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Figure 1: A brief overview of our remeshing process: The input surface patch (top left) is first parameterized; Then geometric quantities
are computed over the parameterization and stored in several 2D maps; These maps are combined to produce a control map, indicating the
desired sampling distribution; The control map is then sampled using a halftoning technique, and the samples are triangulated, optimized and
finally output as a new 3D mesh. A few examples of the various types of meshes our system can produce are shown (top, from left to right):
uniform, increased sampling on higher curvature, the next with a smoother gradation, regular quads, and semi-regular triangles. After an
initial pre-processing stage (∼1s), each of these meshes was produced in less than 2 seconds on a low-end PC.

Abstract
We present a novel technique, both flexible and efficient, for inter-
active remeshing of irregular geometry. First, the original (arbitrary
genus) mesh is substituted by a series of 2D maps in parameter
space. Using these maps, our algorithm is then able to take advan-
tage of established signal processing and halftoning tools that offer
real-time interaction and intricate control. The user can easily com-
bine these maps to create a control map – a map which controls the
sampling density over the surface patch. This map is then sampled
at interactive rates allowing the user to easily design a tailored re-
sampling. Once this sampling is complete, a Delaunay triangulation
and fast optimization are performed to perfect the final mesh.

As a result, our remeshing technique is extremely versatile and
general, being able to produce arbitrarily complex meshes with
a variety of properties including: uniformity, regularity, semi-
regularity, curvature sensitive resampling, and feature preservation.
We provide a high level of control over the sampling distribution
allowing the user to interactively custom design the mesh based on
their requirements thereby increasing their productivity in creating
a wide variety of meshes.

1 Introduction
As 3D geometry becomes a prevalent media, a proliferation of
meshes are readily available, coming from a variety of sources in-
cluding 3D scanners, modeling software, and output from computer
vision algorithms. Although these meshes capture geometry accu-
rately, their sampling quality is usually far from ideal for subse-
quent applications. For instance, these (sometimes highly) irreg-
ular meshes are not appropriate for computations using Finite El-
ements, or for rapid, textured display on low-end computers. In-
stead, meshes with nearly-equilateral triangles, a smooth gradation
of sample density depending on curvatures, or even uniform sam-
pling are preferable inputs to most existing geometry processing
algorithms. Remeshing, i.e., modifying the sampling and connec-
tivity of a geometry to generate a new mesh, is therefore a funda-
mental step for efficient mesh processing.

We propose a precise and flexible remeshing technique for arbi-
trary geometry. Unlike previous techniques, we offer a high level
of control over the sampling quality of the output mesh, as well
as an unprecedented speed of execution. We will show that our
remeshing engine can accurately generate any “tailored” sampling
at interactive rates, and, if necessary, quickly optimize the quality
of the resulting mesh, allowing the user to easily design a resampled
geometry conforming to her requirements.

1.1 Background
Although studied in Computer Graphics for obvious reasons, sur-
face remeshing has also received a lot of attention from various non-
CG fields interested in mesh generation — mainly Computational
Fluid Dynamics, Finite Element Methods, and Computational Ge-
ometry. However, the diverging goals resulted in vastly different,
non-overlapping solutions as we now briefly review.
Mesh Generation Community Since the emphasis is gener-
ally on numerical accuracy, most of the tools developed in the non-
CG communities focus on mesh quality. Remeshing procedures



often use a parameter space to impose quantitative mesh properties
such as local triangle sizes and shapes [8, 37, 16]. Others sim-
ply perform mesh simplification [30] or edge operations and vertex
shifting [2] to conform to a global mesh property. However, most
techniques heavily rely on mesh optimization [13, 33] to satisfy
common requirements like equal angles for FE computations [3] or
smooth gradation [4]; accuracy is therefore obtained at the price of
rather slow computations.
Computer Graphics Community In contrast to the quality
requirements of the other fields, CG work has focused mainly on ef-
ficiency. The majority of previous work has proposed semi-regular
remeshing techniques [24, 20, 21, 22], based on an initial phase of
simplification which could be used in itself for remeshing [14, 27]
since it performs the aforementioned edge operations and vertex
shifting. A noticeable body of work has also been recently pro-
posed to accurately remesh sharp features [41, 6]. However, none
of these methods can offer flexibility on the quality of the remesh-
ing obtained, since issues such as area distortion or triangle shape
distortion are not even considered: tailored output can only be pro-
duced through extensive trial-and-error by a patient user.

A controllable mesh re-tiling technique was proposed by
Turk [38] to resample an input mesh using properties such as uni-
formity or curvature-based density, allowing a much more precise
design of the output meshes. However, the algorithm requires the
propagation of “particles” on the original mesh and a global relax-
ation of their positions until convergence, requiring heavy computa-
tion. Similarly, Bossen and Heckbert [5] proposed a 2D anisotropic
mesh generation involving vertex insertions, vertex removals, and
iterative relaxation. Again, output meshes conforming to various
requirements can be generated but only after significant computa-
tional effort. Our goal is thus to attain accuracy, flexibility, and ef-
ficiency for resampling, as none of the techniques described above
can offer such a combination.

1.2 Contributions & Overview
Our main contributions over previous remeshing techniques are in
terms of efficiency as simple meshes can now be processed in real
or interactive time through a novel resampling stage followed by
an output-sensitive remeshing algorithm, and flexibility as we of-
fer complete and precise control over the sampling rate and quality
anywhere on the geometry. These two critical properties are ob-
tained through the use of parameterization and conventional image
processing tools such as filtering, transfer functions and error dif-
fusion, in order to compute near-optimal resamplings in a matter
of milliseconds. Previous approaches often worked directly on the
mesh, resulting in either slow performance or little control over the
remeshing quality.

The structure of this paper follows closely the overall algorith-
mic pipeline depicted at the bottom of Figure 1. We first describe
the atlas of parameterization and geometry analysis we perform on
the input mesh in Section 2, in order to generate a catalog of 2D
maps as an alternate representation for the input mesh. We detail
how these resulting maps are processed efficiently using standard
signal processing tools to create a near-optimal resampling of the
input mesh in Section 3. A final, rapid phase of optimization can
then be performed to get accurate results as described in Section 4.
Finally, we present a number of results to demonstrate the wide
range of possible resamplings we can interactively obtain in Sec-
tion 5, before concluding in Section 6.

2 Geometry Analysis
In this section, we explain in detail how we build a complete set of
maps from the raw, input geometry. This will construct an alterna-
tive representation of the surface and all of its intrinsic properties in
the form of convenient 2D images, which are easy to process. We
demonstrate how simple and efficient this process is when graphics
hardware is used appropriately. We show how to create a small set
of tiling patches from a closed object of arbitrary genus, then give

details on how to compute the geometry maps from these surface
patches by flattening them onto isomorphic planar triangulations.

2.1 Creation of an Atlas of Parameterization
The first processing stage undergone by the input mesh consists in
splitting the surface into disk-like patches, creating an atlas of pa-
rameterization [18]. A number of existing clustering algorithms
such as [15, 31, 26] could be used successfully to achieve such a
partition. Unfortunately, they do not produce smooth patch bound-
aries on the geometry as demonstrated in Figure 4, and therefore
lead to poor-quality stitching across the remeshed patches. Note
that one could also make some cuts in the geometry to turn it into a
single patch, as often proposed in the last two years [23, 12, 34, 19].
All of these methods are valid ways to deal with arbitrary genus
surfaces, and the resampling technique presented in this paper is
mostly independent of the cutting/unfolding method chosen.

In the remainder of this paper, we use a variant of the mesh par-
titioning proposed by Eck et al. [11] (later improved by Guskov et
al. [21]), that computes approximate Voronoı̈ diagrams as an ini-
tial non-smooth partitioning of the mesh into genus-0 patches. This
procedure, which we will extend in Section 2.5 to generate area-
balanced patches, automatically produces a series of tiling patches
from input meshes of arbitrary genus.

2.2 Parameterization
The second stage is to map each individual surface patch to an iso-
morphic planar triangulation. This operation, called parameteriza-
tion, also has many solutions readily available ([11, 25, 26, 9] to
name a few). Although most parameterization techniques would
be adequate, one that guarantees visual smoothness of isoparamet-
ric lines and preserves the conformal structure of the input mesh
is most preferable. We thus strongly advocate for the conformal
parameterization as defined in [32, 11] since it behaves extremely
well even on irregular triangulations [9]. This technique requires
solving a simple, sparse linear system with coefficients based on
the geometry of the mesh, and is usually handled in a matter of sec-
onds using a Conjugate Gradient solver with good preconditioning.
We fix the boundary to be a square (see Figure 2) or any convenient
rectangular region so that our maps can be efficiently stored and
processed as regular floating point images.

Parameterization

Figure 2: Original mesh, conformal parameterization [11] and tex-
ture mapping of a checker-board. Notice the inevitable area dis-
tortion on the nose, which we will automatically compensate for
during the resampling process (see Section 3.1).

2.3 Geometry Maps
Once a parameterization has been found, we compute several scalar
maps to serve as a complete substitute for the input geometry. This
will allow us to work almost solely on the 2D images instead of on
the original 3D mesh.

Catalog of Maps For our application, we have identified the
following geometrical values as being relevant:

� Area distortion map MA: since no discrete parameterization can
(in general) preserve the area of every triangle, we need a piecewise
constant scalar map indicating how each triangle has been shrunk
or expanded during the parameterization. This is easily computed
using the ratio A3D/A2D of each triangle’s surface area in 3D and
its corresponding area in the 2D parameterization. Note that this



map will compensate for any area distortion inevitably introduced
by the parameterization (as depicted in Figure 2).

� Curvature maps MK and MH : since any differential quantity on
a smooth surface can be expressed as a (possibly nonlinear) com-
bination of three invariants: area A, Gaussian curvature K, and
mean curvature H [17], we compute both a Gaussian curvature and
a mean curvature map (in addition to the previously mentioned area
distortion map). We use the discrete differential operators described
in [28] to compute the mean and Gaussian curvatures at each vertex
of the input mesh, though any reliable approximation of curvatures
on piecewise-linear surfaces can be used. These two maps can then
be combined to obtain other useful curvature maps: for instance,
one can compute maps of minimum curvature κ1, maximum curva-
ture κ2, or total curvature κ2

1 + κ2
2 by simple per-pixel operations

on those two basic maps. Additional data, such as curvature tensors
could also be computed on the surface and stored in maps, but we
do not make use of them in this work;

� Embedding Map Mx: we also need the position x = (x, y, z) of
each vertex, describing the exact geometry of the surface in 3D.
These three maps (one per component) will provide a very efficient
way of computing the mapping between a value u = (ux, uy) on
the parameterization and its associated 3D point on the input mesh
x = (x, y, z);

� Face Index Map Mindex: we also construct a face index map by as-
signing a color to each triangle in the parameterization correspond-
ing to its face index in the mesh, as done by Botsch et al. [7]. Such
a map turns out to be efficient for locating in constant time the trian-
gle in which a given parametric value lies, saving potentially costly
searches.

� Additional Maps: finally, any attribute (normal, texture, color, etc.)
can also be mapped onto the parameterization to complete the cat-
alog of maps.

A. Mean Curvature map B. Area map C. Control map (A   B)

Figure 3: Examples (in inverse mode for better visualization) of ge-
ometry maps for the mask in Figure 2. A. MH , the mean curva-
ture map computed according to [28]. B. MA, the area map; the
nose has been compressed during the flattening process, while ar-
eas nearby the corners have been stretched. C. Sampling control
map, using a per-pixel multiplication: A · B.

Hardware-Assisted Map Generation Piecewise-constant
maps representing area distortions, face indices or per-face normals
are efficiently generated using hardware accelerated OpenGL com-
mands. Each floating-point or integer value is separated into the R,
G, B, A color channels (similar to [7]), and all the triangles are ren-
dered using OpenGL flat shaded triangle primitives in a back buffer.
We assign a depth proportional to the surface area of each triangle
to reduce the aliasing of small triangles in the map.

For linearly interpolated maps representing curvature, positions,
per-vertex normals or attributes, we use the face index map and
standard barycentric coordinates to compute the linear interpola-
tion between the vertices in the parametric space. Note that the
map creation could be simplified and optimized even further in the
near future as soon as graphics boards implement full 32-bit floating
point buffers for rendering (several OpenGL 2.0 proposals already
require this feature). Nonetheless, generating the maps using cur-
rent graphics hardware speeds up the map creation by two orders of
magnitude compared to a naı̈ve pixel-by-pixel implementation, and
takes less than 100 ms for large meshes with thousands of trian-

gles. Figure 3 depicts both a curvature and an area map, as well as
a compositing of the two.

2.4 Features and Constraints
In addition to the geometry maps, we sometimes need to define
specific features and/or constraints that the user wishes to enforce
during the remeshing process. Typically, we want sharp features
(present in mechanical parts for instance, see top left of Figure 6) to
be preserved. Similarly, some particular points of the input surface
may need to be constrained to become vertices of the remeshed
version, for animation purposes for example.

Features We first assume that feature edges are either extracted
using a simple dihedral angle thresholding, or directly input by the
user by tagging existing input edges or creating arbitrary piecewise-
linear feature curves. From this set of feature edges (Figure 6,
top middle) we classify vertices by their number of adjacent fea-
ture edges, leading to two categories: we call crease vertices any
vertex connected to exactly two feature edges, and corner vertices
all the other vertices, connected to one or more than two feature
edges. These feature edges are then chained together into a fea-
ture graph. This is very similar to the feature skeleton composed
of “backbones” as introduced by Kobbelt et al.in a series of papers
concerning geometry resampling and feature remeshing [7, 41, 6]
(see Figure 6, top right, for an example). This feature graph re-
quires little memory and can be computed in a straightforward way.
We should note the following details that need to be addressed dur-
ing the implementation: i) the graph can have cycles, ii) each patch
boundary or cutting path is also added to the feature graph as a
closed cycle (as being either a sharp, boundary or seaming back-
bone), iii) some features may meet at corners living on the bound-
ary, and iv) a crease vertex should be classified as a corner if an
important change of direction is detected along the feature. The
latter corresponds to a feature inflexion point and is a rare occur-
rence. Once the feature graph has been properly constructed, the
specified piecewise linear features will be exactly preserved by our
remeshing technique as explained in Section 3.2.

Constraints We also allow the user to define a list of (u,v) val-
ues for which (s)he desires to get corresponding vertices in the out-
put mesh. These values can be defined by the user by simply click-
ing on the input mesh. We save a list of all the constraints for later
use during resampling.

2.5 Making the Atlas Area-Balanced
As mentioned in Section 2.1, we mostly use an existing technique
to construct the atlas of parameterization. We, however, make use
of our novel maps to improve this procedure. Eck [11] proposed
to smooth patch boundaries iteratively by mapping two adjacent
patches onto a 2×1 rectangular region using the discrete conformal
mapping discussed in Section 2.2, and then re-defining the bound-
ary between the two patches as the middle isoline in the parame-
terization (see Figure 4), which guarantees smoothness. However,
this relaxation has a major inconvenience: it is slippery – since the

bisection parameterization area balancingBunny ear area distortion face clustering

Chart Boundary Smoothing

Figure 4: Area-balanced atlas. From left to right: geometry of a
Bunny ear; conformal parameterization and resulting area distor-
tion visualized through a texture mapping of a checkerboard; face
clustering obtained using [15]; partitioning obtained by simple bi-
section [11, 21]; the conformal parameterization, with the two me-
dians; area-balanced and smooth partitioning, using the median
line of its area map MA (computed in 50 ms).



parameterization does not have any guarantee on area distortion,
the middle isoline often splits the two patches into patches of two
very different sizes, with a tendency to slip away from very curved
features. As depicted on Figure 4, this often leads to patches with
highly variable surface areas (compare the left and right areas after
splitting) and with large parameterization distortion (note that one
patch contains the entire ear, while the other is relatively flat).

Instead, we propose to construct the area distortion map of the
2×1 mapping as described in the previous section, and use it to find
a good splitting line that creates equal sized patches. This is done
by finding the median vertical line such that the sum of all pixel
values on one side of the line is equal to the sum of the pixel values
on the other side. Since a single sweep of the picture is sufficient
to find the median, this operation takes little time – about 50ms for
a 512 × 512 image. As demonstrated in Figure 4, this change in
the original algorithm significantly enhances the quality of the par-
titioning, as no slipping occurs and each patch has the same surface
area. Note that the dividing line is smooth thanks to the angle-
preserving parameterization (i.e., a straight line in parametric space
corresponds to a smooth line on the surface).

Once the partitioning is done, we can compute the maps for each
of the created patches as aforementioned. We use a lazy evaluation,
computing a map only if needed to save both memory and time. We
show in the next section the main contribution of this paper, i.e.,
how these maps alone are used to resample the surface geometry at
interactive rate.

3 Realtime Geometry Resampling
Now that the input geometry has been preprocessed and replaced
by an equivalent series of maps, we can use these maps to design a
proper resampling. In this section we propose a realtime technique
to resample the geometry. This is achieved in two stages: first, the
user designs a control map by combining different geometry maps
to define the desired density of samples; then a simple halftoning
technique is used to discretize this map and generate the exact, re-
quested number of vertices. We show that this resampling is near
optimal, and only a quick optimization will be needed to obtain a
high quality mesh as output.

3.1 Designing the Control Map
To allow for a vast range of possible remeshings, we let the user de-
sign a control map that denotes the vertex density for the remeshing.

Area Map as Sampling Space Resampling the parameteriza-
tion uniformly would not result in a regular 3D resampling of the
geometry, due to the area distortion introduced during flattening.
However, the area map MA does indicate the density of sampling
needed on the parameterization to obtain a uniform sampling on the
surface itself. The area map is therefore the sampling space we will
use as reference sampling density.

Modulating the Sampling Density The final control map is
obtained by multiplying the sampling space map by the impor-
tance map – a map denoting the desired sampling density across
the patch. Many different maps can be used to tailor the sampling
to the user’s requirements, though we have mainly used curvature
related maps in this work. To demonstrate the diversity of possi-
ble remeshing, we mention some canonical examples of importance
maps that we have tried:

� constant, we will obtain a uniform vertex density on the 3D surface
(see Figure 8),

� related to an estimation of curvature using MK and MH , we will
adapt the sampling rate to the local curvature (see Figure 11),

� any user-defined map, we will obtain a map with user specified sam-
pling (useful for animation and displacement maps). See Figure 9
for such an example.
The resulting map is then rescaled to the unit interval, and inverted
(x → 1 − x) so that darker areas on the picture correspond to re-
gions which require higher sampling. A simple example is depicted

400 samples 8k samples 30k samples

Figure 5: Sampling of the map from Figure 3(C) using error diffu-
sion with various numbers of requested samples (40 ms each).

in Figure 3(C), where the area map is modulated with a mean cur-
vature map (very light (white) areas correspond to flat and/or highly
stretched regions of the mesh due to the flattening, and require few
samples).
3.2 Halftoning the Control Map
Once the control map has been decided upon, we need to resample it
with a local density of vertices in accordance with the control map,
and with the exact number of samples the user requests. In other
words, we need to transform the control map into a binary image,
indicating the presence or absence of a vertex on the parameteriza-
tion. In essence, our problem is directly related to the technique of
halftoning grey-level images. Halftoning has been carefully stud-
ied for decades [39] and is still an active research field [29], mainly
trying to improve the quality of dithering and printing. Different
methods have been proposed to sample a continuous image with an
adequate density, and to best statistically simulate an optimal blue
noise signal in a single rasterization pass [39].
Discretizing the Control Map We use a recent error diffusion
algorithm developed by Ostromoukhov [29], which samples an im-
age using a serpentine rasterization (left to right on even lines, right
to left on odd lines) with near-optimal quality. We add the following
modifications to suit our purposes:

� while the original technique works on 8-bit images, we use 32-bit
images to increase the range of densities;

� to avoid the well-known “dead zone” problem in error diffusion
(large empty areas at the start of an error diffusion), we concatenate
a vertically flipped copy of the control map above the control map
and perform the halftoning for the total image, retaining only the
bottom half of the image as the result;

� we also test for features and constraints (see Section 2.4), forcing
a pixel to be black if it falls on one of the constraints, or forcing a
pixel to be white if it falls on one of the features (as they will be
sampled separately). The error diffusion accommodates for these
forced selections by diffusing the error into nearby pixels.
The user simply chooses a given number of samples (which will
be the final number of vertices) since an exact number of vertices
can easily be reached by a simple linear scaling of the intensity of
the control map [29] that preserves the ratio between the number of
black pixels (i.e., number of samples) and the image area. Note that
the size of the maps determines the maximum number of samples
(there cannot be more samples than there are pixels in the map).
Therefore, we allow the user to select an appropriate image size
having enough space for the sampler to work properly (though the
choice of image size can easily be made automatically if desired).
Such a technique turns out to be extremely efficient: a 512×512
image is sampled in only 40 ms on a 1 GHz PIII. Examples of
error diffusion are given in Figure 5.
Discretizing the feature graph A separate 1D error diffusion
is performed along the boundaries and features in order to guarantee
a consistent mesh density between the boundary and inner regions,
as well as good feature preservation. After the initial sampling,
we: i) gather all the pixels of the feature graph in a 1D array using
Bresenham’s line algorithm, ii) normalize their intensity according
to the following law: x → 1 −

√

(1 − x) (intuitively, the square
root appears since if we want the fraction x of the samples to be



black in 2D, it means we need the fraction
√

x of the samples to be
black in any 1D cross-section), iii) apply a 1D error diffusion, and
finally iv) put the resulting samples into the sampled image. This
guarantees an adequate feature sampling conforming to the control
map, as demonstrated in Figure 8. The seams across patches are
dealt with similarly to ensure an easy stitching.

3.3 User Control
Since our resampler runs at interactive rates, we can provide the
user with a preview of the new mesh and allow for realtime edit-
ing of the control map to tailor the sampling to specific needs. An
extremely powerful feature of our map based technique is that we
can take advantage of many well-known signal processing tools for
images. As a consequence, we can offer a multitude of tools still
with realtime performance; for example:

� Transfer Function - Besides combinations obtained from filtering,
scaling and shifting of the maps, we found it particularly useful
to allow editing of a general transfer function over the importance
map, or even direct editing of the importance map itself. For in-
stance, a simple gamma function f(x, γ) = xγ over the curvature
map gives the user control over the sampling with respect to the
curvature. The user can also use pass-band filters or even a general
transfer function to produce meshes with arbitrary sampling. No-
tice that the generality of this approach allows our system to sim-
ulate virtually any remeshing by choosing the maps and transfer
functions appropriately (such as the L2-optimal sampling derived
in [36]).

� Smooth gradation [3] of the vertex density can be achieved by low
pass filtering of the importance map, using an optimized Gaussian
filter routine. Changes over the global size of the filter kernel allow
a fine and interactive tuning of the gradation. Note that in the ideal
case, the local size of the filter kernel should be driven by the area
map, making it a non-linear diffusion of the importance map.

� Minimum Sampling - A guaranteed minimum density of samples
can be obtained by shifting the intensity of the importance map so
that its minimum corresponds to the requested minimum sampling
(i.e., a minimum grey level).

Interactive Preview The error diffusion is fast enough (40 ms
including the transfer function computation) to provide a real-time
feedback of the sampling. Additionally, we provide the option
of using the dithered map as a texture directly on the 3D origi-
nal model since we already have the (u, v) parameterization. The
samples thus appear on the mesh instantaneously, leading to a good
preview of the current sampling.

4 Mesh Creation and Optimization
At this point, we are already able to interactively produce a resam-
pling of an input mesh with a density proven to be statistically in
agreement with the user’s request. However, connectivity has not
yet been computed. Additionally, the halftoning implies quantized
positions for the vertices. Therefore, we now explain how to gen-
erate an initial connectivity and how a post-process optimization
can greatly improve both connectivity and geometry in mere sec-
onds. We emphasize that, contrary to [5] and most other remeshing
techniques, we neither add, nor remove any vertex during the opti-
mization since, in essence, the blue noise property already spreads
“just enough” vertices everywhere. Consequently, the optimization
is extremely efficient and consists of only a few edge swaps and
local vertex displacements.

4.1 Mesh Creation
Once the control map has been sampled, we perform a 2D con-
strained Delaunay triangulation [1, 35] over the points sampled in
the parametric space. Constrained edges correspond to an ordered
list of points sampled using 1D error diffusion along backbones of
the feature skeleton (see Section 2.4), as can be seen in Figure 6,
bottom middle. The vertex coordinates are then mapped into 3D

Constrained triangulation After optimizationSampling

Original model Parameterization and tagged edges Feature skeleton

1 backbone

corner

Figure 6: Simple example of features: the feature edges (in red)
are chained together to create the feature graph; a 1D error diffu-
sion is then performed along the graph followed by a constrained
Delaunay triangulation of the whole sampling; after a constrained
mesh optimization, the feature edges are perfectly preserved, while
blended in the new mesh.
using the face index map (see Section 2.3) and barycentric coordi-
nates within the triangle to find the accurate 3D position1. The con-
strained Delaunay triangulation and the reprojection onto the orig-
inal 2-manifold typically take a total of 200 ms for 3000 vertices
generated. Notice that the connectivity generated by a Delaunay
triangulation in the parameter plane may not be the most relevant
one. However, since all triangulations with a given number of ver-
tices are all isomorphic to each other through edge swapping, we
use this triangulation as an initial “guess”, and will perform con-
nectivity optimization as necessary.

4.2 Connectivity Optimization
For a fixed set of vertices obtained by resampling, the connectiv-
ity can be arbitrarily modified by simple edge swapping. Many
optimizations can be easily implemented (see, for instance, tight-
est triangulation [40], minimum curvature [10]). We also used the
following two simpler criteria:
Regularity Edge swaps can be performed in order to favor va-
lence 6 for interior vertices, and valence 4 on boundary vertices.
This is implemented by randomly picking a non-feature edge and
performing an edge swap only if it reduces the valence dispersion.
A few additional constraints can be added in order to prevent face
flipping in the parameterization, or large geometric distortions for
instance. Note that we can also balance the valences on both sides
of each inner backbone. The “rib effect” [6] can therefore be ob-
tained by forcing exactly two neighbors on each side of a sharp edge
whenever possible, as demonstrated in Figure 8.
Face Aspect Ratio Similarly, edge swaps can be performed
to improve the aspect ratio of the triangles. In practice, we
swap an edge between two triangles if it improves their surface
area/perimeter2 ratio (computed in 3D). This simple test often re-
sults in dramatic improvements, since the connectivity is now de-
pendent on the embedding, and not solely on the parameterization.

4.3 Geometry Optimization
In addition to the connectivity optimization, we also perform a
small geometry optimization to improve the geometric quality of
the mesh. We perform a weighted Laplacian flow in the parameter-
ization by moving every vertex p that does not belong to the feature
graph by: ∆p = ∆t

∑

i∈N (p)

wi(qi − p)

where ∆t is a step chosen sufficiently small (e.g. 0.1), N (p) is the
set of adjacent vertex indices to vertex p, and qi corresponds to the
ith adjacent vertex to p.

1Although using Mx would be faster, it is usually not accurate enough
for small maps, and could therefore result in small noise in the reprojection.
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Figure 7: Top: Left, Delaunay triangulation over the sampling.
Right, after connectivity and geometry optimization. Middle, com-
parison of valence dispersion. Bottom: Left, Delaunay triangula-
tion of a sampling performed upon the area map (leading to uni-
form mesh) of a mushroom-shape model. Middle, after minimiza-
tion of local area dispersion. Right, the remeshed model. Note the
uniformity obtained despite the strong area distortion due to the
flattening process.

Depending on the choice of remeshing that the user made when
selecting the control map, we perform an adequate optimization by
choosing the weights wi so as to minimize an appropriate quan-
tity. For example, if the users require a uniformly resampled mesh,
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i

i

A
A

i
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we can minimize the local area disper-
sion by using the following weighting:

wi =
(A3D

i ·cot(αi)+A3D
i−1

·cot(βi))
∑

n
j=1

A3D
j

,

where αi and βi are the opposite angles
in the parameterization as depicted, and
A3D

i and A3D
i−1 are the 3D face areas to

the left and right of pqi.
This novel weighting has the quality of inducing no changes if

the triangles are already of equal sizes, while producing a Laplacian
smoothing ([28]) to iteratively improve the quality otherwise. The
result of such an optimization can be seen in the bottom of Figure 8
for instance. The area distortion minimization is only a particular
instance of the more general mesh optimization we offer. The area
terms in the previous weights can be substituted by other values,
based on the control map used. For a curvature-based map for in-
stance, we replace the area terms by integrals of the control map
over the associated triangles. Indeed, a single pass over the control
map suffices to collect the integral of the map over each triangle.
These integrals, measuring the ”amount of curvature” (or amount
of anything the control map measures) contained in a triangle, are
therefore appropriate weighting values if one wants to guarantee a
triangulation adapted to the control map. This efficient smoothing
generally happens in a matter of seconds, leading for instance to the
results on Figure 11.

4.4 Combined Optimization
Our system can create a variety of optimizations by alternating be-
tween connectivity and geometry optimization stages. For instance,
uniform meshes can be obtained by alternating edge swaps favoring
regularity with geometry optimization iterations minimizing area
dispersion (see Figure 7 bottom). If the user wishes to create the
“rib” effect [6], she can simply alternate edge swaps which favor
regularity and a univariate Laplacian smoothing of the feature ver-
tices (Figure 6, bottom right). Additional results are given in the
following section.

5 Remeshing Results
Our current implementation is written in C++ using a sparse ma-
trix structure, biconjugate gradient and SSOR preconditioning for
computing the conformal parameterization. All operations on the

maps are performed using a standard image processing library, us-
ing OpenGL hardware whenever possible. The sampling previews
use standard OpenGL texture mapping. All result timings are given
for a 1 GHz PIII with 256 MBytes of memory. Figure 8 illus-
trates uniform remeshing of the fandisk at various resolutions us-
ing a 800 × 800 control map. Note how the 1D error diffusion
performs well all the way from 200 vertices to higher complex-
ity along the backbones of the feature skeleton. The conformal
mapping is performed in 3.1s using SSOR with over-relaxation,
and all the maps are computed in 1.2s total, while each sampling
is done at an interactive rate in 160ms. For the 2.5k vertex ver-
sion the constrained Delaunay triangulation [35] takes 190ms, and
the optimization stage takes 5s overall. The final 3D mapping
takes 250ms. Note that our goal of sampling at interactive rates is
achieved, greatly increasing the user’s productivity and workflow.

Figure 8: Uniform remeshing of the fandisk. Top: conformal pa-
rameterization, and sampling obtained by error diffusion with 2.5k
vertices with superimposed feature skeleton. Middle: result of con-
strained Delaunay triangulation before and after uniformity opti-
mization. Bottom: several uniform remeshings with 0.2, 0.6, 1.4,
2.5 and 50k vertices respectively. Note the excellent behavior of
the 1D error diffusion along the backbones, leading to consistent
density between sharp edges and planar areas.



Figure 9: Left: Semi-regular remeshing of a foot model. Right:
Mesh created by pasting an image on the importance map (useful
for animations and displacement maps).

Figure 10 illustrates an example of uniform geometry remeshing
of the MaxPlanck model using a 3 patch atlas. The original mesh
(23kV) is uniformly remeshed to the requested 8.3kV. Notice that
the final, remeshed model shows no signs that it was created us-
ing 3 independent patches. In Figure 11 the MaxPlanck model is
remeshed with various transfer functions over the curvature map.
The first example is uniform (i.e., flat transfer function) with 15kV,
and the three following examples are generated using a progres-
sively increasing gamma function over the curvature map. All inter-
mediate meshes ranging from uniform to adapted sampling can be
obtained easily just by increasing the gamma or other custom trans-
fer functions. Figure 9(left) shows a semi-regular remeshing of the
foot model by applying regular subdivision in parametric space over
a uniform base mesh. Figure 9(right) illustrates a custom-tailored
sampling.

6 Conclusions and future work
We have demonstrated a novel, versatile technique for interactive
geometry resampling that allows a very fine and easy control over
the desired quality of the mesh. We substitute the original geome-
try by one or more 2D maps on which numerous operations such as
halftoning and integration can be performed in real-time. Once an
initial, near-optimal resampling has been designed, a fast optimiza-
tion is performed to perfect the resulting mesh. We allow the user to
custom design the mesh based on their requirements at interactive
rates thereby increasing their productivity in creating a wide variety
of meshes.

Many additional features can be added to our framework. We are
investigating error diffusion in a quadtree data structure (to avoid
the possibly large memory requirement of our current approach),
anisotropic remeshing (possibly using ellipse packing) on a tensor
control map of the principal curvatures, and hierarchical solving
to accelerate the possibly slow parameterization stage. Finally, we
plan to use our remeshing engine for other projects such as com-
pression (how to remesh a surface to obtain the best rate/distortion
tradeoff), as well as better geometric approximation.
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References
[1] www.cgal.org: Computational Geometry Algorithms Library.
[2] BOROUCHAKI, H. Geometric Surface Mesh. In 2nd International Con-

ference on Integrated and Manufacturing in Mechanical Engineering
(may 1998), pp.343–350.

[3] BOROUCHAKI, H., GEORGE, P. L., HECHT, F., LAUG, P., AND SALTEL, E.
Delaunay Mesh Generation Governed by Metric Specifications. Finite
Elements in Analysis and Design 25 (1997), pp.61–83.

[4] BOROUCHAKI, H., HECHT, F., AND FREY, P. J. Mesh Gradation Con-
trol. In Proceedings of 6th International Meshing Roundtable, Sandia
National Labs (oct 1997), pp.131–141.

[5] BOSSEN, F., AND HECKBERT, P. A Pliant Method for Anisotropic Mesh
Generation. In 5th Intl. Meshing Roundtable (oct 1996), pp.63–76.

[6] BOTSCH, M., AND KOBBELT, L. Resampling Feature and Blend Regions
in Polygonal Meshes for Surface Anti-Aliasing. In Eurographics pro-
ceedings (sep 2001), pp.402–410.
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Figure 10: Uniform remeshing of the MaxPlanck model. In clockwise order: Original mesh; Conformal parameterization; Parameterization-
driven tiling with tree tiles requested; Three tiles meet at a corner; Mesh separation from the tiling; Burst view of the three tiles after
independent uniform remeshing; The tiles put together require vertex stitching at the boundaries; A post-process swaps some edges and
performs tangential smoothing along the stitching line; and the new model after uniform remeshing.

Figure 11: Remeshing of the MaxPlanck model with various distribution of the sampling with respect to the curvature. The original model
(left) is remeshed uniformly and with an increasing importance placed on highly curved areas (left to right) as the magnified area shows.
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