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Abstract

Geometric transformations are most commonly represented as
square matrices in computer graphics. Following simple geometric
arguments we derive a natural and geometrically meaningful defi-
nition of scalar multiples and a commutative addition of transfor-
mations based on the matrix representation, given that the matrices
have no negative real eigenvalues. Together, these operations allov
the linear combination of transformations. This provides the abil-
ity to create weighted combination of transformations, interpolate
between transformations, and to construct or use arbitrary transfor-
mations in a structure similar to a basis of a vector space. These
basic techniques are useful for synthesis and analysis of motions
or animations. Animations through a set of key transformations
are generated using standard techniques such as subdivision curve:
For analysis and progressive compression a PCA can be applied tc
sequences of transformations. We describe an implementation of
the techniques that enables an easy-to-use and transparent way ¢
dealing with geometric transformations in graphics software. We
compare and relate our approach to other techniques such as matri:
decomposition and quaternion interpolation.

Figure 1: A two-dimensional cow space: Two transformatiéns

CR Categories: G.1.1 [Numerical Analysis]: Interpolation—  andB, both of which include a rotation, a uniform scale, and a

Spline and piecewise polynomial interpolation; 1.3.5 [Computer
Graphics]: Computational Geometry and Object Modeling—
Geometric Transformations; 1.3.7 [Computer Graphics]: Three-

translation, form a two-dimensional space of transformations. In
this spac€0,0) is the identical transformatiof1,0) and(0, 1) rep-
resent the specified transformatiohandB.
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logarithm, exponential map For the representation of motion it is necessary to interpolate

from one given transformation to another. The common way in
computer graphics for blending or interpolating transformations is
due to the pioneering work of Shoemake [Shoemake 1985; Shoe-
make 1991; Shoemake and Duff 1992]. The approach is to decom-
pose the matrices into rotation and stretch using the polar decompo-
Geometric transformations are a fundamental concept of computersition and then representing the rotation using quaternions. Quater-
graphics. Transformations are typically represented as square reahions are interpolated using SLERP and the stretch matrix might
matrices and are applied by multiplying the matrix with a coor- be interpolated in matrix space. Note, however, that the quaternion
dinate vector. Homogeneous coordinates help to represent addi-approach has drawbacks. We would expect that “half” of a trans-
tive transformations (translations) and multiplicative transforma- formationT applied twice would yieldr. Yet this is not the case
tions (rotation, scaling, and shearing) as matrix multiplications. in general because the factorization uses the matrix product, which
This representation is especially advantageous when several transis not commutative. In addition, this factorization induces an order
formations have to be composed: Since the matrix product is asso-dependence when handling more than two transformations.

ciative all transformation matrices are multiplied and the concate-  Bayr et al. [1992], following Gabriel & Kajiya [1985], have for-
nation of the transformations is represented as a single matrix. ~ mulated a definition of splines using variational techniques. This
allows one to satisfy additional constraints on the curve. Later, Ra-
mamoorthi & Barr [1997] have drastically improved the computa-
tional efficiency of the technique by fitting polynomials on the unit
quaternion sphere. Kim et al. [1995] provide a general framework
for unit quaternion splines. However, compared to the rich tool-box
for splines in the euclidean space, quaternions splines are still diffi-
cult to compute, both in terms of programming effort as well as in
terms of computational effort.

We identify as the main problem of matrix or quaternion repre-
sentations that the standard operators are not commutative. In this
work we will give geometrically meaningful definitions for scalar
product and addition of transformations based on the matrix repre-
sentation. We motivate the definitions geometrically. The defini-
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Figure 2: Defining scalar multiples of transformations. Intuitively, “half” of a given transformdtishould be so defined that applying it
twice yieldsT. This behavior is expected for arbitrary parts of transformations. Consequently, scalar multiples are defined as powers of the
transformation matrices.

tions lead to the use of an exponential map into the Lie group of 3 Motivation and definition of scalar mul-
geometric transformations. Once this connection is established we tiples of transformations
compare our definition to other approaches. The implementation of

this approach uses a transform object that transparently offers Scalaguppose that we have some transformatigrand we want to de-

product and addition operators. This gives API users an easy-10-fine a scalar mutlipleg ® T. What conditions should such a scalar
use, intuitive, and flexible tool whenever it is desirable to combine multiple satisfy? Well, in the particular case— % i.e. half’ of

transforms rather than composing them. T, we want the resulting transformation to have the property that
when it's applied twice, the result is the original transformafign
i.e., that

2 Related work (%@T) o (% @T) =T, 1

Our approach essentially uses interpolation in Lie groups by meansan illustration of our goal is given in Figure 2.

of the exponential map [Marthinsen 2000]. Grassia has introduced We'll require analogous behavior for one-third of a transforma-
this idea for 3D graphics to represent the group of rotations [Gras- tion, one fourth, and so forth. We'll also wanit> T to be a contin-

sia 1998]. The group of rotations SO(3) and the group of rigid uous function of bottx andT.

body motions SE(3) are commonly used for motion planning inthe  Let’s explore what this entails by examining the consequences
field of robotics. Park and Ravani compute interpolating splines for some standard transformations: translation, rotation, and scal-
for a set of rotations in SO(3) [Park and Ravani 1997]. They com- ing.

pare the groups SO(3) and SU(2) (the group of unit quaternions) in ) ) )

detail. One main advantage of using SO(3) for interpolation is bi- Translation: If T is a translation by some amountthen clearly

invariance, e.g. if two sets of rotations are connected with an affine translation byav is a good candidate fox © T; it satisfies
mapping the resulting curves are connected by the same map. In  the requirements of equation 1 and its analogues, and has the
our context, this property is naturally contained as part of linear- advantage that it's also a translation.

ity. Zefran analyzes SE(3) for general problems in motion planning Rotation:
(see [Zefran 1996] and the references therein). The main problem :
is that the respective spaces have non-Euclidean geometry and one
has a choice of several reasonable metrics [do Carmo 1992; Zefran
etal. 1995]. Oncg a metric is defined, variational methods are USEdScaIing: Finally, if T is a scaling transformation represented
to determine an interpolant [Zefran and Kumar 1998]. In our ap- by a scale-matrix with diagonal entrieg,,d,,... then
proach we have rather traded the problem of defining the geomet- diag(d®,d¢, ...) is a candidate fo ® T.
rically most meaningful metric and solving a variational problem 12
for simplicity, ease-of-use and transparency. In addition, we ex- In all three cases, we see that for positive integer values, afur
tend these methods from rotations and rigid body motion to general candidate fora ® T corresponds td@ %; the same is true for the
transformations. matrix representing the transformation. If we had a way to define
The results of our techniques are on an abstract level identical arbitrary real powers of a matrix, we'd have a general solution to
to those from Geometric Algebra (GA) [Hestenes 1991], a field the problem of defining scalar multiples; we'd define> T to be
recently introduced to the graphics community [Naeve and Rock- T% (where what we mean by this is that> T is the transformation
wood 2001]. Current implementations of GA [Dorst and Mann representated by the matfi4*, whereM is the matrix forT).
2001] use explicit representations of all sub-elements (i.e. points, Fortunately, for a very wide class of matrices (those with no neg-
lines, planes, volumes), which resultsiA being represented with  ative real eigenvalues), there is a consistent definitiokl &f and
8 x 8 matrices. In a sense, our approach could be seen as an altercomputingM® is not particularly difficult (see Appendices A and
native implementation using more complex operations on the ma- C). Furthermore, it has various familiar properties, the most critical
trices, however, in smaller dimension. being thatM*MB = M@*+P = MPM® (i.e. scalar multiples of the

If T is a rotation of anglé about the axiw, then ro-
tation about the axig by anglea#6 is a good candidate for
a® T, for simialr reasons.
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same transform commute), ahtf = | (the identity matrix). Some
other properties of exponents dot carry over from real-number
arithmetic, though: in general it's not true thgAB)* = A“B%.
One more property is important: although a matrix may have two

(or more) square roots (for example, both the identity and the nega-

tive identity are square roots of the identity!), for matrices with non
negative-real eigenvalues, one can define a preferred chold€ of
which is continuous iM andc.

While techniques for computing parts of the above transforma-

The addition was designed to be commutative while preserving
the properties of the standard matrix product. Thus, it is desirable
thatA@® B = ABif AB= BA. If AandB commute then

n
A — (BAFl) —BAB BAB !B...B1=BAB L,
i.e. alsoA" andB commute. The same argument lead&\t@" =

B"A" and, assuming again that primary roots exist and are conti-
nous in their inputs, this result extends alsatd"BL/n = BL/nal/n,

tions are well known (see e.g. [Shoemake 1985; Shoemake 1991;Thus

Shoemake and Duff 1992; Park and Ravani 1997]) the idea of our
approach is that taking powers of transformation matrices works
for arbitrary transformations without first factoring the matrix into
these components.

Following this intuitive definition of scalar multiples of trans-
formations we need a commutative addition for transformations.
Together, these operations will form the basic building blocks for
linear combination of transformation.

4 Commutative addition of transforma-
tions

In this section, we motivate and define an operation we'll call “addi-
tion of transformations” — the word “addition” meant to remind the
reader that the operation being define¢@mmutative The ordi-
nary matrix product combines two matrices by multiplying one by
the other, which is not symmetric in the factors. For a commutative

operation we rather expect the two transformations to be applied at

the same time, or intertwined. We want to stress that the addition
is not intended to replace the standard matrix product but to com-
plement it. Clearly, both will have their uses and one has to choose
depending on the effect to be achieved.

Let A B be two square real matrices of the same dimension.
Clearly, AB andBA are different in general, however, are the same
if AandB commute. In this case the standard matrix product is ex-
actly what we want, in all other cases we need to modify the product
operation. The main idea of this work is to break each of the trans-
formationsA andB into smaller parts and perform (i.e. multiply)
these smaller parts alternately.

Small parts ofA and B are generated by scalar multiplication
with a small rational number, e.g./A Loosely speaking, we ex-

n n
pect that Al/”Bl/“) differs less from Bl/”Al/”> thanABfrom

1

n

1\ N n 1 1\Nn
AB= <Aﬁ) (B ) (AHBH)
and assuming the limit fon — o exists it follows that the matrix
product and® are indeed the same A andB commute. Further-
more, sinceA commutes withA~1 the inverse ofp is the standard
matrix (product) inverse.

Another important geometric property is the measure (area, vol-
ume) of a model. The change of this measure due to a transfor-
mation is available as the determinant of the matrix. Note that the
order of two transformations is irrelevant for the change in size, i.e.
det(AB) = det(A)det(B) = detB)detf/A) = detBA). It is easy to
see that the addition of transformations conforms with this invari-
ant:

detA®B) — det(r!iinw (Al/nBl/n> n>

= det(fm (417)") et fm (7)")
= det(A) det(B).

In conclusion, the geometric behavior @fis very similar to the
standard matrix product. Loosely speakiAg;B is the application
of AandB at the same time.

5 Computation and Implementation

Both the addition and scalar multiplication operators can be com-
puted using matrix exponential and logarithm (see Appendix A for
details). The definition of the matrix exponential is analogous to
the scalar case, i.e.

o Ak
=3 @

k-

which immediately defines the matrix logarithm as its inverse func-

BA. This is because a large part of the product is the same and thejjgn:

difference is represented by © A respectivelyn—* © B. Since
06 X = this difference would vanish far ! = 0 and we conse-
quently define

)

The idea of this definition is visualized in Figure 3. Several ques-
tions arise:

. 1_1\N
A&B= lim (Aan> .

Existence Does the limit exist? Does it exist for all inputs? Is it
real if the input is real?

Commutativity Is the addition indeed commutative?

Geometric properties What geometric properties has the new
definition? For example, is the addition of two rotations a
rotation?

The questions regarding existence and commutativity of the two
operations are discussed in Appendix B. It can be shown that the
limit indeed exists under reasonable conditions. Here we analyze
some geometric properties of the addition.
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&€ =A < X=logA 4)

The existence of matrix logarithms (as well as matrix roots) is dis-
cussed in Appendix B. Here, it may suffice to say that logarithms
exist for transformation matrices, given that the transformation con-
tains no reflection.
Using exponential and logarithm scalar multiples may be ex-
pressed as
roA=g09A

and the limit in Equation 2 is equivalent to

A@ B= elogA-&-IogB'

()

(6)

Using these equations a linear combination of an arbitrary number
of transformationd; with weightsw; is computed as

Dw T =exion 7)

Note that the use of the exponential and logarithm hint at po-
tential problems of this approach, or more generally, show the the
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Figure 3: The addition of transformations. Given two transformatiéremndB, applying one after the other (i.e. multiplying the matrices)
generally leads to different results depeneding on the order of the operations. By perfostiniparts of the two transformations in turns the
difference of the two orders becomes smaller. The limit c could be understood as performing both transformations concurrently. This is
the intuitive geometric definition of a commutative addition for transformations based on the matrices.

non-linearity and discontinuity between the group of transforma- Note that for most applications transform objects are created at the
tions and the space in which we perform our computations (i.e. the initialization of processes, while the conversion to standard repre-
corresponding algebra). For example, both operators are in gen-sentation is typically needed in in every frame. However, we have
eral not continous in their input, i.e. small changes in one of the found the 3ts necessary for this conversion to be negligible in prac-

transformations might introduce large changes in the result. Fur- tice.

ther potential problems and limitations are discussed together with

applications in Section 6.

In order to implement this approach, routines for computing ma- 6 Applications & Results
trix exponential and logarithm are required. We suggest the meth-
ods described in Appendix C because they are stable and the mostsing the implementation discussed above, several interesting ap-
complex operation they require is matrix inversion, making them plications are straightforward to implement.
easy to integrate in any existing matrix package.

Using an object-oriented programming language with operator 6.1 Smooth animations
overloading it is possible to design a transform object that directly
supports the new operations. The important observation is that thea simple animation from a transformation state representel toy
logarithm of a matrix has to be computed only once at the instantia- 3 transformatiorB is achieved withC(t) = (1—t) ©A@t ©B,t €
tion of an object. Any subsequent operation is performed in the log- [0,1]. Using a cubic Bezier curve [Hoschek and Lasser 1993] al-
matrix representation of the transformation. Only when the trans- |ows one to define tangents in the start and endpoint of the interpo-
formation has to be sent to the graphics hardware a conversion tojation. Using the Bezier representation, tangents are simply defined
original representation (i.e. exponentiation) is necessary. by supplying two transformations. Tangents could be used to gen-
Our current implementation needs B0 °sec to construct a  erate e.g. fade-in/fade-out effects for the transformation. Figure 4
transform object, which is essentially the time needed to compute shows alinear and cubic interpolation of two given transformations.
the matrix logarithm. The conversion to standard matrix represen-  To generate a smooth interpolant through a number of key frame
tation (i.e. exponentiation) requires 3 ®sec. Timings have been transformationsT, one can use standard techniques from linear
acquired on a 1GHz Athlon PC under normal working conditions. spaces such as splines [Bartels et al. 1985] or subdivision curves
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Figure 4: Interpolation sequences between given transformatiamsiB. The top row shows a simple linear interpolation using the matrix
operators defined here, i.€1—t) © A®t © B. The bottom row shows a Bezier curve frékto B with additional control transformations.
These extra transformations define the tangents in the start and end point of the sequence.

[Zorin and Schoder 1999]. Note that the transparent implemen- 6.2 Factoring transformations
tation of the operators allows solving linear systems of equations . . . .
in transformations using standard linear algebra packages. Using] @nsformations form a linear space in the log-matrix representa-
these techniques one can solve for the necessary tangent matriceln: This allows us to write any transformation as a kind of “lin-
which define e.g. a cubic spline. However, we find an interpolating ear combination” of transformations from an arbitrary “basis”. The

subdivision scheme (e.g. the 4pt scheme [Dyn et al. 1987]) partic- quotation marks indicate that this “linear combination” takes place
ularly appealing because it is simple to implement. ' in log-space — an associated space in which such combinations

make sense. For example, three rotati®sRy, R; by an angle

0 < ¢ < & around the canonical axes form a basis for the subspace
of rotations. Since they are orthogonal, any transformatfiaran

be factored by computing inner products of the log-representation:

It seems that implementations of quaternion splines or other
elaborated techniques are hardly available in common graphics
APIs. Note how simple the implementation of interpolating or ap-
proximating transformation curves is with the approach presented  x= (logT,logRy),y = (logT,logR,),z= (logT,logR;),  (8)
here. One simply plugs the transform object into existing imple-

mentations for splines in Euclidean spaces. where the inner product is computed entry-wise, i.e.

({aj;}.{bj;}) = T4;b;. Note that the valuesqy,z do not
represent Euler angles because the rotations around the axes are
performed concurrently and not one after the other. Rathgrz
Ydefine axis and angle of rotation witk,y, 2)/||(x,Y, 2)|| being the

The exponential map, on the other hand, has some drawbacks
Essentially, a straight line in parameter space doesn’t necessaril
fone. " This moans the inesr merpolation botween two tansior. XS &Nty 2o being the angle.
matic;ns as defined above could have non-constant speed. Further;, The fac_:tor9<, y;zcould be useful to avou_:i the |nterpc_>lat|on prob-
more, also spline curves, which could be thought of as épproxi- Iem mentioned at the_ end of the last Sgctlon. Assuming a represen-

- . - ' . L tation as above the inner products will lead(toy,z) € [—r,r]°,
mating straight lines as much as possible, are minimizers of a ge-

: . wherer depends on the angle of rotation in eachRy{R,R;.
S{QZ;ESW doubtful quantity. Nevertheless, we found the results Specifically, values—r andr represent the same orientation and

one can imagine the angles to form a circle starting-irand end-
) . . ) . ing inr with O diametrical totr. To interpolate along the shortest

_ We would also like to point at an interesting difference to quater- patn fromR, to R, one chooses for each of the factgysy, ,z, and
nions: The log-matrix representation allows angles of arbitrary de- X,,Y,,Z, thé shorter path on the circle. Specifically, if the differ-
gree. Computing the logarithm of a rotation yand then mul- ~  ghce petween two corresponding factors is larger thathen the
tiplying this log-matrix leads to a representation of rotations more ghorter interpolation path is viar rather than via 0.
than 2r. While this could be useful in some applications it mightbe  cjearly, factoring has more applications than analyzing rotations.
disadvantageous in others. For example, the interpolation betweenyt could be done with respect to any (application specific) orthogo-
two rotations of£(x — &) results in a rotation by almostizather g or non-orthogonal basis. In order to find the representation of a
than a rotation by & However, using the tools presented in the  transformatiorT in an arbitrary transformation basf8,} we first
following section this could be easily avoided. compute the inner products of the bases. The matrix

We have compared the computation times of this approach with (logBy,logB;) ... (logBy,logBn)
standard techniques. A SLERP based on gquaternions between two V= : . :
rotation matrices is about 10 times faster than our approach. How- ' ' '
ever, this is only true for the linear interpolation between two trans- (logBn;logB,) .. (I0gBn, l0gBn)
formations. Quaternion splines are subtantially slower. They typi- describes a mapping from the orthogonal canonical base to the pos-
cally do not allow interactively adjusting the key transformations.  sible skew or deficient one formed 8, }. Computing the inverse
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Figure 5: Animation analysis and compression based on the log-matrix representation. The upper rows shows 6 of 580 frames from a
humanoid animation defined by key frame transformations in the joints of a skeleton. The respective log-matrices have been analyzed using
the SVD. The bottom row shows the first 8 principal components.

of V reveals, first, whether the bagiB; } has full rank and, second,  defining the local transformations are recorded over 580 key frames
allows transforming a vector of inner products with the basis to the of the animation. The log-matrix representations of a key frame
representation vector. We use singular value decomposition (SVD) comprise a row of the representation matrix, which is then fac-
[Golub and Van Loan 1989] for computing the invers&/ah order tored. The humanoid in the given animation follows the H-Anim
to get some information about the condition of the base. specification [Web3D Consortium 1999] and has 17 joints, each

Factoring has great applications in constraining transformations. of which provides 6 degrees of freedom (see Figure 5). The de-
The idea is to define an application-centered basis for a (sub)spacecomposition reveals that only 10 base elements are necessary to
of transformations and to factor and interpolate transformations represent the 580 key frames faithfully. This reduces the originally
in that (sub)space. Interpolating the factors allows one to gen- 580-17-16= 157760 scalars to 5800+ 17-16-10= 8520, which
erate smooth curves that naturally respect the constraints as deis a compression factor of roughly 20.
fined by the subspace. In general, a suitable basis for the intended This approach might also be applied to mesh animations. One
application-specific subspace might be hard to find. A simple solu- has to assign a transformation to each primitive (e.g. vertex or face).
tion is to first generate a number of permissible transformaffpns ~ This might require additional constraints as affine transformations
The logarithms of the transformation matrices are written as rows offer more degrees of freedom than specified by single primitive.
of a matrix. Applying a PCA to a deforming mesh could reveal an underlying

—logTy— process generating the deformation and, thus, essentially decom-
: pose it into affine transformations. This problem has been identi-
: fied to be the key to efficient compression of animations [Lengyel
—logTn— 1999].
This matrix is decomposed using the SVD, which yields an or-
thonormal basis of the subspace of the permissible transformations. .
Conclusions
6.3 Animation analysis In this work, scalar multiples and commutative addition of transfor-
Analysis and compression of motions or animations is still a diffi- mations are defined, which are geometrically meaningful and easy
cult subject. A reason might be that motions are typically non-linear to compute on the basis of the transformation matrices. Together,
so that powerful techniques such as a principal component analysisthese operations enable the generation of linear combinations of
(PCA) [Jolliffe 1986] are difficult to apply. However, the techniques transformations. This allows one to use common techniques for the
presented here allow the application of matrix techniques to analyze synthesis and analysis of sets of transformations, e.g. to generate
arbitrary transformations. animations.

The SVD has been used by Alexa &lMer [2000] to generate a The main feature of this approach is the simplicity and flexi-
compact basis for a sequence of deforming meshes. The decompobility in developing graphics software. We believe that many of
sition is applied to the vertex positions of key-frame meshes. This the possible results of this approach might be generated by other
approach essentially decomposes the translational parts of an anifmeans, though with considerably more programming effort and use
mation, while the rotational and scaling parts are not represented inof complex numerical techniques. We hope that the simple iterative
a meaningful way. If an animation is mainly comprising local trans- implementations of matrix exponential and logarithm find their way
formations a decomposition in the space of transformations would in every graphics API.
be more reasonable. Future work will concentrate on the aspect of analyzing motions

Using the linear matrix operators allows applying the SVD to and animations using linear techniques. Note that the approach
sequences of transformations. As an example, we decompose avorks in any dimension and that we have not yet evaluated the re-
given skeleton animation of a walking humanoid. The matrices sulting possibilities.
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original transformation. We will rather use this intuitive geometric
point of view — a formal proof of the claims made here could be
found in [Horn and Johnson 1991, Thm. 6.4.14].

First, itis clear that a reflection cannot be split into several equiv-
alent parts and, consequently, transformation matrices must have
positive determinant. This property is obviously necessary, how-
ever, not sufficient. To understand this, we need to analyze the
eigenvalues of the transformation matrix as they are representative
for the nature of the transformation. Note that the product of all
eigenvalues is the determinant and, therefore, has to be real.

If all eigenvalues are (real) positive the transformation is a pure
scale and taking roots is simple. If the eigenvalues have an imag-
inary part the respective transformation has a rotational (or shear)
component. Because the product of all eigenvalues is real they form
two conjugate groups. These groups stay conjugate when roots of
the eigenvalues are taken so that determinant and, thus, the trans-
formation matrix is still real.

A problem occurs in case of real negative eigenvalues (i.e. the
imaginary part is zero), which is why we have excluded these
transsformations so far. Taking roots of these values introduces
imaginary parts in the determinant. Because the determinant is
positive the number of negative eigenvalues has to be even, which
allows one to analyze them pairwise. A pair of eigenvalues essen-
tially defines a transformation in 2D and since both eigenvalues are
real and negative this transformation contains a scale part and ei-
ther a rotation byt or two reflections. If both eigenvalues have the
same magnitude the transformation is a rotatiorrlaynd a uniform
scale. Taking roots intuitively means reducing the angle of rota-
tion and adjusting the uniform scale. However, if the eigenvalues
have different magnitude the corresponding transformation can be
seen as two reflections or as a rotation together with a non-uniform
scale. It is impossible to split this transformation into equivalent
parts, because the non-uniform scale is orientation dependent and
the orientation changes due to the rotation. Note that compared to
other rotational angles it is not possible to interpret this transfor-
mation as a shear. Rephrasing this in terms of eigenvalues: if the
imaginary parts have same magnitude their roots could be assigned
different signs so that they form a conjugate pair; if they have dif-
ferent magnitude this is not possible.

Concluding, a transformation is divisible, if the real negative
eigenvalues of the matrix representing the transformation have even
multiplicity. Assuming a positive determinant, it is not divisible
if it has a pair of negative real eigenvalues with different magni-
tude. Geometrically, a pair of real negative eigenvalues with differ-
ent magnitude indicate a rotation lytogether with a non-uniform
scale. This is the only type of transformation that cannot be han-
dled (without further treatment) with the approach presented here.
A rotation byr together with uniform scales as well as other rota-
tional angles together with non-uniform scales are permissible. For
later use we denote this class of transformation matfiteblote,
however, that for divisible transforms with real negative eigenval-
ues there is no preferred choice for the primary roots and, thus, the
scalar multiplication operation is not continous for such arguments.

B Matrix exponential and logarithm & Lie
products
The connection between the matrix operators defined in Sections 3

and 4 and matrix exponential and logarithm is not quite obvious.
Recall the definition of exponential and logarithms from Equa-



tions 3 and 4. One has to be careful when carrying over equivalencedecomposition and evaluate the function on the upper triangle ma-
transforms for eégonentials and logarithms from the scalar case, i.e.trix [Golub and Van Loan 1989].

eMB eAeB, andePet are generally not the same. However, a suf-  However, this work is intended for graphics where standard ma-
ficient condition for the expressions to be the same isAtatdB trix packages only offer elementary matrix operations. For this
commute (see [Horn and Johnson 1991, Thm. 6.2.38]). This leadsreason, implementations are provided using only matrix inversion,
to the identities multiplication, and addition. For the sake of completeness the
m pseudo-code from some of the original publications is repeated

gt FTA— A = <eA) , meN. here.

Moler and van Loan [1978] have investigated several ways of
computing the exponential of a matriin an iterative way and

Assuming thag™” ¢ T we can taken-the roots on both sidé ’ al O ; . ;
9 ® recommend a P&dapproximation with scaling. Scalifgleads to

A\ L/m 1 1/m smaller eigenvalues, which in turn, speeds up the convergence of
(em ) =P eent= (GA) iterative solvers. This is the pseudo-code of the procedure (see also
[Golub and Van Loan 1989]):
thus ;
erA = <€A> , re Q (9) Compute X =¢&*
j =max0,1+ [log,([|Al)])
By definition€°9A = A and logg™ = A. SettingA = logB in Eq. 9 A=27IA
and assuming the logarithms of both sides exist yields D=1 N=1I; X=1I c=1
for k=1 to @
r c=c(qg—k+1)/(k(2g—k+1))
log (er IOgB) = log (elogB> X =AX; N=N+cX; D=D+(~1)cX
rlogB = log(B"). (10) ;ni éffN
x=x?

This immediately leads to the result for the scalar multiplication

given in Equation 5. From this connection of roots and logarithms

it is clear that real matrix logarithms exist exactly when real matrix ~ The number of iterationg depends on the desired accuragy;

roots exist (see also [BHom and Johnson 1991, Thm. 6.4.15]). 6 has proven to be a good choice for the applications intended here.
As said beforegB ande®e® are generally not the sameAf The logarithm of a matriXA can be computed using a truncated

andB do not commute. A way of connecting these expressions in Taylor series. However, convergence is not guaranteed or poor if

the general case is the Lie product formula (see [Horn and JohnsonA is not near the identity matrix. By using the identity lvg=

1991, Chapter 6.5] for a derivation): 2"IogA1/2k and, thus, repeatedly taking the square rdatan be
n made close enough to identity. Exploiting this equation and using
B — r!im (e%Ae%B) (12) a Taylor approximation has been introduced by Kenney and Laub

[1989] and leads to the following algorithm:
Applying this to logA, logB instead ofA andB leads to

n Compute X =IlogA
dogA+iogB  _  |im (e% logAg7 IogB) k:.O
n—oo while [[A—I|>05
1/n 1/m\ " A= A2
= im (o)™ (d08)"") ke
n—o end while
. n A=1-A
_ 1/npl/n
= r!mn')(’(A/B/) , (12) Z=A X=A i=1
while [|Z|| > &
which leads to the representation of the addition given in Equa- Z=2ZA i=i+1
tion 6. The use of the standard matrix addition in the exponent X=X+2/i
proves that the addition operator is indeed commutative. )e(nd Zw&ile
C Implementation However, this algorithms needs to compute square roots of ma-

) ] ) ] ~_ trices. Higham [1997] has compared several iterative methods to
The computation of exponential and logarithm of rotations or rigid compute matrix square roots and generally recommends the fol-

body motions could be performed using Rodrigues’ formula (see |owing simple method due to Denman and Beavers [1976]:
[Murray et al. 1994]). The transformations considered here are

more general, however, including (non-uniform) scales. We are 12
. X . . Compute X =AY
unclear whether Rodrigues’ formula generalizes to this group and, XA Yl
therefore, propose an implementation based on matrix series. Note while [XX—A|> e
that Rodrigues’ formula is the method of choice if scaling is not X =X-1 iy =y-1
needed because it is both faster and more robust. X =3(X+iY); Y=L(Y+iX)
The computation of matrix functions such as the exponential and end while

the logarithm is non-trivial. For example, evaluating Equation 4 for

computing the exponential is numerically unstable. The preferred  Note that all while loops in the pseudo codes should terminate
way of computing matrix functions is in many cases to use a Schur after a fixed number of iterations since numerical problems might

lead to poor convergence.

1This depends also on our choice of primary roots, which could be a
problem where the primary matrix root function is discontinous, i.e. for
matrices with negative real eigenvalues
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