Overview
Mesh Smoothing Algorithms

* Laplacian Smoothing
+ Problems and fixes
+ Vertex and Normal Constraints
+ Normal Constraints at Boundary Vertices
+ Isotropic vs. Anisotropic
+ Linear vs. Nonlinear
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Brown Spring 2008 * Filters that Integrate Normal Fields
Gabriel Taubin + Related Problems

Different Approaches Classical Digital Signal Processing

+ Signals defined on regular grids

+ Physics-based / PDE Surfaces > D Sliniss £ ez

L . - 2D : images / video
+ Variational / Regularization o

) ) - 3D : medical imaging
* Multi-resolution + Solid theoretical foundation and practical algorithms

- Subdivision Surfaces - Sampling Theorem
- DFT/FFT Fourier Analysis
- FIR/IIR Linear Filters / Convolution
- Non-linear filtering
- Multi-rate filtering / up-sampling / down-sampling
- Etc.

Graph and Mesh Signals Laplacian Smoothing in Mesh Generation

- Used to improve quality of 2D meshes
Signal defined on a graph (irregular grids) for FE computations
+ Keep boundary vertices fixed
* Move each infernal vertex to
the barycenter of its neighbors

J}.-.} --- non-oriented edges . —
- E ={e=(i,j),..} --- oriented edges

Signal defined on the graph of a polygonal mesh




The Laplacian Operator Laplacian Smoothing : Advantages

Av, = Zwij (vj - V) W, + Algorithm Simplicity
i j * Linear fime and storage
- Edge length equalization
(advantage depending on the application)
+ Constraints and special effects
by weight control

% :ZWij(Vj - V) V.'= VLAV
j

Laplacian Smoothing Demo Laplacian Smoothing : Disadvantages

+ Overall Shrinkage
- Solved by Taubin's Low-Pass filter algorithm
- Why ? Fourier Analysis
- Edge length equalization
(disadvantage depending on the application)
- Solved by non-linear filtering
+ Fujiwara / Desbrun-et-al weights (curvature flow)
* Shrinkage at boundaries
- Solved by hierarchical filtering ?
- Smoothing of ridges
- Solved by Anisotropic diffusion

Laplacian Smoothing : Challenges Fourier Analysis

+ How to solve all the problems preserving
- Algorithm Simplicity AX; :Zwij(xj - X:) Kx = —AXx
- Linear time and storage j
+ Proposed Solution:
- Modify the Laplacian Operator Eigenvalues of K =[-W (FREQUENCIES)
+ Isotropic / Anisotropic
« Linear / non-linear (avoid!) 0= ko < K_LS 2 < kN <2
- Define Laplacian Operator on Normal fields

- Use FIR linear filters Right eigenvectors of K (NATURAL VIBRATION MODES)
- Dynamic connectivity resampling

Avi:ZWij(vj—vi) € &1 8y
J




Geometry of low and high frequencies Natural vibration modes
ki = Kepi' = = 2wy (e, —ep)
J

Low frequency

&

High frequency/\/&

The Discrete Fourier Transform FIR Linear Filters

Eigenvectors form a basis of N-space Polynomial Transfer Function
Every signal can be written as x' = f(K)x KX = —AX
a linear combination
f(k) is a univariate polynomial
X = X e0+x el+...+x eN f(K) is a matrix
0 1 N Eigenvectors of K and f(K) are the same
Discrete Fourier Transform (DFT) Eigenvalues of (K) are

fikg) i) - fliy)

FIR Linear Filters Laplacian Smoothing is not Low-Pass
After filtering

f(K)x = f(ko)& 8+ f(kN);(N e After filtering )
0 _
f(K)x f(ko)10e0+ k)X, ey

Evaluation of f(K) x based on matrix multiplication
It require the computation of For Laplacian smoo‘rhing e — —
eigenvalues and eigenvectors (DFT)
Low-Pass : need univariate polynomial f(k) such that
f(k,) =1
f(k, ) ~1 0
h~

k <k
L™ PB f(k)=@1-2 k) >0  j=0 0<i<1
f(k,)~0 j j

kL>kPB




Taubin Smoothing (Siggraph'95)

+ Minor modification of Laplacian smoothing algorithm
+ Two Laplacian smoothing steps

First shrinking step with positive factor

+ Second unshrinking step with negative factor

Use inverted parabola as transfer function

f(k) = (- pk)@-AK)V2  with —p>A>0
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Parameters

Av, = Zwij(vj - V)
J

+ Weights

- Neighborhoods = non-zero weights

- Prevention of Tangential drift

- Edge-length equalization

Boundaries and creases / hierarchical smoothing
+ Vertex-dependent smoothing parameters

Preventing tangential drift

Fujiwara (P-AMS'95)
- Weights inversely proportional to edge length
Desbrun-Meyer-Schroder-Barr (S6'99)

- Based on better approximation of curvature normal

V. (0%se
i j

= cot(aij) + COt(Bij)'

B y

1) j
Guskov-et-al (56'99) based on divided differences and
second order heighborhood

Taubin-Zhang-Golub (ECCV'96)
FIR Filter Design

Efficient algorithm

to evaluate any polynomial transfer function
Based on Chebyshev polynomials defined by three
term recursion

All classical Finite Impulse Response (FIR) filter
desigh techniques can be used with no
modifications

* Implemented method of "windows” based on

truncated Fourier series expansion of ideal
transfer function and coefficient weighting to
remove Gibbs phenomenon

Linear / Non-Linear

+ Linear Laplacian Operator

- Weights are computed once and kept
constant for all iterations

* Non-Linear Laplacian Operator

- Weights are recomputed at every
iteration

Mesh Signal Processing

A Signal Processing Approach to Fair Surface Design, by 6.
Taubin, in Proceedings of Siggraph 1995

Optimal Surface Smoothing as Filter Design, by 6. Taubin, T.
Zhang, and 6. Golub, Fourth European Conference on Computer
Vision (ECCV'96)

Interactive Multi-Resolution Modeling on Arbitrary Meshes, by
L. P. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Seidel, in
Proceedings of Siggraph 1998

Implicit Fairing of Irregular Meshes using Diffusion and
Curvature Flow, by M. Desbrun, M. Meyer, P. Schroder, and A. H.
Barr, in Proceedings of Siggraph 1999

A Discrete Spring Model for Generating Fair Curves and
Surfaces, by A. Yamada, K. Shimada, T. Furuhata, and K.-H. Hou, in
Proceedings of Pacific Graphics 1999, October 1999

Geometric Signal Processing on Polygonal Meshes, by G. Taubin,
Eurographics 2000 State of The Art Report (STAR), September
2000




Hierarchical Neighborhoods Boundaries and Creases

+ Use hierarchical neighborhoods
* Assign label 1 fo boundary and crease vertices
+ Assign label O to all internal vertices

* Assign a numeric label to each vertex

+ Vertex j is a neighbor of vertex i only if i
and j are connected by an edge, and the

label of i is less or equal than the label of j * The graph defined by the boundary and crease
edges and vertices is smoothed independently of

the rest of the mesh

+ The rest of the mesh “follows" the graph
defined by the boundary and crease edges and
vertices

- Eigenvalues of K are complex, but 1- kil <1

Boundaries and Creases Hierarchical neighborhoods and weights

- W_{ij}>0
- W_{ji}>0
- W_{ik} = 0 but W_{ki}>0

Vertex Constraints and Surface Design Vertex Position Constraints

* Hard vs. soft constraints
* Hard vertex position constraints are easy to
impose but produce artifacts because of lack of
normal control
+ Kobbelt-et-al Variational Fairing (S6'98)
- Minimize square norm of Laplacian operator
* Yamada-et-al Discrete Spring Model (PCCGA'98)
- impose soft normal constraints with a spring
model that adds an extra term to the
smoothing step
+ Slow convergence and/or high computational cost




Variational Fairing The Boundary Shrinkage Problem

T 2 + Laplacian operator approximates
> T ZHAVi = aAecm curF"va'rure Xpr'\)ormal vector X
] mean edge length
* Not for boundary vertices !
* Under linear constraints - Has a strong tangencial component
* Fix : project onto normal direction

Modified Laplacian for Boundary Vertices Anisotropic Laplacian Operators

* Project onto normal direction AV =S W (v —v)
AV, = > w.nn' (v, — v L
i_Z j i ( j_ i) J
]

W, =C.'C.
- Define weights as 3x3 matrices I I

W.. =w _ninit T Symmetric non-negative definite

ij ij
. : . ) G = ZC..
- Linear Anisotropic Laplacian Operator | j 1)

Preventing Tangential Drift Smoothing Normal Fields

+ Use Laplacian Operator that fixes - Signal is defined on dual graph with values
boundary shrinkage in the unit sphere

* But, how fo define the vertex normals ? + Only need to define Laplacian Operator
* Use smooth face normal field instead + Then can apply any Linear Filter
- Displacement N, —N. is the Rotation
Tnin R S defined by the vector product nx nj
p ij = MjLMjL” +NjRMjR
NJ + Laplacian Operator AN is the average
Rotation




Rodrigues Formula

* Local parameterization of Rotations

{u:] u|£1} > DOE)

N

NOE cl+(1—c)rrt +sr

« If M and N2 are two unit vectors, then

R(m xm)m =y
R(n xn2)np XN =ng xm

Constrained Normal Filtering

+ Like vertex position constraints in the
Euclidean case

+ Just do not update the constrained values

* Face normals are filtered independently of
vertex positions

* Then vertex positions are filtered with the
linear anisotropic filter defined by the
face normals

+ Can impose both face normal constraints
and vertex position constraints

What Next ?

+ Combine with Dynamic Connectivity Rules
for adaptive resampling

* Ridge detection and enhancement

* Non-linear isotropic and anisotropic
filtering

Laplacian for Normal Fields

+ Definition

AAN =R} nj X }“Zwij nj
J

n'=R| njx KzWijnj nj
j

Application : Hole filling

+ Triangulate hole with internal vertices

-+ Smooth normal field in the graph defined
by the hole faces and the incident faces

+ Fix normals on incident faces
+ Filter normals with boundary constraints
+ Filter vertices with boundary constraints

+ Use dynamic connectivity rules to resample
if needed, and iterate

Irregular Mesh Resampling

* Multiresolution Shape Deformations for Meshes

with Dynamic Vertex Connectivity, by L.P.
Kobbelt, T. Bareuther, and H.-P. Seidel, in
Proceedings of Eurographics 2000.

Define Min-Max target edge lengths
Collapse short edges

Optimize vertex valences by flipping edges
Smooth mesh

Split long edges




Non-Linear Anisotropic Diffusion

Scale-Space and Edge Detection Using Anisotropic
Diffusion, by P. Perona, and J. Malik, in IEEE Trans. on
Pattern Analysis and Machine Intelligence, July 1990.
Anisotropic Feature-Preserving Denoising of Height Fields
and Bivariate Data, by M. Desbrun, M. Meyer, P. Schroder,
and A. Barr, in Proceedings of Graphics Interface 2000, May
2000

Polyhedral Surface Smoothing with Simultaneous Mesh
Regularization, by Y. Ohtake, A.G. Belyaev, and T.A.
Bogaevski, in Proceedings of the Geometric Modeling and
Processing 2000, April 2000

Anisotropic Geometric Diffusion in Surface Processing, by
U. Clarenz, U. Diewald, and M. Rumpf,

in Proceedings of IEEE Visualization 2000, October 2000
Mesh Regularization and Adaptive Smoothing, by Y.
Ohtake, A.G. Belyaev, and I.A. Bogaevski, Computer Aided
Design, 2001




