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Abstract

Geometric transformations are most commonly represented as
square matrices in computer graphics. Following simple geometric
arguments we derive a natural and geometrically meaningful defi-
nition of scalar multiples and a commutative addition of transfor-
mations based on the matrix representation, given that the matrices
have no negative real eigenvalues. Together, these operations allow
the linear combination of transformations. This provides the abil-
ity to create weighted combination of transformations, interpolate
between transformations, and to construct or use arbitrary transfor-
mations in a structure similar to a basis of a vector space. These
basic techniques are useful for synthesis and analysis of motions
or animations. Animations through a set of key transformations
are generated using standard techniques such as subdivision curves.
For analysis and progressive compression a PCA can be applied to
sequences of transformations. We describe an implementation of
the techniques that enables an easy-to-use and transparent way of
dealing with geometric transformations in graphics software. We
compare and relate our approach to other techniques such as matrix
decomposition and quaternion interpolation.

CR Categories: G.1.1 [Numerical Analysis]: Interpolation—
Spline and piecewise polynomial interpolation; I.3.5 [Computer
Graphics]: Computational Geometry and Object Modeling—
Geometric Transformations; I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Animation;

Keywords: transformations, linear space, matrix exponential and
logarithm, exponential map

1 Introduction

Geometric transformations are a fundamental concept of computer
graphics. Transformations are typically represented as square real
matrices and are applied by multiplying the matrix with a coor-
dinate vector. Homogeneous coordinates help to represent addi-
tive transformations (translations) and multiplicative transforma-
tions (rotation, scaling, and shearing) as matrix multiplications.
This representation is especially advantageous when several trans-
formations have to be composed: Since the matrix product is asso-
ciative all transformation matrices are multiplied and the concate-
nation of the transformations is represented as a single matrix.
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Figure 1: A two-dimensional cow space: Two transformationsA
and B, both of which include a rotation, a uniform scale, and a
translation, form a two-dimensional space of transformations. In
this space(0,0) is the identical transformation,(1,0) and(0,1) rep-
resent the specified transformationsA andB.

For the representation of motion it is necessary to interpolate
from one given transformation to another. The common way in
computer graphics for blending or interpolating transformations is
due to the pioneering work of Shoemake [Shoemake 1985; Shoe-
make 1991; Shoemake and Duff 1992]. The approach is to decom-
pose the matrices into rotation and stretch using the polar decompo-
sition and then representing the rotation using quaternions. Quater-
nions are interpolated using SLERP and the stretch matrix might
be interpolated in matrix space. Note, however, that the quaternion
approach has drawbacks. We would expect that “half” of a trans-
formationT applied twice would yieldT. Yet this is not the case
in general because the factorization uses the matrix product, which
is not commutative. In addition, this factorization induces an order
dependence when handling more than two transformations.

Barr et al. [1992], following Gabriel & Kajiya [1985], have for-
mulated a definition of splines using variational techniques. This
allows one to satisfy additional constraints on the curve. Later, Ra-
mamoorthi & Barr [1997] have drastically improved the computa-
tional efficiency of the technique by fitting polynomials on the unit
quaternion sphere. Kim et al. [1995] provide a general framework
for unit quaternion splines. However, compared to the rich tool-box
for splines in the euclidean space, quaternions splines are still diffi-
cult to compute, both in terms of programming effort as well as in
terms of computational effort.

We identify as the main problem of matrix or quaternion repre-
sentations that the standard operators are not commutative. In this
work we will give geometrically meaningful definitions for scalar
product and addition of transformations based on the matrix repre-
sentation. We motivate the definitions geometrically. The defini-

Copyright © 2002 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions Dept,
ACM Inc., fax +1-212-869-0481 or e-mail permissions@acm.org. 
© 2002 ACM 1-58113-521-1/02/0007 $5.00

380



Figure 2: Defining scalar multiples of transformations. Intuitively, “half” of a given transformationT should be so defined that applying it
twice yieldsT. This behavior is expected for arbitrary parts of transformations. Consequently, scalar multiples are defined as powers of the
transformation matrices.

tions lead to the use of an exponential map into the Lie group of
geometric transformations. Once this connection is established we
compare our definition to other approaches. The implementation of
this approach uses a transform object that transparently offers scalar
product and addition operators. This gives API users an easy-to-
use, intuitive, and flexible tool whenever it is desirable to combine
transforms rather than composing them.

2 Related work

Our approach essentially uses interpolation in Lie groups by means
of the exponential map [Marthinsen 2000]. Grassia has introduced
this idea for 3D graphics to represent the group of rotations [Gras-
sia 1998]. The group of rotations SO(3) and the group of rigid
body motions SE(3) are commonly used for motion planning in the
field of robotics. Park and Ravani compute interpolating splines
for a set of rotations in SO(3) [Park and Ravani 1997]. They com-
pare the groups SO(3) and SU(2) (the group of unit quaternions) in
detail. One main advantage of using SO(3) for interpolation is bi-
invariance, e.g. if two sets of rotations are connected with an affine
mapping the resulting curves are connected by the same map. In
our context, this property is naturally contained as part of linear-
ity. Zefran analyzes SE(3) for general problems in motion planning
(see [Zefran 1996] and the references therein). The main problem
is that the respective spaces have non-Euclidean geometry and one
has a choice of several reasonable metrics [do Carmo 1992; Zefran
et al. 1996]. Once a metric is defined, variational methods are used
to determine an interpolant [Zefran and Kumar 1998]. In our ap-
proach we have rather traded the problem of defining the geomet-
rically most meaningful metric and solving a variational problem
for simplicity, ease-of-use and transparency. In addition, we ex-
tend these methods from rotations and rigid body motion to general
transformations.

The results of our techniques are on an abstract level identical
to those from Geometric Algebra (GA) [Hestenes 1991], a field
recently introduced to the graphics community [Naeve and Rock-
wood 2001]. Current implementations of GA [Dorst and Mann
2001] use explicit representations of all sub-elements (i.e. points,
lines, planes, volumes), which results inR3 being represented with
8×8 matrices. In a sense, our approach could be seen as an alter-
native implementation using more complex operations on the ma-
trices, however, in smaller dimension.

3 Motivation and definition of scalar mul-
tiples of transformations

Suppose that we have some transformation,T, and we want to de-
fine a scalar mutliple,α �T. What conditions should such a scalar
multiple satisfy? Well, in the particular caseα = 1

2 , i.e., ”half” of
T, we want the resulting transformation to have the property that
when it’s applied twice, the result is the original transformationT,
i.e., that (

1
2
�T

)
◦
(

1
2
�T

)
= T; (1)

an illustration of our goal is given in Figure 2.
We’ll require analogous behavior for one-third of a transforma-

tion, one fourth, and so forth. We’ll also wantα�T to be a contin-
uous function of bothα andT.

Let’s explore what this entails by examining the consequences
for some standard transformations: translation, rotation, and scal-
ing.

Translation: If T is a translation by some amountv, then clearly
translation byαv is a good candidate forα �T; it satisfies
the requirements of equation 1 and its analogues, and has the
advantage that it’s also a translation.

Rotation: If T is a rotation of angleθ about the axisv, then ro-
tation about the axisv by angleαθ is a good candidate for
α �T, for simialr reasons.

Scaling: Finally, if T is a scaling transformation represented
by a scale-matrix with diagonal entriesd1,d2, . . . then
diag(dα

1 ,dα
2 , . . .) is a candidate forα �T.

In all three cases, we see that for positive integer values ofα, our
candidate forα � T corresponds toTα ; the same is true for the
matrix representing the transformation. If we had a way to define
arbitrary real powers of a matrix, we’d have a general solution to
the problem of defining scalar multiples; we’d defineα �T to be
Tα (where what we mean by this is thatα�T is the transformation
representated by the matrixMα , whereM is the matrix forT).

Fortunately, for a very wide class of matrices (those with no neg-
ative real eigenvalues), there is a consistent definition ofMα , and
computingMα is not particularly difficult (see Appendices A and
C). Furthermore, it has various familiar properties, the most critical
being thatMα Mβ = Mα+β = Mβ Mα (i.e. scalar multiples of the
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same transform commute), andM0 = I (the identity matrix). Some
other properties of exponents donot carry over from real-number
arithmetic, though: in general it’s not true that(AB)α = Aα Bα .
One more property is important: although a matrix may have two
(or more) square roots (for example, both the identity and the nega-
tive identity are square roots of the identity!), for matrices with non
negative-real eigenvalues, one can define a preferred choice ofMα

which is continuous inM andα.
While techniques for computing parts of the above transforma-

tions are well known (see e.g. [Shoemake 1985; Shoemake 1991;
Shoemake and Duff 1992; Park and Ravani 1997]) the idea of our
approach is that taking powers of transformation matrices works
for arbitrary transformations without first factoring the matrix into
these components.

Following this intuitive definition of scalar multiples of trans-
formations we need a commutative addition for transformations.
Together, these operations will form the basic building blocks for
linear combination of transformation.

4 Commutative addition of transforma-
tions

In this section, we motivate and define an operation we’ll call “addi-
tion of transformations” – the word “addition” meant to remind the
reader that the operation being defined iscommutative. The ordi-
nary matrix product combines two matrices by multiplying one by
the other, which is not symmetric in the factors. For a commutative
operation we rather expect the two transformations to be applied at
the same time, or intertwined. We want to stress that the addition
is not intended to replace the standard matrix product but to com-
plement it. Clearly, both will have their uses and one has to choose
depending on the effect to be achieved.

Let A,B be two square real matrices of the same dimension.
Clearly,AB andBA are different in general, however, are the same
if A andB commute. In this case the standard matrix product is ex-
actly what we want, in all other cases we need to modify the product
operation. The main idea of this work is to break each of the trans-
formationsA andB into smaller parts and perform (i.e. multiply)
these smaller parts alternately.

Small parts ofA and B are generated by scalar multiplication
with a small rational number, e.g. 1/n. Loosely speaking, we ex-

pect that
(

A1/nB1/n
)n

differs less from
(

B1/nA1/n
)n

thanAB from

BA. This is because a large part of the product is the same and the
difference is represented byn−1�A respectivelyn−1�B. Since
0�X = I this difference would vanish forn−1 ⇒ 0 and we conse-
quently define

A⊕B = lim
n→∞

(
A

1
n B

1
n

)n
. (2)

The idea of this definition is visualized in Figure 3. Several ques-
tions arise:

Existence Does the limit exist? Does it exist for all inputs? Is it
real if the input is real?

Commutativity Is the addition indeed commutative?

Geometric properties What geometric properties has the new
definition? For example, is the addition of two rotations a
rotation?

The questions regarding existence and commutativity of the two
operations are discussed in Appendix B. It can be shown that the
limit indeed exists under reasonable conditions. Here we analyze
some geometric properties of the addition.

The addition was designed to be commutative while preserving
the properties of the standard matrix product. Thus, it is desirable
thatA⊕B = AB if AB= BA. If A andB commute then

An =
(

BAB−1
)n

= BAB−1BAB−1B· · ·B−1 = BAnB−1,

i.e. alsoAn andB commute. The same argument leads toAnBn =
BnAn and, assuming again that primary roots exist and are conti-
nous in their inputs, this result extends also toA1/nB1/n = B1/nA1/n.
Thus

AB=
(

A
1
n

)n(
B

1
n

)n
=

(
A

1
n B

1
n

)n

and assuming the limit forn→ ∞ exists it follows that the matrix
product and⊕ are indeed the same ifA andB commute. Further-
more, sinceA commutes withA−1 the inverse of⊕ is the standard
matrix (product) inverse.

Another important geometric property is the measure (area, vol-
ume) of a model. The change of this measure due to a transfor-
mation is available as the determinant of the matrix. Note that the
order of two transformations is irrelevant for the change in size, i.e.
det(AB) = det(A)det(B) = det(B)det(A) = det(BA). It is easy to
see that the addition of transformations conforms with this invari-
ant:

det(A⊕B) = det
(

lim
n→∞

(
A1/nB1/n

)n)
= det

(
lim
n→∞

(
A1/n

)n)
det

(
lim
n→∞

(
B1/n

)n)
= det(A)det(B).

In conclusion, the geometric behavior of⊕ is very similar to the
standard matrix product. Loosely speaking,A⊕B is the application
of A andB at the same time.

5 Computation and Implementation

Both the addition and scalar multiplication operators can be com-
puted using matrix exponential and logarithm (see Appendix A for
details). The definition of the matrix exponential is analogous to
the scalar case, i.e.

eA =
∞

∑
k=0

Ak

k!
, (3)

which immediately defines the matrix logarithm as its inverse func-
tion:

eX = A ⇐⇒ X = logA. (4)

The existence of matrix logarithms (as well as matrix roots) is dis-
cussed in Appendix B. Here, it may suffice to say that logarithms
exist for transformation matrices, given that the transformation con-
tains no reflection.

Using exponential and logarithm scalar multiples may be ex-
pressed as

r�A = er logA (5)

and the limit in Equation 2 is equivalent to

A⊕B = elogA+logB. (6)

Using these equations a linear combination of an arbitrary number
of transformationsTi with weightswi is computed as

⊕
i

wi �Ti = e∑i wi ·logTi (7)

Note that the use of the exponential and logarithm hint at po-
tential problems of this approach, or more generally, show the the
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Figure 3: The addition of transformations. Given two transformations,A andB, applying one after the other (i.e. multiplying the matrices)
generally leads to different results depeneding on the order of the operations. By performingn-th parts of the two transformations in turns the
difference of the two orders becomes smaller. The limitn→ ∞ could be understood as performing both transformations concurrently. This is
the intuitive geometric definition of a commutative addition for transformations based on the matrices.

non-linearity and discontinuity between the group of transforma-
tions and the space in which we perform our computations (i.e. the
corresponding algebra). For example, both operators are in gen-
eral not continous in their input, i.e. small changes in one of the
transformations might introduce large changes in the result. Fur-
ther potential problems and limitations are discussed together with
applications in Section 6.

In order to implement this approach, routines for computing ma-
trix exponential and logarithm are required. We suggest the meth-
ods described in Appendix C because they are stable and the most
complex operation they require is matrix inversion, making them
easy to integrate in any existing matrix package.

Using an object-oriented programming language with operator
overloading it is possible to design a transform object that directly
supports the new operations. The important observation is that the
logarithm of a matrix has to be computed only once at the instantia-
tion of an object. Any subsequent operation is performed in the log-
matrix representation of the transformation. Only when the trans-
formation has to be sent to the graphics hardware a conversion to
original representation (i.e. exponentiation) is necessary.

Our current implementation needs 3· 10−5sec to construct a
transform object, which is essentially the time needed to compute
the matrix logarithm. The conversion to standard matrix represen-
tation (i.e. exponentiation) requires 3·10−6sec. Timings have been
acquired on a 1GHz Athlon PC under normal working conditions.

Note that for most applications transform objects are created at the
initialization of processes, while the conversion to standard repre-
sentation is typically needed in in every frame. However, we have
found the 3µs necessary for this conversion to be negligible in prac-
tice.

6 Applications & Results

Using the implementation discussed above, several interesting ap-
plications are straightforward to implement.

6.1 Smooth animations

A simple animation from a transformation state represented byA to
a transformationB is achieved withC(t) = (1− t)�A⊕ t�B, t ∈
[0,1]. Using a cubic Bezier curve [Hoschek and Lasser 1993] al-
lows one to define tangents in the start and endpoint of the interpo-
lation. Using the Bezier representation, tangents are simply defined
by supplying two transformations. Tangents could be used to gen-
erate e.g. fade-in/fade-out effects for the transformation. Figure 4
shows a linear and cubic interpolation of two given transformations.

To generate a smooth interpolant through a number of key frame
transformationsTi one can use standard techniques from linear
spaces such as splines [Bartels et al. 1985] or subdivision curves
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Figure 4: Interpolation sequences between given transformationsA andB. The top row shows a simple linear interpolation using the matrix
operators defined here, i.e.(1− t)�A⊕ t�B. The bottom row shows a Bezier curve fromA to B with additional control transformations.
These extra transformations define the tangents in the start and end point of the sequence.

[Zorin and Schr̈oder 1999]. Note that the transparent implemen-
tation of the operators allows solving linear systems of equations
in transformations using standard linear algebra packages. Using
these techniques one can solve for the necessary tangent matrices
which define e.g. a cubic spline. However, we find an interpolating
subdivision scheme (e.g. the 4pt scheme [Dyn et al. 1987]) partic-
ularly appealing because it is simple to implement.

It seems that implementations of quaternion splines or other
elaborated techniques are hardly available in common graphics
APIs. Note how simple the implementation of interpolating or ap-
proximating transformation curves is with the approach presented
here. One simply plugs the transform object into existing imple-
mentations for splines in Euclidean spaces.

The exponential map, on the other hand, has some drawbacks.
Essentially, a straight line in parameter space doesn’t necessarily
map to a straight line (i.e. a geodesic) in the space of transforma-
tions. This means the linear interpolation between two transfor-
mations as defined above could have non-constant speed. Further-
more, also spline curves, which could be thought of as approxi-
mating straight lines as much as possible, are minimizers of a ge-
ometrically doubtful quantity. Nevertheless, we found the results
pleasing.

We would also like to point at an interesting difference to quater-
nions: The log-matrix representation allows angles of arbitrary de-
gree. Computing the logarithm of a rotation byπ and then mul-
tiplying this log-matrix leads to a representation of rotations more
than 2π. While this could be useful in some applications it might be
disadvantageous in others. For example, the interpolation between
two rotations of±(π − ε) results in a rotation by almost 2π rather
than a rotation by 2ε. However, using the tools presented in the
following section this could be easily avoided.

We have compared the computation times of this approach with
standard techniques. A SLERP based on quaternions between two
rotation matrices is about 10 times faster than our approach. How-
ever, this is only true for the linear interpolation between two trans-
formations. Quaternion splines are subtantially slower. They typi-
cally do not allow interactively adjusting the key transformations.

6.2 Factoring transformations

Transformations form a linear space in the log-matrix representa-
tion. This allows us to write any transformation as a kind of “lin-
ear combination” of transformations from an arbitrary “basis”. The
quotation marks indicate that this “linear combination” takes place
in log-space – an associated space in which such combinations
make sense. For example, three rotationsRx,Ry,Rz by an angle
0 < φ < π around the canonical axes form a basis for the subspace
of rotations. Since they are orthogonal, any transformationT can
be factored by computing inner products of the log-representation:

x = 〈logT, logRx〉,y = 〈logT, logRy〉,z= 〈logT, logRz〉, (8)

where the inner product is computed entry-wise, i.e.
〈{ai j },{bi j }〉 = ∑ai j bi j . Note that the valuesx,y,z do not
represent Euler angles because the rotations around the axes are
performed concurrently and not one after the other. Rather,x,y,z
define axis and angle of rotation with(x,y,z)/||(x,y,z)|| being the
axis and(x+y+z)/φ being the angle.

The factorsx,y,zcould be useful to avoid the interpolation prob-
lem mentioned at the end of the last Section. Assuming a represen-
tation as above the inner products will lead to(x,y,z) ∈ [−r, r]3,
where r depends on the angle of rotation in each ofRx,Ry,Rz.
Specifically, values−r and r represent the same orientation and
one can imagine the angles to form a circle starting in−r and end-
ing in r with 0 diametrical to±r. To interpolate along the shortest
path fromR1 to R2 one chooses for each of the factorsx1,y1,z1 and
x2,y2,z2 the shorter path on the circle. Specifically, if the differ-
ence between two corresponding factors is larger than|r|, then the
shorter interpolation path is via±r rather than via 0.

Clearly, factoring has more applications than analyzing rotations.
It could be done with respect to any (application specific) orthogo-
nal or non-orthogonal basis. In order to find the representation of a
transformationT in an arbitrary transformation basis{Bi} we first
compute the inner products of the bases. The matrix

V =

〈logB1, logB1〉 . . . 〈logB1, logBn〉
...

...
...

〈logBn, logB1〉 . . . 〈logBn, logBn〉


describes a mapping from the orthogonal canonical base to the pos-
sible skew or deficient one formed by{Bi}. Computing the inverse
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Figure 5: Animation analysis and compression based on the log-matrix representation. The upper rows shows 6 of 580 frames from a
humanoid animation defined by key frame transformations in the joints of a skeleton. The respective log-matrices have been analyzed using
the SVD. The bottom row shows the first 8 principal components.

of V reveals, first, whether the basis{Bi} has full rank and, second,
allows transforming a vector of inner products with the basis to the
representation vector. We use singular value decomposition (SVD)
[Golub and Van Loan 1989] for computing the inverse ofV in order
to get some information about the condition of the base.

Factoring has great applications in constraining transformations.
The idea is to define an application-centered basis for a (sub)space
of transformations and to factor and interpolate transformations
in that (sub)space. Interpolating the factors allows one to gen-
erate smooth curves that naturally respect the constraints as de-
fined by the subspace. In general, a suitable basis for the intended
application-specific subspace might be hard to find. A simple solu-
tion is to first generate a number of permissible transformationsTi .
The logarithms of the transformation matrices are written as rows
of a matrix. − logT0−

...
− logTn−


This matrix is decomposed using the SVD, which yields an or-
thonormal basis of the subspace of the permissible transformations.

6.3 Animation analysis

Analysis and compression of motions or animations is still a diffi-
cult subject. A reason might be that motions are typically non-linear
so that powerful techniques such as a principal component analysis
(PCA) [Jolliffe 1986] are difficult to apply. However, the techniques
presented here allow the application of matrix techniques to analyze
arbitrary transformations.

The SVD has been used by Alexa & Müller [2000] to generate a
compact basis for a sequence of deforming meshes. The decompo-
sition is applied to the vertex positions of key-frame meshes. This
approach essentially decomposes the translational parts of an ani-
mation, while the rotational and scaling parts are not represented in
a meaningful way. If an animation is mainly comprising local trans-
formations a decomposition in the space of transformations would
be more reasonable.

Using the linear matrix operators allows applying the SVD to
sequences of transformations. As an example, we decompose a
given skeleton animation of a walking humanoid. The matrices

defining the local transformations are recorded over 580 key frames
of the animation. The log-matrix representations of a key frame
comprise a row of the representation matrix, which is then fac-
tored. The humanoid in the given animation follows the H-Anim
specification [Web3D Consortium 1999] and has 17 joints, each
of which provides 6 degrees of freedom (see Figure 5). The de-
composition reveals that only 10 base elements are necessary to
represent the 580 key frames faithfully. This reduces the originally
580·17·16= 157760 scalars to 580·10+17·16·10= 8520, which
is a compression factor of roughly 20.

This approach might also be applied to mesh animations. One
has to assign a transformation to each primitive (e.g. vertex or face).
This might require additional constraints as affine transformations
offer more degrees of freedom than specified by single primitive.
Applying a PCA to a deforming mesh could reveal an underlying
process generating the deformation and, thus, essentially decom-
pose it into affine transformations. This problem has been identi-
fied to be the key to efficient compression of animations [Lengyel
1999].

7 Conclusions

In this work, scalar multiples and commutative addition of transfor-
mations are defined, which are geometrically meaningful and easy
to compute on the basis of the transformation matrices. Together,
these operations enable the generation of linear combinations of
transformations. This allows one to use common techniques for the
synthesis and analysis of sets of transformations, e.g. to generate
animations.

The main feature of this approach is the simplicity and flexi-
bility in developing graphics software. We believe that many of
the possible results of this approach might be generated by other
means, though with considerably more programming effort and use
of complex numerical techniques. We hope that the simple iterative
implementations of matrix exponential and logarithm find their way
in every graphics API.

Future work will concentrate on the aspect of analyzing motions
and animations using linear techniques. Note that the approach
works in any dimension and that we have not yet evaluated the re-
sulting possibilities.

385



Acknowledgements

I would like to thank Roy Mathias for introducing me to ma-
trix functions and Reinhard Klein for discussions on transforma-
tions and Lie groups. Johannes Behr has helped with coding and
provided the implementation of the walking humanoid animation.
Wolfgang Müller and the anonymous referees have given invaluable
advice and helped tremendously in improving this document. This
work has been supported by the BMBF grant “OpenSG PLUS”.

References
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A Existence of matrix roots

In the following we will analyze the conditions for the existence of
matrix roots, which are intuitively parts of the transformation such
that all parts are identical and their combined application yields the
original transformation. We will rather use this intuitive geometric
point of view – a formal proof of the claims made here could be
found in [Horn and Johnson 1991, Thm. 6.4.14].

First, it is clear that a reflection cannot be split into several equiv-
alent parts and, consequently, transformation matrices must have
positive determinant. This property is obviously necessary, how-
ever, not sufficient. To understand this, we need to analyze the
eigenvalues of the transformation matrix as they are representative
for the nature of the transformation. Note that the product of all
eigenvalues is the determinant and, therefore, has to be real.

If all eigenvalues are (real) positive the transformation is a pure
scale and taking roots is simple. If the eigenvalues have an imag-
inary part the respective transformation has a rotational (or shear)
component. Because the product of all eigenvalues is real they form
two conjugate groups. These groups stay conjugate when roots of
the eigenvalues are taken so that determinant and, thus, the trans-
formation matrix is still real.

A problem occurs in case of real negative eigenvalues (i.e. the
imaginary part is zero), which is why we have excluded these
transsformations so far. Taking roots of these values introduces
imaginary parts in the determinant. Because the determinant is
positive the number of negative eigenvalues has to be even, which
allows one to analyze them pairwise. A pair of eigenvalues essen-
tially defines a transformation in 2D and since both eigenvalues are
real and negative this transformation contains a scale part and ei-
ther a rotation byπ or two reflections. If both eigenvalues have the
same magnitude the transformation is a rotation byπ and a uniform
scale. Taking roots intuitively means reducing the angle of rota-
tion and adjusting the uniform scale. However, if the eigenvalues
have different magnitude the corresponding transformation can be
seen as two reflections or as a rotation together with a non-uniform
scale. It is impossible to split this transformation into equivalent
parts, because the non-uniform scale is orientation dependent and
the orientation changes due to the rotation. Note that compared to
other rotational angles it is not possible to interpret this transfor-
mation as a shear. Rephrasing this in terms of eigenvalues: if the
imaginary parts have same magnitude their roots could be assigned
different signs so that they form a conjugate pair; if they have dif-
ferent magnitude this is not possible.

Concluding, a transformation is divisible, if the real negative
eigenvalues of the matrix representing the transformation have even
multiplicity. Assuming a positive determinant, it is not divisible
if it has a pair of negative real eigenvalues with different magni-
tude. Geometrically, a pair of real negative eigenvalues with differ-
ent magnitude indicate a rotation byπ together with a non-uniform
scale. This is the only type of transformation that cannot be han-
dled (without further treatment) with the approach presented here.
A rotation byπ together with uniform scales as well as other rota-
tional angles together with non-uniform scales are permissible. For
later use we denote this class of transformation matricesT. Note,
however, that for divisible transforms with real negative eigenval-
ues there is no preferred choice for the primary roots and, thus, the
scalar multiplication operation is not continous for such arguments.

B Matrix exponential and logarithm & Lie
products

The connection between the matrix operators defined in Sections 3
and 4 and matrix exponential and logarithm is not quite obvious.
Recall the definition of exponential and logarithms from Equa-
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tions 3 and 4. One has to be careful when carrying over equivalence
transforms for exponentials and logarithms from the scalar case, i.e.
eA+B, eAeB, andeBeA are generally not the same. However, a suf-
ficient condition for the expressions to be the same is thatA andB
commute (see [Horn and Johnson 1991, Thm. 6.2.38]). This leads
to the identities

emA = eA+...+A = eA · · ·eA =
(

eA
)m

, m∈ N.

Assuming thatemA∈ T we can takem-the roots on both sides1,(
emA

)1/m
= eA ⇔ e

1
mA =

(
eA

)1/m

thus
erA =

(
eA

)r
, r ∈Q. (9)

By definitionelogA = A and logeA = A. SettingA = logB in Eq. 9
and assuming the logarithms of both sides exist yields

log
(

er logB
)

= log
(

elogB
)r

r logB = log(Br ) . (10)

This immediately leads to the result for the scalar multiplication
given in Equation 5. From this connection of roots and logarithms
it is clear that real matrix logarithms exist exactly when real matrix
roots exist (see also [Horn and Johnson 1991, Thm. 6.4.15]).

As said before,eA+B andeAeB are generally not the same ifA
andB do not commute. A way of connecting these expressions in
the general case is the Lie product formula (see [Horn and Johnson
1991, Chapter 6.5] for a derivation):

eA+B = lim
n→∞

(
e

1
n Ae

1
n B

)n
(11)

Applying this to logA, logB instead ofA andB leads to

elogA+logB = lim
n→∞

(
e

1
n logAe

1
n logB

)n

= lim
n→∞

((
elogA

)1/n(
elogB

)1/n
)n

= lim
n→∞

(
A1/nB1/n

)n
, (12)

which leads to the representation of the addition given in Equa-
tion 6. The use of the standard matrix addition in the exponent
proves that the addition operator is indeed commutative.

C Implementation

The computation of exponential and logarithm of rotations or rigid
body motions could be performed using Rodrigues’ formula (see
[Murray et al. 1994]). The transformations considered here are
more general, however, including (non-uniform) scales. We are
unclear whether Rodrigues’ formula generalizes to this group and,
therefore, propose an implementation based on matrix series. Note
that Rodrigues’ formula is the method of choice if scaling is not
needed because it is both faster and more robust.

The computation of matrix functions such as the exponential and
the logarithm is non-trivial. For example, evaluating Equation 4 for
computing the exponential is numerically unstable. The preferred
way of computing matrix functions is in many cases to use a Schur

1This depends also on our choice of primary roots, which could be a
problem where the primary matrix root function is discontinous, i.e. for
matrices with negative real eigenvalues

decomposition and evaluate the function on the upper triangle ma-
trix [Golub and Van Loan 1989].

However, this work is intended for graphics where standard ma-
trix packages only offer elementary matrix operations. For this
reason, implementations are provided using only matrix inversion,
multiplication, and addition. For the sake of completeness the
pseudo-code from some of the original publications is repeated
here.

Moler and van Loan [1978] have investigated several ways of
computing the exponential of a matrixA in an iterative way and
recommend a Padé approximation with scaling. ScalingA leads to
smaller eigenvalues, which in turn, speeds up the convergence of
iterative solvers. This is the pseudo-code of the procedure (see also
[Golub and Van Loan 1989]):

Compute X = eA

j = max(0,1+ blog2(‖A‖)c)
A = 2− j A
D = I ; N = I ; X = I ; c = 1
for k = 1 to q

c = c(q−k+1)/(k(2q−k+1))
X = AX; N = N+cX; D = D+(−1)kcX

end for

X = D−1N

X = X2 j

The number of iterationsq depends on the desired accuracy,q =
6 has proven to be a good choice for the applications intended here.

The logarithm of a matrixA can be computed using a truncated
Taylor series. However, convergence is not guaranteed or poor if
A is not near the identity matrix. By using the identity logA =
2k logA1/2k

and, thus, repeatedly taking the square rootA can be
made close enough to identity. Exploiting this equation and using
a Taylor approximation has been introduced by Kenney and Laub
[1989] and leads to the following algorithm:

Compute X = logA
k = 0
while ‖A− I‖> 0.5

A = A1/2

k = k+1
end while

A = I −A
Z = A; X = A; i = 1
while ‖Z‖> ε

Z = ZA; i = i +1
X = X +Z/i

end while

X = 2kX

However, this algorithms needs to compute square roots of ma-
trices. Higham [1997] has compared several iterative methods to
compute matrix square roots and generally recommends the fol-
lowing simple method due to Denman and Beavers [1976]:

Compute X = A1/2

X = A; Y = I
while ‖XX−A‖> ε

iX = X−1; iY = Y−1

X = 1
2 (X + iY); Y = 1

2 (Y + iX)
end while

Note that all while loops in the pseudo codes should terminate
after a fixed number of iterations since numerical problems might
lead to poor convergence.
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