice property.
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Number of solutions and positive depth constraint

Since both E and — E satisfy the same set of epipolar constraints, they in general
give rise to 2 x 2 = 4 possible solutions for (R, 7"). However, this does not pose
a problem, because only one of the solutions guarantees that the depths of all the
3-D points reconstructed are positive with respect to both camera frames. That is,
in general, three out of the four solutions will be physically impossible and hence
may be discarded (see Exercise 5.11).

Structure requirement: general position

In order for the above algorithm to work properly, the condition that the given
eight points be in “general position” is very important. It can be easily shown that
if these points form certain degenerate configurations, called critical surfaces, the
algorithm will fail (see Exercise 5.14). A case of some practical importance occurs
when all the points happen to lie on the same 2-D plane in R3. We will discuss
the geometry for the planar case in Section 5.3, and also later within the context
of multiple-view geometry (Chapter 9).

Motion requirement: sufficient parallax

In the derivation of the epipolar constraint we have implicitly assumed that £ # 0,
which allowed us to derive the eight-point algorithm where the essential matrix
is normalized to ||E| = 1. Due to the structure of the essential matrix, F =
0 < T = 0. Therefore, the eight-point algorithm requires that the translation
(or baseline) T # 0. The translation 7" induces parallax in the image plane. In
practice, due to noise, the algorithm will likely return an answer even when there
is no translation. However, in this case the estimated direction of translation will
be meaningless. Therefore. one needs to exercise caution to make sure that there is
“sufficient parallax™ for the algorithm to be well conditioned. It has been observed
experimentally that even for purely rotational motion, i.e. 7' = 0, the “spurious”
translation created by noise in the image measurements is sufficient for the eight-
point algorithm to return a correct estimate of R.

Infinitesimal viewpoint change

It is often the case in applications that the two views described in this chapter are
taken by a moving camera rather than by two static cameras. The derivation of
the epipolar constraint and the associated eight-point algorithm does not change,
as long as the two vantage points are distinct. In the limit that the two viewpoints
come infinitesimally close, the epipolar constraint takes a related but different
form called the continuous epipolar constraint, which we will study in Section
5.4. The continuous case is typically of more significance for applications in robot
vision, where one is often interested in recovering the linear and angular velocities
of the camera.
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Multiple motion hypotheses

In the case of multiple moving objects in the scene, image points may no longer
satisfy the same epipolar constraint. For example, if we know that there are two
independent moving objects with motions, say (R',T7) and (R2, T?), then the
two images (&1, 2 ) of a point p on one of these objects should satisfy instead the
equation

(@ B'x:)(x) B*z,) =0, (5.16)

corresponding to the fact that the pomt p moves according to either motion 1 or
motion 2. Here B! = T1R! and E? = T2R2. As we will see, from this equation it
is still possible to recover E'! and E? if enough points are visible on either object.
Generalizing to more than two independent motions requires some attention; we
will study the multiple-motion problem in Chapter 7.

5.2.2 Euclidean constraints and structure reconstruction

The eight-point algorithm just described uses as input a set of eight or more point
correspondences and returns the relative pose (rotation and translation) between
the two cameras up to an arbitrary scale v € R*. Without loss of generality, we
may assume this scale to be v = 1, which is equivalent to scaling translation to
unit length, Relative pose and point correspondences can then be used to retrieve
the position of the points in 3-D by recovering their depths relative to each camera
frame.

Consider the basic rigid-body equation, where the pose (R, 7') has been recov-
ered, with the translation 7" defined up to the scale +. In terms of the images and
the depths, it is given by

MNah = MRz +4T, j=1,2,...,n. (5.17)

Notice that since (R, T') are known, the equations given by (5.17) are linear in
both the structural scale A’s and the motion scale s, and therefore they can be
easily solved. For each point, Ay, A are its depths with respect to the first and
second camera frames, respectively. One of them is therefore redundant: for in-
stance, if Ay is known, Az is simply a function of (R. T'). Hence we can eliminate,
say, Az from the above equation by multiplying both sides by &5, which yields

MzdRed 41T =0, j=1,2,....n. (5.18)
This is equivalent to solving the linear equation
e —_ o J
M = {miRm{, m.{,T} m Ly (5.19)

where MI = [mgﬂm{. mé_;T] € R¥*2 and M = [M,4]T € R, for j =

1,2,...,n. In order to have a unique solution, the matrix M7 needs to be of
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rank 1. This is not the case only when 37" = 0, i.e. when the point p lies on the
line connecting the two optical centers o; and 0s.
Notice that all the n equations above share the same ; we define a vector

A= [AL A2, A% )T € R*H and a matrix M € R3#X(%H) a5
[ ziRzl 0 0 0 Gl =
0 Z2Rz? 0 0 0 2T
M| g R 5 8 2 ) (si20)
0 0 0 ;i:‘an?_l 0 :ic'fgflT
Lt 4O 0 0 0 iRzt 8T

Then the equation
MA=0 (5.21)

determines all the unknown depths up 1o a single universal scale. The linear least-
squares estimate of A is simply the eigenvector of M "M that corresponds to its
smallest eigenvalue. Note that this scale ambiguity is intrinsic, since without any
prior knowledge about the scene and camera motion, one cannot disambiguate
whether the camera moved twice the distance while looking at a scene twice larger
but two times further away.

5.2.3 Optimal pose and structure

The eight-point algorithm given in the previous section assumes that exact point
correspondences are given. In the presence of noise in image correspondences,
we have suggested possible ways of estimating the essential matrix by solving a
least-squares problem followed by a projection onto the essential space. But in
practice, this will not be satisfying in at least two respects:

1. There is no guarantee that the estimated pose (R, T'), is as close as possible
to the true solution.

2. Even if we were to accept such an (R, T"), a noisy image pair, say (&1, &2),
would not necessarily give rise to a consistent 3-D reconstruction, as shown
in Figure 5.6.

At this stage of development, we do not want to bring in all the technical details
associated with optimal estimation, since they would bury the geometric intuition.
We will therefore discuss only the key ideas, and leave the technical details to
Appendix 5.A as well as Chapter 11, where we will address more practical issues.

Choice of optimization objectives

Recall from Chapter 3 that a calibrated camera can be described as a plane per-
pendicular to the z-axis at a distance 1 from the origin; therefore, the coordinates
of image points & and @ are of the form [z, y. 1]7 € R3. In practice, we cannot
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Figure 5.6. Rays extended from a noisy image pair &1, 2> € B® do not intersect at any
point p in 3-D if they do not satisfy the epipolar constraint precisely.

measure the actual coordinates but only their noisy versions, say
=zl +wl, B=al+wl, j=12,. (5.22)

where ] and a} denote the “ideal” image coordinates and w] = [u,l virtiias O
and wj = [wﬂ 1 Waos 0] are localization errors in the correspondence. Notice
that it is the (unknown) ideal image coordinates (::z:1 ) that satisf; y the epipolar
constraint mgTTRa: = 0, and not the (measured) noisy ones (&7, #3). One could
think of the ideal coordinates as a “model,” and w? as the discrepancy between
the model and the measurements: &/ = @7 + w?. Therefore, in general, we scck
the parameters (2, R,T’) that minimize the discrepancy between the model and
the data, i.e. wy/. In order to do so, we first need to decide how to evaluate the
discrepancy, which determines the choice of optimization objective,

Unfortunately, there is no “correct,” uncontroversial, universally accepted ob-
Jective function, and the choice of discrepancy measure is part of the design
process, since it depends on what assumptions are made on the residuals w?.
Different assumptions result in different choices of discrepancy measures, which
eventually result in different “optimal” solutions (z*, R*, 7).

For instance, one may assume that w = {w; } are samples from a distribution
that depends on the unknown parameters (x, R, '), which are considered deter-
ministic but unknown. In this case, based on the model generating the data, one
can derive an expression of the likelihood function p(w|z, R, T') and choose to
maximize it (or, more conveniently, its logarithm) with respect to the unknown
parameters. Then the “optimal solution.” in the sense of maximum likelihood, is
given by

(@*, R*,T*) = argmax dnrr (@, R, T) = Y _logp((@! — )|z, R, T).
i,
Naturally, different likelihood functions can result in very different optimal so-
lutions. Indeed, there is no guarantee that the maximum is unique, since p can
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be multimodal, and therefore there may be several choices of parameters that
achieve the maximum. Constructing the likelihood function for the location of
point features from first principles, starting from the noise characteristics of the
photosensitive elements of the sensor, is difficult because of the many nonlinear
steps involved in feature detection and tracking. Therefore, it is common to as-
sume that the likelihood belongs to a family of density functions, the most popular
choice being the normal (or Gaussian) distribution.

Sometimes, however, one may have reasons to believe that (z, R, T') are not
just unknown parameters that can take any value. Instead, even before any mea-
surement is gathered, one can say that some values are more probable than others,
a fact that can be described by a joint a priori probability density (or prior)
p(x, R, T). For instance, for a robot navigating on a flat surface, rotation about the
horizontal axis may be very improbable, as would translation along the vertical
axis. When combined with the likelihood function, the prior can be used (o de-
termine the a posteriori density , or posterior p(z, R, T|{z]}) using Bayes rule.
In this case, one may seek the maximum of the posterior given the value of the
measurements. This is the maximum a posteriori estimate

(z*,R*,T") = argmax ¢pprap(z, R, 1) = plaz, R,T|{§:{}}‘

Although this choice has several advantages, in our case it requires defining a
probability density on the space of camera poses SO(3) x §2, which has a non-
trivial geometric structure. This is well beyond the scope of this book, and we will
therefore not discuss this criterion further here.

In what follows, we will take a more minimalistic approach to optimality, and
simply assume that {w/} are unknown values (“errors,” or “residuals™) whose
norms need to be minimized. In this case, we do not postulate any probabilistic
description, and we simply seek (z*, R*,T") = arg min ¢(a, R, T'), where ¢ is,
for instance, the squared 2-norm:

$(x, R,T) =Y |[wil3 + [[wilz = |
J )

ST e
z] — 1 ||:

3+ & — =313,

This corresponds to a least-squares estimator. Since a1 and a:ﬂ are the recov-
ered 3-D points projected back onto the image planes, the above criterion is often
called the “reprojection error.”

However, the unknowns for the above minimization problem are not completely
free; for example, they need to satisfy the epipolar constraint @ TRz, = 0.
Hence, with the choice of the least-squares criterion, we can pose the problem of

reconstruction as a constrained optimization: given &7,i = 1,2, j = 1,2,...,n,
minimize
1 2
s 1) =303 — ol 52
j=1i=1
subject to

oTTRxl =0, ziTea=1, «fles=1, j=12,....n. (524
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Using Lagrange multipliers (Appendix C). we can convert this constrained op-
timization problem to an unconstrained one. Details on how to carry out the
optimization are outlined in Appendix 5.A.

Remark 5.12 (Equivalence to bundle adjustment). The reader may have no-
ticed that the depth parameters )\;, despite being unknown, are missing from
the optimization problem of equation (5.24). This is not an oversight: indeed.
the depth parameters play the role of Lagrange multipliers in the constrained
optimization problem described above, and therefore they enter the optimiza-
tion problem indirectly. Alternatively, one can write the optimization problem in
unconstrained form:

> l1& = m(&I)||; + |2 - ma(X7)]|5, (5.25)

J=l1

where m, and my denote the projection of a point X in space onto the first and
second images, respectively. If we choose the first camera frame as the reference,
then the above expression can be simplified to®

T

$(a1, R,T\) =)

F=

&) - o[} + |2 — n(RN={ + D). (526

Minimizing the above expression with respect to the unknowns (R,T.x1,)\)
is known in the literature as bundle adjustment. Bundle adjustment and the
constrained optimization described above are simply two different ways to pa-
rameterize the same optimization objective. As we will see in Appendix 5.A, the
constrained form better highlights the geometric structure of the problem, and
serves as a guide to develop effective approximations.

In the remainder of this section, we limit ourselves to describing a simplified
cost functional that approximates the reprojection error resulting in simpler op-
timization algorithms, while retaining a strong geometric interpretation. In this
approximation, the unknown @ is approximated by the measured @, so that the
cost function ¢ depends only on camera pose (R, T') (see Appendix 5.A for more
details):

n e T s e A e
#(R,T) = (mf i Hi“’_{ ? (f"J-’_TTRf;)?.
o1 IlEsTR{|[> * [|#5 TReT ||

(5.27)

Geometrically, this expression can be interpreted as distances from the image
points &{ and &3 to corresponding epipolar lines in the two image planes, respec-
tively, as shown in Figure 5.7. For instance, the reader can verify as an exercise

®Here we use 7 to denote the standard planar projection introduced in Chapter 3: [X, Y, Z]T —
Xtz v /217,
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e F " R’ e

e
i

Figure 5.7. Two noisy image points &, &2 € R®, Here £5 is an epipolar line that is the
intersection of the second image plane with the epipolar plane. The distance ds is the geo-
metric distance between the second image point &2 and the epipolar line. Symmetrically,
one can define a similar geometric distance d; in the first image plane.

(Exercise 5.12) that following the notation in the figure, we have
Bl TR
© |[EsTRa |2
In the presence of noise, minimizing the above objective function, although more
difficult, improves the results of the linear eight-point algorithm.

Example 5.13 (Comparison with the linear algorithm). Figure 5.8 demonstrates the ef-
fect of the optimization: numerical simulations were run for both the linear eight-point
algorithm and the nonlinear optimization. Values of the objective function ¢( 2, T') at dif-
ferent 7" are plotted (with R fixed at the ground truth); “+" denotes the true translation 7',

#" is the estimated 7" from the linear cight-point algorithm, and “o” is the estimated 7" by
upgrading the linear algorithm result with the optimization. ]

Structure triangulation

If we were given the optimal estimate of camera pose (R,1'), obtained, for
instance, from Algorithm 5.5 in Appendix 5.A, we can find a pair of images
(x},x3) that satisfy the epipolar constraint 3 7'Rz; = 0 and minimize the
(reprojection) error

o(@) = [[@1 — 21|* + [|22 — 22 (5.28)

This is called the friangulation problem. The key to its solution is to find what
exactly the reprojection error depends on. which can be more easily explained ge-
ometrically by Figure 5.9. As we see from the figure, the value of the reprojection
error depends only on the position of the epipolar plane P: when the plane P ro-
tates around the baseline (0,, 02), the image pair (&;.@2), which minimizes the
distance ||Z; — 1 ||*+ || 2 — x2||%, changes accordingly, and so does the error. To
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Figure 5.8. Improvement by nonlinear optimization. A two-dimensional projection of the
five-dimensional residual function ¢(/7,T) is shown in greyscale. The residual corre-
sponds to the two-dimensional function ¢( /2, T') with rotation fixed at the true value. The
location of the solution found by the linear algorithm is shown as “+.”" and it can be seen
that it is quite far from the true minimum (darkest point in the center of the image, marked
by *+").The solution obtained by nonlinear optimization is marked by “c,” which shows a
significant improvement.

Figure 5.9. For a fixed epipolar plane P, the pair of images (2, 22) that minimize the
reprojection error di + d3 must be points on the two epipolar lines and closest to &1, &2,
respectively. Hence the reprojection error is a function only of the position of the epipolar
plane P.

parameterize the position of the epipolar plane, let (e2, N1, N3) be an orthonor-
mal basis in the second camera frame. Then P is determined by its normal vector
£, (with respect to the second camera frame), which in turn is determined by the
angle f) between £5 and IV; (Figure 5.9). Hence the reprojection error ¢ should be
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a function that depends only on . There is typically only one #* that minimizes
the error ¢(6). Once it is found, the corresponding image pair (2], x5) and 3-D
point p are determined. Details of the related algorithm can be found in Appendix
5.A.

5.3 Planar scenes and homography

In order for the eight-point algorithm to give a unique solution (up to a scalar fac-
tor) for the camera motion, it is crucial that the feature points in 3-D be in general
position. When the points happen to form certain degenerate configurations, the
solution might no longer be unique. Exercise 5.14 explains why this may occur
when all the feature points happen to lie on certain 2-D surfaces, called critical
surfaces.” Many of these critical surfaces occur rarely in practice, and their im-
portance is limited. However, 2-D planes, which happen to be a special case of
critical surfaces, are ubiquitous in man-made environments and in aerial imaging.

Therefore, if one applies the eight-point algorithm to images of points all lying
on the same 2-D plane, the algorithm will fail to provide a unique solution (as we
will soon see why). On the other hand, in many applications, a scene can indeed be
approximately planar (e.g., the landing pad for a helicopter) or piecewise planar
(e.g., the corridors inside a building). We therefore devote this section to this
special but important case.

5.3.1 Planar homography

Let us consider two images of points p on a 2-D plane P in 3-D space. For sim-
plicity, we will assume throughout the section that the optical center of the camera
never passes through the plane.

Now suppose that two images (x;. x5 ) are given for a point p € P with respect
to two camera frames. Let the coordinate transformation between the two frames
be

X 2 RXiE (529)

where X1, X, are the coordinates of p relative to camera frames 1 and 2, respec-
tively. As we have already seen, the two images &1, x> of p satisfy the epipolar
constraint

a:r_r{E:B] = wffR:zl =10

However, for points on the same plane P, their images will share an extra
constraint that makes the epipolar constraint alone no longer sufficient.

7In general, such critical surfaces can be described by certain quadratic equations in the X, Y, Z
coordinates of the point, hence are often referred to as quadratic surfaces.
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Let N = [n.n2.n2]T € S? be the unit normal vector of the plane P with
respect to the first camera frame, and let d > 0 denote the distance from the plane
P to the optical center of the first camera. Then we have

T
NTX =mX+nY +n3Z=d & ENIX, =1, VX, e P (530)

Substituting equation (5.30) into equation (5.29) gives
i | oy
Xo=RX,+T=RX; -+-TENTX| = (R+ETA‘T)X1. (5.31)
We call the matrix

T
He= R+ETN’ € R3x3 (5.32)
the (planar) homography matrix, since it denotes a linear transformation from
X e R* to X7 € R? as

- X N HX 1

Note that the matrix H depends on the motion parameters { R. 7'} as well as the
structure parameters { N, d} of the plane P. Due to the inherent scale ambiguity
in the term %T in equation (5.32), one can at most expect to recover from I the
ratio of the translation 7" scaled by the distance d. From

A =Xy, Apa=X, X.=HX,, (5.33)
we have
)\232 = H)\lwl =4 o ”?E[, {534}

where we recall that ~ indicates equality up to a scalar factor. Often. the equation

53

itself is referred to as a (planar) homography mapping induced by a plane P.
Despite the scale ambiguity, as illustrated in Figure 5.10, H introduces a special
map between points in the first image and those in the second in the following
sense:

1. For any point x; in the first image that is the image of some point, say p
on the plane P, its corresponding second image @ is uniquely determined
as @y ~ Hxy, since for any other point, say x5, on the same epipolar line
£y ~ Exy € B3, the ray oox) will intersect the ray o;2; at a point p’ out
of the plane.

2. On the other hand, if @, is the image of some point, say p’. not on the plane
P, then ®y ~ Hax, is only a point that is on the same epipolar line £, ~
Ez, as its actual corresponding image 5. That is, fgz:g = e’;f:cg =)

We hence have the following result:
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I

Figure 5.10. Two images @1, @2 € B? of a 3-D point p on a plane P. They are related by
a homography H that is induced by the plane.

Proposition 5.14 (Homography for epipolar lines). Given a homography H
(induced by plane P in 3-D) berween two images, for any pair of corresponding
images (x1,x2) of a 3-D point p that is not necessarily on I, the associated
epipolar lines are

b~ TaHwmy, - 64~ H L. (5.36)

Proof. If pis noton P, the first equation is true from point 2 in above discussion.
Note that for points on the plane P, x5 = Haz; implies &3 Hazy = 0, and the first
equation is still true as long as we adopt the convention that v ~ 0, Vv € R”. The
second equation is easily proven using the definition of a line £ "z =0. L

This property of the homography allows one to compute epipolar lines without
knowing the essential matrix. We will explore further the relationships between
the essential matrix and the planar homography in Section 5.3.4.

In addition to the fact that the homography matix H encodes information
about the camera motion and the scene structure, knowing it directly facilitates
establishing correspondence between points in the first and the second images.
As we will see soon. H can be computed in general from a small number of
corresponding image pairs. Once H is known, correspondence between images
of other points on the same plane can then be fully established, since the cor-
responding location @, for an image point @, is simply Hx,. Proposition 5.14
suggests that correspondence between images of points not on the plane can also
be established, since /I contains information about the epipolar lines.
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5.3.2 Estimating the planar homography mdtrix

In order to further eliminate the unknown scale in equation (5.35), multiplying
both sides by the skew-symmetric matrix > € R3*3, we obtain the equation

We call this equation the planar epipolar constraint, or also the (planar)
homography constraint.

Remark 5.15 (Plane as a critical surface). In the planar case, since x5 ~ Hz1,
for any vector u € B®, we have that u x @ = tixs is orthogonal to Hx1. Hence
we have

ziuHx, =0, YueR.

That is, 3 Exy = 0 for a family of matrices E = GH € R3*3 besides the
essential matrix E = T R. This explains why the eight-point algorithm does not
apply to feature points from a planar scene.

Example 5.16 (Homography from a pure rotation). The homographic relation @y ~
Ha, also shows up when the camera is purely rotating, i.e. Xo = RX . In this case,
the homography matrix H becomes I/ = R, since 7' = 0. Consequently, we have the
constraint

TRz = 0.

One may view this as a special planar scene case, since without translation, information
about the depth of the scene is completely lost in the images, and one might as well interpret
the scene to be planar (e.g., all the points lie on a plane infinitely far away). As the distance
of the plane d goces to infinity, lim,—.. H = R,

The homography from purely rotational motion can be used to construct image mosaics
of the type shown in Figure 5.11. For additional references on how to construct panoramic
mosaics the reader can refer to [Szeliski and Shum, 1997, Sawhney and Kumar, 1999,
where the latter includes compensation for radial distortion. 4]

Figure 5.11. Mosaic from the rotational homography.

Since equation (5.37) is linear in H, by stacking the entries of H as a vector,
H*® = [Hyy, Hay, Hay, Hha, Hag, Hap, Hig, Hog, H3s)T € RY,  (5.38)
we may rewrite equation (5.37) as

a"HS=0.
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where the matrix @ = @, ® T3 € R**? is the Kronecker product of T3 and x;
(see Appendix A.1.3).

Since the matrix Z3 is only of rank 2, so is the matrix @. Thus, even though the
equation T, Flz; = 0 has three rows, it only imposes two independent constraints
on H. With this notation, given n pairs of images { (1, 23)}7_, from points on

the same plane P. by defining X = [a',a?,...,a"]" € R¥"*Y we may combine
all the equations (5.37) for all the image pairs and rewrite them as
XH® =0. (5.39)

In order to solve uniquely (up to a scalar factor) for /7, we must have rank(X) =
8. Since each pair of image points gives two constraints, we expect that at least
four point correspondences would be necessary for a unique estimate of H. We
leave the proof of the following statement as an exercise to the reader.

Proposition 5.17 (Four-point homography). We have rank(X) = 8 if and only
if there exists a set of four points (out of the n) such that no three of them are
collinear; i.e. they are in a general configuration in the plane.

Thus, if there are more than four image correspondences of which no three in
cach image are collinear, we may apply standard linear least-squares estimation
to find min |[xH*||? to recover H up 1o a scalar factor, That is, we are able to
recover H of the form

Hp =)XH =\ (R i %TNT) cR3x3 (5.40)
[f

for some (unknown) scalar factor A,
Knowing Hp, the next thing is obviously to determine the scalar factor A by
taking into account the structure of H.

Lemma 5.18 (Normalization of the planar homography). For a matrix of the
form H, = X\ (R+ LT NT), we have

|Al = 02(HL)
where oo (Hy ) € R is the second largest singular value of Hr,.

Proof. Letu = 5R"T € R®. Then we have

(5.41)

HYHp = 3(I +uNT + NuT + |Ju|?NNT).

Obviously, the vector u x N = N € R?, which is orthogonal to both v and N, is
an eigenvector and H} Hy (iN) = A*(@N). Hence |A| is a singular value of H.
We only have to show that it is the second largest. Let v = |[u||N,w = u/||u|| €
R3. We have

Q =uNT + NuT + ||[u|>PNN” = (w + v)(w + )T —ww’.

The matrix @ has a positive, a negative, and a zero eigenvalue, except that when
u ~ N, @ will have two repeated zero eigenvalues. In any case, 1 EI 71, has A? as
its second-largest eigenvalue. O



136 Chapter 5. Reconstruction from Two Calibrated Views

Then, if { 1. 02, o3} are the singular values of H, recovered from linear least-
squares estimation, we Set a new

= HL/UZ(HL).

This recovers H up to the form H = + (R+ £7'N™). To get the correct sign,

we may use Xya] = HX| @] and the fact that /\j,,\‘f > () to impose the positive
depth constraint

(x1)? Hiel >0, Vi=1,2....m.

Thus, if the points {p}7_, are in general configuration on the plane. then the
matrix H = (R + JTNT) can be uniquely determined from the image pair.

5.3.3 Decomposing the planar homography matrix

After we have recovered H of the form H = (R + 3TNT), we now study how
to decompose such a matrix into its motion and structure parameters, namely

{R.‘%;j?f\r}.

Theorem 5.19 (Decomposition of the planar homography matrix). Given a
matrix H = (R + ﬁTN 1), there are at most two physically possible solutions
for a decomposition into parameters { R, T, N'} given in Table 5.1.

Proof. First notice that H preserves the length of any vector orthogonal to IV, i.e.
if N L afor some a € R¥, we have || Hal* = || Ral|*> = ||a}|®. Also, if we know
the plane spanned by the vectors that are orthogonal to V', we then know N itself.
Let us first recover the vector N based on this knowledge.

The symmetric matrix 777 F will have three eigenvalues 0 > 03 > 03 > 0,
and from Lemma 5.18 we know that o2 = 1. Since H' H is symmetric, it can be
diagonalized by an orthogonal matrix V' £ SO(3) such that

HTH=VxVT, (5.42)

where ¥ = diag{c?, 03,03 }. If [, v2, v3] are the three column vectors of V, we
have

H"Huy, = rrf-ul. HTHuy =vo, HTHug = rrg-u;;. (5.43)

Hence v is orthogonal to both N and T, and its length is preserved under the
map H. Also, it is easy to check that the length of two other unit-length vectors
defined as
L \/l—aiul—k\/ o? 11'3 s \,ﬂ"]’Ulll——\/ — lug (5.44)
T - ;
ai — o3 Vi — o3
is also preserved under the map H. Furthermore, it is easy 10 verify thar H
preserves the length of any vectors inside each of the two subspaces

Sy = span{vg,uy }, So = span{vo, us}. (5.45)
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Since v, is orthogonal to u; and ws. ¥3u; is a unit normal vector to S, and D5us
a unit normal vector to Ss. Then {uvs. uy. Uzu; } and {vg, us, Gaus } form two sets
of orthonormal bases for B3, Notice that we have

Rvs = Hvs, Ru; = Hu;, R(%hu;)= ﬁ;};H i

if V is the normal to the subspace S;, i = 1, 2, as shown in Figure 5.12.

Sz Ny 4v3

™~

S] A.2

Figure 5.12. In terms of singular vectors (1, v2, v3) and singular values (a1, o2, o3) of the
matrix H, there are two candidate subspaces Sy and Ss on which the vectors™ length is
preserved by the homography matrix /.

Define the matrices
Uy = [vg,uy, Towy], Wi = {H-e.!g,H'u.l,%Hul];
Us = [va, ua, Gous], Wa = [Hua, Hus, Hvs Hus).
We then have
RU; =W,, RU; =Ws,
This suggests that each subspace Sy, or S may give rise to a solution to the de-
composition. By taking into account the extra sign ambiguity in the term YT N7,

we then obtain four solutions for decomposing # = R+ 1T'NT to {R, JT. N}.
They are given in Table 5.1.

Ri = WiUT Ra! I=""Rj
Solution | | N7 = 1wy Solution3 | Na = -=-N;
N = (H—R)N 1T = —3T)
Ry, = WaUS Ry = R
Soluion2 | Nos = 1hus Solution4 | Ny = —N3
i, = (H—-R))N> iy = —-iTy

Table 5.1. Four solutions for the planar homography decomposition, only two ol which
satisfy the positive depth constraint.

In order to reduce the number of physically possible solutions, we may impose
the positive depth constraint (Exercise 5.11); since the camera can see only points
that are in front of it, we must have NTe; = ng > 0. Suppose that solution 1
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is the true one: this constraint will then eliminate solution 3 as being physically
impossible. Similarly. one of solutions 2 or 4 will be eliminated, For the case that
T ~ N, we have U§ = 0 in the above proof. Hence 17 = u», and solutions 1 and
2 are equivalent. Imposing the positive depth constraint leads to a unique solution
for all motion and structure parameters. O

Example 5.20 (A numerical example). Suppose that

cos(Z) 0 sin(%) 0951 0 0.309 2 1
= 0 1 0 = 0 1 Dyl Gy 2= 1O~ N =0
—sin({5) 0 cos({5) —0.309 0 0.951 0 2

and d = 5, A = 4. Here, we deliberately choose || V|| # 1. and we will see how this will
affect the decomposition. Then the homography matrix is

1 5404 0 4.436
Hy =X (R+ aTNT) g 4 0
—1.236 0 3.804
The singular values of H, are {7.197, 4.000, 3.619}. The middle one is exactly the scale

A. Hence for the normalized homography matrix H), /4 — [, the matrix H' H has the
SvD*

~ [o675 0 —0.738] [3.237 0 0 0:675 0 —0.738]"
vEvi=| 0 1 0 SRRV ) [l 0
0.738 0 0675 0 0 0819] |0.738 0 0675
Then the two vectors u; and uz are given by
uy = [~0.525,0,0.851]";  uz = [0.894,0, —0.447]".
The four solutions to the decomposition are
[10.704° 0. 0.710] [0.851 ) [0.760
Hy = 0 1 0 L ENE= 0 3 ETI — 0
[—0.710 0 0.704] 0.525 0.471
[ 0951 0 0.309] [—0.447 i [—0.894
Be=| 0 |1 0|, M= 0 |, Th=| 0
| —0.309 0 0.951 | —0.894 s
[0.704 0 0.710] [—0.851 1 [—0.760
Rs = 0 | 0 3¢ UiV 0 3 HT}; — 0 3
|-0.710 0 0.704] | —0.525 | —0.471
[0.951 0 0.309] [0.447 ] [0.894
Ry = 0 1 0, M=o/, -Ty=]|0
| -0.309 0 0.951] 0.894 | 0

Obviously, the fourth solution is the correct one: The original ||N|| # 1, and N is re-
covered up to a scalar factor (with its length normalized to 1), and hence in the solution
we should expect 5Ty = H—%—LT Notice that the first solution also satisfies N7 ez > 0,

The Matlab routine SVD does not always guarantee that V' € SO(3). When using the routine, if
one finds that det(V') = —1, replace both V's by — V.




5.3. Planar scenes and homography 139

which indicates a plane in front of the camera. Hence it corresponds to another physically
possible solution (from the decomposition). u

We will investigate the geometric relation between the remaining two phys-
ically possible solutions in the exercises (see Exercise 5.19). We conclude this
section by presenting the following four-point Algorithm 5.2 for motion estima-
tion from a planar scene. Examples of use of this algorithm on real images are
shown in Figure 5.13.

Algorithm 5.2 (The four-point algorithm for a planar scene).

For a given set of image pairs (mj,mi), j= 12 ....n(n = 4). of points on a plane
N*X = d, this algorithm finds {R, 17", N'} that solves

—T A

a3 (R+ %TNT) s ) e 1

1. Compute a first approximation of the homography matrix , .
Construct X = [a',a”,....a"]" € R**Y from correspondences | and 23,

where @’ = @] @ @} € R***, Find the vector . € R? of unit length that solves
XH; =0

as follows: compute the SVD of X = Uy Xy 1{ and define Hj Lo be the ninth
column of V.. Unstack the nine elements of H; into a square 3 x 3 matrix Hy..

2. Normalization of the homography matrix
Compute the eigenvalues {o1. 02, 03} of the matrix Hy, and normalize it as

H— H;,fﬂ'z.
Correct the sign of H according to sign ({:c?_;}TH:I:{) for =2 ma ),

3. Decomposition of the homography matrix
Compute the singular value decomposition of

HTH =vzv"
and compute the four solutions for a decomposition { R, rle, N} as in the proof

of Theorem 5.19. Select the two physically possible ones by imposing the positive
depth constraint N7 es > 0.

5.3.4 Relationships between the homography and the essential
matrix

In practice, especially when the scene is piecewise planar, we often need to com-
pute the essential matrix F with a given homography H computed from some
four points known to be planar: or in the opposite situation, the essential matrix
E may have been already estimated using points in general position, and we then
want to compute the homography for a particular (usually smaller) set of coplanar
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Figure 5.13. Homography between the left and middle images is determined by the building
facade on the top, and the ground plane on the bottom. The right image is the warped image
overlayed on the first image based on the estimated homography H . Note that all points on
the reference plane are aligned, whereas points outside the reference plane are offset by an
amount that is proportional to their distance from the reference plane.

points. We hence need to understand the relationship between the essential matrix
F and the homography H.

Theorem 5.21 (Relationships between the homography and essential matrix).
For a matrix E' = TR and a matrix Il = R + Tu” for some nonsingular R €
R3*3 T w € RS, with ||T'|| = 1, we have:

1. E=TH:
2. HTE+BTH = ;
3. H=T"E +Tv", for somev € R®,

ol

Proof. The proof of item 1 is easy. since 77 = 0. For item 2, notice that H'E
(R+Tu")TR = RTTR is a skew-symmetric matrix, and hence HT F
~FET H. For item 3, notice that

TH =TR=TTTTR = TTTE.

since TTy = (I — TTT)w represents an orthogonal projection of v onto the
subspace (a plane) orthogonal to 7' (see Exercise 5.3). Therefore, T'(F — ’f‘"'E} -
0. That is, all the columns of H — TTE are parallel to T, and hence we have
H —~T7E =TT for some v € R3, O

Notice that neither the statement nor the proof of the theorem assumes that &
is a rotation matrix. Hence, the results will also be applicable to the case in which
the camera is not calibrated, which will be discussed in the next chapter.
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This theorem directly implies two useful corollaries stated below that allow
us to easily compute £ from H as well as H from E with minimum extra in-
formation from images.” The first corollary is a direct consequence of the above
theorem and Proposition 5.14:

Corollary 5.22 (From homography to the essential matrix). Given a homog-
raphy H and two pairs of images (2}, @%),i = 1,2, of two points not on the plane
P from which H is induced, we have '

E=TH, (5.46)
where T' ~ éfﬁ and ||T|| = 1.

Proof. According to Proposition 5.14, £} is the epipolar line £ ~ ;;;H zh, 0=
1,2. Both epipolar lines £3. €5 pass through the epipole es ~ 7. This can be
illustrated by Figure 5.14. -

(R,T) ~ BT

s=== it

Figure 5.14. A homography H transfers two points «] and @7 in the first image to two
points Haz:} and Hz? on the same epipolar lines as the respective truc images 3 and =3
if the corresponding 3-D points p* and p* are not on the plane P from which H is induced.

Now consider the opposite situation that an essential matrix ¥ is given and we
want to compute the homography for a set of coplanar points. Note that once E is
known. the vector 7" is also known (up to a scalar factor) as the left null space of
E'. We may typically choose T to be of unit length.

S Although in principle, to compute E from H, one does not need any extra information but only
has to decompose H and find R and T using Theorem 5.19, the corollary will allow us to bypass that
by much simpler techniques, which, unlike Theorem 5.19. will also be applicable to the uncalibrated
case.
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Corollary 5.23 (From essential matrix to homography). Given an essential

matrix E and three pairs of images (x},x5),i = 1,2, 3, of three points in 3-D,
the homography H induced by the plane specified by the three points then is
H=TTE+ T, (5.47)
where v = [v1.v2,v3]T € R? solves the system of three linear equations
2 (TTE +ToT)ai =0, i=1,2,3. (5.48)
Proof. We leave the proof to the reader as an exercise. O
10

5.4 Continuous motion case

As we pointed out in Sectioh 5.1, the limit case where the two viewpoints are
infinitesimally close requires extra attention. From the practical standpoint, this
case is relevant to the analysis of a video stream where the camera motion is
slow relative to the sampling frequency. In this section, we follow the steps of
the previous section by giving a parallel derivation of the geometry of points in
space as seen from a moving camera, and deriving a conceptual algorithm for
reconstructing camera motion and scene structure. In light of the fact that the
camera motion is slow relative to the sampling frequency, we will treat the motion
of the camera as continuous. While the derivations proceed in parallel, we will
highlight some subtle but significant differences.

5.4.1 Continuous epipolar constraint and the continuous
essential matrix

Let us assume that camera motion is described by a smooth (i.e. continuously
differentiable) trajectory g(t) = (R(t).T(t)) € SE(3) with body velocities
(w(t),u(t)) € se(3) as defined in Chapter 2. For a point p € R?, its coordinates
as a function of time X (#) satisfy

X(t) =00 X(t) + v(t). (5.49)

The image of the point p taken by the camera is the vector = that satisfies
A(t)xz(t) = X (t). From now on, for convenience, we will drop the time depen-
dency from the notation. Denote the velocity of the image point & by u = & € R?.
The velocity w is also called image motion field, which under the brightness con-
stancy assumption discussed in Chapter 4 can be approximated by the optical

"This section can be skipped without loss of continuity if the reader is not interested in the
continuous-motion case.
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flow. To obtain an explicit expression for u, we notice that
X =)z, X =+l

Substituting this into equation (5.49), we obtain

T =0T+ %v - —}:c (5.50)
Then the image velocity w = @ depends not only on the camera motion but also
on the depth scale A of the point. For the planar perspective projection and the
spherical perspective projection, the expression for w will be slightly different.
We leave the detail to the reader as an exercise (see Exercise 5.20).

To eliminate the depth scale A, consider now the inner product of the vectors in
(5.50) with the vector (v x x). We obtain

T T~T=

T Uir=a O V.

We can rewrite the above equation in an equivalent way:

|uT%2 + 27 &te = 0. (5.51)

This constraint plays the same role for the case of continuous-time images as the
epipolar constraint for two discrete image, in the sense that it does not depend
on the position of the point in space, but only on its projection and the motion
parameters. We call it the continuous epipolar constraint.

Before proceeding with an analysis of equation (5.51), we state a lemma that
will become useful in the remainder of this section.

Lemma 5.24. Consider the matrices My, Mo € R**®, Then ™ Mz = a® Myx
forall x € R? if and only if My — M is a skew-symmetric matrix, i.e. My — M, €

so(3).

We leave the proof of this lemma as an exercise. Following the lemma, for any
skew-symmetric matrix M € R%*3, 2T Mz = 0. Since (&7 — 1@) is a skew-
symmetric matrix, 27 (07 — #@)x = 0. If we define the symmetric epipolar
component 1o be the matrix

9:%(QF+,’E) ERiix:s,
then we have that
2T sz = 2700,
so that the continuous epipolar constraint may be rewritten as
u'tz + ' sz = 0. (5.52)

This equation shows that for the matrix &, only its symmetric component 5 =

%(fﬁﬁ + ©w) can be recovered from the epipolar equation (5.51) or equivalently
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(5.52).!! This structure is substantially different from that of the discrete case,
and it cannot be derived by a first-order approximation of the essential matrix
T'R. In fact, a naive discretization of the discrete epipolar equation may lead to a
constraint involving only a matrix of the form v, whereas in the true continuous
case we have to deal with only its symmetric component s = (20 + 9) plus
another term as given in (5.52). The set of matrices of interest in the case of
continuous motions is thus the space of 6 x 3 matrices of the form

L (56 + )

£l [ s } wveRS CRO*3
2

which we call the continuous essential space. A matrix in this space is called a
continuous essential matrix. Note that the continuous epipolar constraint (5.52)
is homogeneous in the linear velocity v. Thus v may be recovered only up to a
constant scalar factor. Consequently, in motion recovery. we will concern our-
selves with matrices belonging to the normalized continuous essential space with
© scaled to unit norm: L

Al (] s By 2ile2 6%3
81— [é(a?—f—m}} LLJ'ER,T}ES CE *

5.4.2  Properties of the continuous essential matrix

The skew-symmetric part of a continuous essential matrix simply corresponds to
the velocity v. The characterization of the (normalized) essential matrix focuses
only on the symmetric matrix part s = £(&0 + 9@). We call the space of all the
matrices of this form the symmetric epipolar space

S= %(Qﬁ+-?ﬁ) weRve 8} cR¥>S,
The motion estimation problem is now reduced to that of recovering the velocity
(w, ) withw € RS and v € §* from a given symmetric epipolar component s.
The characterization of symmetric epipolar components depends on a charac-
terization of matrices of the form &0 &€ R**?, which is given in the following
lemma. Of use in the lemma is the matrix Ry (#) defined to be the rotation around
the Y-axis by an angle f € R, i.e. Ry (0) = €™’ with e; = [0,1,0]” € B3,

Lemma 5.25. A matrix Q € R**3 has the form Q = G0 withw € R®, v € S if
and only if

Q = —V Ry (8)diag{\, A cos(0),0} VT (5.53)

YThis redundancy is the reason why different forms of the continuous epipolar constraint ex-
ist in the literature [Zhuang and Haralick, 1984, Ponce and Gene, 1998, Vieville and Faugeras, 1995,
Maybank, 1993, Brooks et al., 1997], and accordingly, various approaches have been proposed to
recover w and v (see [ Tian et al., 1996]).
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for some rotation matrix V. € SO(3), the positive scalar A = ||w/||, and cos(8) =
T
w v / A

Proof. We first prove the necessity. The proof follows from the geometric
meaning of ¥ multiplied by any vector ¢ £ [2*:

Wig=w x (v xq).

Let b € §? be the unit vector perpendicular to both w and v. That is, b = ToxeT®
(If v x w = 0, b is not uniquely defined. In this case, w, v are parallel, and the
rest of the proof follows if one picks any vector b orthogonal to v and w.) Then
W= ,\exp(gf!)-v (according to this definition, @ is the angle between w and v, and
0 < 0 < m). It is easy to check that if the matrix V' is defined to be

V = (eﬁ":v, b, 'u) :

then @ has the given form (5.53).

We now prove the sufficiency. Given a matrix ) that can be decomposed into
the form (5.53), define the orthogonal matrix U = —V Ry (A) € O(3). (Recall
that O(3) represents the space of all orthogonal matrices of determinant =4-1.) Let
the two skew-symmetric matrices & and © be given by

g (L BARE T o) s BT ™y yT
{Rz(ig)b,\b’. ; 1Rz(ﬂ:2)_1‘n , (5.54)
where X = diag{A, A,0} and 3; = diag{1, 1,0}. Then

e b ) 53] T T

75 bﬁ’y( 2) U 134( ):-:11

URz (£3) Sx(-RBL(0) Rz (£5) S1v”
Udiag{\, A cos(),0} V"

Il

Q. (5.55)
Since w and v have to be, respectively, the left and the right zero eigenvectors of
@, the reconstruction given in (5.54) is unique up to a sign. a

Based on the above lemma, the following theorem reveals the structure of the
symmetric epipolar component,

Theorem 5.26 (Characterization of the symmetric epipolar component). A
real symmetric matrix s € R**3 is a symmetric epipolar component if and only if
s can be diagonalized as s = VEVT with V € SO(3) and

Y = diag{o1,02,03}
withoy = 0,03 <0, and 05 = 07 + 03.

Proof. We first prove the necessity. Suppose s is a symmetric epipolar compo-
nent. Thus there exist w € R* v € §? such that s = 1(&7 + ). Since s
is a symmetric matrix, it is diagonalizable, all its eigenvalues are real, and all
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the eigenvectors are orthogonal to each other. Tt then suffices to check that its
eigenvalues satisfy the given conditions.

Let the unit vector b, the rotation matrix V/, 6, and A be the same as in the proof
of Lemma 5.25. According to the lemma, we have

&0 = —V Ry (0)diag{\, X cos(6),0} VL.

Since (27)T = 9@, we have

§= %V (—Ry (9)diag{), A cos(6),0} — diag{\, A cos(0),0} RT-(9)) V™.

Define the matrix D(), ) € R**3 to be

D(\0) = —Ry(0)diag{), Acos(f),0} — diag{\, Acos(6),0}RL(0)
—2cos(6) 0 sin(#)
= A 0 —2cos(f) 0
sin(f) 0 0

Directly calculating its eigenvalues and eigenvectors, we obtain that D(A,0) is
equal to

Ry (f’—‘l) diag {A(1 — cos()), —2A cos(6), A(—1 — cos(8))} RT (O_T—) :

2
(5.56)
Thus s = 5V D(A,0)VT has eigenvalues
1
{5,\(1 —cos(8)), —Acos(8), SA(—1-— co:s(f?))} . (5.57)

which satisty the given conditions.

We now prove the sufficiency. Given s = Vidiag{o1, 02,03 }V{T with oy >
0,03 < 0,02 = 01 + 03, and V[T € SO(3), these three eigenvalues uniquely
determine A, # € IR such that the ;s have the form given in (5.57):

A = o) —o03, A>0,
8 = arccos(—o2/N), 0 €[0,n].
Define a matrix V. € SO(3) to be V. = ViR{ (% —Z). Then s =

SVD(A. 0)VT. According to Lemma 5.25, there exist vectors v € S? and w € B3
such that

@t = —V Ry (f)diag{\, A cos(8),0} V7.
Therefore, 5(00 + @) = VDA, O)VT = s. [}

Figure 5.15 gives a geometric interpretation of the three eigenvectors of the
symmetric epipolar component s for the case in which both w, v are of unit length.
The constructive proof given above is important since it gives an explicit decom-
position of the symmetric epipolar component s, which will be studied in more
detail next.
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Figure 5.15. Vectors u;, uz, b are the three eigenvectors of a symmetric epipolar compo-
nent 3 (&0 +0@). In particular. b is the normal vector to the plane spanned by w and v, and
uy, uy are both in this plane. The vector u, is the average of w and v, and u» is orthogonal
to both b and u;.

Following the proof of Theorem 5.26, if we already know the eigenvector de-
composition of a symmetric epipolar component s, we certainly can find at least
one solution (w,v) such that s = (@0 + 1@). We now discuss uniqueness, i.c.
how many solutions exist for s = (&0 + 7w).

Theorem 5.27 (Velocity recovery from the symmetric epipolar component).
There exist exactly four 3-D velocities (w,v) with w € R® and v € §?
corresponding to a nonzero s € S.

Proof. Suppose (wy,v1) and (ws, v2) are both solutions for s = %(Qﬁ + vw).
Then we have

615‘.)1 n Gﬁh = 7-'-}2(:?2 -+ ufjgﬁz. (558)

From Lemma 5.25, we may write

G101 = —ViRy(6:1)diag{)\:, A1 cos(61), 0} V4, (5.59)
©aUp = —VoRy(62)diag{)2, Az cos(62), 0}V "
Let W = V|V, € SO(3). Then from (5.58),
D(A1,61) = WD(Ag, 62)W7. (5.60)

Since both sides of (5.60) have the same eigenvalues. according to (5.56), we have
f\] = /\2, 03 = 91 3

We can then denote both #; and f> by 8. It is immediate to check that the only
possible rotation matrix W that satisfies (5.60) is given by I35,

—cos(@) 0 sin(8) cos(@) 0 —sin(f)
0 —1 0 S . or 0 -1 0
sin(d) 0 cos(f) —sin(f) 0 —cos(d)

From the geometric meaning of V; and V5, all the cases give either {77 = a7
or &7 = Tals. Thus, according to the proof of Lemma 5.25, if (w,v) is one
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solution and 5% = Udiag{ A, A cos(#), 0}V, then all the solutions are given by

B = URZ(A5)5,0T, ©=VRz(£3)5,VT, il
B = VREES\VT, T=URz(£5)5,07, :
where X\ = diag{\, \,0} and ¥, = diag{1,1,0}. O

Given a nonzero continuous essential matrix £ € &', according to (5.61), its
symmetric component gives four possible solutions for the 3-D velocity (w. v).
However. in general. only one of them has the same linear velocity v as the
skew-symmetric part of /2. Hence, compared to the discrete case, where there are
two 3-D motions (R, T') associated with an essential matrix, the velocity (w, v)
corresponding o a continuous essential matrix is unique. This is because in the
continuous case, the rwisted-pair ambiguity, which occurs in the discrete case
and is caused by a 180° rotation of the camera around the translation direction,
see Example 5.8, 1s now avoided.

5.4.3 The eight-point linear algorithm

Based on the preceding study of the continuous essential matrix, this section
describes an algorithm to recover the 3-D velocity of the camera from a set of
(possibly noisy) optical flow measurements.
0} : N ’ 3 ;
Let B = J € & with s = %(w-f.' -+ vw) be the essential matrix associated

5
with the continuous epipolar constraint (5.52). Since the submatrix ¥ is skew-
symmetric and s is symmetric, they have the following form

0 -—vs w §1 S2 83
f; = (1 0 —1 , 8= 82 84 8p “ (562)
—g m ﬂ 83 85 8g

Define the continuous version of the “stacked” vector F¢ < &Y (0 be
E® = [vy,v2,v3, 81, 82, 53, 54, S5, -'Sr,]"'" (5.63)

Define a vector a € R associated with the optical flow (x,u) with & =
@y, 2]7 € R® w = [uy,u2,u3]" € R®to be'”

a = [ugy — Uz, U1z — UL, U2T — UL Y, z2, 2xy, 2xz, y*, 2z, :g]T. (5.64)
The continuous epipolar constraint (5.52) can be then rewritten as
a”B* =0.

Given a set of (possibly noisy) optical flow vectors (27, u?), j = 1,2....,n,
generated by the same motion, define a matrix X € R™*" associated with these

ISFor a planar perspective projection, = = 1 and ug = 0; thus the expression for @ can be
simplified.
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measurements to be
X =lata% a7, (5.65)

where a’ are defined for each pair (27, %) using (5.64). In the absence of noise,
the vector £ has to satisfy

XE*=1(. (5.66)

In order for this equation to have a unique solution for £, the rank of the matrix
X has to be eight. Thus, for this algorithm, the optical flow vectors of at least eight
points are needed to recover the 3-D velocity, i.e. n. > 8, although the minimum
number of optical flow vectors needed for a finite number of solutions is actually
five, as discussed by [Maybank, 1993].

When the measurements are noisy. there may be no solution to XE* = (.
As in the discrete case, one may approximate the solution by minimizing the
least-squares error function ||XE*||°.

Since the vector [2¢ is recovered from noisy measurements, the symmetric part
s of E directly recovered from unstacking £° is not necessarily a symmetric
epipolar component. Thus one cannot directly use the previously derived results
for symmetric epipolar components to recover the 3-D velocity. In analogy to the
discrete case, we can project the symmetric matrix s onto the space of symmetric
epipolar components.

Theorem 5.28 (Projection onto the symmetric epipolar space). If a real sym-
metric matrix F € ®**3 is diagonalized as F' = Vdiag{\1, Ao, \3}V'* with
V e SO(3), i 2 0.A3 < 0, and Ay > Ao = Az, then the symmetric
epipolar component E € 8 that minimizes the error ||E — ;"*"||?r is given by
E = Vdiag{o:,02,02} VT with

2A1 + A — Ay _/\1+2/\2 + A3

- _'2/\3*5-)\2—/\
J l 2 3 -! = T

1= o3 5 L (5.67)

Proof. Define Sy, to be the subspace of § whose elements have the same eigenval-
ues 3 = diag{c, 02, 03}. Thus every matrix F € Sy, has the form E = Vi SV;"
for some V; € SO(3). To simplify the notation, define £ = diag{1, A2, A3}.
We now prove this theorem in two steps.

Step 1: We prove that the matrix ¥ € Sy, that minimizes the error ||[E — FHZf
is given by E = VEVT. Since E € Sy, has the form E = V1 XV, we get

IE-Fl} = [WEW - VEAVT [} = |2 = VIREV V] 3.
Define W = VTV € SO(3) and denote its entries by

w; We W3
W=| wy ws ws |- (5.68)
Wy Wy W
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Then
|E - Fli} 5 — WEWT|[3

= trace(23) — 2trace(WEIWTX,) + trace(Z?). (5.69)

Il

Substituting (5.68) into the second term, and using the fact that 5 = o1 + 3 and
1/ is a rotation matrix, we get

trace(WEWTE,) = or(M(1 —wd)+ Aol —wd) + A3(1 —w3d))
e 0'3(/\;(-.[ — 'i'.{-‘f) + Ag(1 — 'lL.‘:i) + As(l — ?U%}}.

Minimizing || E — F||} is equivalent to maximizing trace(WEXWTX, ). From the
above equation, trace(WEW 7%y is maximized if and only if w3 = wg = 0,
-wg =1, wy = wy = 0, and w? = 1. Since W is a rotation matrix, we also have
wy = wg = 0, and w2 = 1. All possible W give a unique matrix in Sy, that
minimizes | E — F||}: E = VEVT,

Step 2: From step one, we need only to minimize the error function over the ma-
trices that have the form VXV & 8. The optimization problem is then converted
to one of minimizing the error function

|E - F||F = (A —01)® + (A2 — 02)* + (A3 — 03)°
subject to the constraint
ggs = 01 + 03.

The formulae (5.67) for oy,09,04 are directly obtained from solving this
minimization problem. (]

Remark 5.29. In the preceding theorem, for a symmetric matrix F that does not
satisfy the conditions \y > 0 and N3 < 0, one chooses N} = max{A,.0} and
4 = min{ Ay, 0} prior to applying the above theorem.

Finally, we outline an eigenvalue-decomposition algorithm, Algorithm 5.3, for
estimating 3-D velocity from optical flows of eight points, which serves as a
continuous counterpart of the eight-point algorithm given in Section 5.2.

Remark 5.30. Since both E. —E € &/ satisfy the same set of continuous epipo-
lar constraints, both (w,£v) are possible solutions for the given set of optical
flow vectors. However, as in the discrete case, one can get rid of the ambiguous
solution by enforcing the positive depth constraint (Exercise 5.11).

In situations where the motion of the camera is partially constrained, the above
linear algorithm can be further simplified. The following example illustrates such
a scenario.

Example 531 (Constrained motion estimation). This example shows how to utilize
constraints on motion to be estimated in order to simplify the proposed linear motion es-
timation algorithm in the continuous case. Let g(t) € SE(3) represent the position and
orientation-of an aircraft relative to the spatial frame; the inputs w1, wa, wa € R stand for
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Algorithm 5.3 (The continuous eight-point algorithm).

For a given set of images and optical flow vectors (27, u), j = 1,2, ..., n, this algorithm
finds (w.v) € SE(3) that solves
wWoe! + 2 Tota’ =0, j=1.2....,n.

1. Estimate the essential vector
Define a matrix X € R™*Y whose jth row is constructed from @’ and u’ as in
(5.64). Use the SVD to find the vector B* € B such that X2° = 0: X = Uy Zx Vy
and E° = Vx(:,9). Recover the vector vy € §? from the first three entries of B°
and a symmetric matrix s € B°*? from the remaining six entries as in (5.63).
Multiply E* with a scalar such that the vector vp becomes of unit norm.

2. Recover the symmetric epipolar component
Find the eigenvalue decomposition of the symmetric matrix s:

o i— l"| diag{)q 3 /\2. /\3 }V!T.

with Ay > Az > As. Project the symmetric matrix s onto the symmetric epipolar
space S. We then have the new s = Vidiag{o1,02,0a} VIT with

2M 4+ A — A3 A1 42X+ Ay 2ha + Ao — Ay
o1 = , 02 = o e,
3 3 o
3. Recover the velocity from the symmetric epipolar component
Define
A — o1 — 03, A 2 U-.
6 = arccos(—oz/N), 0 € [0,7].

LetV = ViRT (& - Z) € SO(3) and U = —V Ry (#) € O(3). Then the four

2

possible 3-D velocities corresponding (o the matrix s are given by
URz(£3)E2U", ©=VRz(£5)SiV7,
VRz(£3)E\VT, 8=URz(+3)5:U",

where X, = diag{\, A.0} and ¥, = diag{1, 1,0}.

4. Recover velocity from the continuous essential matrix
From the four velocities recovered from the matrix s in step 3, choose the pair
(w®,v*) that satisfies

=) E)
Il

v""vp = max{v{ vo}.
)

Then the estimated 3-D velocity (w, v) with w € R? and v € §7 is given by

Hli= . =i

the rates of the rotation about the axes of the aircraft, and v; € R is the velocity of the air-
craft. Using the standard homogeneous representation for g (see Chapter 2), the kinematic
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equations of the aircraft motion are given by

0 —g o U1
I - (735 0 —ly 0
R e R ] s

0 0 0 0

where w) stands for pitch rate, ws for roll rate, ws for yaw rate, and vy for the velocity of
the aircraft. Then the 3-D velocity (w, v) in the continuous epipolar constraint (5.52) has
the form w = [w;. ws, wg]T, v = [v1,0, (]]T. For Algorithm 5.3, we have extra constraints
on the symmetric matrix s = (&7 + 7@): $1 = s5 = 0 and s5 = s6. Then there are
only four different essential parameters left to determine, and we can redefine the motion
parameter vector E € B' to be E* = [vy, 52, 53, 54]7. Then the measurement vector
a € R' is given by a = [ay — u2z.2xy. 2x2,y* + 2*)". The continuous epipolar
constraint can then be rewritten as

aTE* = 0.

II' we define the matrix X from a as in (5.65), the matrix X7 X is a 4 x 4 matrix rather than
a 9 x 9. For estimating the velocity (w: ), the dimension of the problem is then reduced
from nine to four. In this special case, the minimum number of optical flow measurements
needed to guarantee a unique solution of £ is reduced to four instead of eight. Further-
more, the symmetric matrix s recovered from ££° is automatically in the space S, and the
remaining steps of the algorithm can thus be dramatically simplified. From this simplificd
algorithm, the angular velocity w = [wy,wa, ws]” can be fully recovered from the images.
The velocity information can then be used for controlling the aircraft. ™

As in the discrete case, the linear algorithm proposed above is not optimal, since
it does not enforce the structure of the parameter space during the minimization.
Therefore, the recovered velocity does not necessarily minimize the originally
chosen error function || XE*(w, v)||* on the space &.

Additionally, as in the discrete case, we have to assume that translation is not
zero. If the motion is purely rotational, then one can prove that there are infinitely
many solutions (o the epipolar constraint-related equations. We leave this as an
exercise to the reader.

5.4.4 Euclidean constraints and structure reconstruction

As in the discrete case, the purpose of exploiting Euclidean constraints is to re-
construct the scales of the motion and structure. From the above linear algorithm,
we know that we can recover the linear velocity v only up to an arbitrary scalar
factor. Without loss of generality, we may assume that the velocity of the camera
motion to be (w, nv) with ||v|| = 1 and 5 € R. By now, only the scale factor 7 is
unknown. Substituting X (£) = A(#)a(¢) into the equation

X(t) =0X(t) +m(t),

we obtain for the image @’ of each pointp/ € B3, j = 1,2.....n,

Nad + Nal =5(NMal) +qv & Nad + M(@! —5z') — v = 0. (5.70)
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As one may expect, in the continuous case, the scale information is then encoded
in A, A for the location of the 3-D point, and 1 € R for the linear velocity v.
Knowing z. &.w, and v, we see that these constraints are all linear in \/, ;\-ﬂ 1/
j < n,and 7. Also, if 27,1 < j < n are linearly independent of v, i.e. the feature
points do not line up with the direction of translation, it can be shown that these
linear constraints are not degenerate; hence the unknown scales are determined
up to a universal scalar factor. We may then arrange all the unknown scalars into
a single vector X:

X =AN0% L AR 20 DB eiRerE

For n optical flow vectors, X is a (2n + 1)-dimensional vector. (5.70) gives 3n
(scalar) linear equations. The problem of solving X from (5.70) is usually over
determined. It is easy to check that in the absence of noise the set of equations
given by (5.70) uniquely determines X if the confi guration is noncritical. We can
therefore write all the equations in the matrix form

MX=0.

with M € R3**(7+1) 3 matrix depending on w, v, and {(27,4’)}"_,. Then,
in the presence of noise, the linear least-squares estimate of X is simply the
eigenvector of M7 M corresponding to the smallest eigenvalue.

Notice that the time derivative of the scales {\}7_; can also be estimated.
Suppose we have done the above recovery for a time interval, say (p,¢7). Then
we have the estimate A(f) as a function of time £. But A(t) at each time ¢ is
determined only up to an arbitrary scalar factor. Hence p(t)i(t) is also a valid
estimation for any positive function p(¢) defined on (¢, 7). However, since p(t)
is multiplied by both A(£) and A(#), their ratio

r(t) = A(©)/A()

is independent of the choice of p(t). Notice that < (In\) = A/\. Let the log-
arithm of the structural scale A be y = InA. Then a time-consistent estimation
A(t) needs to satisfy the following ordinary differential equation, which we call
the dynamical scale ODE

y(t) = r(t).

Given y(fo) = yo = In(A(%p)). we solve this ODE and obtain y(¢) for ¢ € [tg. t5].
Then we can recover a consistent scale A(¢) given by

A(t) = exp(y(t)).

Hence (structure and motion) scales estimated at different time instances now are
all relative to the same scale at time #. Therefore, in the continuous case, we are
also able to recover all the scales as functions of time up to a universal scalar
factor. The reader must be aware that the above scheme is only conceptual. In
reality, the ratio function 7(¢) would never be available for every time instant in
[to, t]-
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Universal scale ambiguity

In both the discrete and continuous cases, in principle. the proposed schemes can
reconstruct both the Euclidean structure and motion up to a universal scalar factor.
This ambiguity is intrinsic, since one can scale the entire world up or down with a
scaling factor while all the images obtained remain the same. In all the algorithms
proposed above, this factor is fixed (rather arbitrarily, in fact) by imposing the
translation scale to be 1. In practice, this scale and its unit can also be chosen to
be directly related to some known length, size, distance. or motion of an object in
space.

5.4.5 Continuous homography for a planar scene

In this section, we consider the continuous version of the case that we have studied
in Section 5.3, where all the feature points of interest are lying on a plane P.
Planar scenes are a degenerate case for the discrete epipolar constraint, and also
for the continuous case. Recall that in the continuous scenario, instead of having
image pairs, we measure the image point @ and its optical flow w = &. Other
assumptions are the same as in Section 5.3.

Suppose the camera undergoes a rigid-body motion with body angular and lin-
ear velocities w, v. Then the time derivative of coordinates X € R? of a point p
(with respect to the camera frame) satisfies'

X =0X +u (5.71)

Let N € R? be the surface normal to P (with respect to the camera frame) at time
t. Then, if d(t) > 0 is the distance from the optical center of the camera to the
plane P at time ¢, then

NTX =d & éNTX 1OV X e P, (5.72)
Substituting equation (5.72) into equation (5.71) yields the relation

X=0X+v=0X+ -uéNTX = (Q - 51-;\:"*") X. (5.73)

As in the discrete case, we call the matrix
H= (; + é-'uNT) € R¥*3 (5.74)
the continuous homography matrix. For simplicity. here we use the same sym-

bol H to denote it, and it really is a continuous (or infinitesimal) version of the
(discrete) homography matrix H = R + %TNT studied in Section 5.3.

'“Here, as in previous cases, we assume implicitly that time dependency of X on ¢ is smooth so
that we can take derivatives whenever necessary. However, for simplicity, we drop the dependency of
X on t in the notation X (7).
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Note that the matrix  depends both on the continuous motion paramelers
{w, v} and structure parameters {V, d} that we wish to recover. As in the discrete
case, there is an inherent scale ambiguity in the term —3;?,: in equation (5.74). Thus,
in general, knowing H, one can recover only the ratio of the camera translational
velocity scaled by the distance to the plane.

From the relation

=X, Ax+iu=X, X=HX, (5.75)
we have
A
u=Hz - Jx. (5.76)

This is indeed the continuous version of the planar homography.

5.4.6 Estimating the continuous homography matrix

In order to further eliminate the depth scale A in equation (5.76), multiplying both
sides by the skew-symmetric matrix & € R3*?, we obtain the equation

zHx = Tu. (5.77)

We may call this the continuous homography constraint or the continuous planar
epipolar constraint as a continuous version of the discrete case.
Since this constraint is linear in I7, by stacking the entries of H as

H* = [Hy, H21, Hy, Hyo, Hoo, Hyp, Hyg, Hos, Hzs]” € R,
we may rewrite (5.77) as
aTH® = Zu,

where @ € R%3 is the Kronecker product  ® Z. However, since the skew-
symmeltric-matrix 2 is only of rank 2, the equation imposes only two constraints

on the entries of H. Given a set of n image point and velocity pairs {(z/, u/) Y

of points on the plane, we may stack all equations a/? H® = ziui,j =
1,2,...,n, into a single equation
XH* =B, (5.78)
o AV S
where X = [al,A..,a“]T e R¥™*% and B =~ [(mlu‘)T,,“,‘(mjuJ)i} =
Rin,

In order to solve uniquely (up to a scalar factor) for H®, we must have
rank(X) = 8. Since each pair of image points gives two constraints, we expect
that at least four optical flow pairs would be necessary for a unique estimate of H
(up to a scalar factor). In analogy with the discrete case, we have the following
statement. the proof of which we leave to the reader as a linear-algebra exercise.
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Proposition 5.32 (Four-point continuous homography). We have rank(Yx) = 8
if and only if there exists a set of four points (out of the n) such that any three of
them are not collinear; i.e. they are in general configuration in the plane.

Then, if optical flow at more than four points in general configuration in the
plane is given, using linear least-squares techniques, equation (5.78) can be used
to recover H* up to one dimension, since X has a one-dimensional null space. That
is, we can recover H;, = H —&H g, where H, corresponds to the minimum-norm
linear least-squares estimate of H solving min ||[XH*® — B||?, and H corresponds
to a vector in null(X) and £ € I is an unknown scalar factor.

By inspection of equation (5.77) one can see that Hy = I, since Zlx = T =
0. Then we have

H=Hp + €I (5.79)

Thus, in order to recover H, we need only to identify the unknown £. So far, we
have not considered the special structure of the matrix /. Next, we give con-
straints imposed by the structure of H that will allow us to identity £, and thus
uniquely recover H.

Lemma 5.33. Suppose u.v € R, and |[u||* = ||v||?* = a. If u # v, the matrix
D = w’ + vu” € B¥*3 has eigenvalues {\y, 0, A3 }. where Ay > 0, and
Ag < 0. Ifu = %, the matrix D has eigenvalues {+2a,0,0}.

Proof. Let B = u'v. If u # +v, we have —a < 3 < a. We can solve the
eigenvalues and eigenvectors of ) by

Du+v) = (f+a)(ut+v),
Duwsxcy) = 10,
Du—v) = (8—a)(u—v).

Clearly, Ay = (8+«a) > 0and A3 = — a < 0. It is easy to check the conditions
on D when u = *u. O

Lemma 5.34 (Normalization of the continuous homography matrix). Given
the Hy, part of a continuous planar homography matrix of the form H = H; +£1,
we have

1 s
£E= —§A,'2(H;, + HY), (5.80)

where vo(Hy + H]') € R is the second-largest eigenvalue of Hy + HJ .

Proof. In this proof, we will work with sorted eigenvalues; that is, if { A1, Ao, A3}
are eigenvalues of some matrix, then A\; > As > Az. If the points are not in gen-
eral configuration, then rank(X) < 7. and the problem is under constrained. Now
suppose the points are in general configuration. Then by least-squares estimation
we may recover H; = H — &I for some unknown £ € R. By Lemma 5.33,
H + HT = LuNT + LNoT has eigenvalues {A;, X2, A3}, where \; > 0,
Az = 0, and A3 < 0. So compute the eigenvalues of Hy, + HL and denote them
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by {7v1.72,73}- Since we have H = Hy, + £I, then \; = 4; + 2€, fori = 1,2, 3.
Since we must have Ay = 0, we have £ = —14,. O

Therefore, knowing I, we can fully recover the continuous homography
matrix as H = Hy, — 17.1.

5.4.7 Decomposing the continuous homography matrix

We now address the task of decomposing the recovered H = & + - LyNT into its
motion and structure parameters {w, 4, N }. The following consr.ructwe proof pro-
vides an algebraic technique for the recovery of motion and structure parameters.

Theorem 5.35 (Decomposition of continuous homography matrix). Given a
matrix H € R**3 in the form H = & + JuNT, one can recover the motion and
structure parameters {0, ﬁ'r;, N} up to at most two physically possible solutions.
There is a unique solution if v = 0, v x N = 0, or e3 v = 0, where e3 = (0,0, 1]
is the optical axis.

Proof. Compute the eigenvalue/eigenvector pairs of H + H” and denote them
by {Ai, ui}, 2 = 1,2,3. If \; = 0 forz = 1,2,3, then we have v = 0 and
@ = H. In this case we cannot recover the normal of the plane N, Otherwise,
if A1 > 0,and A3 < 0, then we have v x N # 0. Let a = |v/d| > 0, let
i =wv/\/aand N = \/aN, and let § = 3T N. According to Lemma 5.33, the
cigenvalue/cigenvector pairs of H + H7 are given by

Al=08+a>0. Uy = |!!!+‘V|| (1r -+ f\r)

A=0F—-a<l, Uy = —-ar

(5.81)

[EE Nil ( N)

Then a = £(A; — Ag). Itis easy to check that || + N|2 =2\, |5 - N|]?2 =
—2A3. Together with (5.81). we have two solutions (due to the two possible signs
for usz):

g8, = %(\/ 220 w1 + vV —2M '11-3)_. s =

b=

3 (V2A uy — V=223 u3),

()

_f\,r] =—1 %('\fmul —- \/jfgug), 72 = 5(\/5_):;'&'1 + \/_2—)\3'“’3)7
1 = H-uNT, e = CH=p NI

In the presence of noise, the estimate of & = H — #N” is not necessarily an
element in so(3). In algorithms, one may take its skew-symmetric part,

o Ll = o

G=3 ((H _§NT) - (H - @NT)T) .

There is another sign ambiguity, since (—%)(—N)?T = oN7T. This sign am-
biguity leads to a total of four possible solutions for decomposing H back to
{®. Jv, N} given in Table 5.2.
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il i wed 1 = 1

Fi U1 = \/at'l i V3 = = U1
Solution1 | Ny = %N 1 Solution3 | N3 = —N;

Q]_ = H = 'f’] iViP {:}3 = i::’l

Lo = e L = iErsy

JU2 = Javs 0 = —Sta
Solution2 | Ny = %I\TQ Solutiond | vy = —Ns

6}2 = H— 'E'Q JTV;I :}; = 1'32

Table 5.2. Four solutions for continuous planar homography decomposition. Here o is
computed as before as v = L(A; — \3).

In order to reduce the number of physically possible solutions, we impose the
positive depth constraint: since the camera can only see points that are in front
of it, we must have NTe3 > (. Therefore, if solution 1 is the correct one. this
constraint will eliminate solution 3 as being physically impossible. If v”'es # 0,
one of solutions 2 or 4 will be eliminated, whereas if v7e; = 0, both solutions
2 and 4 will be eliminated. For the case that v x N = 0, it is easy to see that
solutions 1 and 2 are equivalent, and that imposing the positive depth constraint
leads to a unique solution. ]

Despite the fact that as in the discrete case, there is a close relationship between
the continuous epipolar constraint and continuous homography. we will not de-
velop the details here. Basic intuition and necessary technical tools have already
been established in this chapter, and at this point interested readers may finish that
part of the story with ease, or more broadly, apply these techniques to solve other
special problems that one may encounter in real-world applications.

We summarize Sections 5.4.6 and 5.4.7 by presenting the continuous four-point
Algorithm 5.4 for motion estimation from a planar scene.

5.5 Summary

Given corresponding points in two images (2, @2) of a point p. or, in continuous
time, optical flow (¢, &), we summarize the constraints and relations between the
image data and the unknown motion parameters in Table 5.3.

Despite the similarity between the discrete and the continuous case, one must
be aware that there are indeed important subtle differences between these two
cases, since the differentiation with respect to time ¢ changes the algebraic relation
between image data and unknown motion parameters.

In the presence of noise, the motion recovery problem in general becomes a
problem of minimizing a cost function associated with statistical optimality or
geometric error criteria subject to the above constraints. Once the camera motion
is recovered, an overall 3-D reconstruction of both the camera motion and scene
structure can be obtained up to a global scaling factor.
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Algorithm 5.4 (The continuous four-point algorithm for a planar scene).

For a given set of optical flow vectors (w?, 27), j = 1,2,...,n (n > 4), of points on a
plane NT X = d, this algorithm finds {@, %v._ N} that solves

P 1 - . —_— :
ai (w-&-a'uﬂfr)f::c-?u’, 7 =C1828 e

1. Compute a first approximation of the continuous homography matrix

Construct the matrix X = [a’,az....,a"]"‘ e R¥#0.B =
1 b TIT & B*™ from the optical flow (u’,@’), where
@ =27 @xi € R andb = @u € R’ Find the vector Hi € R’
as

Hi =X'B,

Oxin

where X' € |
matrix H.

is the pseudo-inverse of X. Unstack /1] to obtain the 3 x 3

2

. Normalization of the continuous homography matrix
Compute the eigenvalue values {71, 72,73} of the matrix A} + H . and normalize
it as

1
H=H, - 5"1‘:1<

3. Decomposition of the continuous homography matrix
Compute the eigenvalue decomposition of
HT + H =UAU"

and compute the four solutions for a decomposition {&, Jv. N'} as in the proof of
Theorem 5.35. Select the two physically possible ones by imposing the positive
depth constraint N Tes > 0.

5.6 Exercises

-

Exercise 5.1 (Linear equation). Solve # € R" from the linear equation
Ar =5,

where A € R™*" and b € E™. In terms of conditions on the matrix A and vector b,
describe when a solution exists and when it is unique. In case the solution is not unique,
describe the entire solution set.

Exercise 5.2 (Properties of skew-symmetric matrices).

1. Prove Lemma 5.4.

2. Prove Lemma 5.24.
Exercise 5.3 (Skew-symmetric matrix continued). Given a vector 7' € R? with unit
length, i.e. ||T'|| = 1, show that:

1. The identity holds: TTT = TTT = I — TTT (note that the superscript T stands
for matrix transpose).
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“ Epipolar constraint l (Planar) homography }

Discrete motion mgfﬂml = z3:(R + %T;’VT o =0
Matrices E=TR H=R+ %I‘NT
Relation e R3, H=TTE + TvT
Continuous motion || "Gtz +u'vx =0 | (@ + LoNT)z = az

oo+ . =
Matrices E= 3l Ij o) H=5+ 'l—f-:!_?\"f

(4

Linear algorithms 8 points 4 points
Decomposition 1 solution 2 solutions

Table 5.3. Here the number of points is required by corresponding linear algorithms, and we
count only the number of physically possible solutions from corresponding decomposition
algorithms after applying the positive depth constraint.

2. Explain the effect of multiplying a vector u € B” by the matrix P = I — 77",
Show that P™ = P for any integer n.

3. Show that T"TT = TTTT = T. Explain geometrically why this is truc.
4. How do the above statements need to be changed if the vector T is not of unit
length?
Exercise 5.4 (A rank condition for the epipolar constraint). Show that m{f*ﬁ‘wl =if}
if and only if

rank [Z2 Ry, @:2T) < L.

Exercise 5.5 (Parallel epipolar lines). Explain under what conditions the family of epipo-
lar lines in at least one of the image planes will be parallel to each other. Where is the
corresponding epipole (in terms of its homogeneous coordinates)?

Exercise 5.6 (Essential matrix for planar motion). Suppose we know that the camera
always moves on a plane, say the XY plane, Show that:

I. The essential matrix £ = T R is of the special form

0 0 a
E=10 0 b|l, abecdeR. (5.82)
c d 0

2, Without using the SVD-based decomposition introduced in this chapter, find a
solution to (R, T') in terms of a, b, ¢, d.

Exercise 5.7 (Rectified essential matrix). Suppose that using the linear algorithm, you
obtain an essential matrix /7 of the form

0 0 0
=080 al, aekR. (5.83)
0 —a 0



5.6. Exercises 161

What type of motion (R. T') does the camera undergo? How many solutions exist exactly?

Exercise 5.8 (Triangulation). Given two images @1, @2 of a point p together with the
relative camera motion (R, 7"), Xo = RX, +T"

1. express the depth of p with respect to the first image. i.e. A1 in terms of &1, @2, and
(R, T);

2. express Lhe depth of p with respect to the second image, i.e. As in terms of @1, @4,
and (R, T).

Exercise 5.9 (Rotational motion). Assume that the camera undergoes pure rotational
motion; i.e. it rotates around its center. Let R € SO(3) be the rotation of the camera and
w € so(3) be the angular velocity. Show that in this case, we have:

1. discrete case: 2 TRz, =0, VT e BY;

2. continuous case: &' wix +u  ve =0, Yve R,

Exercise 5.10 (Projection onto O(3)). Given an arbitrary 3 x 3 matrix M & R**®
with positive singular values, find the orthogonal matrix B € O(3) such that the error
| R — M||5 is minimized. Is the solution unique? Note: Here we allow det(R) = 1.

Exercise 5.11 (Four motions related to an epipolar constraint). Suppose £ = TR is
a solution to the epipolar constraint 4 Fa:, = 0. Then —F is also an essential matrix,
which nhviously satisfies the same epipolar constraint (for given corresponding images).

. Explain geometrically how these four motions are related. [Hint: Consider a pure
translation case. If R is a rotation about T" by an angle 7, then TR = —T, which is
in fact the rwisted pair ambiguity.]

2. Show that in general, for three out of the four solutions, the equation Aams =
M Ray + T will yield either negative Ay or negative A2 or both. Hence only one
solution satisfies the positive depth constraint.

Exercise 5.12 (Geometric distance to an epipolar line). Given two image points @, &2
with respect to camera frames with their relative motion (R, T'), show that the geometric
distance d» defined in Figure 5.7 is given by the formula

d2 {322 TR:U:)
5 HE_;TRE’}_ H' .
— T 3
where ez = [0,0,1]" € R°.

Exercise 5.13 (A six-point algorithm). In this exercise. we show how to use some of
the (algebraic) structure of the essential matrix to reduce the number of matched pairs of
points from 8 1o 6.

1. Show that if a matrix E' is an esseniial mairix, then it satisfies the identity
EE'E = %uace(EE")E.

2. Show that the dimension of the space of matrices {F}  B**? that satisfy the
epipolar constraints

(@) Fzl =0, j=1,2,...,6,
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is three. Hence the essential matrix E' can be expressed as a linear combination
E = a1 I + a2 I3 + as Fs for some linearly independent matrices I, 5, F5 that
satisty the above equations.

(951

To further determine the coefficients a1, a2, a3, show that the identity in (a) gives
nine scalar equations linearly in the nine unknowns {ajalof}, i +j + &k = 3.
0 <4, j, k < 3. (Why nine?) Hence, the essential matrix F can be determined from
six pairs of matched points.

Exercise 5.14 (Critical surfaces). To have a unique solution (up to a scalar factor), it is
very important for the points considered in the above six-point or eight-point algorithms to
be in general position. If a (dense) set of points whose images allow at least two distinct
essential matrices, we say that they are “critical,” Let X £ B® be coordinates of such a
point and (/2, 7") be the motion of a camera. Let ¢y ~ X andxz2 ~ (RX 4+ T) be two
images of the point.

1. Show that if
(RX + T)TT'R'X =0,
then

ey TRey =0, 23T'R'z: =0.

[on]

. Show that for points X & B? that satisfy the equation (RX + T)Y'T'R'X =0,
their homogeneous coordinates X = [X, 1]¥ € B* satisfy the quadratic equation

= ST 1ot 1Tt T e -
xT|R'T R’;LR,T dfhe U S X =0

T'T'R 0
This quadratic surface is denoted by €'y C R® and is called a critical surface. So no
matter how many points one chooses on such a surface, their two corresponding im-
ages always satisfy epipolar constraints for at least two different essential matrices.

3. Symmetrically, points defined by the equation (R'X + T ’]T’f' RX = 0 will have
similar properties. This gives another quadratic surface,

. o1 |RTTR+RTTTR' RTTTT'| .
CJ‘_}: XT T"’rfR 0 X =)

Argue that a set of points on the surface 'y observed from two vantage points
related by (/¢, T') could be interpreted as a corresponding set of points on the surface
('3 observed from two vantage points related by (R', T").

Exercise 5.15 (Estimation of the homography). We say that two images are related by
a homography if the homogeneous coordinates of the two images @1, @2 of every point
satisly

Ty ~ Haxy

for some nonsingular matrix # € E**%. Show that in general one needs four pairs of
(1. @) to determine the matrix H (up to a scalar factor).
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Exercise 5.16 Under a homography # € B**? from R* to B, a standard unit square
with the homogeneous coordinates for the four corners

(0,0,1), (1,0,1), (1,1,1), (0,1,1)
is mapped to
(6,5,1), (4.3.1), (6,4.5,1), (10,8,1),
respectively. Determine the matrix H with its last entry [33 normalized to 1.

Exercise 5.17 (Epipolar line homography from an essential matrix). From the geomet-
ric interpretation of epipolar lines in Figure 5.2, we know that there is a one-lo-one map
between the family of epipolar lines {£, } in the first image plane (through the epipole e )
and the family of epipolar lines {£2} in the second. Suppose that the essential matrix £
is known. Show that this map is in fact a homography. That is, there exists a nonsingular
matrix H € R**? such that

£y ~ HEy

for any pair of corresponding epipolar lines (£;, £2). Find an explicit form for H in terms
of E.

Exercise 5.18 (Homography with respect to the second camera frame). In the chapter,
we have learned that for a transformation X2 = RX, + T on a plane N"X; = 1
(expressed in the first camera frame), we have a homography 2 = R + T'N such that
@y ~ Haq relates the two images of the plane.

1. Now switch roles of the first and the second camera frames and show that the new
homography matrix becomes
= =R o T
o =L i rl T
H = (R + —L+NTRTTN R ) ; (5.84)
2. What is the relationship between H and H? Provide a formal proof to your answer.
Explain why this should be expected.

Exercise 5.19 (Two physically possible solutions for the homography decomposition).
Let us study in the nature of the two physically possible solutions for the homography
decomposition. Without loss of generality, suppose that the true homography matrix is
H = I +ab” with ||a|| = 1.

I. Show that R’ = —I + 2aa” is a rotation matrix.

2. Show that H = R’ + (—a)(b+ 2a)7 is equal to —H.

3. Since (H')" H' = HT H, conclude that both {7, a,b} and {R', —a, (b + 2a)} are
solutions from the homography decomposition of H.

4. Argue that, under certain conditions on the relationship between a and b, the second
solution is also physically possible.

5. What is the geometric relationship between these two solutions? Draw a figure to
. illustrate your answer.

Exercise 5.20 (Various expressions for the image motion field). In the continuous-
motion case, suppose that the camera motion is (w,v), and ¥ = @ is the velocity of
the image « of a point X = [X, Y, Z]7 in space. Show that;
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1. For a spherical perspective projection; i.e. A = || X|. we have
u=—Zw+ ;a%. (5.85)
2. For a planar perspective projection; i.e. A = Z, we have
u=(—ZLtze;d)w+ %(I — xeq v, (5.86)

or in coordinates,

I 2
€T 23 _xy H i _y i :E 1 0 — : 1
L’"} ¥ {_(1 +.Uz) Ty T ] Sty A [0 1 _yjl . (5.87)

3. Show that in the planar perspective case, equation (5.76) is equivalent to
w= (I —xes )Hz. (5.88)

From this equation, discuss under what conditions the motion ficld for a planar
scene is an affine function of the image coordinates; i.e.

2 W="A, (5.89)
where A is a constant 3 x 3 affine matrix that does not depend on the image point
a7

Exercise 5.21 (Programming: implementation of (discrete) eight-point algorithm).
Implement a version of the three-step pose estimation algorithm for two views. Your
Matlab code should be responsible for

e Initialization: Generate a set of n (> 8) 3-D points; generate a rigid-body motion
(R, T) between two camera frames and project (the coordinates of) the points (rel-
ative to the camera frame) onto the image plane correctly. Here you may assume
that the focal length is 1. This step will give you corresponding images as input to
the algorithm.

® Motion Recovery: using the corresponding images and the algorithm to compute
the motion (R, 1") and compare it to the ground truth (R, T').

After you get the correct answer from the above steps. here are a few suggestions for you
to try with the algorithm (or improve it):

e A more realistic way to generate these 3-D points is to make sure that they are all
indeed “in front of” the image plane before and after the camera moves.

e Systematically add some noise to the projected images and sce how the algorithm
responds. Try different camera motions and different layouts of the points in 3-D.

e Finally, to make the algorithm fail. take all the 3-D points from some plane in front
of the camera, Run the program and see what you get (especially with some noise
on the images).

Exercise 522 (Programming: implementation of the continuous eight-point algo-
rithm). Implement a version of the four-step velocity estimation algorithm for optical
flow.
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e Initialization: Choose a set of n (= 8) 3-D points and a rigid-body velocity (w,v).
Correctly obtain the image @ and compute the image velocity w = @. You nced to
figure out how to compute w from (w.v) and X . Here you may assume that the
focal length is 1. This step will give you images and their velocities as inpul Lo the
algorithm.

e Motion Recovery: Use the algorithm to compute the motion (&, #) and compare il
to the ground truth (w, v).

5.A Optimization subject to the epipolar constraint

In this appendix, we will study the problem of minimizing the reprojection error
(5.23) subject to the fact that the underlying unknowns must satisfy the epipolar
constraint. This yields an optimal estimate, in the sense of least-squares, of camera
motion between the two views.

Constraint elimination by Lagrange multipliers

Our goal here is, given &/, i = 1,2, j = 1,2,...,n, to find

n 2
(z*,R*,T*) = argmin ¢(z, R. T) = Z Z l&! — 2|13
= =
subject to
o' TRz) =0, z=iTe3=1, xilez=1, j=12,...,n. (590)
Using Lagrange multipliers (Appendix C) A,~7, 77, we can convert the above
minimization problem to an unconstrained minimization problem over £ €

SO(3),T € §%, ], @}, M.+ 7. Consider the Lagrangian function associated
with this constrained optimization problem |

n
min Z \|& —d ||+ | & —ad | P+ N 2T TR ++7 (2l  es—1)+1 (wh T es—1).
j=1

(5.91)
A necessary condition for the existence of a minimum is VL = 0, where the
derivative is taken with respect to ], @3, M, 77, 77 Setting the derivative with re-
spect to the Lagrange multipliers M. v/, 7/ to zero returns the equality constraints,
and setting the derivative with respect to 7, 3} to zero yields

& —&l) + MRTT ) +17e3 =0,

& — xl) + NTRx! +nes = 0.
Simplifying these equations by premultiplying both by the matrix £2 €3, we obtain
x z] — NI RT T 2],

J
1 . . e 5.92
z) = & - iMele, TR, &)
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Together with mngR:c{ = (. we may solve for the Lagrange multipliers A7 in
different expressions,**
2zl TR + ;i:ffﬁ?a;i)

M = —
T RTTTel e, TRa) + ai  TReTesRT T )

(5.93)

or

; J"T'-A 7 ‘)‘f’m j _
e TRy £ TRy (5.94)
] R’TI” 3TRe! ) TR'“TA RTTTx)
Substituting (5.92) and (5.93) into the least-squares cost function of equation
(5.91), we obtain

(:t:ijRij &) T Ra’)?

e R T = (5.95)
( Z |esT R} |2 + ||lwj" TRET |2
If one uses instead (5.92) and {5‘94}. one gels
B (T o )2 1T pady2
é(z,R,T) = (s 0w (5 THEE) (5.96)

“ |&sTRz]|?  ||<iT TRET|2

These expressions for ¢ can ﬁna[ly be minimized with respect to (R, T') as well
as & = {x]}. In doing so, however, one has to make sure that the unknwns are
constrained so that R € SO(3) and T € §? are explicitly enforced. In Appendix
C we discuss methods for minimizing a function with unknowns in spaces like
SO(3) x S, that can be used to minimize ¢(z, R. T) once @ is known. Since @
is not known, one can set up an alternating minimization scheme where an initial
approximation of @ is used to estimate an approximation of (R. T'), which is used,
in turn, to update the estimates of @. It can be shown that each such iteraticn
decreases the cost function, and therefore convergence to a local extremum is
guaranteed, since the cost function is bounded below by zero. The overall process
is described in Algorithm 5.5. As we mentioned before, this is equivalent to the
so-called bundle adjustment for the two-view case, that is the direct minimization
of the reprojection error with respect to all unknowns. Equivalence is intended in
the sense that, at the optimum, the two solutions coincide.

Structure triangulation

In step 3 of Algorithm 5.5, for each pair of images (&7, T») and a fixed (R, 7).
a1 and @y can be computed by minimizing the same reprojection error function
d(x) = ||@) —@1||* + ||@2 — 22|| for each pair of image points. Assuming that
the notation is the same as in Figure 5.9, let £5 € R? be the normal vector (of unit
length) to the epipolar plane spanned by (x4, e2).* Given such an £5, z; and x»

2Since we have multiple equations to solve for one unknown A7, the redundancy gives rise to
different expressions depending on which equation in (5.92) is used.

238, can also be interpreted as the coimage of the epipolar line in the second image, but here we do
not use that interpretation.
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Algorithm 5.5 (Optimal triangulation).

1. Initialization
Initialize =1 and @2 as &1 and &2, respectively. Also initialize (R, T") with the pose
initialized by the solution from the eight-point linear algorithm.

2. Pose estimation
For 1 and @2 computed from the previous step. update (/2. 7") by minimizing the
reprojection error ¢ (@, [, T') given in its unconstrained form (5.95) or (5.96).

3. Structure triangulation
For each image pair (@1, &2) and (/2, T') computed from the previous step, solve for
@ and 23 that minimize the reprojection error ¢(x) = — & |2+ |l — &2 .

4. Return to step 2 until the decrement in the value of ¢ is below a threshold.

are determined by

230, €] el Efe 9££€$'>'|'E£uf‘
ey () = 22 ”LTLT 158 @y(ly) = 2222 2 =,
€5l bies eq by boey

where £, = RT#£; € R?. Then the distance can be explicitly expressed as

; o AR, Lee
. 2., 14 2 Fall2 4 2222 4 11 (12 e ol 2L
To — T+ Ty — 2 — b1 EL )
|22 — z2[|" + [|1 — @4 ll&2( + TBe, + |1 [|” A inTH
where A, B, C, D € R**? are defined as functions of (&, &2):
A = I—(a2@a6és + &3+ E332), B= %i" (5.97)

C = I-(&3&@Tel +&i63+es3,), D=¢ele
Then the problem of finding the optimal &7 and @3 becomes a problem of find-
ing the normal vector £5 that minimizes the function of a sum of two singular
Rayleigh quotients: ]
; g €Al  ¢JRCRTE,
min V() = 2—2+-2 2,
T T=0,£T¢3=1 ¢, Bl; €, RDRTY,

(5.98)

This is an optimization problem on the unit circle S' in the plane orthogo-
nal to the (epipole) vector es(~ T).2* If Ny, N, € R? are vectors such that
(€2, N1, N») form an orthonormal basis of R? in the second camera frame, then
€5 = cos(f)Ny + sin(f) N, with # € R. We need only to find #* that minimizes
the function V'(£2(8)). From the geometric interpretation of the optimal solution,
we also know that the global minimum 6~ should lie between two values: f/; and
f5 such that £5(#,) and £2(f2) correspond to normal vectors of the two planes

**Therefore, geometrically, motion and structure [CCO\E[‘)’ from n pairs of image correspondences
is really an optimization problem on the space SO(3) x §2 x T", where T™ is an n-torus, i.c. an
n-fold product of 1.
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spanned by (Z». es) and (R, e3), respectively.” The problem now becomes a
simple bounded minimization problem for a scalar function (in #) and can be ef-
ficiently solved using standard optimization routines (such as “fmin™ in Matlab
or Newton’s algorithm, described in Appendix C).

Historical notes

The origins of epipolar geometry can be dated back as early as the mid nineteenth
century and appeared in the work of Hesse on studying the two-view geometry
using seven points (see [Maybank and Faugeras. 1992] and references therein).
Kruppa proved in 1913 that five points in general position are all one needs to
solve the two-view problem up to a finite number of solutions [Kruppa, 1913].
Kruppa’s proof was later improved in the work of [Demazure, 1988] where the
actual number of solutions was proven, with a simpler proof given later by
[Heyden and Sparr, 1999]. A constructive proof can be found in [Philip, 1996],
and in particular, a linear algorithm is provided if there are six matched points,
from which Exercise 5.13 was constructed. A more efficient five-point algo-
rithm that enables real-time implementation has been recently implemented by
[ Nistér, 2003].

The eight-point and four-point algorithms

To our knowledge, the epipolar constraint first appeared in [Thompson, 1959].
The (discrete) eight-point linear algorithm introduced in this chapter is due to
the work of [Longuet-Higgins, 1981] and [Huang and Faugeras, 1989], which
sparked a wide interest in the structure from motion problem in computer
vision and led to the development of numerous linear and nonlinear algo-
rithms for motion estimation from two views. Early work on these subjects
can be found in the books or manuscripts of [Faugeras, 1993, Kanatani, 1993b,
Maybank, 1993, Weng et al., 1993b]. An improvement of the eight-point algo-
rithm based on normalizing image coordinates was later given by [Hartley, 1997].
[Soatto et al., 1996] studied further the dynamical aspect of epipolar geometry
and designed a Kalman filter on the manifold of essential matrices for dynamical
motion estimation. We will study Kalman-filter-based approaches in Chapter 12.

The homography (discrete or continuous) between two images of a planar
scene has been extensively studied and used in the computer vision literature.
Early results on this subject can be found in [Subbarao and Waxman, 1985,
Waxman and Ullman, 1985, Kanatani, 1985, Longuet-Higgins, 1986]. The four-
point algorithm based on decomposing the homography matrix was first given by
[Faugeras and Lustman, 1988]. A thorough discussion on the homography and
the relationships between the two physically possible solutions in Theorem 5.19
can be found in [Weng et al., 1993b] and references therein. This chapter is a very

) (W already satisfy the epipolar constraint, these two planes coincide.
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concise summary and supplement to these early results in computer vision. In
Chapter 9 we will see how the epipolar constraint and homography can be unified
into a single type of constraint.

Critical surfaces

Regarding the criticality or ambiguity of the two-view geometry mentioned be-
fore (such as the critical surfaces), the interested reader may find more details in
[Adiv. 1985, Longuet-Higgins, 1988, Maybank, 1993, Soatto and Brockett, 1998]
or the book of [Faugeras and Luong, 2001]. More discussions on the criticality
and degeneracy in camera calibration and multiple-view reconstruction can be
found in later chapters.

Objective functions for estimating epipolar geometry

Many objective functions have been used in the computer vision literature
for estimating the two-view epipolar geometry, such as “epipolar improve-
ment” [Weng et al., 1993a], “normalized epipolar constraint” [Weng et al., 1993a,
Luong and Faugeras, 1996, Zhang, 1998¢], “minimizing the reprojection error”
[Weng et al., 1993a], and “triangulation” [Hartley and Sturm, 1997]. The method
presented in this chapter follows that of [Ma et al., 2001b].

As discussed in Section 5.A, there is no closed-form solution to an optimal
motion and structure recovery problem if the reprojection error is chosen to be
the objective since the problem involves solving algebraic equations of order
six [Hartley and Sturm, 1997, Ma et al.. 2001b]. The solution is typically found
through iterative numerical schemes such as the ones described in Appendix C. It
has, however, been shown by [Oliensis, 2001] that if one chooses to minimize
the angle (not distance) between the measured & and recovered @, a closed-
form solution is available. Hence, solvability of a reconstruction problem does
depend on the choice of objective function. In the multiple-view setting, min-
imizing reprojection error corresponds to a nonlinear optimization procedure
[Spetsakis and Aloimonos, 1988], often referred to as “bundle adjustment,” which
we will discuss in Chapter 1 1.

The continuous motion case

The search for the continuous counterpart of the cight-point algorithm has
produced many different versions in the computer vision literature due to its
subtle difference from the discrete case. To our knowledge, the first algorithm
was proposed in 1984 by [Zhuang and Haralick, 1984] with a simplified ver-
sion given in [Zhuang et al., 1988]; and a first-order algorithm was given by
[Waxman et al., 1987]. Other algorithms solved for rotation and translation sep-
arately using either numerical optimization techniques [Bruss and Horn, 1983]
or linear subspace methods [Heeger and Jepson, 1992, Jepson and Heeger, 1993].
[Kanatani, 1993a] proposed a linear algorithm reformulating Zhuang’s approach
in terms of essential parameters and twisted flow. See [Tian et al., 1996] for
some experimental comparisons of these methods, while analytical results on the
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sensitivity of two-view geometry can be found in [Daniilidis and Nagel. 1990,
Spetsakis, 1994, Daniilidis and Spetsakis. 1997] and estimation bias study in the
work of [Heeger and Jepson, 1992, Kanatani, 1993b]. [Fermiiller et al., 1997] has
further shown that the distortion induced on the structure from errors in the mo-
tion estimates is governed by the so-called Cremona transformation. The parallel
development of the continuous eight-point algorithm presented in this chapter fol-
lows that of [Ma et al., 2000a], where the interested reader may also find a more
detailed account of related bibliography and history. Besides the linear methods,
a study of the (nonlinear) optimal solutions to the continuous motion case was
given in [Chiuso et al., 2000].
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