
EN 292s34 / CS 220: 3D Photography and Geometry Processing

Assignment 2: 3D Photography using Planar Shadows

Instructor: Gabriel Taubin∗

TA: Douglas Lanman†

16 February 2007

Figure 1: 3D Photography using Planar Shadows. From left to right: the capture setup, a single
image from the scanning sequence, and a reconstructed object (rendered as a colored point cloud).

Introduction

The goal of this assignment is to build an inexpensive, yet accurate, 3D scanner using household
items and a camera. Specifically, we’ll implement the “desktop scanner” originally proposed by
Jean-Yves Bouguet and Pietro Perona [3]. As shown in Figure 1, our instantiation of this system
is composed of five primary items: a camera, a point-like light source, a stick, two planar surfaces,
and a calibration checkerboard. By waving the stick in front of the light source, the user can cast
planar shadows into the scene. As we’ll demonstrate in this handout, the depth at each pixel can
then be recovered using simple geometric reasoning.

In the course of completing this homework, you will need to develop a good understanding of
camera calibration, Euclidean coordinate transformations, manipulation of implicit and parametric
parameterizations of lines and planes, and efficient numerical methods for solving least-squares
problems. Before you begin this assignment, you should first browse the original project website [3]
and obtain a copy of the IJCV publication [4] – which we’ll reference several times in this document.

1 Data Capture

This assignment does not require you to construct the actual scanning apparatus. Instead, we
have provided you with nine test sequences collected using our setup. As shown in Figures 3-10,
there are a variety of objects available – ranging from those with smooth surfaces to those with
multiple self-occlusions. As we’ll describe in the following sections, reconstruction requires accurate
estimates of the of shadow boundaries. As a result, you will find that light-colored objects (e.g., the

∗taubin@mesh.brown.edu
†dlanman@brown.edu

1



Assignment 2: 3D Photography using Planar Shadows EN 292s34 / CS 220 (Spring 2007)

(a) spatial shadow edge localization (b) temporal shadow edge localization

Figure 2: Spatial and temporal shadow edge localization. (a) The shadow edges are determined
by fitting a line to the set of zero crossings, along each row in the planar regions, of the difference
image ∆I(x, y, t). (b) The shadow times (quantized to 32 values here) are determined by finding
the zero-crossings of the difference image ∆I(x, y, t) for each pixel (x, y) as a function of time t.

chiquita, frog, and man sequences) will be easiest to reconstruct. Since you’ll need to estimate the
intrinsic and extrinsic calibration of the camera, we’ve also provided the calib sequence composed of
ten images of a checkerboard at various poses. All of these sequences can be obtained on the course
website. Note that the frog and calib sequences are included in the /data directory of the support
code package. For each sequence we have provided both a high-resolution 1024×768 sequence, as
well as a low-resolution 512×384 sequence for development.

Before you proceed, briefly note some practical issues associated with this approach. First, it
is important that every pixel be shadowed at some point in the sequence. As a result, you must
wave the stick slow enough to ensure that this condition holds. In addition, the reconstruction
method requires reliable estimates of the plane defined by the light source and the edge of the stick.
Ambient illumination must be reduced so that a single planar shadow is cast by each edge of the
stick. In addition, the light source must be sufficiently bright to allow the camera to operate with
minimal gain – otherwise sensor noise will corrupt the final reconstruction. Finally, we note that
these systems typically use a single halogen desk lamp with the reflector removed. This ensures
that the light source is sufficiently point-like to produce abrupt shadow boundaries. Otherwise, the
estimate of the shadow plane will not be reliable. Once you complete this assignment you may be
inspired to build your own apparatus – keep these observations in mind.

2 Video Processing

If you’ve had a chance to review the IJCV publication [4], then you’ll realize that we must begin by
estimating two fundamental quantities from an input video sequence: (1) the time that a shadow
enters a pixel and (2) the position of the shadow edge as a function of time. The following sections
outline the basic procedures for performing these tasks. Please consult Section 2.4 in [4] or Section
6.2.4 in [2] for additional information.

2



Assignment 2: 3D Photography using Planar Shadows EN 292s34 / CS 220 (Spring 2007)

2.1 Spatial Shadow Edge Localization

In terms of Figure 2 in [4], we need to estimate the shadow lines λh(t) and λv(t) projected on
the horizontal and vertical planar regions, respectively. In order to perform this and subsequent
processing, we utilize a spatio-temporal approach. As described in the references, this approach
tends to produce better reconstruction results than traditional edge detection schemes (e.g., the
Canny edge detector [5]), since it is capable of preserving sharp surface discontinuities.

We begin by defining the maximum and minimum brightness observed in each pixel x̄c = (x, y).

Imax(x, y) , max
t

I(x, y, t)

Imin(x, y) , min
t

I(x, y, t)

In order to detect the shadow boundaries, we choose a per-pixel detection threshold which is the
midpoint of the dynamic range observed in each pixel. As a result, the shadow edge can be localized
by the zero crossings of the difference image

∆I(x, y, t) , I(x, y, t)− Ishadow(x, y),

where the shadow threshold image is defined to be

Ishadow(x, y) , Imax(x, y) + Imin(x, y)
2

.

In practice, you’ll need to select an occlusion-free image patch for each planar region. Afterwards,
you can obtain a set of sub-pixel shadow edge samples (for each row of the patch) by interpolating
the position of the zero-crossings of ∆I(x, y, t). To produce a final estimate of the shadow edges
λh(t) and λv(t), you should find the best-fit line (in the least-squares sense) to the set of shadow
edge samples. The desired output of this step is illustrated in Figure 2(a), where the best-fit lines
are overlaid on the original image. Keep in mind that you should convert the provided color images
to grayscale; if you’re using Matlab, the function rgb2gray can be used for this task.

2.2 Temporal Shadow Edge Localization

After calibrating the camera, the previous step will provide all the information necessary to recover
the position and orientation of each shadow plane as a function of time. As we’ll describe in Section
4, in order to reconstruct the object we also need to know when each pixel entered the shadowed
region. This task can be accomplished in a similar manner as spatial localization. Instead of
estimating zero-crossing along each row for a fixed frame, we’ll assign the per-pixel shadow time
using the zero crossings of the difference image ∆I(x, y, t) for each pixel (x, y) as a function of time
t. The desired output of this step is illustrated in Figure 2(b), where the shadow crossing times
are quantized to 32 values (with blue indicating earlier times and red indicated later ones). Note
that you may want to include some additional heuristics to reduce false detections. For instance,
dark regions cannot be reliably assigned a shadow time. As a result, you can eliminate pixels with
insufficient contrast.

3 Calibration

As discussed in class, you will require the intrinsic and extrinsic calibration of the camera in order
to transfer image measurements into the world coordinate system. For this assignment we will

3



Assignment 2: 3D Photography using Planar Shadows EN 292s34 / CS 220 (Spring 2007)

be using the Camera Calibration Toolbox for Matlab, also created by Jean-Yves Bouguet. This
toolbox is widely used within the computer vision community and, at its core, implements a similar
method as proposed by Zhengyou Zhang [6]. That is, the intrinsic and extrinsic parameters are
estimated by viewing several images of a checkerboard at various poses. Before continuing, you
should briefly review the documentation on the toolbox website [1]. In particular, review the first
calibration example and the description of calibration parameters.

3.1 Intrinsic Calibration

The intrinsic parameters of the camera can be obtained using the calib sequence. Begin by adding
the toolbox, located in /TOOLBOX calib, to your Matlab path by selecting “File → Set Path...”.
Next, change the current working directory to one of the calibration sequences (e.g., /data/calib or
/data/calib-lr). Type calib at the Matlab prompt to start. Since we’re only using a few images,
select “Standard (all the images are stored in memory)” when prompted. To load the images, select
“Image names” and press return, then “j”. Now select “Extract grid corners”, pass through the
prompts without entering any options, and then follow the on-screen directions. (Note that we
used a calibration target with the default 30mm×30mm squares. Also, always skip any prompts
that appear.) Once you’ve finished selecting corners, choose “Calibration” – which will run one pass
though the calibration algorithm we discussed in class. Next, choose “Analyze error”. Left-click on
any outliers you observe, then right-click to continue. Repeat the corner selection and calibration
steps for any outliers (this is a manually-assisted form of bundle adjustment). Once you have an
evenly-distributed set of reprojection errors, select “Recomp. corners” and finally “Calibration”. To
save your intrinsic calibration, select “Save”.

3.2 Extrinsic Calibration

From the previous step you now have an estimate of how pixels can be converted into normalized
coordinates (and subsequently rays in world coordinates, originating at the camera center). In order
to assist you with your implementation, we have provided a Matlab script called extrinsicDemo.
As long as the calibration results have been saved in /data/calib and /data/calib-lr, this demo will
allow you to select four corners on the “horizontal” plane to determine the Euclidean transformation
from this ground plane to the camera reference frame. (Always start by selecting the corner in the
bottom-left and proceed in a counter-clockwise order. For your reference, the corners define a
558.8mm×303.2125mm rectangle.) In addition, observe that the final section of extrinsicDemo
uses the included function pixel2ray to determine the optical rays (in camera coordinates), given
a set of user-selected pixels. While we’ve provided this demonstration, please describe in your
documentation how you can convert from pixel coordinates to a ray in world coordinates.

4 Reconstruction

At this point you have estimated all the parameters required to recover the depth of each pixel in
the image (or at least those where the shadow could be observed). In terms of Figure 2 in [4], you
can use the camera calibration to obtain a parametrization of the ray defined by a true object point
P and the camera center Oc. Given the shadow time for the associated pixel x̄c, you can lookup
(and potentially interpolate) the position of the shadow plane at this time. The resulting ray-
plane intersection will provide an estimate of the 3D position of the surface point. Repeating this
procedure for every pixel will produce a 3D reconstruction. For more details on the reconstruction
process, please consult Sections 2.5 and 2.6 in [4] and Sections 6.2.5 and 6.2.6 in [2].

4



Assignment 2: 3D Photography using Planar Shadows EN 292s34 / CS 220 (Spring 2007)

5 Post-processing and Visualization

Now that you’ve recovered a 3D point cloud, you will need to visualize the result. Regardless of the
environment you used to develop your solution, you should write a function to export the recovered
points as a VRML file containing a single indexed face set with an empty coordIndex array. Since
we are not requiring you to create a polygonal mesh representation, you should assign per-vertex
colors to “texture” the point cloud.

To give you some expectation of reconstruction quality, Figures 3-10 show the results obtained
with our reference implementation. Note that there are several choices you can make in your imple-
mentation; some of these may allow you to obtain additional points on the surface or increase the
reconstruction accuracy. Please document the methods you used to optimize your reconstruction.

Submission Instructions

You should submit clear evidence that you have successfully implemented the “desktop scanner”.
In particular, you should submit: (1) an archive named 3DPGP-HW2-Lastname.zip containing your
source code without the /data directory, (2) a typeset document explaining your implementation,
and (3) a set of reconstructed point clouds as VRML files. Final solutions should be emailed to
the TA at dlanman@brown.edu. (Please note that we reserve the right to request a 15 minute
demonstration if the submitted documentation is insufficient to compile and run your solution.)

At a minimum, the included documentation should contain some images similar to Figure 2 –
demonstrating that you were able to reliably estimate the spatial and temporal shadow edges (for a
sequence besides frog-v1). To demonstrate that you were able to calibrate the camera, include your
estimates (and short descriptions) of the intrinsic parameters: fc, cc, alpha c, kc. Please provide a
description of your specific reconstruction approach (e.g., how you parameterized various quantities
and recovered the per-pixel depth). You should include at least one figure showing a reconstruction,
and at least three different reconstructions as VRML files. If you didn’t use Matlab, please
provide brief instructions on compiling your solution. In any case, include a README file with a
short description of every file (except those we provided) in 3DPGP-HW2-Lastname.zip.

References

[1] Jean-Yves Bouguet. Camera calibration toolbox for matlab. http://www.vision.caltech.
edu/bouguetj/calib doc/.

[2] Jean-Yves Bouguet. Visual methods for three-dimensional modeling. PhD thesis, California
Institute of Technology, 1999.

[3] Jean-Yves Bouguet and Pietro Perona. 3d photography on your desk. http://www.vision.
caltech.edu/bouguetj/ICCV98/.

[4] Jean-Yves Bouguet and Pietro Perona. 3d photography using shadows in dual-space geometry.
Int. J. Comput. Vision, 35(2):129–149, 1999.

[5] Yi Ma, Stefano Soatto, Jana Kosecka, and S. Shankar Sastry. An Invitation to 3-D Vision.
Springer, 2005.

[6] Zhengyou Zhang. Flexible camera calibration by viewing a plane from unknown orientations.
In International Conference on Computer Vision (ICCV), 1999.

5



Assignment 2: 3D Photography using Planar Shadows EN 292s34 / CS 220 (Spring 2007)

Figure 3: Reconstruction results for chiquita-v1 sequence.

Figure 4: Reconstruction results for chiquita-v2 sequence.

Figure 5: Reconstruction results for frog-v1 sequence.

Figure 6: Reconstruction results for frog-v2 sequence.

6



Assignment 2: 3D Photography using Planar Shadows EN 292s34 / CS 220 (Spring 2007)

Figure 7: Reconstruction results for man-v1 sequence.

Figure 8: Reconstruction results for man-v2 sequence.

Figure 9: Reconstruction results for schooner sequence.

Figure 10: Reconstruction results for urn sequence.

7


