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Representing Rotations
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Representing Rotations: A three-dimensional rotation can be
represented as an orthogonal 3 × 3 matrix Q (with the transpose
equal to inverse QQt = I and unit determinant |Q| = 1). The
result of applying a rotation to a three-dimensional vector p is ob-
tained by multiplying the matrix by the vector Qp. A more geo-
metrically intuitive way of describing a three-dimensional rotation
is as a turn of angle θ around a unit-length three-dimensional vector
u, with the positive direction of rotation specified by the right hand
rule. Let us denote such rotation Q(θ, u). The matrix representa-
tion of this rotation can be computed using Rodrigues’ formula as
follows

Q(θ, u) = I+sU+(1−c)U2 where
{
s = sin(θ)
c = cos(θ)

(1)

and U is the skew-symmetric (U t = −U ) matrix

U =

 0 −uz uy
uz 0 −ux
−uy ux 0

 .

corresponding to the vector product by the vector u:

U v = u× v =

uy vz − uz vyuz vx − ux vz
ux vy − uy vx

 ∀ v ∈ IR3 .

For each pair of unit length linearly independent vectors ni and
nj , the matrix Qij corresponding to the rotation that minimizes the
turning angle amongst all the rotations that transform the vector ni
into nj can be computed using Rodrigues’ formula without explicit
determination of the angle of rotation, withc = ntinj

s =
√

1− c2
u = ni × nj/s ∈ IR3

(2)

This can be extended with continuity to the case ni = nj by defin-
ing Qij as the identity matrix. It cannot be extended to the case
ni = −nj because of lack of uniqueness: for every unit-length
vector u orthogonal to ni, the rotation Q(π, u) transforms ni into
nj , and no rotation of angle less than π transforms ni into nj .

The Exponential Map: Rodrigues’ formula es an efficient al-
gorithm to evaluate the exponential map

exp : IR3 → SO(3)
v 7→ eV = I +

∑∞
n=1

1
n!
V n ,

where a three-dimensional vector v is represented as the product of
a non-negative magnitude θ and a unit-length phase vector u (the
value of u is irrelevant if θ = 0), and V is the skew-symmetric
matrix defined by v (V = θU ). The identityQ(θ, u) = eθU is easy
to prove using the series expansion of cos(θ) and sin(θ) and the
identity U3 + U = 0, which can be verified by direct expansion.

The exponential map with IR3 as domain is surjective, i.e., every
rotation has a representation as an exponential of a skew symmetric
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matrix. To obtain a local parameterization we need to restrict the
domain to a smaller open subset of IR3. To determine such subset,
note that the map θ 7→ eθU with fixed u is 2π-periodic, and for
π ≤ θ ≤ 2π we have

eθU = e(2π−θ)(−U) ,

i.e., the rotation of angle θ around u is equal to the rotation of angle
2π − θ around −u. When the domain is restricted to the open ball
of radius π

Ωπ = {v : ‖v‖ < π} = {θu : 0 ≤ θ < π , ‖u‖ = 1},

the exponential map becomes 1−1, but rotations of angle π cannot
be represented. This is acceptable within the framework of mesh
processing because surface normal rotations of angle π do not occur
in practice. The image of Ωπ through the exponential map, i.e., the
set of rotations of angle less than π, is an open neighborhood of the
identity in the group of three-dimensional rotations SO(3) (which
is a three-dimensional Lie group).

On the set of rotations of angle less than π the exponential map has
a well defined inverse, the logarithm. The logarithm of a rotationQ
of angle less than π can be computed following these steps

c = (1− trace (Q))/2
V = (Q−Qt)/2
s = ‖v‖
u = v/s
θ = angle[0,π)(s, c) .

(3)

In our application, where we only need to evaluate the logarithm for
rotations defined by vector products of unit-length vectors, instead
of the first four steps of equation 3, we perform the three steps of
equation 2. In either case, determining the angle θ from s = cos(θ)
and c = cos(θ) is a rather expensive computation, which we would
like not to perform very often, if ever.

Averaging Rotations: Let Q1, . . . , QN be rotation matrices
of angle less than π, and let v1, . . . , vN ∈ Ωπ with vj = θjuj
and Qj = evj for j = 1, . . . , N . We can define the scaled
weighted average of these rotations, with scale factor λ and weights
w1, . . . , wN as

Q = ev where v = λ

N∑
j=1

wj vj ∈ IR3 .

This is well defined as long as v stays within Ωπ . Since Ωπ is sym-
metric with respect to the origin, and convex, a sufficient condition
for v to remain within Ωπ is that

|λ|
N∑
j=1

|wj | ≤ 1 .

This parameterization is robust and works well in our applications.
The problem with this approach is that we cannot avoid evaluating
inverse trigonometric functions to get the angles θj , and then for-
ward trigonometric functions to obtain the final result after scaling
and averaging. To avoid computing forward and inverse trigono-
metric functions we need to consider other parameterizations.
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Quaternions: Since in equation 1 we have s2 + c2 = 1, let
us consider the following mapping as a candidate to replace the
exponential {

Ω1 → SO(3)
su 7→ I + sU + (1− c)U2

where Ω1 is the open unit ball in IR3, 0 ≤ s < 1, c =
√

1− s2,
and |u| = 1. Rather than the angle of rotation itself, we use the
sine of the angle as magnitude for the parameter vector v = su.
This parameterization is also 1−1, and neither inverse nor forward
trigonometric functions need to be computed to do the averaging
and scaling in the domain of this parameterization, because in this
case R−1(Qij) = ni × nj . Only one square root is needed to
evaluate R(v) after the scaling and weighted averaging:{

Ω1 → SO(3)

v 7→ I + V +
1−
√

1−‖v‖2
‖v‖2 V 2 ,

where V = sU is the skew-symmetric matrix corresponding to the
vector v = su.

The problem is that, since c is non-negative here, the image of Ω1

through this parameterization is the set of rotations of angle less
than π/2, and so, some of the rotations to be averaged may not
have a corresponding preimage in Ω1. To solve this problem we
regard the magnitude s = ‖v‖ of the vectors in Ω1 not as sin(θ),
but as sin(θ/2). Since{

1− cos(θ) = 2 sin(θ/2)2 = 2s2

sin(θ) = 2 sin(θ/2) cos(θ/2) = 2sc

the following parameterization{
Ω1 → SO(3)
su 7→ I + 2scU + 2s2 U2 (4)

covers the same open set of rotations as the exponential map. Note
that since in this case 0 ≤ sin(θ/2) , cos(θ/2) ≤ 1, we can safely
compute c as

√
1− s2, and by combining terms we can evaluate

this parameterization also with a single square root:{
Ω1 → SO(3)

v 7→ I + 2
√

1− ‖v‖2 V + 2V 2 ,
(5)

where V = sU is again the skew-symmetric matrix correspond-
ing to the vector v = su. But in this case one additional square
root to compute the inverse parameterization R−1(Qij) = ni ×
nj /

√
2 + 2ntinj is needed for each neighbor

Note that this is the parameterization associated with the represen-
tation of rotations by quaternions. Quaternions are particularly pop-
ular in Computer Graphics because only four parameters are needed
to represent a rotation, as opposed to nine in matrix form, and com-
position of rotations corresponds to the product of quaternions. A
quaternion is a pair (a, b), where a ∈ IR is a scalar, and b ∈ IR3

is a vector. The product of two quaternions (a1, b1) and (a2, b2) is
given by this formula

(a1, b1) · (a2, b2) = (a1a2 − bt1b2, a1b2 + a2b1 + b1 × b2) .

If Q = Q(θ, u) is the rotation of angle 0 ≤ θ < π around a unit-
length vector u, and p ∈ IR3, it is well known that

(0, Qp) = (c, su) · (0, p) · (c,−su) (6)

where c = cos(θ/2) and s = sin(θ/2). To prove this identity it is
sufficient to expand the two quaternion products to verify that Q is
equal to the right hand side expression of equation 4.

Note that in terms of computational cost, the expression (I +
2scU + 2s2 U2) p can be evaluated with 21 multiplications and 12
additions, while evaluating Qp expanding the quaternion products
in equation 6 requires 24 multiplications and 17 additions, taking
into account the computational savings associated with the zeros in
the middle factor and result. As a comparison, a three-dimensional
matrix vector multiplication requires 27 multiplications and 18 ad-
ditions, without counting the operations needed to build the matrix
from the axis and angle.

Cayley Rational Parameterization: If we also want to min-
imize the number of square roots, we can use the following less
known parameterization of the set of rotations of angle less than π,
due to Cayley {

IR3 → SO(3)
v 7→ (I − V )(I + V )−1 (7)

where V is the skew-symmetric matrix corresponding to the three-
dimensional vector v. Since |I − V | = |I + V | = 1 + ‖v‖2, this
function is well defined for any vector v ∈ IR3. And the inverse of
this parameterization is given by the same formula: ifQ is a rotation
of angle less than π, then we have |I+Q| 6= 0 and V = (I−Q)(I+
Q)−1. To establish the relation with the other parameterizations,
we observe that the expression

(I + V )−1 = I − 1

1 + ‖v‖2 V +
1

1 + ‖v‖2 V
2 (8)

follows from the identity V 3 + ‖v‖2V = 0, and so

Q = (I − V )(I + V )−1 = I − 2

1 + ‖v‖2 V +
2

1 + ‖v‖2 V
2 ,

which can be evaluated without square roots. If we now write v =
−µu with ‖u‖ = 1 in the last equation, we obtain

Q = I +
2µ

1 + µ2
U +

2µ2

1 + µ2
U2 , (9)

which es equal to the parameterization of equation 4 with µ =
tan(θ/2).

Computing the inverse parameterization does not involve square
roots either

R−1(Qij) =
1− ntinj
‖ni × nj‖2

ni × nj

because

tan(θ/2) =
s

c
=

2s2

2sc
=

1− cos(θ)

sin(θ)
=

1− ntinj
‖ni × nj‖

.
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