DilateEdges

15 Selected V

Monday, February 04, 2008 2:36 PM

On a first pass through the edges, mark all the vertices which are ends of selected edges

On a second pass through the edges, select all edges incident to marked vertices

ErodeEdges

Monday, February 04, 2008 2:40 PM

On a first pass through the edges count the number of selected edges incident to each vertex Use an accumulator array to store these values

On a second pass through the edges clear each selected edge incident to a vertex with only one incident selected edge

We need the MeshGraph class to classify the edges We need the Partition class to create a partition of the corners

p = new Particion(nC)

For each face f1

For each corner c0 of f1

Let c1 be the corner of f1 next to c0

Let v0 and v1 the vertices corresponding to the corners c0 and c1

Let e be the edge joining v0 and v1

If(e is a regular edge)

Let c2 the corner twin of c0

Let f2 be the face containing c2

Let c3 the corner of f2 next to c2

p.join(c0,c3)
p.join(c1,c2)

Let nP the number of parts

Number of corners **nC** = coordIndex.size()

Each part is a subset of corners supported by a common vertex.

To classify the vertices we need to count the number of parts supported by the same vertex:

Use an accumulator array with one entry per vertex initialized to zero

For each part

Find the supporting vertex

Increment the array entry corresponding to the vertex

The vertex classification is stored in the accumulator array

To convert a mesh to manifold, we need to generate an output mesh: first the vertices, then the faces

For each part (all corners point to the same input vertex)

Get the vertex coordinates from the input mesh and push them onto the back of the output coord array Store the mapping from corner to part number (output vertex index) in a look-up-table

For each face

Replace each corner value with the value stored in the look-up table for that corner