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Abstract

Current surface-based methods for interactive freeform editing of high resolution 3D models are very powerful,
but at the same time require a certain minimum tessellation or sampling quality in order to guarantee sufficient ro-
bustness. In contrast to this, space deformation techniques do not depend on the underlying surface representation
and hence are affected neither by its complexity nor by its quality aspects. However, while analogously to surface-
based methods high quality deformations can be derived from variational optimization, the major drawback lies
in the computation and evaluation, which is considerably more expensive for volumetric space deformations.
In this paper we present techniques which allow us to use triharmonic radial basis functions for real-time freeform
shape editing. An incremental least-squares method enables us to approximately solve the involved linear systems
in a robust and efficient manner and by precomputing a special set of deformation basis functions we are able
to significantly reduce the per-frame costs. Moreover, evaluating these linear basis functions on the GPU finally
allows us to deform highly complex polygon meshes or point-based models at a rate of 30M vertices or 13M splats
per second, respectively.

1. Introduction

A very popular and important aspect of geometry process-

ing is the interactive deformation of geometric models. In

this paper we do not consider the ab-initio creation of mod-

els from scratch, but rather the modification of existing mod-

els, like those acquired by range scanning or by the tessel-

lation of a CAD model originally represented by NURBS

surfaces. Usually the desired target shape is not (exactly)

known beforehand, and hence has to be found by exploring

different shape deformation options in an interactive manner.

As a consequence, a practically useful shape editing method

has to be sufficiently fast to allow for real-time deformations

even of complex models.

Besides performance, the two other main requirements for

shape editing techniques are exact control and high quality
of the deformation. To satisfy the first requirement the de-

formation method has to be able to incorporate arbitrary dis-

placement constraints pi �→ p′
i , which map a point pi to its

desired target position p′
i . Obviously this also allows to ex-

actly prescribe the support of the modification by mapping

all fixed vertices fi outside the support region onto them-

selves: fi �→ fi.

High quality deformations should meet these constraints

and otherwise be free of unnecessary oscillations, follow-

ing the principle of simplest shape for fair surface genera-

tion [Sap94]. In that context, smooth or fair thin-plate-like

surfaces are derived by a constrained variational optimiza-

tion of some curvature energy functional [MS92, WW92].

Fair deformations are analogously computed as the differ-

ence of two fair surfaces S and S′, i.e., as a fair displacement

function d : S →S′. This deformation function is controlled

by adjusting the boundary constraints of the optimization,

which is why approaches of this kind are called boundary
constraint modeling (BCM).

Most existing BCM approaches are surface-based, i.e.,

they can be thought of as computing a fair deformation field

on the surface S. If the underlying surface representation is

a triangle mesh, computing the deformation field usually re-

quires to solve a linear Laplacian system on S. An apparent

drawback of such methods is that their computational effort

and numerical robustness are strongly related to the com-

plexity and quality of the surface tessellation.

This tight connection unfortunately also prevents the

derivation of a uniform deformation framework for several
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types of surface representations. Here, point-sampled ge-

ometries [ZPvBG01] are a particularly interesting alternative

to triangle meshes, since they provide the same approxima-

tion power, but offer additional flexibility, since individual

splats do not have to be connected in a C0 manner [KB04].

The above problems are avoided by volumetric space de-
formation techniques, that compute a tri-variate deforma-

tion function d : IR3 → IR3, which is used to transform

all points of the original surface S to the modified surface

S′ = {d(p) |p ∈ S}. Since the deformation does not depend

on a particular surface representation, this uniform deforma-

tion framework can be applied to all explicit surface rep-

resentations, e.g., by transforming all vertices of a triangle

mesh or all splat centers of a point-based model.

In this paper we use radial basis functions (RBF) for vol-

umetric boundary constraint modeling, as they provide max-

imum flexibility w.r.t. constraint or control point placement,

as well as high quality deformations of provable fairness

when using the triharmonic radial basis function ϕ(r) = r3.

The problem of this optimal basis function is that the linear

system required for computing the deformation is dense and

therefore difficult to solve. Because of this, most existing

approaches use simpler compactly supported basis functions

and trade superior fairness for computational efficiency.

Due to their high quality we nevertheless advocate for the

use of triharmonic radial basis functions and derive the nec-

essary techniques to overcome their computational restric-

tions and allow for real-time deformations. In Sect. 3 we first

present a modeling metaphor for setting up the deformation

constraints for the linear RBF system (Sect. 4). In order to

be able to efficiently solve the resulting dense linear systems,

we introduce an incremental least-squares solver in Sect. 5.

The high per-frame costs for computing and applying a

deformation can be significantly reduced by precomputing

a set of linear basis functions for the deformation (Sect. 6).

Additionally using the deformation’s Jacobian enables the

individual transformation of each point and its normal vec-

tor. When implemented as a vertex shader on modern GPUs,

this technique provides real-time deformation of up to 30M

vertices or 13M surface splats per second (Sect. 7).

We will show in Sect. 8 that our space deformation

technique can efficiently be applied even when either the

mesh quality, the mesh complexity, non-manifold config-

urations, or the surface representation in general prevent

the use of surface-based deformation methods. However,

we have to emphasize that if the input model allows for

both space- and surface-based approaches, the latter usually

provide more fine-grained control of boundary constraints,

like the segment-wise specification of boundary continuities.

Moreover they enable geodesically anisotropic bending and

more plausible detail preservation under extreme deforma-

tion [BK04a]. However, our method outperforms existing

space- and surface-based modeling approaches in terms of

frame rates due to its efficient GPU implementation.

2. Related Work

In order to efficiently compute a deformation field of min-

imal curvature-energy, surface-based BCM approaches use

variational calculus to derive a PDE that is then solved

for the optimal deformation function. This PDE is dis-

cretized to a large sparse linear (bi-)Laplacian system,

which is solved for (the displacements of) all free vertices

[KCVS98, BK04a, LSCO∗04, SCOL∗04, YZX∗04].

Since during a modeling session this linear system has to

be solved each time the user interactively changes the con-

straints, efficient sparse solvers of linear time complexity

are required [BBK05], or special deformation basis func-

tions have to be precomputed [BK04a]. Notice that in the

presence of degenerate triangles the discrete Laplacian op-

erator is not defined and the linear system becomes singu-

lar. In this case quite some effort has to be spent to still

be able to compute fair deformations for the numerically

ill-conditioned meshes, like eliminating degenerate triangles

[BK01] or even remeshing the complete surface [BK04b].

Extending these mesh-based approaches to point-sampled

geometries is not straightforward, since the missing neigh-

borhood relation considerably complicates the generaliza-

tion of the Laplacian operator to this surface representa-

tion [CRT04]. In their shape modeling approach, Pauly et

al. [PKKG03] therefore chose a simpler distance-based de-

formation propagation, thereby trading provably high defor-

mation quality for simpler and more efficient computations.

Space deformation techniques avoid these problems, be-

cause they implicitly modify objects by deforming their em-

bedding space. As a consequence, these methods are influ-

enced neither by the complexity nor by the quality of a sur-

face tessellation.

The classical freeform deformation (FFD) method [SP86]

and its variants [Coq90, MJ96] represent the space defor-

mation by a tensor-product spline function, which requires

complex user-interactions and might cause aliasing prob-

lems, as described in [BK04a]. In order to satisfy given dis-

placement constraints, the inverse FFD method [HHK92]

solves a linear system for the lattice deformation. This sys-

tem may be over- as well as under-determined and hence is

solved by least-squares or least-norm methods, respectively.

The latter, however, minimizes the amount of control point

movements, which does not necessarily imply a fair defor-

mation of low curvature energy.

Other approaches deform a so-called control handle
(a point, curve, or surface region) and propagate its

transformation into its Euclidean or geodesic vicinity

[SF98, BK03a, PKKG03]. The two-handed modeling inter-

face Twister [LKG∗03] also falls into this category. In con-

trast to boundary constraint modeling approaches, these

methods avoid the per-frame solution of a linear system and

are therefore highly efficient, but in consequence also lose

global optimality properties like curvature energy minimiza-
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tion. In addition, these methods may fail to smoothly in-

terpolate (the displacement of) several independently con-

trolled and arbitrarily shaped handles.

Radial basis functions (RBFs) are commonly used for all

kinds of scattered data interpolation problems, since they

are able to interpolate arbitrary constraints in a smooth

manner, like for instance fitting a scalar-valued signed dis-

tance function to the given sample points and their nor-

mals [SPOK95, CBC∗01, MYC∗01, OBS04, TRS04]. A tri-

variate scalar RBF is defined by a set of centers c j ∈ IR3 and

weights w j ∈ IR as

f (x) = ∑ j w j ϕ
(∥∥c j −x

∥∥)
+ p(x)

= ∑ j w j ϕ j (x)+ p(x) ,
(1)

where ϕ j (·) = ϕ
(∥∥c j −·∥∥)

is the basis function correspond-

ing to the jth center c j and p(x) is a polynomial of low de-

gree used to guarantee polynomial precision.

The choice of ϕ has a strong influence on the computa-

tional complexity and the resulting surface’s fairness: While

compactly supported radial basis functions lead to sparse lin-

ear systems and hence can be used to interpolate several hun-

dred thousands of data points [MYC∗01, OBS03, OBS04],

they do not provide the same degree of fairness as basis

functions of global support [CBC∗01]. It was shown by

Duchon [Duc77] that for the basis function ϕ(r) = r3 and

quadratic polynomials p(·) ∈ Π2, the function (1) is trihar-

monic (Δ3 f = 0) and hence minimizes the energy

‖ f‖2 =
Z

IR3
f 2
xxx (x)+ f 2

xxy (x)+ . . .+ f 2
zzz (x)dx .

These trivariate functions are conceptually equivalent to the

minimum variation surfaces of [MS92] and the triharmonic

surfaces used in [BK04a].

Due to the global support of this RBF the resulting lin-

ear system (see Sect. 4) is dense and the cubic complexity

for solving it limits these methods to a few thousand sample

points. Carr et al. [CBC∗01] use a fast multi-pole evaluation

method to derive an efficient iterative solver with linear time

complexity, such that globally supported basis functions can

be used even for highly complex point sets. Unfortunately,

the implementation of their method is very complicated and

only commercially available.

First shape modeling approaches based on RBFs define

the original surface S as an RBF interpolant of a given set

of point and normal constraints, and modify the surface by

changing these interpolation constraints [TO02, RTSD03].

Both methods use globally supported basis functions and are

therefore limited to a small number of constraints, restricting

them to smooth blobby surfaces without fine surface details

or sharp features.

Since our goal is not a smooth surface, but rather the

smooth deformation of a given surface, the more promising

way is to represent the space deformation function (instead

of the surface itself) by a vector-valued RBF

d(x) = ∑
j

w j ϕ j (x)+p(x) , (2)

where the weights w j ∈ IR3 are computed to smoothly inter-

polate a given set of displacement constraints. To our knowl-

edge, all existing methods of this kind use compactly sup-

ported basis functions in order to achieve faster response

times [BR94, KSSH02], which, in turn, limits their fairness

and additionally restricts the range of possible deformations,

because a fixed support radius for the basis functions has to

be prescribed upfront.

Because of their superior fairness we propose to use glob-

ally supported triharmonic radial basis functions. In the fol-

lowing we therefore present techniques that allow us to use

these functions for real-time shape editing even for complex

surfaces and complex deformations.

3. Modeling Metaphor

The design of the modeling metaphor is crucial for a practi-

cally useful shape editing framework, since it is responsible

for translating the deformation the designer has in mind into

the boundary constraints of the variational optimization, i.e.,

into a set of displacement constraints pi �→ p′
i , which is then

to be smoothly interpolated by a radial basis function. Our

user interface closely follows the intuitive BCM approach

presented in [KCVS98, BK04a], but additionally extends it

by non-rigid handle curves.

The support of the modification can be an arbitrary sur-

face region, i.e., a set of vertices {p1, . . . ,pN}, and is spec-

ified by the user by drawing it onto the surface. Within this

region a control handle is selected as another set of points

{h1, . . . ,hh}, which is then transformed by specifying an

affine mapping m(·) using some kind of manipulator wid-

get, yielding h′
i := m(hi). Having the surface partitioned

into support vertices pi, handle vertices hi, and the remain-

ing fixed vertices fi, the displacement constraints are hi �→ h′
i

and fi �→ fi. These displacements are smoothly interpolated

by a RBF d(·) as described in the next section, and finally

all points within the support region are transformed by it:

p′
i = d(pi) ∈ S′.

The triharmonic basis function ϕ(r) = r3 guarantees a

fair deformation function d(·) without unnecessary oscilla-

tions, which is able to interpolate C2 boundary constraints.

In order to achieve a smooth connection of the support re-

gion with the transformed handle and the fixed part of the

surface, surface-based approaches specify (approximate) C2

constraints for triharmonic surfaces by three rings of con-

strained vertices [BK04a] (cf. Fig. 1, left).

Analogously, it is sufficient to specify the constraints of

a space deformation by three rings of vertices, or, geomet-

rically equivalent, by a band of three points thickness along
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Figure 1: The blue support region is deformed by smoothly interpolating the affinely transformed green control handle. The
fair triharmonic surface-based deformations of [BK04a] (left) can be reproduced by the triharmonic space deformation, where
the C2 constraints are defined by the red bands of three points thickness (center). However, the number of centers required for
a sufficiently accurate approximation (see Sect. 5) is usually significantly lower, like 20% in this example (right).

the support’s boundary: Interpolating one boundary contour

in a C2 Hermite manner is conceptually equivalent to inter-

polating three nearby offset contours, since the latter cor-

responds to a finite difference approximation of the first and

second derivatives, which is sufficiently accurate because the

RBF displacement function is smooth (cf. Fig. 1, center).

This simple and intuitive rigid control handle interface

turned out to be sufficiently powerful for most modifica-

tions, especially since more complicated deformations can

be decomposed into a sequence of simpler ones. However,

in some CAD systems the bending behavior of a surface is

intuitively controlled by specifying and modifying curves on
the surface. Such non-rigid control curves can easily be in-

tegrated into our framework: An initial spline curve c(t) is

constructed by interpolating a set of selected points on the

surface S, and is then deformed to c′ (t) by moving its spline

control points. A sufficiently dense sampling of both c and

c′ then yields the required displacement constraints:

hi := c(ti) �→ c′ (ti) =: h′
i .

This control curve metaphor is particularly suited for space

deformations, as in this case the curve does not have to lie

exactly on the surface and the constraint points c(ti) are not

restricted to vertex positions, as they usually are for surface-

based approaches (cf. Fig. 3, left).

4. RBF Interpolation

After setting up the displacement constraints for the handle

points and fixed points as described in the last section, an

RBF deformation function (2) interpolating the constraints

d(fi) = fi and d(hi) = h′
i has to be found. Combining these

constraints into one set d(xi) = bi, for 1 ≤ i ≤ m, and select-

ing the RBF centers as ci := xi leads to the symmetric linear

system (
Φ P
PT 0

)(
w j
q j

)
=

(
bi
0

)
, (3)

where Φ ∈ IRm×m and P ∈ IRm×10 are defined by Φi j =
ϕ j (ci) and Pi j = p j (ci), and {p1, . . . , p10} is a basis of the

space of trivariate quadratic polynomials Π2. This system is

solved for the vector-valued RBF weights w1, . . . ,wm and

the vector-valued coefficients q1, . . . ,q10 of the quadratic

polynomial, resulting in the deformation function d(·).
The matrix P and hence the complete system is singular

if all constraints ci lie on a quadric [Mic86]. In such situ-

ations we simply omit the polynomial, which turned out to

not have a large influence and still leads to high quality de-

formations (cf. Fig. 1). For the sake of a simpler notation we

omit the polynomial in all following discussions and focus

on the upper left m×m block only, which we denote as

Φ ·W =
(

F
H′

)
(4)

with weights W = (w1, . . . ,wm)T
, fixed vertices F =(

f1, . . . , f f
)T

, and handle vertices H′ =
(
h′

1, . . . ,h
′
h
)T

. The

generalization to the full system (3) is straightforward.

Surface-based approaches solve significantly larger lin-

ear systems for all free vertices p1, . . . ,pN , but due to their

sparsity, these systems can be solved with complexity O(N)
[BBK05]. In contrast, the above system is solved for a rel-

atively small number of weights w1, . . . ,wm only, with m
usually being of the order

√
N (assuming uniform sampling

density). Since ϕ(r) = r3 is globally supported, the m×m
system (4) is dense and its solution has cubic complexity

O(m3) = O(N1.5), resulting in a slightly worse overall com-

putational complexity of the RBF approach. We therefore

improve the performance by using the incremental solver

presented in the next section.

5. Incremental Least Squares Solver

Since the space deformation d(·) is — up to the constraint

specification — independent of the surface tessellation, we

can expect the computational costs to be mainly determined

by the geometric complexity of the deformation itself, rather

than by the resolution of the tessellation: A simple deforma-

tion of a highly over-tessellated mesh should still be simple

to compute. This is reflected by the observation that we usu-

ally do not need all basis functions ϕ1, . . . ,ϕm in order to

solve (4) up to a sufficiently small approximation error.
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Figure 2: Comparing L2 error (left) and matrix condition (right) of incremental approximation methods, which differ in their
center selection strategy and approximation technique. The method of [CBC∗01] leads to a non-monotonically decreasing error
(green), that is worse than an L2-optimal least-squares fit using the same RBF centers (cyan). Since the expensive computation
of these centers optimizes for one particular right-hand side only, we use random selection (blue) or farthest point sampling
(red) in order to select the next center. Since the latter strategy optimizes for linearly independent columns, the condition number
of the resulting matrix is clearly superior to the other approaches (right).

In [CBC∗01] the same observation led to an incremental

method for fitting an implicit function to a dense set of sur-

face samples. Starting from a few basis functions, they in-

crementally improve the approximation by adding more and

more centers (respectively basis functions) at the samples

with maximum error. In order to enforce exact interpolation

at the selected centers c1, . . . ,cn, they solve a n× n system

corresponding to the upper left block of (4) in each refine-

ment iteration. Since the samples are assumed to correspond

to a smooth surface, the approximation error at the remain-

ing constraints cn+1, . . . ,cm is expected to also decrease.

However, it is known that for a prescribed number of ba-

sis functions ϕ1, . . . ,ϕn, a better global error distribution can

be achieved by an optimal L2 approximation considering all
constraints c1, . . . ,cm (cf. Fig. 2, left). This requires solving

the over-determined system corresponding to the left m× n
block of (4) in the least-squares sense, which is most ro-

bustly performed using the QR factorization [GL89].

If we want to incrementally build and refine an RBF ap-

proximation by selecting more and more basis functions un-

til a prescribed L2 error is satisfied, two questions arise:

which basis functions to select, and how to efficiently check

for the current approximation error. The overall computation

time of the incremental method obviously should be lower

than the solution of the full m×m system. As a consequence,

instead of solving at iteration n a new m× n least-squares

system from scratch, the computations from previous itera-

tions should be re-used.

Taking a closer look at the QR factorization [GL89] will

reveal in the following that this method can be adjusted

to incrementally solve a given least-squares system column

by column without introducing any noticeable overhead.

Adding one more basis function ϕi is equivalent to append-

ing one more column to the least-squares system, which we

will show corresponds to one further iteration of an incre-

mental QR solver.

For an over-determined m× n system Ax = b, the right-

hand side will in general not lie in the range of A, i.e., b �∈
rg(A), and hence the system cannot be solved exactly. The

optimal point x∗ ∈ IRn, which minimizes the L2 norm of the

residual r = Ax∗− b, is characterized by y = Ax∗ being the

orthogonal projection of b onto rg(A). In the restricted and

full QR factorization

A = Q1R = (Q1 Q2)
(

R
0

)

the columns of Q1 ∈ IRm×n provide an orthogonal basis of

rg(A) required for this projection, such that y = Q1QT
1 b and

x∗ = R−1QT
1 b.

Since the combined matrix Q := (Q1 Q2) ∈ IRm×m is or-

thogonal, b can be represented as b = Q1QT
1 b+Q2QT

2 b and

the residual error is∥∥b−Ax∗
∥∥ =

∥∥∥b−Q1QT
1 b

∥∥∥ =
∥∥∥Q2QT

2 b
∥∥∥

=
∥∥∥QT

2 b
∥∥∥ =

∥∥∥(QT b)(n+1):m

∥∥∥ ,

where we exploit the orthogonality of Q2 and denote by

(x)(n+1):m the vector (xn+1, . . . ,xm)T .

The numerically most robust way to compute the QR fac-

torization builds up Q iteratively as a product of orthogonal

Householder reflections QT = HT
m · · ·HT

2 HT
1 by processing

A column by column. During this process QT b is automat-

ically computed by multiplying b with the same sequence
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of Householder reflections, such that the error in the cur-

rent iteration can be computed as ‖(QT b)(n+1):m‖ without

any additional overhead and without even computing the ap-

proximate solution x∗.

The implementation of an incremental version of the QR

factorization is straightforward and requires only a slight re-

ordering of operations when starting from a standard QR fac-

torization algorithm. The steps performed at each iteration n
are sketched as follows:

For n = 1 to m do:

1. Select or construct A’s next column an.

2. Multiply an with all previous Householder

reflections: an ← Hn−1 · · ·H1an.

3. Compute next Householder reflection

Hn = H (an) and apply it to an ←Hnan and

b ← Hnb.

4. Break if
∥∥∥b(n+1):m

∥∥∥ < ε.

Solve triangular n×n system Rx = b.

After exiting the loop, the matrix R = QT A has been

stored in the upper triangle entries of A, and b has been over-

written by QT b. As the Householder reflections can be stored

in A’s lower triangle, the only additional storage is a n-vector

holding the diagonal elements.

When solving the system for several right-hand sides bk,

the QR factorization can be re-used, but may have to be re-

fined depending on the L2 error w.r.t. the new right-hand

side. Notice that adding a new column ai monotonically de-

creases the error for any right-hand side bk, since this cor-

responds to enlarging the space rg(A) by one dimension,

which allows for a better choice of y = Ax∗ (cf. Fig. 2, left).

The missing component is a strategy for selecting the ba-

sis function to be added in the next iteration. Since we want

to re-use the QR factorization to solve the system for several

right-hand sides, we do not try to find the next basis function

ϕ j that would minimize the residual error for one particular

right-hand side. We can, however, choose the basis functions

in a way that optimizes the numerical condition of the result-

ing matrices A and R.

In the presence of (almost) linearly dependent columns

the matrix (4) will become singular, therefore we should

prefer columns that are linearly independent. Since one col-

umn corresponds to the sampling of a basis function ϕ j at

all centers c1, . . . ,cm, two columns a j and ak are (numeri-

cally) dependent if their corresponding centers c j and ck are

too close to each other. As a consequence, a farthest point

sampling, which in each iteration selects the basis func-

tion with the center having the maximum distance to the al-

ready selected ones, will yield a uniform sampling and max-

imally linearly independent columns, resulting in a numeri-

cally well-conditioned matrix (cf. Fig. 1, right, and Fig. 2).

Since the number m of centers ci is rather small, this farthest

point re-ordering can be computed efficiently (below 0.2s in

all examples).

As the incremental version of the QR factorization does

not introduce any overhead besides the error checking, a

full incremental factorization using all columns of (4) takes

about the same time as the standard QR factorization. How-

ever, in all our experiments significantly fewer basis func-

tions n � m had to be used to yield results equivalent to the

exact solution. The approximation quality is controlled by

prescribing a sufficiently small average relative L2 error

‖Ax−b‖
m ‖b‖ =

∥∥∥(QT b)(n+1):m

∥∥∥
m ‖b‖ < ε .

Since the overall complexity of the least-squares method is

quadratic in the number of basis functions n, and the later

evaluation at all free vertices pi is linear, the incremental

method allows for a significant acceleration by reducing the

required n.

6. Basis Function Precomputation

The incremental QR factorization allows for an efficient (ap-

proximate) solution of the linear system (4). During a mod-

eling session, this system has to be solved each time the

user updates the constraints, i.e., moves the control handle

or changes the control curve (fitting). The resulting defor-

mation function d(·) is then used to map all original support

vertices pi ∈ S to the new p′
i ∈ S′ (evaluation).

Although the factorization can be re-used, the required

per-frame costs are too high to allow for an interactive edit-

ing of complex models. Notice that both the fitting and the

evaluation process can be the bottleneck, depending on the

number of radial basis functions n and the number of sup-

port vertices N. In order to minimize the per-frame costs, we

extend the idea of precomputed basis functions of [BK04a]

to our RBF deformations. We can write the approximate so-

lution of (4) as

W = Φ+
n

(
F
H′

)
,

where Φ+
n represents the least-squares pseudo-inverse of the

left m × n block of (4) [GL89]. Notice that F stays con-

stant during a deformation, and that the handle vertices H
are only affinely transformed and hence can be represented

as an affine combination

H = M (a,b,c,d)T =: MC

using a matrix M ∈ IRm×4 of affine coordinates w.r.t. a lo-

cal coordinate frame defined by four control points C =
(a,b,c,d)T ∈ IR4×3. Moving the handle changes C to C′ =
m(C), such that H′ = MC′. Exploiting this, the above sys-

tem for computing the weights W simplifies to

W = Φ+
n

(
F
0

)
+ Φ+

n

(
0

M

)
C′.
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The evaluation of the deformation at all free points P =
(p1, . . . ,pN) is a linear operator in W and can be written as

P′ = ΦN W with (ΦN)i j = ϕ j (pi). Since the new points P′
depend linearly on W , they are consequently also linear in

C′ and can be computed as

P′ = ΦN Φ+
n

(
F
0

)
︸ ︷︷ ︸

=:BF

+ ΦN Φ+
n

(
0

M

)
︸ ︷︷ ︸

=:B

C′.

The matrices BF ∈ IRN×3 and B ∈ IRN×4 can be precom-

puted and represent a linear basis function for the deforma-

tion. When written in terms of displacement vectors (δC =
C′−C), this formula simplifies to

P′ = P+BδC.

Hence, the per-frame fitting and evaluation of d(·) can

be replaced by a weighted sum of four frame displacements

δa, δb, δc, and δd for each point pi. The precomputation of

B requires four solutions of (4) with the columns of M as

right-hand sides and the evaluation of the resulting RBF at

the points pi. If several rigid control handles are used, then

for each of them a basis function Bi ∈ IRN×4 can be com-

puted analogously. Notice that also for this precomputation

the incremental QR solver is crucial, as it reduces the com-

putation time from minutes to a few seconds (cf. Table 1).

For the above derivation we exploited the fact that all han-

dle points H can be represented as an affine combination

H = MC of a few control points C and that the correspond-

ing affine coordinates M stay constant during the deforma-

tion. Notice that the same does also hold for the control curve

metaphor introduced in Sect. 3: For spline curves, all sam-

ples

c(ti) =
k

∑
j=0

b j Bk
j (ti)

are actually an affine combination of the curve’s control

points b j, with the weights given by the B-spline basis func-

tions Bk
j (ti). As a consequence, we can precompute the same

kind of linear basis functions for control curves, just the

number of rows of C and columns of M and B changes to

k +1 for a curve defined by k +1 control points.

7. GPU Implementation

The precomputed basis functions allow for efficient shape

editing at a rate of about 1.5M vertices per second. Since

the pure vertex transformation p′
i = d(pi) is now sufficiently

fast, other factors become the bottleneck, like updating per-

face and per-vertex normal vectors for triangle meshes or

recomputing the tangent axes for point-based models.

However, we can exploit the fact that the Jacobian Jd (·)∈
IR3×3 of the deformation function d(·) can be computed an-

alytically. It is well known that a point and its normal vector

can be transformed by a deformation and its inverse trans-

posed Jacobian, i.e.,

p′
i = d(pi) and n′

i = Jd (pi)
−T ni .

Equivalently, the tangent axes of a surface splat are de-

formed by the Jacobian itself, resulting in proper rotations

and anisotropic stretching of splats (cf. Fig. 3).

It seems prohibitively expensive to evaluate and invert the

Jacobian at each point pi, but using exactly the same ideas

as presented in the last section, we can precompute basis

functions for Jd as well. For this we replace the evaluation

of d(·), i.e., the matrix ΦN , by the evaluation of its par-

tial derivatives dx, dy, and dz, yielding the three N ×4 basis

function matrices Bx, By, and Bz.

Notice that using basis functions for d(·) as well as for

Jd (·) allows us to individually process each point with its

associated normal vector or tangent axes, since there is no

need to re-compute this derivative information from a (trans-

formed) neighborhood of vertices. As a consequence, all per-

vertex deformation computations can now be delegated to

the GPU by deriving a simple vertex shader for transform-

ing points and normals.

The required input for the shader program are the ba-

sis functions, i.e., the respective rows of B, Bx, By, and Bz,

which are passed as texture coordinates, and the displace-

ment of the control frame δC, which is the same for all ver-

tices and is passed in a global shader variable. Using this

setup, all per-vertex attributes like original position, normal

vector, and basis functions do not change during the inter-

active shape editing process. Hence, this static data can be

stored in more efficient GPU or AGP memory, which mini-

mizes data transfer costs and is a common optimization for

high performance rendering. Only a new frame δC has to be

transferred for each frame.

Since each vertex has to be transformed several times for

rendering all of its incident triangles, we employ a simple

greedy triangle re-ordering to better exploit the GPU’s ver-

tex cache [Hop99], followed by a vertex re-ordering to min-

imize GPU memory cache misses. This simple optimization

reduces the average number a vertex has to be processed to

about 1.3–1.5, which can improve the performance by a fac-

tor of 2–3, depending on the initial triangle ordering of the

model.

Due to the high and steadily increasing streaming perfor-

mance of today’s GPUs, delegating the complete geometry

deformation to a vertex shader is more than one order of

magnitude faster than evaluating the basis functions on the

CPU. Notice that for deformations using several indepen-

dently controlled handle regions or handle curves, the user

can only manipulate one handle at a time, such that only the

basis functions corresponding to the currently active handle

have to be uploaded to the GPU, thereby saving GPU mem-

ory and reducing transfer costs even further.
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Figure 3: Non-rigid control curves are an intuitive and powerful metaphor for controlling the surface’s bending behavior (left),
which can be applied to both polygon meshes and point sets. When applying a volumetric deformation to a set of elliptical splats,
the Jacobian of the deformation function can be used to compute transformed normal vectors or tangent axes. This allows for
exact and hole-free editing of point-sampled geometries. The correct anisotropic stretching can clearly be noticed for the down-
scaled splats shown in the closeup images on the right.

8. Results & Discussion

In this section we quantify the performance gains on com-

plex meshes achieved by the incremental least-squares

solver, the precomputed basis functions, and the GPU-

based implementation. All timings we give were taken on

a 3.0GHz Pentium4 machine, equipped with a nVIDIA

GeForce 6800 Ultra GPU, and running Linux.

The deformations depicted in Figs. 4–7 show the flexi-

bility of our deformation framework; more examples can be

found in the accompanying video. The timings for comput-

ing these deformations using the different techniques pro-

posed in this paper are given in Table 1. It can be seen that

a naïve solution of the full system (4) (i.e., using all RBF

centers ci) is up to two orders of magnitude slower than the

incremental QR solver, for which a sufficiently small error

tolerance of 10−7 guaranteed comparable results.

The incremental QR solver also allows for an efficient

precomputation of basis functions for d(·) and its Jacobian

Jd (·). These in turn enable interactive shape editing, as they

reduce the per-frame computation time by another order of

magnitude. Moreover, delegating the complete computation

to the GPU improves performance by a further order of mag-

nitude, providing real-time deformations at 30fps of com-

plex models consisting of 2M triangles.

Since space deformations are independent of the surface

representation, the same framework can also be used to de-

form point-sampled geometries. Transforming the splats’

tangent axes by Jd (·) correctly stretches splats and retains a

hole-free surface representation (cf. Fig. 3). Our GPU-based

deformation integrates seamlessly with current hardware ac-

celerated point-based rendering methods [BK03b, KB04].

However, since for high quality visualization two rendering

passes are required, the effective frame rate reduces to 10M–

13M splats per second.

Figure 4: Opening and closing the mouth of the Dragon.
The holes and degenerate triangles contained in this model
are no problem for our RBF space-deformation method.

Figure 5: A bowing deformation of a scanned Chinese statue
by bending its back and neck.
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Model Vertices Support LU IQR Basis Precomp. CPU GPU

Dragon 437k 36k 31.6 (2352) 10.2 (1310) 17.8 (1680) 0.127 0.018

Bunny 557k 120k 212 (4913) 2.54 (280) 4.9 (340) 0.254 0.018

Male 332k 270k 153 (4136) 1.99 (160) 7.5 (290) 0.271 0.011

Statue 1M 355k 307 (5336) 4.01 (220) 7.6 (230) 0.537 0.032

Bust 984k 880k 215 (4129) 4.68 (130) 16.0 (130) 0.794 0.030

Table 1: Timings (in seconds) for computing and rendering shape deformations on a range of different models, whose complex-
ities and numbers of active (blue) vertices is given in columns 2 and 3. Computing a deformation by exactly solving the full
system (4) using LAPACK’s LU factorization (similar to [TO02, RTSD03]) is significantly slower than computing an approxi-
mate but visually equivalent solution by using the incremental QR solver (IQR). The number of required basis functions is given
in brackets; the LU solver uses all of them. After precomputing deformation basis functions (Basis Precomp), shape editing can
be done at interactive rates on the CPU, and even one further order of magnitude faster on the GPU.

Figure 6: In three subsequent deformations, the Bunny’s
ears were bent and its head was lifted and rotated.

Figure 7: Deformation of the Male model: Fine-scale edit-
ing by applying control curve deformations to mouth and
eyebrow (center). Coarse scale modification using two si-
multaneous handles (right).

Table 2 reveals that our GPU-based space deformation

runs faster than recent surface-based methods of [YZX∗04]

and [BK04a], which have to solve linear systems for the

free (blue) vertices. Notice that the Dragon and Bust model

cannot be handled by the surface-based methods, since the

Dragon contains holes in the support region (see accom-

Model Δ: [YZX∗04] Δ2: [BK04a] RBF

Bunny 5.05 / 0.37 16.4 / 0.254 4.9 / 0.018

Male 11.51 / 0.91 39.2 / 0.271 7.5 / 0.011

Warrior 16.29 / 1.12 58.6 / 0.537 7.6 / 0.032

Table 2: Comparison of precomputation and per-frame com-
putation cost (in seconds) for different modeling approaches.
The timings for Poisson editing [YZX∗04] are a very conser-
vative lower bound, since they correspond to only the fac-
torization and back-substitution of a Poisson system, using a
more efficient direct solver [BBK05] compared to the orig-
inal paper. The approach of [BK04a] was used as freeform
deformation only and solves bi-Laplacian systems using the
same solver. The RBF approach turned out to be more effi-
cient in terms of both precomputation and per-frame costs.

panying video) and the Bust would require the solution of

a 880k×880k sparse linear system. Since the method of

[SCOL∗04] solves an even three times larger and less sparse

least-squares Laplacian system simultaneously for the x, y,

and z components, their approach would fail for most of the

complex examples due to 2GB main memory limitation.

Fig. 8 compares our method to surface-based freeform

deformation and surface-based multiresolution deformation,

both based on [BK04a]. While the result of our freeform

space-deformation is slightly better than that of the surface-

based freeform deformation, the lack of local-frame detail

preservation leads to lower quality compared to true mul-

tiresolution techniques [BK04a, YZX∗04, SCOL∗04]. This

can also be observed for the extreme bending deformation

shown in the accompanying video.
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Figure 8: Comparison of surface-based freeform defor-
mation (left), surface-based multiresolution deformation
(center), and freeform space deformation (right).

The occasionally unintuitive behavior of the space de-

formation can also be noticed on the spikes of the back

of the Dragon’s head (cf. Fig. 4), where the technique of

[SCOL∗04] was shown to yield a more plausible solu-

tion. Another limitation of space deformations is that sur-

face parts which have large geodesic distance but small Eu-

clidean distance (e.g., two finger-tips), might influence each

other when deformed. However, this problem can usually

be resolved by properly restricting the support region and

splitting the deformation into two, like it was done for the

Bunny’s ears (cf. Fig. 6).

Considering the limitations discussed above, the conse-

quent next step for future work is the extension of the pre-

sented method to multiresolution modeling. Assuming a

multiresolution representation where each point pi ∈ S is

given as a normal displacement of a smooth base surface,

i.e., pi = bi + λini, the deformed point p′
i ∈ S′ can analo-

gously be computed in a vertex shader as

p′
i = d(bi) + λi

Jd (bi)
−T ni∥∥∥Jd (bi)
−T ni

∥∥∥
at almost the same speed. However, it is not obvious how to

derive the normal or tangent vectors of the displaced vertices

on the GPU without requiring transformed local neighbor-

hoods [MBK05].

9. Conclusion

In this paper we presented the necessary techniques to

use globally supported radial basis functions for interactive

shape editing. Our particular choice of triharmonic RBFs re-

sults in deformations of provably optimal fairness, equiva-

lent to surface-based BCM approaches. However, the pre-

sented space deformation framework is more general, as it

allows the deformation of other explicit surface representa-

tions as well.

In order to reduce the otherwise prohibitive computational

costs of a naïve implementation, we introduced an incremen-

tal least-squares solver, which we used in order to efficiently

precompute linear basis functions for the deformation. Eval-

uating these basis functions on the GPU then allows for real-

time shape editing of highly complex models. Each of these

three contributions is straightforward to implement and has

the potential to reduce the computational complexity by one

order of magnitude on its own.

Besides of the presented RBF shape editing, the incre-

mental least-squares solver seems to have many other possi-

ble applications. The method of precomputed basis functions

can also be used for a wide range of surface- and space-based

deformation techniques. Mapping all deformation computa-

tions to the GPU is possible for all space-deformation tech-

niques which allow the computation of an (exact or approxi-

mate) Jacobian [SP86, HHK92, BR94, KSSH02, LKG∗03].

For surface-based deformation approaches it is not clear how

to derive an equivalent Jacobian for the normal transfor-

mation, therefore the presented GPU-based implementation

cannot be transferred directly to surface-based techniques.
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