Mesh Smoothing Algorithms

Overview
- Laplacian Smoothing
- Problems and fixes
- Vertex and Normal Constraints
- Normal Constraints at Boundary Vertices
- Isotropic vs. Anisotropic
- Linear vs. Nonlinear
- Filtering of Normal Fields
- Filters that Integrate Normal Fields
- Related Problems

Different Approaches
- Digital Signal Processing
- Physics-based / PDE Surfaces
- Variational / Regularization
- Multi-resolution
- Subdivision Surfaces

Classical Digital Signal Processing
- Signals defined on regular grids
 - 1D: music / speech
 - 2D: images / video
 - 3D: medical imaging
- Solid theoretical foundation and practical algorithms
 - Sampling Theorem
 - DFT/FFT Fourier Analysis
 - FIR/IIR Linear Filters / Convolution
 - Non-linear filtering
 - Multi-rate filtering / up-sampling / down-sampling
 - Etc.

Graph and Mesh Signals
- Graph signal
 Signal defined on a graph (irregular grids)
 - \(x = (x_1, \ldots, x_v)^T \)
 - \(G = (V,E) \)
 - \(V = \{i,j,\ldots\} \) --- vertices
 - \(E = \{e=(i,j),\ldots\} \) --- non-oriented edges
 - \(E = \{e=(i,j),\ldots\} \) --- oriented edges
- Mesh Signal
 Signal defined on the graph of a polygonal mesh

Laplacian Smoothing in Mesh Generation
- Used to improve quality of 2D meshes for FE computations
- Keep boundary vertices fixed
- Move each internal vertex to the barycenter of its neighbors

\[
\mathbf{v}_i' = \mathbf{v}_i + \lambda \Delta \mathbf{v}_i
\]
The Laplacian Operator

\[\Delta v_i = \sum_j w_{ij} (v_j - v_i) \quad 1 = \sum_j w_{ij} \]

\[0 \leq w_{ij} \]

\[v_i' = v_i + \lambda \Delta v_i \]

Laplacian Smoothing: Advantages

- Algorithm Simplicity
- Linear time and storage
- Edge length equalization
 (advantage depending on the application)
- Constraints and special effects
 by weight control

\[\Delta v_i = \sum_j w_{ij} (v_j - v_i) \quad v_i' = v_i + \lambda \Delta v_i \]

Laplacian Smoothing: Challenges

- How to solve all the problems preserving
 - Algorithm Simplicity
 - Linear time and storage
- Proposed Solution:
 - Modify the Laplacian Operator
 - Isotropic / Anisotropic
 - Linear / non-linear (avoid)
 - Define Laplacian Operator on Normal fields
 - Use FIR linear filters
 - Dynamic connectivity resampling

\[\Delta v_i = \sum_j w_{ij} (v_j - v_i) \]

Laplacian Smoothing: Disadvantages

- Overall Shrinkage
 - Solved by Taubin’s Low-Pass filter algorithm
 - Why? Fourier Analysis
- Edge length equalization
 (disadvantage depending on the application)
 - Solved by non-linear filtering
 - Fujiwara / Desbrun-et-al weights (curvature flow)
- Shrinkage at boundaries
 - Solved by hierarchical filtering?
- Smoothing of ridges
 - Solved by Anisotropic diffusion

Laplacian Smoothing Demo

Fourier Analysis

\[\Delta x_j = \sum_j w_{ij} (x_j - x_i) \quad Kx = -\Delta x \]

- Eigenvalues of \(K = I - W \) (Frequencies)
 \[0 = k_0 \leq k_1 \leq \cdots \leq k_N \leq 2 \]
- Right eigenvectors of \(K \) (Natural vibration modes)
 \[e_0, e_1, \ldots, e_N \]
Geometry of low and high frequencies

\[
\mathbf{k}_n \mathbf{e}_n = \mathbf{K} \mathbf{e}_n' = -\sum_i w_{ij} (\mathbf{e}_i - \mathbf{e}_j)
\]
- Low frequency
- High frequency

Natural vibration modes

The Discrete Fourier Transform
- Eigenvectors form a basis of \(N\)-space
- Every signal can be written as a linear combination
 \[
 \mathbf{x} = \hat{x}_0 \mathbf{e}_0 + \hat{x}_1 \mathbf{e}_1 + \cdots + \hat{x}_N \mathbf{e}_N
 \]
- Discrete Fourier Transform (DFT)
 \[
 \hat{\mathbf{x}} = (\hat{x}_0, \hat{x}_1, \ldots, \hat{x}_N)^T
 \]

FIR Linear Filters
- Polynomial Transfer Function
 \[
 \mathbf{x}' = f(K)\mathbf{x} \quad \mathbf{K}\mathbf{x} = -\Delta\mathbf{x}
 \]
- \(f(k)\) is a univariate polynomial
- \(f(K)\) is a matrix
- Eigenvectors of \(K\) and \(f(K)\) are the same
- Eigenvalues of \(f(K)\) are
 \[
 f(k_0), f(k_1), \ldots, f(k_N)
 \]

Laplacian Smoothing is not Low-Pass
- After filtering
 \[
 f(K)\mathbf{x} = f(k_0)\hat{x}_0 \mathbf{e}_0^T + \cdots + f(k_N)\hat{x}_N \mathbf{e}_N
 \]
- Evaluation of \(f(K)\mathbf{x}\) based on matrix multiplication
- It does not require the computation of eigenvalues and eigenvectors (DFT)
- Low-Pass: need univariate polynomial \(f(k)\) such that
 - \(f(k_0) \approx 1\)
 - \(k_L \leq k_{PB}\)
 - \(f(k_0) \approx 0\)
 - \(k_L > k_{PB}\)
- For Laplacian smoothing
 \[
 f(k_0) = 1
 \]
 \[
 f(k_j) = (1 - \lambda k_j)^N \to 0 \quad j = 0 \quad 0 \leq \lambda < 1
 \]
Taubin Smoothing (Siggraph’95)

- Minor modification of Laplacian smoothing algorithm
- Two Laplacian smoothing steps
- First shrinking step with positive factor
- Second unshrinking step with negative factor
- Use inverted parabola as transfer function

\[f(k) = ((1 - \mu k)(1 - \lambda k))^\mu with \quad -\mu > \lambda > 0 \]

Taubin-Zhang-Golub (ECCV’96) FIR Filter Design

- Efficient algorithm to evaluate any polynomial transfer function
- Based on Chebyshev polynomials defined by three-term recursion
- All classical Finite Impulse Response (FIR) filter design techniques can be used with no modifications
- Implemented method of “windows” based on truncated Fourier series expansion of ideal transfer function and coefficient weighting to remove Gibbs phenomenon

Parameters

\[\Delta v_i = \sum_j w_{ij} (v_j - v_i) \]

- Weights
 - Neighborhoods: non-zero weights
 - Prevention of tangential drift
 - Edge-length equalization
 - Boundaries and creases / hierarchical smoothing
 - Vertex-dependent smoothing parameters

Preventing tangential drift

- Fujiwara (P-AMS’95)
 - Weights inversely proportional to edge length
- Desbrun-Meyer-Schroder-Barr (SG’99)
 - Based on better approximation of curvature normal
- Guskov-et-al (SG’99) based on divided differences and second order neighborhood

Linear / Non-Linear

- Linear Laplacian Operator
 - Weights are computed once and kept constant for all iterations
- Non-Linear Laplacian Operator
 - Weights are recomputed at every iteration

Mesh Signal Processing

- Optimal Surface Smoothing as Filter Design, by G. Taubin, T. Zhang, and G. Golub, Fourth European Conference on Computer Vision (ECCV’96)
Hierarchical Neighborhoods

- Assign a numeric label to each vertex
- Vertex \(j \) is a neighbor of vertex \(i \) only if \(i \) and \(j \) are connected by an edge, and the label of \(i \) is less or equal than the label of \(j \)

Boundaries and Creases

- Use hierarchical neighborhoods
- Assign label 1 to boundary and crease vertices
- Assign label 0 to all internal vertices
- The graph defined by the boundary and crease edges and vertices is smoothed independently of the rest of the mesh
- The rest of the mesh “follows” the graph defined by the boundary and crease edges and vertices
- Eigenvalues of \(K \) are complex, but \(1 - k_i \leq 1 \)

Boundaries and Creases

Hierarchical neighborhoods and weights

- \(W_{ij} > 0 \)
- \(W_{ji} > 0 \)
- \(W_{ik} = 0 \) but \(W_{ki} > 0 \)

Vertex Constraints and Surface Design

- Hard vs. soft constraints
- Hard vertex position constraints are easy to impose but produce artifacts because of lack of normal control
- Kobbelt-et-al Variational Fairing (SG’98)
 - Minimize square norm of Laplacian operator
- Yamada-et-al Discrete Spring Model (PCCGA’98)
 - Impose soft normal constraints with a spring model that adds an extra term to the smoothing step
- Slow convergence and/or high computational cost
Variational Fairing

- Minimize \(\sum_j \| \Delta v_j \|^2 \)
- Under linear constraints

The Boundary Shrinkage Problem

- Laplacian operator approximates
 - Mean curvature \(\times \) normal vector \(\times \) mean edge length
- Not for boundary vertices!
 - Has a strong tangential component
- Fix: project onto normal direction

Modified Laplacian for Boundary Vertices

- Project onto normal direction
 \(\Delta v_i = \sum_j w_{ij} \eta_i (v_j - v_i) \)
- Define weights as 3x3 matrices
 \(W_{ij} = w_{ij} \eta_i \)
- Linear Anisotropic Laplacian Operator

Anisotropic Laplacian Operators

\(\Delta v_i = \sum_j W_{ij} (v_j - v_i) \)
\(W_{ij} = C_i^j C_{ij} \)
\(C_{ij} \) Symmetric non-negative definite
\(C_i = \sum_j C_{ij} \)

Preventing Tangential Drift

- Use Laplacian Operator that fixes boundary shrinkage
- But, how to define the vertex normals?
- Use smooth face normal field instead

Smoothing Normal Fields

- Signal is defined on dual graph with values in the unit sphere
- Only need to define Laplacian Operator
- Then can apply any Linear Filter
- Displacement \(\eta_j - \eta_i \) is the Rotation defined by the vector product \(\eta_j \times \eta_i \)
- Laplacian Operator \(\Delta \eta_i \) is the average Rotation
Rodrigues Formula

• Local parameterization of Rotations
 \(\{u : |u| \leq 1\} \rightarrow SO(3) \)
 \(R(u) = cl : (1 - c)r^t + s \Lambda \)

• If \(\mathbf{n}_1 \) and \(\mathbf{n}_2 \) are two unit vectors, then
 \(R(\mathbf{n}_1 \times \mathbf{n}_2) \mathbf{n}_1 = \mathbf{n}_2 \)
 \(R(\mathbf{n}_1 \times \mathbf{n}_2) \mathbf{n}_1 \times \mathbf{n}_2 = \mathbf{n}_1 \times \mathbf{n}_2 \)

Laplacian for Normal Fields

• Definition
 \(\lambda \Delta \mathbf{n}_1 = R \left(\mathbf{n}_1 \times \left(\lambda \sum_j w_{ij} \mathbf{n}_j \right) \right) \)
 \(\mathbf{n}_1^* = R \left(\mathbf{n}_1 \times \left(\lambda \sum_j w_{ij} \mathbf{n}_j \right) \right) \mathbf{n}_1 \)

Constrained Normal Filtering

• Like vertex position constraints in the Euclidean case
• Just do not update the constrained values
• Face normals are filtered independently of vertex positions
• Then vertex positions are filtered with the linear anisotropic filter defined by the face normals
• Can impose both face normal constraints and vertex position constraints

Application: Hole filling

• Triangulate hole with internal vertices
• Smooth normal field in the graph defined by the hole faces and the incident faces
• Fix normals on incident faces
• Filter normals with boundary constraints
• Filter vertices with boundary constraints
• Use dynamic connectivity rules to resample if needed, and iterate

What Next?

• Combine with Dynamic Connectivity Rules for adaptive resampling
• Ridge detection and enhancement
• Non-linear isotropic and anisotropic filtering

Irregular Mesh Resampling

 - Define Min–Max target edge lengths
 - Collapse short edges
 - Optimize vertex valences by flipping edges
 - Smooth mesh
 - Split long edges
Non-Linear Anisotropic Diffusion