
1

DOUBLY-LINKED HALF-EDGE
DATA STRUCTURE

3D Photography and Geometry
Processing

Brown Spring 2008
Gabriel Taubin

3D Representations
• Surfaces

– Polygonal meshes
• No connectivity (3 3D vertices per triangle)
• IndexedFaceSet (VRML file format)
• Half-Edge data structure (manifold meshes)Half Edge data structure (manifold meshes)

– Boundaries of solid objects
• Volumes (solid objects)

– Implicit surfaces
• inside-outside boundary

– How to convert to polygonal mesh

IndexedFaceSet
• Array of vertex coordinates
• Each 3D vertex has an associated vertex

index in {0,…,V-1}
• A triangle is defined by three vertex

i di (i j k)

i

jkindices (i,j,k)
• A polygonal face without holes is defined

by more indices
• coordIndex [0,1,2,-1,0,3,4,1,-1]
• VRML’97 file format

0

1

2

3

4

jk

Polygonal Mesh Components
• Connectivity

– coordIndex (faces)
• Geometry

– coord (vertex coordinates)coord (vertex coord nates)
• Properties

– color/colorIndex/colorPerVertex
– normal/normalIndex/normalPerVertex
– texCoord/texCoordIndex

Connectivity
• Edges

– Boundary (1 incident face)
– Regular (2 incident faces)
– Singular (3 or more incident faces)g ()

• Vertices
– Regular / Singular

• Connected components
– Connected Components of Dual Graph

Manifold Meshes
• No singular edges

– Boundary
• 1 incident face

– Regular
• 2 incident faces

N i l i• No singular vertices
– Boundary

• dual graph of set of incident faces form a path
– Regular

• dual graph of set of incident faces form a cycle

• Data Structure to represent and operate ?

2

Doubly-linked data structure
• Planar subdivisions
• Orientation
• Vertices / Faces / Half-Edges

halfEdge {
face
srcVertex
nextEdge
prevEdge
twinEdge

}face

srcVertex

dstVertex

twinEdge

nextEdge

prevEdge

Doubly-linked data structure
• One half-edge per corner of mesh
• Simple Face

– closed loop of half-edges
• Multiply connected faceMultiply connected face

– 1 external loop + one or more internal loops

face

vertex

face

vertex

Orientation
• Consistent if edge is added or removed
• Counterclockwise for outer loop
• Clockwise for inner loops
• Twin edges have opposite orientations

Doubly-linked data structure
• Operations

– Traversal / triangle strips / compression
– Surgery / Euler operations
– Simplification / subdivision

• How to construct from IndexedFaceSet ?• How to construct from IndexedFaceSet ?
– Simply connected faces
– Geometric intersections ignored

• Conversion to manifold
– Removal of singular edges and vertices

How to construct from IndexedFaceSet ?

• 0) First use original vertex indices
– 0,…,V-1

• 1) Construct all the half-edges
– Traverse coordIndex array
– For each face

• One half-edge per corner
• Set face, srcVertex, nextEdge and prevEdge
• Set twinEdge to NULL

How to construct from IndexedFaceSet ?

• 2) Determine regular edges by counting
incident faces per edge
– Use symmetric sparse matrix data

structure m with operations m.get(i,j)
and m set(i j value)and m.set(i,j,value)
• Initialize to 0
• For each half-edge connecting vertices (i,j),

increment m.set(i,j,m.get(i,j)+1)
• Can be done during previous coordIndex

traversal

3

How to construct from IndexedFaceSet ?
• 3) Link half-edges corresponding to regular edges

– Have to set twinEdge for half-edges corresponding
to m.get(i,j)==2

– Use another symmetric sparse matrix data structure
tw (or reuse m) initialized to NULL

– Traverse half-edges again and save in the (i,j)
position a pointer to the first corresponding half-position a pointer to the first corresponding half
edge (tw.get(i,j)==null)

– When the second half-edge corresponding to the (i,j)
position is visited (tw.get(i,j)!=null), and if the
orientations are opposite, set the twinEdge fields of
the current half-edge and the one stored in the (i,j)
position of tw.

– Resulting mesh has no singular edges (have been
converted to boundary edges)

How to construct from IndexedFaceSet ?

• 4) Remove singular vertices
– Use a partition data structure p with operations p.find(i),

and p.join(i,j) to maintain a partition of the corners of
the coordIndex array

– Initialize to one singleton per corner
• {{0},…{C-1}}

For each half edge e with e twinEdge!=null join the – For each half-edge e with e.twinEdge!=null, join the
corresponding corners

• P.join(e.corner,e.twinEdge.nextEdge.corner)
– Assign consecutive indices to the sets in the

partition 0,…,P-1
– Make new vertex coordinates array of length P
– Set e.srcVertex to the partition number of

e.corner

