
ENGN2911I 2008 | Assignment 3 | Brown University | Due Monday March 31

1 J3DPanelOptimization.java

As in the previous two assignments, you need to implement your code in this class. I am giving you a template
with the user interface shown above. Your implementation may require more parameters and/or different ways of
interacting with those that I defined. Feel free to modify the user interface and class variables to satisfy your needs.
If you find bugs or missing functionality that you cannot fix yourself, please let me know.

The goal of this assignment is to implement four operations: Smoothing with support for soft and hard constraints,
Edge collapse simplification, Adaptive red-blue triangle subdivision, connectivity optimization by edge flipping. If
you structure your code well, you will be able to reuse large portions of the code you wrote in previous assignments.

2 Smoothing

We want to implement Laplacian smoothing and a number of related mesh smothing algorithms. We also want to
be able to impose constraints on some vertex positions. To do so in a consistent manner, with well structured and
modular algorithms, we first show that the Laplacian smoothing step can be explained as the Jacobi iteration for the
following quadratic energy function

E3(x0, x1, x2) =
∑

e=(i,j)

φij ‖xi − xj‖2 (1)

where φij = φji are non-negative scalars, xi = (x0
i , x

1
i , x

2
i)t is the location of the i-th vector in 3D, and the sum is

over all the edges of a mesh with V vertices, E edges, and F faces. However, since the sum of square norms can be
split into three sums, one for each coordinate

E3(x0, x1, x2) = E(x0) + E(x1) + E(x2) =
∑

e=(i,j)

φij (x0
i − x0

j)2 +
∑

e=(i,j)

φij (x1
i − x1

j)2 +
∑

e=(i,j)

φij (x2
i − x2

j)2

and these three sums here are function of independent variables (first, second, and third coordinates), it is sufficient
to consider the one dimensional energy

E(x) =
∑

e=(i,j)

φij (xi − xj)2 (2)

1

ENGN2911I 2008 | Assignment 3 | Brown University | Due Monday March 31

minimizing the original energy is equivalent to minimizing each one of the three independently. That is, we look at
x = (x1, . . . , xV)t as a one dimensional signal defined on the mesh vertices. All the energy functions which we will
consider in this assignment can be split into three independent energy functions of one dimensional vertex signals,
but this is not true in general. In some cases the energy containing the three coordinates of the vertices have to be
used to derive new algorithms without splitting.

2.1 Matrix Formulation

To analyze the problem and to derive new algorithms it is convenient to derive equivalent matrix formulations. We
will actually use both, because our implementations will be based on the formulas with explicit coordinates.

The energy E(x) of equation 2 can be written in matrix form as follows

E(x) = (Lx)tφ(Lx) = xt[LtφL]x = xtAx (3)

where A = [LtφL] is a symmetric non-negative definiteV × V matrix (positive definite in general), L is a E × V
matrix, with one row per edge, and one column per vertex; and φ is a E × E diagonal matrix. For each edge
e = (i, j), the e-th row of L is defined as

Leh =

1 if h = i
−1 if h = j

0 otherwise

so that (Lx)e = (xi − xj). Note that for each edge e = (i, j) = (j, i) we need to choose one of the two vertices as
the one with the 1 in the other with the−1. For example, if i < j then assign 1 to i and−1 to j. The energy function
is independent of these choices. The e-th diagonal element of the matrix φ is φij = φji.

2.2 Derivatives with respect to vectors and matrices

If f(x) is a scalar function of a vector variable x = (x1, . . . , xV)t, we denote the vector of first order derivatives
with respect to the V variables ∂f

∂x . That is

∂f

∂x
=

∂f
∂x1

...
∂f

∂xV

Although we don’t need derivatives with respect to matrix variables, let me mention that if f(M) is a scalar function
of a R× C matrix variable

M =

 m11 · · · m1C
...

. . .
...

mR1 · · · mRC

the R× C matrix of first order derivatives with respect to the V variables is denoted

∂f

∂M
=

∂f

∂m11
· · · ∂f

∂m1C

...
. . .

...
∂f

∂mR1
· · · ∂f

∂mRC

If the functions f(x) or f(M) are vector or matrix functions, then ∂f

∂x and ∂f
∂M can be defined in a consistent manner

as block matrices. For example, if f(x) = x, what is ∂f
∂x ? And what if f(x) = Ax, where A is any matrix with V

columns? More generally, show that the derivative of an inner product of two vector valued functions f(x) and g(x)

∂(f tg)
∂x

=
(
∂f

∂x

)t

g + f t

(
∂g

∂x

)
.

2

ENGN2911I 2008 | Assignment 3 | Brown University | Due Monday March 31

2.3 The Jacobi Iteration

We consider here a quadratic energy function

E(x) = xtAx+ 2btx+ c (4)

where x = (x1, . . . , xV)t is our V -dimensional vector of variables, A is a symmetric positive definite V ×V matrix,
b is a V -dimensional vector, and c is a scalar. Minimizing this energy is the well know Least-Squares (LS) problem.
When the matrix A is positive definite this problem has a global minimum which can be computed in various ways.
On one hand, a necessary condition for an extremum is that all the first derivatives vanish

∂E
∂x

(x̂) = 0 ,

where x̂ is the global minimizer. Using the relation derived above for the derivatives of an inner product of matrices,
and the fact that computing derivatives is a linear operation, we have

∂E
∂x

(x) = 2(Ax+ b) .

It follows that the minimizer is x̂ = −A−1b, however computing it when the number V of variables is large is a
fundamental problem in numerical computations. If the matrix A is only non-negative definite, the minimizer is not
unique. If x is a minimizer, and Ay = 0, then y+x is another minimizer. We care about this because this is the case
with Laplacian smoothing. Most algorithms to solve large and sparse linear systems are iterative. In the case of LS
problems, these descent algorithms are normally descent algorithms, where if xN is the estimate of the minimizer
at time N , the estimate at at time N + 1 is computed as the result of applying a displacement xN+1 = xN + δxN

to the time N estimate in such a way that the energy decreases E(xN+1) ≤ E(xN), and it can be proven that the
sequence of estimates converges to the minimizer. Jacobi is one of the simplest descent algorithms of this kind. To
compute the i-th coordinate δxi of the displacement vector δx, as a function of a current estimate x, we solve the
linear equation

∂E
∂xi

(x) = (x1, . . . , xi + δxi, . . . , xV) = 0

which we regard as a linear equation in the single variable δxi. If we write all these equations together in matrix
form, we get

Ax+Dδx+ b = 0

where D is a V × V diagonal matrix formed with the diagonal elements of the matrix A. Finally, the displacement
vector can be written in matrix form as

δx = −D−1(Ax+ b)

and in coordinates as

δxi = − 1
aii

bj +
V∑

j=1

(aijxj)

Note that in order for these eqautions to be well defined we need aii 6= 0 for all i. Otherwise we would be dividing
by zero. In fact, for the method to converge we actually need more. We need the matrix to be diagonally dominant.
But we will not go into these details here. This condition is satisfied for Laplacian smoothing. In the case of the
energy of equation 3, where A = J tφJ and b = 0, show that

aij =

∑

h∈i? φih if j = i
−φij for each edge e = (i, j)

0 otherwise

3

ENGN2911I 2008 | Assignment 3 | Brown University | Due Monday March 31

where i? is the set of vertices j conncted to i by an edge e = (i, j). Finally, the Jacobi displacement turns out to be
the Laplacian smoothing step

∆xi =
∑
j∈i?

wij(xj − xi)

where wij = φij/φi and φi =
∑

h∈i? φih, as expected. Note that this analysis provides another explanation for the
shrinking problem of Laplacian smoothing: for a positive definite matrixA, x̂ = 0 if b = 0. IfA is only non-negative
definite, any x so that Ax = 0 is a minimizer. In the case of Laplacian smoothin, where the diagonal matrix φ is
non-singular, we have [J tφJ]x = 0 if and only if Jx = 0. In general this only happens for vectors x with all equal
coordinates.

2.4 Implementing FIR Filters With Jacobi Iterations

As in the case of Laplacian smoothing, for any energy function we can implement the λ− µ algorithm, or any other
FIR filter defined by a polynomial transfer function, using the displacement vectors computed in the Jacobi iteration:

xN+1 = xN + λNδx
N

where λ1, λ2, . . . is a properly sequence of displacement factors. If we set λk = λ with 0 < λ < 1 we have the
classical Laplacian smoothing algorithm. If we take λ2k = λ and λ2k+1 = µ with 0 < λ < −µ, we have the λ− µ
algorithm.

2.5 Imposing Hard Constraints

Imposing hard constraints on a subset of the vertices is very easy. If I ⊆ {1, . . . , V } is the subset of vertices to be
constrained, and x̄i is the target location of each contrained vertex, we first make the constrained vertex values equal
to their target values. Then we iterate until the termination criterion is satisfied: 1) compute the displacement vectors
as in the unconstrained case for the unconstrained vertices; 2) displace the unconstrained vertices in the direction of
the displacement vectors.

2.6 Imposing Soft Constraints

Another way to impose constraints is by adding an additional term to the energy function which penalizes the
deviation of constrained vertex values from their target values, such as

E(x) =
∑

e=(i,j)

φij (xi − xj)2 +
∑
i∈I

µi(x̄i − xi)2 (5)

where µi > 0 for i ∈ I . If we also define µi = 0 for i 6∈ I , and µ as the diagonal matrix with µi in the i-th diagonal
position, we can rewrite this energy function in matrix form as

E(x) = xt[LtφL]x+ (x− x̄)tµ(x− x̄) = xtAx+ 2btx+ c (6)

where A = LtφL+ µ, b = −µx̄, and c = x̄tµx̄. The Jacobi displacement is defined as before

δx = −D−1(Ax+ b) = −D−1([LtφL]x+ µ(x− x̄)

Show that in this case we have

aij =

µi +

∑
h∈i? φih if j = i

−φij for each edge e = (i, j)
0 otherwise

4

ENGN2911I 2008 | Assignment 3 | Brown University | Due Monday March 31

and the Jacobi displacement can be written in coordinates as follows

δxi =
µi(x̄i − xi) +

∑
j∈i? φij(xj − xi)

µi + φi

or as an affine combination of the displacement toward the target position and the Laplacian vector

δxi = (1− εi)(x̄i − xi) + εi∆xi

where
εi =

φi

µi + φi
.

In conclusion, this can be implemented as a minor modification of the unconstrained Laplacian smoothing algorithm.
Also, both hard and soft constraints can be applied at the same time. For this we need a partition of the set of vertices
into three subsets: hard constraints, soft constraints, and unconstrained. Target values must be provided for the hard
and soft constraints.

2.7 Other Energy Functions

The main problem with Laplacian smoothing with hard or soft constraints is that mesh smoothness in the neighbor-
hood of constrained vertices cannot be controled. One alternative quadratic energy function which can be used to
address this problem is

E(x) =
V∑

i=1

νi(∆xi)2 (7)

where νi > 0 for i = 1, . . . , V . Again, it is sufficient in this case to consider the one dimensional vertex signal case.
However, using this energy function may create artifacts because there is no control on the edge lengths. A better
approach is to introduce an additional term in the energy function

E(x) =
∑

e=(i,j)

φij (xi − xj)2 +
V∑

i=1

νi(∆xi)2 +
∑
i∈IS

µi(x̄i − xi)2 (8)

and additional hard constraints: xi = x̄i for i ∈ IH .
To derive an expresion for the Jacobi displacement, we can write this energy function as the sum of three quadratic

energy functions

E(x) = (xtA1x+ 2bt1x+ c1) + (xtA2x+ 2bt2x+ c2) + (xtA3x+ 2bt3x+ c3)

The Jacobi displacement vector is still δx = −D−1(Ax + b), where A = A1 + A2 + A3, b = b1 + b2 + b3, Dj is
the diagonal matrix formed with the diagonal elements of Aj , and D = D1 + D2 + D3. This displacement vector
can be written as an affine combination of the three Jacobi vectors δjx = −D−1

j (Ajx+ bj) as follows

δx = [D−1D1]δ1x+ [D−1D2]δ2x+ [D−1D3]δ3x .

Note that [D−1Dj] is a positive diagonal matrix and [D−1D1]+[D−1D2]+[D−1D3] is the identity matrix, meaning
that the sum of diagonal elements is equal to one. If ajii is the i-th diagonal element of the matrix Aj and Dj , and
βji = ajii/(a1ii + a2ii + a3ii), we have β1i + β2i + β3i = 1 and we can rewrite this equation in coordinates as an
affine combination

δxi = β1i δ1xi + β2i δ2xi + β3i δ3xi

The only thing that remains to be done to implement the smoothing algorithm based on the complete energy function
of equation 8, is to find an expression in coordinates for the Jacobi displacement corresponding to the quadratic

5

ENGN2911I 2008 | Assignment 3 | Brown University | Due Monday March 31

energy function of equation 7. This time we will do the analysis in coordinates directly. We start by computing first
order derivatives of the energy function of equation 7

1
2
∂

∂xi

(
V∑

h=1

νh(∆xh)2
)

=
V∑

h=1

νh ∆xh
∂∆xh

∂xi
=

(∑
h:i∈h?

whi νh∆xh

)
− νi∆xi

because,

∆xh =
∑
j∈h?

whj(xj − xh) ,
∑
j∈h?

whj = 1 and
∂∆xh

∂xi
=

−1 if h = i
whi if i ∈ h?

0 otherwise

(remember that whi 6= wih in general, and h ∈ i? is not necessarily equivalent to i ∈ h?). Again, the analysis is
easire in matrix form. Writing ∆x = (W − I)x, where W is the matrix of weigths wij with wij = 0 if vertex j is
not a neighbor of vertex i, and I the identity matrix, we have∑

i

νi (∆xi)2 = xt(W − I)tν(W − I)x ,

the matrix A turns out to be A = (W − I)tν(W − I) and the i-th diagonal element of this matrix is

aii = νi +
∑

h:i∈h?

νhw
2
hi

2.8 Algorithmic Details

We have all the equations we need to implement a smoothing algorithm based on minimizing the energy function of
equation 8, with hard and/or soft constraints. What remains to figure out is how to implement this efficiently. The
idea is as in the basic Laplacian smoothing algorithm to accumulate various quantities while traversing the edges.
The overall Jacobi displacement vector is an affine compbination of the old Laplacian vector, the displacement of
soft constrained vectors toward their targets, and the Jacobi vector of the third term analyzed above. Since the the last
Jacobi vector can be written as a function of the Laplacian vectors, we will have to do two passes through the edges
to accumulate all the quantities needed. Finally the affine combination vector can be evaluated and normalized. The
details are up to you.

3 Simplification

We want to implement edge collapse simplification in such a way that various different edge costs could be used.
Here we have a high level pseudocode description of the algorithm

// 0) initialize empty heap
// 1) for each edge
// if edge if collapsible
// compute edge score
// insert in heap
// 2) initialize empty independent set of edges
// 3) while heap is not empty
// delete edge with min score
// if score larger than max score threshold
// break
// if deleted edge is independent of all edges in the independent set

6

ENGN2911I 2008 | Assignment 3 | Brown University | Due Monday March 31

// include edge in independent set
// 4) if independent set of edges is not empty
// initialize vMap as identity map
// assign vertex index to pair of collapsed vertices
// determine coordinates of collapsed vertices (save on a separate buffer)
// determine coordinates of collapse per vertex properties as well
// create newCoordIndex from coordIndex and vMap
// delete per face and per corner properties of deleted triangles as well
// 5) rebuild edges, faces, and selection buffer
//
// 6) We need an option to select the vertices not affected by this operation,
// so that constrained smoothing could be applied to optimize the position of
// the new vertices

This code fragment shows how to use the new Heap class, which is part of the mesh package

GraphFaces g = ifs.getEdges();

Heap h = new Heap();
float edgeCost = 0.0f;
boolean insertInHeap = false;
// we need to save the ends of edges inserted in heap
VecInt hV = new VecInt();

GraphEdge e = null;
for(iV=0;iV<nV;iV++) {
for(e=g.getFirstEdge(iV);e!=null;e=g.getNextEdge(e)) {

iE = e.getIndex();
iV0 = e.getVertex(0);
iV1 = e.getVertex(1);

// determine if edge should be inserted in heap
// and compute edgeCost here

if(insertInHeap) {
hV.pushBack(iV0);
hV.pushBack(iV1);
h.add(edgeCost);

}
}

}

// select edges in increasing cost order
while((iH=h.delMin())>=0) {
// Heap.delMin() returns the ’time’ of insertion in the heap

edgeCost = h.getLastKey();
iV0 = hV.get(2*iH);
iV1 = hV.get(2*iH+1);

7

ENGN2911I 2008 | Assignment 3 | Brown University | Due Monday March 31

e = g.getEdge(iV0,iV1);
iE = e.getIndex();

// ...

}

4 Subdivision

We want to implement red-blue adaptive triangle subdivision in such a way that different face refinement criteria
could be used. Here we have a high level pseudocode description of the algorithm

// 0) initialize empty set of marked vertices
// 1) for each triangle
// if triangle must be subdivided
// mark the three vertices of the triangle
// 2) for each edge
// if the two ends are marked
// create mid-edge vertex (as in the iso-curve algorithm)
// create associated per vertex properties
// 3) for each triangle
// if three vertices are marked
// split into four triangles
// create associated per face and per corner properties
// else if two vertices are marked
// split into two faces
// create associated per face and per corner properties
// else
// preserve the triangle as it is
// preserve associated per face and per corner properties
// 4) make new edges, faces, and selection
// 5) we need an option to select all the original vertices
// so that constrained or unconstrained smoothing could be applied

5 Optimization

We want to implement edge flipping triangle optimization in such a way that different edge flipping criteria could be
used. Note that since neither the number of vertices nor the number of triangles change, we can atempt to implement
the connectivity changes in place, i.e. by modifying the coordIndex array directly, rather than using a separate
output buffer. Here we have a high level pseudocode description of the algorithm

// 0) initialize empty heap
// 1) for each edge
// if edge flip is allowed
// compute edge score
// insert in heap
// 2) initialize empty independent set [of edges]
// 3) while heap is not empty
// delete edge with min score

8

ENGN2911I 2008 | Assignment 3 | Brown University | Due Monday March 31

// if score larger than max score threshold
// break
// if deleted edge is independent of all edges in the independent set
// include edge in independent set
// 4) for each edge in the independent set
// flip edge [can this be done in place?]
// update per face and per corner properties
// 5) rebuild edges, faces, and selection buffer
//
// 6) Support an option to select the vertices not affected by this operation,
// so that constrained or unconstrained smoothing could be applied to optimize
// the position of afected vertices

9

