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Overview

• Laplacian Smoothing
• Problems and fixes
• Vertex and Normal Constraints
• Normal Constraints at Boundary Verticesy
• Isotropic vs. Anisotropic
• Linear vs. Nonlinear
• Filtering of Normal Fields
• Filters that Integrate Normal Fields
• Related Problems

Different Approaches

• Digital Signal Processing
• Physics-based / PDE Surfaces
• Variational / Regularization 
• Multi-resolution
• Subdivision Surfaces

Classical Digital Signal Processing

• Signals defined on regular grids
– 1D : music / speech
– 2D : images / video
– 3D : medical imaging

• Solid theoretical foundation and practical algorithms
– Sampling Theorem
– DFT/FFT Fourier Analysis 
– FIR/IIR Linear Filters / Convolution
– Non-linear filtering
– Multi-rate filtering / up-sampling / down-sampling
– Etc.

Graph and Mesh Signals

• Graph signal
Signal defined on a graph (irregular grids)
– x = (x  ,…, x  )
– G = (V,E)
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• V = {i,j,…} --- vertices
• E = {e={i,j},…} --- non-oriented edges
• E = {e=(i,j),…} --- oriented edges

• Mesh Signal
Signal defined on the graph of a polygonal mesh

Laplacian Smoothing in Mesh Generation

• Used to improve quality of 2D meshes
for FE computations

• Keep boundary vertices fixed
• Move each internal vertex to

the barycenter of its neighborsy g
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The Laplacian Operator
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Laplacian Smoothing : Advantages

• Algorithm Simplicity
• Linear time and storage
• Edge length equalization

(advantage depending on the application)( g p g pp )
• Constraints and special effects

by weight control

i i iv ' v v= + λΔi ij j i
j

v w (v v )Δ = −∑

Laplacian Smoothing Demo Laplacian Smoothing : Disadvantages

• Overall Shrinkage
– Solved by Taubin’s Low-Pass filter algorithm
– Why ? Fourier Analysis

• Edge length equalization
(disadvantage depending on the application)( g p g pp )
– Solved by non-linear filtering

• Fujiwara / Desbrun-et-al weights (curvature flow)
• Shrinkage at boundaries

– Solved by hierarchical filtering ?
• Smoothing of ridges

– Solved by Anisotropic diffusion

Laplacian Smoothing : Challenges
• How to solve all the problems preserving

– Algorithm Simplicity
– Linear time and storage

• Proposed Solution:
– Modify the Laplacian Operator

• Isotropic / Anisotropic
• Linear / non-linear (avoid!)

– Define Laplacian Operator on Normal fields
– Use FIR linear filters
– Dynamic connectivity resampling

i ij j i
j

v w (v v )Δ = −∑

Fourier Analysis

Δ = −∑i ij j i
j

x w (x x ) = − ΔK x x

Eigenvalues of K = I-W                     (FREQUENCIES)

Right eigenvectors of K (NATURAL VIBRATION MODES)

0 k k k 20 1 N= ≤ ≤ ≤ ≤L
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Geometry of low and high frequencies

Low frequency

ij hj hi
j

k e Ke ' w (e e )h hi hi= = − −∑

High frequency

Natural vibration modes

The Discrete Fourier Transform

Eigenvectors form a basis of N-space
Every signal can be written as
a linear combination

$ $ $x x e x e x e+ + +x x e x e x e0 1 N0 1 N
= + + +L

Discrete Fourier Transform (DFT)

$ $ $ $ tx (x ,x , ,x )
0 1 N

= K

FIR Linear Filters

=x ' f(K)x

f(k) is a univariate polynomial
f(K) is a matrix

Polynomial Transfer Function

= − ΔK x x

f(k ) , f(k ) , , f(k )0 1 NK

f(K) is a matrix
Eigenvectors of K and f(K) are the same
Eigenvalues of f(K) are

FIR Linear Filters
After filtering

� $f(K)x f(k ) x e f(k )x e0 0 N NN0
= + +L

Evaluation of   f(K) x based on matrix multiplication
It d t i th t ti fIt does not require the computation of
eigenvalues and eigenvectors (DFT)
Low-Pass : need univariate polynomial f(k) such that

k kL PB≤f(k ) 1h ≈

f(k ) 0h ≈ k kL PB>

Laplacian Smoothing is not Low-Pass

After filtering
� $f(K)x f(k ) x e f(k )x e0 0 N NN0

= + +L

For Laplacian smoothing

Nf(k ) (1 k ) 0j j= − λ → 0 1≤ λ <j 0≠

f(k ) 10 =
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Taubin Smoothing (Siggraph’95)

• Minor modification of Laplacian smoothing algorithm
• Two Laplacian smoothing steps
• First shrinking step with positive factor
• Second unshrinking step with negative factor
• Use inverted parabola as transfer functionp

N / 2f(k) ((1 k)(1 k)) with 0= − μ − λ − μ > λ >

Taubin-Zhang-Golub (ECCV’96)
FIR Filter Design

• Efficient algorithm
to evaluate any polynomial transfer function

• Based on Chebyshev polynomials defined by three 
term recursion

• All classical Finite Impulse Response (FIR) filter 
design techniques can be used with no 
modifications

• Implemented method of “windows” based on 
truncated Fourier series expansion of ideal 
transfer function and coefficient weighting to 
remove Gibbs phenomenon

Parameters

• Weights
N hb h d    h

i ij j i
j

v w (v v )Δ = −∑

– Neighborhoods = non-zero weights
– Prevention of Tangential drift
– Edge-length equalization

• Boundaries and creases / hierarchical smoothing
• Vertex-dependent smoothing parameters

Linear / Non-Linear

• Linear Laplacian Operator
– Weights are computed once and kept 

constant for all iterations
• Non-Linear Laplacian Operator

– Weights are recomputed at every 
iteration

Preventing tangential drift
• Fujiwara (P-AMS’95)

– Weights inversely proportional to edge length
• Desbrun-Meyer-Schroder-Barr (SG’99)

– Based on better approximation of curvature normal

ijαiv

ijc cot( ) cot( )'ij ij= α + β
ij

ijβ

i

jv

• Guskov-et-al (SG’99) based on divided differences and 
second order neighborhood

Mesh Signal Processing
• A Signal Processing Approach to Fair Surface Design, by G. 

Taubin, in Proceedings of Siggraph 1995
• Optimal Surface Smoothing as Filter Design, by G. Taubin, T. 

Zhang, and G. Golub, Fourth European Conference on Computer 
Vision (ECCV'96)

• Interactive Multi-Resolution Modeling on Arbitrary Meshes, by 
L. P. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Seidel, in 
Proceedings of Siggraph 1998Proceedings of Siggraph 1998

• Implicit Fairing of Irregular Meshes using Diffusion and 
Curvature Flow, by M. Desbrun, M. Meyer, P. Schroder, and A. H. 
Barr, in Proceedings of Siggraph 1999

• A Discrete Spring Model for Generating Fair Curves and 
Surfaces, by A. Yamada, K. Shimada, T. Furuhata, and K.-H. Hou, in 
Proceedings of Pacific Graphics 1999, October 1999

• Geometric Signal Processing on Polygonal Meshes, by G. Taubin, 
Eurographics 2000 State of The Art Report (STAR), September 
2000
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Hierarchical Neighborhoods

• Assign a numeric label to each vertex
• Vertex j is a neighbor of vertex i only if i 

and j are connected by an edge, and the 
label of i is less or equal than the label of j

Boundaries and Creases

• Use hierarchical neighborhoods
• Assign label 1 to boundary and crease vertices
• Assign label 0 to all internal vertices
• The graph defined by the boundary and crease 

edges and vertices is smoothed independently of edges and vertices is smoothed independently of 
the rest of the mesh

• The rest of the mesh “follows” the graph 
defined by the boundary and crease edges and 
vertices

• Eigenvalues of K are complex, but − ≤1 k | 1i

Boundaries and Creases Hierarchical neighborhoods and weights

• W_{ij} > 0
• W_{ji} > 0
• W_{ik} = 0 but W_{ki} > 0 k

j

i

Vertex Constraints and Surface Design Vertex Position Constraints

• Hard vs. soft constraints
• Hard vertex position constraints are easy to 

impose but produce artifacts because of lack of 
normal control

• Kobbelt-et-al Variational Fairing (SG’98)g ( )
– Minimize square norm of Laplacian operator

• Yamada-et-al Discrete Spring Model (PCCGA’98)
– impose soft normal constraints with a spring 

model that adds an extra term to the 
smoothing step

• Slow convergence and/or high computational cost
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Variational Fairing

• Minimize

• Under linear constraints

2

i
j

vΔ∑

• Under linear constraints

The Boundary Shrinkage Problem

• Laplacian operator approximates
– Mean curvature X normal vector X

mean edge length
• Not for boundary vertices !

H   t  t i l t– Has a strong tangencial component
• Fix : project onto normal direction

Modified Laplacian for Boundary Vertices

• Project onto normal direction
t

i ii ij j i
j

v w nn (v v )Δ = −∑

• Define weights as 3x3 matrices
t

i iij ijW w nn=

• Linear Anisotropic Laplacian Operator

Anisotropic Laplacian Operators

i ij j i
j

v W (v v )Δ = −∑

†

ij i ijW C C=

i ij
j

C C= ∑

ij i ij

ijC Symmetric non-negative definite

Preventing Tangential Drift

• Use Laplacian Operator that fixes 
boundary shrinkage

• But, how to define the vertex normals ?
• Use smooth face normal field instead

j

inijL

nijR t tC n n n nij ijL ijL ijR ijR= +

Smoothing Normal Fields

• Signal is defined on dual graph with values 
in the unit sphere

• Only need to define Laplacian Operator
• Then can apply any Linear Filter
• Displacement            is the Rotation

defined by the vector product

• Laplacian Operator        is the average 
Rotation

inΔ

j in n−

i jn x n
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Rodrigues Formula

• Local parameterization of Rotations

{u :| u| } SO( )≤ →1 3

tR(u) cI ( c)rr srΛ+ +1

• If       and        are two unit vectors, then

tR(u) cI ( c)rr sr= + − +1

n1 n2

R(n xn )n n=1 2 1 2
R(n xn )n xn n xn=1 2 1 2 1 2

Laplacian for Normal Fields

• Definition

n R n x w ni i ij j
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟λΔ = λ
⎜ ⎟⎜ ⎟⎜ ⎟

∑
j

⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

n ' R n x w n ni i ij j i
j

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= λ
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑

Constrained Normal Filtering

• Like vertex position constraints in the 
Euclidean case

• Just do not update the constrained values
• Face normals are filtered independently of 

vertex positionsvertex positions
• Then vertex positions are filtered with the 

linear anisotropic filter defined by the 
face normals

• Can impose both face normal constraints 
and vertex position constraints

Application : Hole filling

• Triangulate hole with internal vertices
• Smooth normal field in the graph defined 

by the hole faces and the incident faces
• Fix normals on incident faces
• Filter normals with boundary constraints
• Filter vertices with boundary constraints
• Use dynamic connectivity rules to resample 

if needed, and iterate

What Next ?

• Combine with Dynamic Connectivity Rules 
for adaptive resampling

• Ridge detection and enhancement
• Non-linear isotropic and anisotropic 

filtering 

Irregular Mesh Resampling

• Multiresolution Shape Deformations for Meshes 
with Dynamic Vertex Connectivity, by L.P. 
Kobbelt, T. Bareuther, and H.-P. Seidel, in 
Proceedings of Eurographics 2000.

– Define Min-Max target edge lengths
– Collapse short edges
– Optimize vertex valences by flipping edges
– Smooth mesh
– Split long edges 
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Non-Linear Anisotropic Diffusion
• Scale-Space and Edge Detection Using Anisotropic 

Diffusion, by P. Perona, and J. Malik, in IEEE Trans. on 
Pattern Analysis and Machine Intelligence, July 1990.

• Anisotropic Feature-Preserving Denoising of Height Fields 
and Bivariate Data, by M. Desbrun, M. Meyer, P. Schroder, 
and A. Barr, in Proceedings of Graphics Interface 2000, May 
2000

• Polyhedral Surface Smoothing with Simultaneous Mesh • Polyhedral Surface Smoothing with Simultaneous Mesh 
Regularization, by Y. Ohtake, A.G. Belyaev, and I.A. 
Bogaevski, in Proceedings of the Geometric Modeling and 
Processing 2000, April 2000

• Anisotropic Geometric Diffusion in Surface Processing, by 
U. Clarenz, U. Diewald, and M. Rumpf,
in Proceedings of IEEE Visualization 2000, October 2000

• Mesh Regularization and Adaptive Smoothing, by Y. 
Ohtake, A.G. Belyaev, and I.A. Bogaevski, Computer Aided 
Design, 2001


