Surface Representation / Meshes

3D Photography and Geometry Processing Brown Spring 2008 Gabriel Taubin

3D Representations

- Volumes (solid objects)
- Surfaces (boundaries of solids)
- What is a 3D Representation ?
 - Computer memory is finite
 - Approximation defined by finite number of parameters
 - Efficient to perform certain operations (transmit, render, etc.)
 - Data structures

Surface Modeling

- Polygon meshes
 - Planar subdivisions
 - Set of connected polygonally bounded planar surfaces
- Parametric surfaces
 - Curved surfaces
 - Piecewise polynomial : Bezier patches / Splines
- Implicit surfaces
 - Iso-surfaces
 - How to convert to polygon mesh?

Polygon meshes

- Simplest case: triangle mesh
- Triangle defined by 3 vertices in 3D
 - Vertex specified by 3 (x,y,z) coordinates
 - 9 floats per triangle
 - No connectivity
 - STL file format
 - used for rapid prototyping applications
 - Inefficient for other operations

- coordIndex [0,1,2,-1,0,3,4,1,-1]
- VRML'97 file format

Classification

- $\boldsymbol{\cdot}$ Connectivity
 - coordIndex (faces)
- Geometry
 - coord (vertex coordinates)
- Properties
 - color/colorIndex/colorPerVertex
 - normal/normalIndex/normalPerVertex
 - texCoord/texCoordIndex

Connectivity

- Edges
 - Boundary (1 incident face)
 - Regular (2 incident faces)
 - Singular (3 or more incident faces)
- Vertices
 - Regular / Singular
- Connected components
 - Connected Components of Dual Graph

Manifold / Non-Manifold

- Data structures to represent
- Traversal Operations
- Algorithm to generate representation from IndexedFaceSet

Operations on meshes

- $\boldsymbol{\cdot}$ Construction of triangle strips
- Subdivision
- \cdot Intersection
- Rendering (rasterization/sampling)
- Conversion to Manifold
- Simplification / Decimation

Doubly-linked data structure

- Planar subdivisions
- Planar graph embedding
- Vertices / Faces / Half-Edges
- Orientation