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Abstract—This survey reviews the recent advances in linear variational mesh deformation techniques. These methods were

developed for editing detailed high-resolution meshes like those produced by scanning real-world objects. The challenge of

manipulating such complex surfaces is threefold: The deformation technique has to be sufficiently fast, robust, intuitive, and easy

to control to be useful for interactive applications. An intuitive and, thus, predictable deformation tool should provide physically

plausible and aesthetically pleasing surface deformations, which, in particular, requires its geometric details to be preserved. The

methods that we survey generally formulate surface deformation as a global variational optimization problem that addresses the

differential properties of the edited surface. Efficiency and robustness are achieved by linearizing the underlying objective

functional such that the global optimization amounts to solving a sparse linear system of equations. We review the different

deformation energies and detail preservation techniques that were proposed in recent years, together with the various techniques

to rectify the linearization artifacts. Our goal is to provide the reader with a systematic classification and comparative description

of the different techniques, revealing the strengths and weaknesses of each approach in common editing scenarios.

Index Terms—Mesh editing, linear optimization, discrete differential operators.

Ç

1 INTRODUCTION

THIS paper presents the recent advances in mesh
deformation and editing techniques. Shape deformation

methods have been an active area of research in geometric
modeling due to their ever widening range of applications
in industrial and artistic design. Surfaces originating from
3D scans of real-world objects have become commonly
affordable, which, in turn, requires the development of new
tools to deal with such kind of surfaces: They are usually
densely sampled and not smooth, in the sense that they
contain abundant geometric detail at various scales. More
traditional surface editing machinery developed, for exam-
ple, for parametric surfaces or subdivision surfaces, is
difficult to apply to such data; therefore, various deforma-
tion techniques have evolved that work directly with the
irregular triangle mesh representation.

This survey focuses on linear surface-based algorithms
for mesh deformation. We address surface-based techniques
as opposed to space deformations or free-form deforma-
tions since, currently, there is no comprehensive survey
that reviews the former, whereas space deformations are
well exposed in the literature (for example, see [6] and
[46]). A concise summary of Laplacian-based mesh proces-
sing techniques appeared in [56]. In this survey, we expand
all recently proposed differential surface representations

linked with linear mesh editing techniques and describe
them comparatively. By “linear,” we mean that the main
ingredient of the deformation algorithm is a global
quadratic variational minimization problem whose solu-
tion, given certain modeling constraints derived from user
interaction, is the desired modified surface. The variational
minimization of a quadratic functional is achieved by
solving a linear system of equations; hence, we call such
methods linear.

Linear methods are attractive for several reasons. First,
they are fast, especially when the associated linear system is
sparse, as is the case with all the techniques that we shall
discuss. The availability of highly optimized sparse linear
solvers makes linear techniques very efficient and, at the
same time, simple to implement (basically, one only needs
to set up the required linear system and then let the solver
library do the rest). In addition, linear methods are robust:
When appropriate boundary conditions are used, the
quadratic energy has a unique global minimum. Moreover,
most methods are formulated in such a way that the
resulting deformed surface is a smooth function of the
modeling constraints; thus, a slight perturbation of the
constraints changes the resulting surface only a little.

The advantages of linear deformation methods, however,
come with a price: As we shall see, in the most intuitive
setting, the surface deformation problem is inherently
nonlinear because it requires deducing local rotations of
the surface based on position displacements. Therefore, a
linear method can only provide an approximate result, or a
compromise must be made in terms of the problem setup,
for example, requiring more complex interactive input from
the user. These trade-offs have spawned a large variety of
deformation techniques, each one attacking the problem
from a different angle. The impressive amount of literature
on the subject that appeared in the past few years may
confuse and overwhelm the casual reader. This survey is
aimed at clarifying the various available methods by a
systematic description of their assumptions on the problem
setup and the underlying deformation mechanisms. Our
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goal is to help the reader make practical conclusions about
the recited techniques; that is, we wish to answer the
following questions: Under which circumstances is each
method useful, and how can we choose the appropriate
algorithm for a particular scenario?

Deformation tools allow the user to interact with a
3D surface and modify its shape. The quality of a deforma-
tion method is measured by its flexibility, the quality of
the shapes that it produces, and its intuitive results. An
ultimately flexible editing tool would permit arbitrary
changes in the surface shape, provided with the right
modeling constraints. Such tools may be, however, too
general and difficult to control. An intuitive tool allows
the user to easily edit the shape, where the manipulation
of the controls gives “natural,” intuitively expected
results. What is a natural deformation? The simplest
answer would be something that behaves like a real-world
object, which is made of physical material. Physically
based deformation techniques are abundant in computer
graphics, especially in computer animation [48]. However,
when aiming at surface design rather than simulation, a
merely physically plausible result is usually sufficient.
Moreover, it is often the case that the desired deformation
only looks natural but, in fact, is not possible or difficult to
perform in a real-world setting with physical materials.
Therefore, one is usually after a deformation that gives
aesthetically pleasing results, which might be physically
plausible, but the way to achieve them is not necessarily
physically correct. An aesthetically pleasing deformation
result would preserve the local appearance of the surface
under deformation, and in addition, it is generally desired
to make smooth or piecewise smooth deformations.

In the following, we review the different sides of the
mathematical machinery behind recent surface deformation
methods and classify the particular approaches by their
specific selections of that machinery (Sections 2 and 3). We
then perform a practical comparison between representative
methods (Section 4), which visualizes the main aspects of
various deformation setups and methods. We dedicate a
special section to questions and answers, where we shed
light on several obscure points of the deformation ap-
proaches (Section 5), and we conclude in Section 6.

2 MULTIRESOLUTION EDITING

As mentioned above, intuitive and, hence, predictable
modeling results can be achieved by emulating a physical
surface deformation process. Motivated by this, one
category of modeling approaches starts from a physically
accurate formulation of surface deformation and succes-
sively simplifies the computational model in order to
achieve higher efficiency and increased numerical stability.

In the following, we therefore start with the introduction
of the physically accurate nonlinear thin-shell deformation
model for continuous surfaces and show the typically
employed simplifications and linearizations (Section 2.1).
After that, we discuss its discretization to triangle meshes
(Section 2.2), which then leads to merely solving a sparse
linear system (Section 2.3). The linearization will be shown to
distort fine-scale geometric details, which is taken care of by
multiresolution deformations (Section 2.4). In Section 2.5, we
describe approaches related to the presented techniques and
classify them with respect to the methods used for surface
deformation and multiresolution detail preservation.

2.1 Continuous Formulation

The main requirement for physically based surface defor-
mations is an elastic energy that measures how much the
object has been deformed from its initial configuration.
Although, for solid objects, this energy basically considers
local stretching within the object, for two-manifold surfaces
(so-called thin shells), an additional bending term is
required.

Let us denote by S � IR3 a two-manifold surface that is
parameterized by a function p : � � IR2 ! S � IR3. This
surface is to be deformed to S0 by adding to each
point pðu; vÞ a displacement vector dðu; vÞ such that S0 ¼
p0ð�Þwith p0 ¼ pþ d.

It is known from differential geometry [19] that the first
and second fundamental forms Iðu; vÞ and IIðu; vÞ 2 IR2�2 can
be used to measure geometrically intrinsic (that is, para-
meterization-independent) properties of S, such as lengths,
areas, and curvatures. The change of fundamental forms
therefore yields a measure of stretching and bending [64]:

EshellðS0Þ ¼
Z

�

kskI0 � Ik2
F þ kbkII0 � IIk2

F dudv; ð1Þ

where I0 and II0 are the fundamental forms of S0, �k kF
denotes a (weighted) Frobenius norm, and the stiffness
parameters ks and kb are used to control the resistance to
stretching and bending. In addition, the energy (1) is
invariant under rigid motions (rotation plus translation),
which is a geometrically intuitive requirement.

In a modeling application, one is typically not interested
in a dynamic time-dependent simulation but, instead,
directly solves for the rest state of the deformation process.
This requires the minimization of the elastic energy (1)
subject to user-defined boundary constraints. As shown in
Fig. 1, this typically means fixing certain surface parts F � S
and prescribing displacements for the so-called handle
region(s) H � S. In an interactive application, S0 has to be
recomputed by minimizing Eshell each time the user
manipulates the boundary constraints, for instance, by
moving the handle region H.
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Fig. 1. The original surface S (a) is edited by minimizing its deformation energy, subject to user-defined constraints that fix the gray part F of the

surface and prescribe the transformation of the yellow handle region H. The linearized energy (2) consists of stretching and bending terms, and the

examples show pure stretching with ks ¼ 1, and kb ¼ 0 (b), pure bending with ks ¼ 0, and kb ¼ 1 (c), and a weighted combination with ks ¼ 1, and

kb ¼ 10 (d).



However, this nonlinear minimization is computation-
ally too expensive for interactive applications. Hence, it is
simplified by replacing the change of the first and second
fundamental forms by the first-order and second-order
partial derivatives of the displacement function d [15], [68]:

~EshellðdÞ ¼
Z

�

ks kduk2 þ kdvk2
� �

þ

kb kduuk2 þ 2kduvk2 þ kdvvk2
� �

dudv;

ð2Þ

where we use the notation dx ¼ @
@xd and dxy ¼ @2

@x@yd.

The minimization of (2) can be performed efficiently by
applying variational calculus, which yields its so-called
Euler-Lagrange partial differential equation (PDE):

� ks �d þ kb �2d ¼ 0; ð3Þ

which characterizes the minimizer of (2). � and �2

represent the Laplacian and the bi-Laplacian operator,
respectively,

�d ¼ divrd ¼ duu þ dvv;

�2d ¼ �ð�dÞ ¼ duuuu þ 2duuvv þ dvvvv :

S0 can therefore be found directly by solving (3), again
subject to suitable boundary constraints.

In order for the change of the second derivatives in (2) to
closely approximate the change of surface curvatures (that
is, bending), the parameterization p should be as close to
isometric as possible. Because of that, � is typically chosen
to equal the initial surface S such that d : S ! IR3 is defined
on the manifold S itself. This is conceptually similar to the
data-dependent functionals of Greiner and Loos [26].

As a consequence, the Laplace operator � with respect to
the parameterization p turns into the Laplace-Beltrami
operator �S ¼ divSrS with regard to the manifold S [19]:

� ks �Sd þ kb �2
Sd ¼ 0: ð4Þ

Notice that this variational minimization is closely
related to the design of fair surfaces [47], [68], where the
surface area and curvature are minimized instead of their
changes, that is, stretching and bending. The linearized
membrane and thin-plate energies corresponding to (2) are
defined as

~EmembðpÞ ¼
Z

�

kpuk2 þ kpvk2 dudv;

~EplateðpÞ ¼
Z

�

kpuuk2 þ 2kpuvk2 þ kpvvk2 dudv :

ð5Þ

Analogous to (4), their corresponding Euler-Lagrange equa-
tions are ��Sp ¼ 0 and �2

Sp ¼ 0, respectively. Since the
Laplacians or bi-Laplacians vanish on the resulting surfaces,
those are stationary surfaces of Laplacian and bi-Laplacian
flows typically used in surface smoothing [18], [63]:

pt ¼ ��Sp and pt ¼ ���2
Sp :

The order k of partial derivatives in the energy or in the
corresponding Euler-Lagrange equations ð�1Þk �k

Sd ¼ 0
defines the maximum continuity Ck�1 for interpolating
displacement constraints [10]. Hence, minimizing (2) by
solving (4) provides C1 continuous surface deformations,
as can also be observed in Fig. 1.

2.2 Discretization

The energies and PDEs presented so far were formulated
for continuous two-manifold parametric surfaces S ¼ pð�Þ.
However, our final goal is to represent the surface S by a
triangle mesh, since this allows for higher topological
flexibility and computational efficiency [13]. In the follow-
ing, we denote by S a triangle mesh whose topology is
determined by n vertices ðv1; . . . ; vnÞ and m triangles
ðt1; . . . ; tmÞ, ti 2 f1; . . . ; ng3, and whose piecewise linear
geometric embedding is defined by the vertex positions
pi ¼ pðviÞ 2 IR3.

In the discrete mesh setting, the user selects certain vertices
as the fixed part F and the handle region H and typically
prescribes either positions p0i ¼ ci 2 S0 or corresponding
displacements di ¼ ci � pi for them. For the rest of the paper,
let us assume without loss of generality that from the
n vertices ðv1; . . . ; vnÞ, the first n0 vertices are free, whereas
the last k ¼ n� n0 vertices ðvn0þ1; . . . ; vnÞ are constrained; that
is, they constitute the fixed part F and handle regionH.

In order to discretize the above equations for triangle
meshes, one can employ either finite differences or finite
elements. The Finite Element Method (FEM) leads to
more accurate approximations in general, but for thin
shell problems like (1) and (2), it theoretically requires
C1 continuous shape functions [5]. In particular, on
triangulated manifolds, those are rather complicated to
design [15]. Mesh subdivision provides an elegant formula-
tion for C1 basis functions, as proposed in [16], [17], and [65]
for static and dynamic deformations, respectively. As an
alternative, so-called nonconforming C0 elements are
frequently and successfully employed in practice [32],
although lacking some theoretical guarantees.

In comparison to FEM, a discretization based on finite
differences is considerably easier to use, in particular since
the Euler-Lagrange equations (4) only require a discretiza-
tion of the Laplace-Beltrami operator. Given a piecewise
linear scalar function f : S ! IR defined on the mesh S, its
discrete Laplace-Beltrami at a vertex vi has the form

�SfðviÞ ¼ wi
X

vj2N 1ðviÞ
wij fðvjÞ � fðviÞ
� �

; ð6Þ

where vj 2 N 1ðviÞ are the incident 1-ring neighbors of vi
(see Fig. 2). The discretization depends on the per-vertex
normalization weights wi and the edge weights wij ¼ wji.
Although there are several variations of these weights (see
also a comparison in Section 5.1), the de facto standard is
the cotangent discretization [18], [45], [51]:

wi ¼
1

Ai
; wij ¼

1

2
cot�ij þ cot �ij
� �

; ð7Þ
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Fig. 2. The angles �ij and �ij and the (dark gray) Voronoi area Ai used

to discretize the Laplace-Beltrami �S at a vertex vi in (6) and (7).



where �ij and �ij are the two angles opposite to the edge
ðvi; vjÞ, and Ai is the Voronoi area of vertex vi. The latter is
defined in [45] as the area of the surface region built by
connecting incident edges’ midpoints with triangle circum-
centers (for acute triangles) or midpoints of opposite edges
(for obtuse triangles), as shown in Fig. 2.

Higher order Laplacians are then simply defined
recursively:

�k
SfðviÞ ¼ wi

X
vj2N 1ðviÞ

wij �k�1
S fðvjÞ ��k�1

S fðviÞ
� �

;

�0
SfðviÞ ¼ fðviÞ :

2.3 Numerical Solution

Using (6), the Laplace-Beltrami operator for the whole mesh
can be written in matrix notation:

�Sfðv1Þ
..
.

�SfðvnÞ

0
B@

1
CA ¼ M�1 Ls|fflfflfflffl{zfflfflfflffl}

L

�
fðv1Þ

..

.

fðvnÞ

0
B@

1
CA:

Here, M is a diagonal “mass” matrix of the normalization
weights Mii ¼ 1=wi ¼ Ai, and Ls is a symmetric matrix
containing the edge weights wij:

ðLsÞij ¼
�
P

vk2N 1ðviÞ wik ; i ¼ j;
wij ; vj 2 N 1ðviÞ;
0 ; otherwise:

8<
:

The Euler-Lagrange equation (4) then leads to a sparse
n� n linear system:

�ksLþ kbL2
� �

d ¼ 0:

The boundary constraints are incorporated into this system
by moving each column corresponding to a constrained
vertex vi 2 F [H to the right-hand side and removing the
respective row from the system (see also Section 5.3). This
yields a nonzero right-hand side b 2 IRn0�3 and leads to an
n0 � n0 system that is solved for the x, y, and z-components of
the displacements d ¼ d1; . . . ;dn0ð Þ. Notice that, for nota-
tional convenience, we still denote the n0 � n0 submatrices by
L and L2. Premultiplying the above system by M finally
yields the symmetric system

�ksLs þ kbLsM
�1Ls

� �
d ¼Mb; ð8Þ

which, in addition, can be shown to be positive definite [51].
In an interactive application, the above linear system has

to be solved for the deformed surface each time the user
changes the boundary constraints, for example, by moving
the constrained points, since that changes the right-hand
side b. Since the system is sparse, symmetric, and positive
definite, an iterative method like conjugate gradients [25]
could be employed, but the resulting Oðn2Þ computational
complexity is prohibitive for large meshes. Solving the
system on a multigrid hierarchy of successively coarsened
meshes, as proposed in [10] and [34], yields linear OðnÞ
complexity and, hence, also works for complex meshes.
However, the implementation of an efficient multigrid
solver can be quite complex, since it requires several
problem-dependent design decisions [1], [54].

Although multigrid solvers are an efficient tool, they do
not exploit the fact that the same linear system (8) is solved
many times (three times each frame), which is only for

different right-hand sides Mb. In contrast, sparse direct
Cholesky solvers first factor the matrix such that for each
new right-hand side, only an efficient back-substitution has
to be performed. Thanks to a matrix preordering, the
resulting Cholesky factor is also sparse, leading to the
basically linear complexity of both the factorization and the
back-substitution. In comparison with iterative multigrid
solvers, the direct solvers are not only easier to use but also
provide better performance for the so-called multiple-right-
hand-side problems [7], [54].

2.4 Multiresolution Hierarchies

The deformation techniques described above approximate
the nonlinear shell energy (1) by the quadratic energy (2) in
order to reduce the per-frame costs to the solution of the
linear system (8). Although the global energy minimization
guarantees smooth and C1 continuous surface deforma-
tions, the linearization causes geometric details and
protruding features to be distorted.

As can be seen in Fig. 4, even a pure translation of the
handle H is intuitively expected to locally rotate the
geometric details. Unfortunately, determining the required
local rotations from position constraints alone is a nonlinear
problem and, therefore, cannot be solved by a linearized
technique (see Fig. 4b). In order to still be able to achieve
intuitive detail preservation while using a linear deforma-
tion technique, one can complement the linear deformation
model by a so-called multiresolution or multiscale hierarchy.

The main idea of multiresolution deformations is to
consider the surface S as a “geometric signal” and to
separate the low frequencies from the high frequencies. The
low frequencies constitute the global shape of the model
and are represented by a smooth base surface B. The high
frequencies are the difference between S and B, that is, the
geometric details D ¼ S � B. The original surface S can be
reconstructed by adding the geometric details to the base
surface, S ¼ B �D. A multiresolution deformation can now
be computed by deforming B to B0 and reconstructing
S0 ¼ B0 � D. This modifies the global shape B but preserves
the fine-scale details D. The whole process is schematically
depicted in Fig. 3.
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Fig. 3. A multiresolution editing framework consists of three main
operators: the decomposition operator, which separates the low and
high frequencies, the editing operator, which deforms the low
frequencies, and the reconstruction operator, which adds the details
back onto the modified base surface.



Note that, in other contexts, the term multiresolution
hierarchy is also used to denote topological hierarchies of
coarser and coarser meshes [24]. In contrast, we are
considering it as a geometric hierarchy of smoother and
smoother meshes. Although for subdivision surfaces, these
two concepts are coupled, for arbitrary irregular meshes,
they are not.

In order to compute the low-frequency base surface B,
one typically removes high frequencies from S by mesh
smoothing [18], [29], [63]. In the example shown in Fig. 3,
the thin-plate energy (5) was minimized by solving
�2
Sp ¼ 0. The special operators � and � are the multi-

resolution decomposition and reconstruction and depend on
the chosen representation of the geometric details D. This,
and the way that B is computed, is where the existing
multiresolution editing techniques differ.

A straightforward approach is to restrict S and B to have
the same connectivity and to encode their geometric differ-
enceD by per-vertex displacement vectors hi [29], [34], [74]:

pi ¼ bi þ hi ; hi 2 IR3;

where bi 2 B is the vertex corresponding to pi 2 S. The
vectors hi have to be encoded in local frames with respect to
B [22], determined by the normal vector ni and two vectors
spanning the tangent plane. When the base surface B is
deformed to B0, the displacement vectors rotate according to
the rotations of the base surface’s local frames, which then
leads to a plausible detail reconstruction for S0.

However, as we will see below, long displacement
vectors might lead to instabilities, particularly for bending
deformations. As a consequence, for numerical robustness,
the vectors should be as short as possible, which is the case
if they connect vertices pi 2 S to their closest surface points
on B instead of their corresponding vertices of B. This idea

leads to normal displacements that are perpendicular to B,
that is, parallel to its normal field n:

pi ¼ bi þ hi � nðbiÞ ; hi 2 IR: ð9Þ
The difference in length of general displacement vectors
and normal displacements typically depends on how much
B differs from S. For instance, in Fig. 3, the general
displacements are, on the average, about nine times longer
than the normal displacements.

Notice, however, that normal displacements require a
resampling of either S [30], [37] or B [35]. Since the
resampling of the smooth surface B causes fewer aliasing
artifacts than that of the high-frequency surface S, the latter
is the preferred approach. Hence, for each point pi 2 S, a
local Newton iteration [35] finds a base point bi 2 B such
that

pi � bið Þ � nðbiÞ ¼ 0:

As a consequence, the base points bi 2 B are not necessarily
the vertices of B. This also implies that the connectivity of S
and B is no longer restricted to be identical, which can be
exploited in order to remesh the base surface B for the sake
of higher numerical robustness [11].

The main problem of normal displacements is that
neighboring displacement vectors are not coupled in any
way. When bending the surface in a convex or concave
manner, the angle between neighboring vectors increases or
decreases, leading to an undesired change of volume (see
Figs. 4c and 5a). If displacement vectors cross each other,
which happens if the curvature of B0 becomes larger than
the displacement length hi, then it might even result in local
self-intersections.

These problems are addressed by displacement volumes [9].
Each triangle pi;pj;pk

� �
of S, together with the correspond-

ing points bi;bj;bk
� �

on B, defines a triangular prism, the
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Fig. 4. The rightmost strip H of the bumpy plane (a) is translated up. The intuitive local rotations of geometric details cannot be achieved by a

linearized deformation (8) alone, as can be seen in (b), but require a multiresolution decomposition. Normal displacements (c) correctly rotate local

details but cause distortions under bending deformations, which can be seen in the leftmost row of bumps. The nonlinear displacement volumes (d)

and the linear deformation transfer (e) provide more intuitive results.

Fig. 5. A concave bending of the bumpy plane in Fig. 4. Multiresolution representations based on normal displacements (a) unnaturally distort

geometric details and almost lead to self-intersections, whereas displacement volumes (b) and deformation transfer (c) achieve more natural results.



volume of which is kept constant during deformations. The
local volume preservation leads to more intuitive detail
reconstructions and avoids local self-intersections (see
Figs. 4d and 5b). However, the improved detail preservation
comes at the higher computational cost of a nonlinear detail
reconstruction process.

Botsch et al. [14] recently proposed a multiresolution
representation that provides results similar to displace-
ment volumes (see Figs. 4e and 5c) but requires solving a
sparse linear system only. It employs the deformation
transfer framework [61] in order to transfer the deforma-
tion B 7! B0 to the fine-scale surface S, which then yields S0.
They also show how the actual computation of the
deformation transfer can be simplified such that the
approach only requires the solution of a linear Poisson
system (see also Section 5.5).

2.5 Related Approaches

In this section, we list and discuss several deformation
approaches related to the techniques described so far and
categorize them according to the energy minimization,
multiresolution representation, and surface representation
that they employ.

2.5.1 Subdivision Surfaces

Zorin et al. presented one of the first multiresolution editing
approaches [74]. Their method is based on subdivision
surfaces, and the geometric difference between successive
subdivision hierarchy levels is encoded by general displace-
ment vectors. Similarly, the displaced subdivision surfaces
of Lee et al. [37] also represent the base surface by a
subdivision surface but use normal displacements for the
geometric details. In both cases, if the input mesh is not a
subdivision surface, then it has to be remeshed to subdivi-
sion connectivity, which might lead to resampling artifacts.

To overcome this, Marinov and Kobbelt [44] represent
only the base surface B by a subdivision surface and use
normal displacements to encode the difference between B
and the original irregular mesh S. Marinov et al. [43] also
presented a hardware-accelerated graphics processing unit
(GPU) implementation of the latter multiresolution defor-
mation technique.

The subdivision basis functions guarantee smooth
deformations for these approaches but do not necessarily
minimize a physically based deformation energy. The main
drawback of subdivision-based methods is that global
deformations have to be controlled on a coarse subdivision
level, where only a small number of control points are
available. This limits the modeling flexibility, since the
control points might not be at the right position to perform a
desired deformation. Moreover, the support of the defor-
mation is predetermined by the coarse control grid and,
hence, cannot be chosen precisely on the detailed mesh.

2.5.2 Irregular Meshes

Kobbelt et al. [34] deform irregular triangle meshes based
on the variational energy minimization, as described in the
previous sections, which therefore leads to high-quality
physically based surface deformations. In contrast to the
subdivision-based approaches, their multiresolution hier-
archy is based on levels of different smoothness, not of
different mesh complexities. The hierarchy levels are
connected by normal displacements. Only to speed up the
solution of the linear system (8) do they employ a multigrid

hierarchy of topologically coarsened meshes. Their ap-
proach allows prescribing the constraints for each indivi-
dual vertex of S, which are then interpolated by an energy
minimizing and, hence, fair deformation function d.

Guskov et al. [29] apply hierarchical smoothing on a
multiresolution pyramid of irregular meshes, which are
coupled by general displacement vectors. However, similar
to the subdivision-based methods, their approach is limited
by the small number of control points available on the
coarse hierarchy levels. Like the subdivision approaches,
their deformations are smooth in a Ck sense but do not
necessarily minimize a bending energy.

Lee [38] first parameterizes the editing area over the
2D unit square, interpolates user-defined deformation con-
straints there, and, finally, maps per-vertex displacements
back onto the 3D surface S. This approach incorporates
precise per-vertex constraints, and the multilevel B-spline
interpolation allows controlling their influence radius.
However, the required parameterization might lead to
geometric distortions.

Botsch and Kobbelt [10] extend [34] by anisotropic and
triharmonic deformations and provide control of boundary
continuity on a per-vertex basis. They also exploit the fact
that the handle vertices H are typically transformed only
affinely by the user. This allows precomputing the linear
basis functions for the deformation d, which can be
evaluated in each frame more efficiently than solving the
linear system (8). Although normal displacements were
used in the original paper [10], a multiresolution represen-
tation based on deformation transfer was shown in [14] to
yield better results, particularly for bending deformations.

Although all these approaches work well in many cases,
there are limitations inherent to the linearization: Large
deformations, particularly large rotations, might cause
artifacts when performed in a single step (Section 4). In
addition, all approaches need a multiresolution decomposi-
tion to correctly deform fine-scale details, which might
require a more complicated multilevel hierarchy for
geometrically or topologically complex models. These
drawbacks were a major motivation for the deformation
approaches based on differential coordinates, which are
described in the next section.

3 DEFORMATION BASED ON DIFFERENTIAL

SURFACE REPRESENTATIONS

Surface deformation approaches based on differential repre-
sentations have gained significant popularity over the past
three years, probably mainly due to their robustness, speed,
and ease of implementation. The main idea behind this family
of deformation techniques is to use a surface representation
that puts the local differential properties in focus and to
preserve these differential properties under deformation,
aspiring to obtain an intuitive detail-preserving deformation
result. Hence, the motivation is to achieve a globally smooth
deformation, which is induced by the modeling constraints,
that at the same time preserves the local characteristics of the
surface. Generally speaking, this is achieved by constructing
the differential representation of the input surface, then
manipulating this representation according to the modeling
constraints, and finally performing “integration” or recon-
struction of the surface coordinates from the modified
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differential representation. Various techniques differ in the
particular differential properties that they use (Section 3.1)
and the manipulation thereof (Section 3.2), but the general
framework remains the same.

Differential surface manipulation was inspired by
gradient-domain image manipulation. It has been noticed
that the gradients of the image intensity function (or the
three color channels) contain important visual information
to which humans are sensitive. Many image techniques
exploit this fact by applying certain manipulations to the
input image gradients g ¼ rI and then reconstruct the
resulting image by a global optimization process that looks
for an image I 0 whose gradients are as close as possible to
the modified gradients g0:

I 0 ¼ argmin
I 0

Z
�

krI 0 � g0k2dxdy :

Here, � denotes the domain of the image manipulation (the
rectangular grid or part of it). By deriving the Euler-
Lagrange equations of the functional above, we arrive at the
famous Poisson equation

�I 0 ¼ div g0; ð10Þ

to which some boundary conditions are added. One
example of using this image manipulation framework is
high dynamic range compression [21], where the input
image I has intensities with too high a contrast to display it
on a conventional display. The compression method
modifies the intensity gradients g such that strong contrasts
are attenuated while small intensity variations are pre-
served. The resulting image is reconstructed by solving the
Poisson equation with Neumann boundary conditions.

Another example of gradient manipulation that comes
even closer to surface editing is Poisson Image Editing [50].
It is a set of image editing tools, the most prominent one
being Poisson cloning, where a part cut out from one image
is seamlessly pasted onto another image. The correct
seamless transition between the target background image
and the pasted source image part is achieved by feeding the
right Dirichlet boundary conditions to the Poisson equation:
The gradients of the image inside the pasted region � are
required to equal the source image gradients, whereas the
boundary conditions require the image values along the
boundary to equal the target image:

I 0j@� ¼ Itargetj@� :

In the spirit of the above techniques, differential surface
manipulation approaches try to follow the same framework:
manipulate the differential representation according to the
task and then reconstruct the surface by means of a
quadratic optimization with appropriate boundary condi-
tions that stem from the user-defined modeling constraints
(for the most part, Dirichlet boundary conditions that
would prescribe the positions of some points on the
surface). The discrete energy that these approaches mini-
mize usually has the form

p0 ¼ arg min
p0

X
i

AikDðp0iÞ � lik2; ð11Þ

where D is an operator that extracts the differential
quantities li ¼ DðpiÞ from the surface geometry, and Ai

are local area elements such as the Voronoi areas defined in

Section 2.2. If D can be expressed as a global linear
operator D, and we denote by M the diagonal matrix
containing the weights Ai, then the above minimization
sums up to solving the normal equations:

DTMD p0 ¼ DTM l: ð12Þ
However, surfaces in 3D have several significant differences
from images: They are generally not height functions, and
when represented by polygonal meshes, they are not
sampled over a regular domain. Moreover, there is a
geometric connection among the three mesh coordinate
functions ðx; y; zÞ such that manipulating them in a de-
coupled fashion is possible only after some linearization
assumptions. These fundamental differences prevent the
direct carry-over of the technology developed for images
onto surfaces, and the techniques that we review next deal
with the challenge in various ways.

3.1 Differential Representations

Here, we review the different differential representations
and show their basic surface reconstruction methods.

3.1.1 Gradient-Based Representation

The first approach to directly translate the gradient-based
approach from image editing to surface editing [71] was to
consider the gradients of the surface coordinate functions x,
y, and z, defined over the base domain � (which is typically
the input mesh S). In the continuous formulation, the
deformed surface is defined by the coordinate functions x0,
y0, and z0 that minimizeZ

�

krx0 � gxk2dudv

(and the same for y0 and z0), under some modeling
constraints, where gx ¼ rx are the gradients of the original
surface coordinate functions. The Euler-Lagrange equation
of this minimization is the Poisson equation

�x0 ¼ div gx : ð13Þ
It is simple to define the gradients of the coordinate

functions in the discrete setting: The mesh is a piecewise
linear surface and, thus, the gradients of the coordinate
functions are constant over each face. Intuitively, if the base
domain is the mesh itself, then, in each triangle, the gradient
of the x function is the projection of the unit x-axis vector
ð1; 0; 0ÞT onto the triangle’s plane and similarly for the other
two coordinate functions. Formally, let a piecewise linear
scalar function f on the domain mesh S be defined by
barycentric interpolation of per-vertex values fi ¼ fðviÞ
such that

fðu; vÞ ¼
Xn
i¼1

fi �iðu; vÞ;

where ðu; vÞ are the parameters over the domain mesh and
�ið�Þ are the piecewise linear “hat” basis functions asso-
ciated with the domain mesh vertices, that is, �iðvkÞ ¼ �ik.
The gradient of f is then

rfðu; vÞ ¼
Xn
i¼1

fir�iðu; vÞ : ð14Þ

The gradients r�iðu; vÞ are constant within each domain
mesh face. If ðpi;pj;pkÞ are the vertices of a domain mesh
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triangle, then the gradients of the corresponding hat
functions �i, �j, and �k are

r�i;r�j;r�k
� �

¼
pi � pkð ÞT

pj � pk
� �T

nT

0
@

1
A
�1

1 0 �1
0 1 �1
0 0 0

0
@

1
A;

where n is the unit normal of the triangle. This
formulation ensures that the gradients lie in the triangle’s
plane (for details on the derivation, see [14]). One can
formulate (14) by using a global operator G, which is
expressed as a 3m� n matrix that multiplies the n-vector
f of the discrete values fi to obtain a vector of m stacked
gradients, each gradient having three spatial coordinates
(m being the number of triangles). Thus, one can write
down the following for the input mesh:

Gx0 ¼ gx;

and the same for the other two coordinate functions. When
the gradients of the surface are known (as functions over
the domain mesh) and the coordinate functions are
unknown, we can find them by minimizing (11), with G
being the differential operator. Thus, we solve (12), where
the 3m� 3m weight matrix M contains the areas of the
triangles:

GTMGx0 ¼ GTMgx :

The matrix GTM corresponds to the discrete divergence
operator associated with the domain mesh, and GTMG is
none other than the cotangent discretization of the Laplace-
Beltrami operator [14], as discussed in Section 2.2, so we can
simply write

Lsx
0 ¼ GTMgx; ð15Þ

which is the discretized version of (13).
To deform a surface by using this gradient representa-

tion, a direct adaptation of Poisson Image Editing [50]
would be simply to add Dirichlet boundary conditions to
(15), corresponding to user-defined modeling constraints:

p0i ¼ ci ð16Þ

for the fixed vertices F and handle vertices H.
However, the result of such an editing approach is not

satisfactory because it tries to preserve the original mesh
gradients with their orientation in the global coordinate
system. This ignores the fact that, in the deformed surface,
the gradients should rotate, since they always lie in the
triangles’ planes, which transform as a result of the surface
deformation. The effect is demonstrated in Fig. 6b, clearly
showing that the resulting deformation is not intuitive.

This local transformations problem is central in all differ-
ential editing approaches. It stems from the fact that the
representation is dependent on the particular placement of
the surface in space, i.e., it is not rigid invariant, and thus,
when the surface deforms, the representation must be
updated. Unfortunately, it is a chicken-and-egg problem in
its essence because the deformed surface is unknown. We
review the different approaches to obtain the local
transformations in Section 3.2.

3.1.2 Laplacian-Based Representation

Laplacian-based approaches represent the surface by the so-
called differential coordinates or Laplacian coordinates [3],
[59]. These coordinates are obtained by applying the

Laplacian operator to the mesh vertices; that is, taking f � p
in (6), the resulting vector is the mean curvature normal:

��i ¼ �SðpiÞ ¼ �Hini; ð17Þ
where Hi is the mean curvature H ¼ �1 þ �2 at vi. Modeling
directly with these coordinates is meant to circumvent the
need to decompose the surface into a low-frequency base
surface and high-frequency details, as in the multiresolution
approaches discussed in Section 2.4.

Laplacian editing was developed concurrently with
gradient-based editing, and similar to the latter, the first
naive attempt would be to formulate the deformation by
directly minimizing the difference from the input surface
coordinates ��i. In the continuous setting, the energy
minimization is formulated as

min
p0

Z
�

k�p0 � ��k2dudv : ð18Þ

The Euler-Lagrange equation derived for the above mini-
mization is

�2p0 ¼ ��� :

When we consider this equation, taking the input surface as
the parameter domain, the Laplace operator turns into a
Laplace-Beltrami �S , and we arrive at the discretized
equation

L2p0 ¼ L��; ð19Þ
which can be separated into three coordinate components.
The equation is constrained by the modeling constraints of
the form (16). It is also possible to arrive at this equation by
discretizing the continuous energy (18):

min
p0

X
i

Aik�Sðp0iÞ � ��ik
2 : ð20Þ

This minimization amounts to solving (12) with L ¼M�1Ls

as the differential operator and the Voronoi areas stacked
into the diagonal matrix M:

LTMLp0 ¼ LTM��;

M�1Ls

� �T
M M�1Ls

� �
p0 ¼ M�1Ls

� �T
M��;

LsM
�1Lsp

0 ¼ Ls�� :

ð21Þ
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Fig. 6. Using gradient-based editing to bend the cylinder (a) by
90 degrees. (b) Reconstructing the mesh from new handle positions
but original gradients distorts the object. (c) Applying damped local
rotations derived from (25) to the individual triangles breaks up the
mesh, but (d) solving the Poisson system (15) reconnects it and yields
the desired result.



Note that if we multiply both sides of (21) by M�1, then we
arrive at the bi-Laplacian equation (19). Moreover, if the
right-hand side is set to zero (that is, �� ¼ 0), the equation
solves for the minimizer of the linear thin-plate energy (5).
This formulation was used to define the so-called Least
Squares Meshes [58]—smooth surfaces formed by mesh
connectivity and a sparse set of control points with
geometry, incorporated by (16).

The positional constraints (16) may be incorporated as
either hard or soft constraints. Hard constraints lead to the
elimination of corresponding rows and columns of the
system matrix, whereas soft constraints are added as
additional terms of the form �kpi � cik2 to the discrete
energy functional in (20) (see Section 5 for details).
Although the system is very simple and can be efficiently
solved by the sparse direct methodologies mentioned
earlier, the results only look satisfactory when the starting
surface is a membrane or a thin plate (that is, the right-hand
side of (21) is zero). In any other case, the surface details are
distorted for the same reasons as with gradient-based
editing or the variational minimization discussed in
Section 2. The system tries to preserve the orientation of
the Laplacian vectors with respect to the global coordinate
system, whereas, in reality, they should rotate with the
deformed surface.

3.1.3 Local-Frame-Based Representation

In search of a rigid-invariant shape representation, frame-
based representation [42] turns to classical differential
geometry and attempts to import elements from the theory
of moving frames [28] into the discrete setting. The
representation is inspired by the geometric invariance of
the fundamental forms and aspires to formulate the
deformation problem in the spirit of the elastic energy (1).
This frame-based representation consists of a set of
orthonormal frames ðai;bi;niÞ attached to each mesh vertex
and sets of coefficients describing the relations between the
frames, as well as the coordinates of the mesh 1-rings with
respect to the frames. More precisely, the relationship
between the local frames of two neighboring vertices vi and
vj in the input surface is recorded by the coefficients of a
3� 3 matrix Aij such that

ai � aj;bi � bj;ni � nj
� �

¼ Aij ai;bi;nið Þ : ð22Þ

The 1-ring vectors are encoded with respect to the local
frame by a set of three coefficients ð�ij; �ij; �ijÞ per edge:

pj � pi ¼ �ijai þ �ijbi þ �ijni : ð23Þ

It is easy to verify that if the choice of the local frames is
rotation invariant, then so are the coefficients Aij,�ij, �ij, and
�ij, which singles out this representation from other
differential coordinates. The (overdetermined) linear equa-
tion (23) can be used to model deformations in two steps:
First, the local frames of the deformed surface are deter-
mined by one of the methods described in the next section,
and then, the vertex positions are solved for in the least
squares sense by using (23), where the frames obtained in the
first step are plugged into the right-hand side. Note that the
normal equations matrix of (23) is the symmetric uniform
Laplacian.

3.2 Local Transformations

As mentioned above, the main problem in detail-preser-
ving surface deformation is to correctly define the local
transformations that occur during deformation. By “cor-
rect,” one usually means such deformations that the local
surface features retain their relative orientation and,
possibly, their size. Therefore, the local transformations
should be as close as possible to pure rotations and
translations. In some cases, isotropic scales are also
admissible. There are several methods to define the local
transformations in the literature, as we describe below.
Note that the problem is inherently nonlinear, so one can
only offer a reasonable estimate if one desires to avoid global
nonlinear optimizations. Once the local transformations Ti

are defined, the differential representation of the input mesh
is transformed by these, and the associated reconstruction
problem (11) is solved to obtain the deformed surface:

min
p0

X
i

AikDðp0iÞ �TiðliÞk2 : ð24Þ

3.2.1 Geodesic Propagation

This method of local transformation assignment relies on
additional user input to disambiguate the local transforma-
tions that should occur in the deformed surface. In addition
to positional constraints (16), the user is required to provide
a transformation matrix for the handle H that he/she
manipulates (this can be deduced, for example, from a
transform user interface attached to the handle, where the
user visually manipulates the rotation axes). The provided
handle transformation T is decomposed into rotational and
scaling/shear components T ¼ RS [55], and both are
interpolated over the region of interest (ROI) on the mesh
according to the geodesic distance from the handle:

Ti ¼ slerpðR; I; 1� siÞ � ðð1� siÞSþ siIÞ; ð25Þ
where slerp denotes quaternion interpolation and si is a
value between 0 and 1, which is proportional to the
geodesic distance from the handle H:

si ¼
distðpi;FÞ

distðpi;FÞ þ distðpi;HÞ
:

In this fashion, the handle transformation is propagated
over the ROI, and small-scale surface details are properly
transformed.

3.2.2 Harmonic Propagation

Discrete geodesic distances turned out to be a suboptimal
parameter to propagate the transformations because they
may be nonsmooth and also attenuate the transformations
of highly protruding features too much [42], [72]. Harmonic
functions were proposed instead: The values of si are
determined from a harmonic scalar field s defined over the
mesh vertices by the Laplace equation

Ls ¼ 0; ð26Þ
where the Dirichlet boundary conditions require si ¼ 0 for
vi 2 F and si ¼ 1 for vi 2 H. This results in a smooth
transformation propagation with the added advantage of
economic computation, when the matrix in (26) is the same
matrix used for editing (15); thus, the same factorization can
be used.
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3.2.3 Material-Aware Propagation

It is possible to control the surface material properties,
namely, local stiffness, by carefully designing the interpola-
tion weights si, as done in [52]. The user may define stiffness
by a painting interface that provides a scalar field ’ij over
the mesh edges. The interpolation weights are then
determined by solving the following weighted quadratic
minimization:

min
s

X
j2N 1ðviÞ

’ijksi � sjk2 :

Thus, where the stiffness parameter ’ij is higher, the
interpolation parameters tend to be closer, which assigns
similar local transformations and makes the surface locally
stiffer (see Fig. 7). The constraints of the minimization
above are the same as in harmonic propagation, that is, 0
for fixed vertices F and 1 for the handle H. Curiously, the
minimization of the quadratic energy above leads to a
Laplace equation (see [20] for details), weighted by the
stiffness parameters.

Note that any transformation propagation technique
would only work if the transformation of the handle (for
example, rotation) is actually provided. If the handle is only
translated, then all propagated local transformations will
equal the identity. This phenomenon is called translation
insensitivity [12] because the method might not generate
intuitive local rotations when the modeling constraint
contains translation.

3.2.4 Explicit Optimization

This method produces the local transformations by solving
for the local frames of the deformed surface in the least
squares sense [42] by using (22). The coefficients are derived
from the original mesh. The idea is to optimize the local
transformations so as to preserve the relationships between
the local frames. The handle frames need to be constrained,
similarly to the transformation propagation methods, such
that this method is also translation insensitive. Note that the
least squares solution might produce nonorthonormal
frames, which may lead to area and volume shrinkage. If
the modeling constraints on the frames involve solely
orthogonal transformations, it is advisable to normalize and
orthogonalize the frames.

3.2.5 Estimation from an Initial-Guess Solution

Local transformations may be estimated from a naive
solution of the deformation (computed without transforming

the differential representation). This approach is akin to the
multiresolution techniques in the sense that the initial guess
of the deformed surface lacks details. The details are then
transformed by the estimated local transformations. The
local transformations are estimated from the initial guess
by comparing k-ring vectors Vi of the original surface
with corresponding k-rings V0k in the deformed surface
[41] (the columns of Vi are vectors from the center vertex
pi to its k-order neighbors and, in addition, the normal at
pi) or, alternatively, from pairs of corresponding triangles
and their normals [14]. A least squares fit of the local
transformation is

~Ti ¼ V0kV
þ
k ;

where ð�Þþ denotes the pseudoinverse of a matrix. The local
transformations are then orthogonalized to obtain rigid Tis
(isotropic scales may also be allowed, depending on the
user’s requirements). The assumption is that the deformed
surface is mostly smooth; thus, the naive solution provides
a good guess for the deformed underlying base surface and
only small-scale details need to be rotated to correct their
orientation. The larger k is, the smoother the estimation
becomes, at larger computational cost, naturally. Note that
this method is sensitive to translations of the handle.

3.2.6 Implicit Optimization

Implicit optimization of transformations tries to tackle the
“chicken-and-egg” problem of local transformations by
expressing these unknown transformations in terms of the
unknown deformed geometry: Ti ¼ Tiðp0Þ. The local
transformations are then found together with the deformed
surface in the global optimization process (24). Notice that
the three spatial mesh coordinate functions are no longer
decoupled in the global optimization. The local transforma-
tions should be also constrained to rigid or similarity
transformations only. The coefficients of Ti are functions
of p0. In the optimal case, Ti would be constrained to
rotations alone, but this would require the use of nonlinear
combinations of p0, turning (24) into a global nonlinear
optimization. It is possible, however, to linearize the
similarity transformations [60]:

Ti ¼
s �h3 h2

h3 s �h1

�h2 h1 s

0
@

1
A : ð27Þ

The parameters s and h are determined by writing down
the desired transformation constraints, that is, Tiðpi � pjÞ ¼
p0i � p0j, for each vj 2 N kðviÞ and, thus, extracting s and h as
linear combinations of p0. The precise derivation can be
found in [40]. Plugging the linear expression for Ti back
into (24) results in a linear least squares problem. It should
be noted that the expression for Ti accommodates isotropic
scales in addition to rotations; therefore, when the handle is
“pulled,” for example, the deformed surface will scale and
inflate. When this effect is undesired, it can be eliminated by
scaling the differential representations (gradients/Lapla-
cians) of the deformed surface back to their length in the
original surface and solving (11) with this corrected
representation. Another solution, as proposed in [33], is to
scale the triangles of the deformed surface back to their
original size and restitch the mesh by using the Poisson
setup (15). The implicit optimization of local transforma-
tions is also sensitive to translational modeling constraints.
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Fig. 7. (a) A nonuniform twist using the material-aware deformation

technique [52], (b) with stiffness weights color-coded.



3.3 Related Approaches

In this section, we list and discuss several deformation
approaches that employ differential surface representations
and categorize them according to the particular representa-
tion and local transformation handling.

The first use of differential coordinates for mesh editing
was sketched by Alexa in [2]. He suggested using the
original surface Laplacians with soft modeling constraints
in (21). Since no appropriate local transformations were
computed, this approach was suitable for editing smooth
surfaces with no features or for performing deformations
that almost do not involve rotations.

In 2004, Lipman et al. [41] proposed adding local rotation
estimation to the simple Laplacian editing paradigm,
computing it from the naive solution of [2]. They have
shown that smoothing the estimated transformations by
using larger neighborhoods with special weighted aver-
aging may significantly improve the results, although at
larger computational cost. Still, note that this two-step
deformation process only requires two solutions by back-
substitution (plus intermediate transformation computa-
tions), since the system matrix (21) remains the same and
can be prefactored. The approach works well for relatively
smooth surfaces with no largely protruding features;
otherwise, the underlying assumption that the initial guess
by naive Laplacian editing provides a good rotation guess
no longer holds, and the rotation estimation fails. In
particular, the approach may have difficulty with features
that cannot be described as a height field over the base
smooth surface.

Botsch et al. [14] proposed a conceptually similar
technique: They estimate the local rotations from a base
surface B and its deformed version B0 (see Fig. 3 and
Section 5.5); they then apply these rotations to the gradients
of the input mesh to reconstruct the final result by using the
Poisson framework (15).

Sorkine et al. [60] proposed using the Laplacian repre-
sentation coupled with implicit transformation optimization
derived from 1-rings. To eliminate isotropic scaling, they
rescale the Laplacians of the deformed surface back to their
original length and solve (21). This technique can handle
more complex surfaces with large features. It is limited,
however, in the allowed rotation range because the
linearized approximation of local rotations is only valid
for small angles. In practice, rotations of up to 	=2 can be
well performed [57]. For larger rotations, several steps of
the technique should be applied to break the large rotation
into smaller ones.

The method of Sorkine et al. [60] was applied to the
manipulation of triangulated 2D shapes by Igarashi et al.
[33]. They used implicit transformation optimization. Note
that in 2D, similarity transformations can be exactly linearly
parameterized:

S ¼ a b
�b a

� �
:

In a second step, Igarashi et al. remove the unwanted
uniform scaling from the local transformations and resolve
for the vertex positions by using edge equations, as in (23).
The technique is very effective for 2D shape editing, thanks
to the exact rotation formulation and the meshing of the
interior of the shape.

The idea of combining the Laplacian representation with
implicit transformation optimization was further developed
by Fu et al. [23]. They propose a hybrid approach that

combines implicit optimization with two-step local trans-
formation estimation. In the first stage, Laplacian editing is
performed with implicit transformations, which are not
constrained to linearized similarity transformations but
instead are allowed to be any affine transformations
Ti ¼ U0iU

þ
i , where Ui are the 1-ring vectors of vertex vi.

In addition, the local transformations are asked to be locally
smooth, which is expressed by additional quadratic terms
in the deformation energy kTi �Tjk2 for neighboring
vertices vi, vj. The resulting deformed surface is then used
as an initial guess to estimate the actual local transforma-
tions: those are orthogonalized, and Laplacian editing (21)
is applied. This approach enables larger rotations than [60],
but it requires tweaking the relative weighting of local
transformation smoothness terms. Moreover, the formula-
tion of implicit transformations may be ill defined for flat
1-rings, in which case a perturbation is required.

It is worth noting that the above approaches used a
slightly erroneous version of the discrete energy (20), since
they omitted the area weights Ai, which correspond to the
discretization of the L2 product on the mesh [67]. This leads
to normal equations of the form

LTLp0 ¼ LT ��;

which differ from the correctly discretized (21). Such
formulation may lead to problems on irregular meshes, as
demonstrated in Fig. 8.

Laplacian editing was further used for a sketch-based
editing system [49] and volume graph deformations [73].
Nealen at al. [49] employed implicit transformation propaga-
tion and proposed using sketched curves on the surface as
handles and deformation constraints, which leads to an
intuitive silhouette and feature editing tool. In the classical
handle metaphor, the position of the handle is directly
manipulated by the user and, thus, hard positional con-
straints are preferred. In a sketch-based system, soft
constraints are actually advantageous, since they allow
the user to place imprecise strokes that are only meant to
hint at the desired shape but not specify it exactly. Thus,
Nealen et al. allowed varying the weight on the sketched
positional constraints to achieve rough sketching (small
weights) or carefully drawn sketching (high weights; see
an example in Fig. 9). Zhou et al. [73] proposed similar
skeleton-curve deformation constraints for character anima-
tion, combined with Laplacian editing of a volumetric
graph (they used a variant of geodesic transformation
propagation). They augment the surface mesh with an inner
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Fig. 8. (a) A 100,000-triangle version of the mesh (a) from [27] was bent

to compare (b) the original Laplacian editing formulation LTLp ¼ LT �� to

(c) the correct one L2p ¼ L��. Both (b) and (c) use the cotangent

Laplacian.



grid of vertices (which should be coarser than the surface
mesh for complexity reasons). Performing Laplacian editing
on such volumetric graph creates connections between
distant points on the surface and thus tends to better
preserve the volume of the shape.

Yu et al. [71] proposed the gradient-based representation
for mesh editing, combined with geodesic propagation of
local transformations. Zayer et al. [72] replaced the geodesic
propagation by harmonic interpolation and showed that
this leads to smoother distributed local transformations
and, thus, better results. Popa et al. [52] generalized the
harmonic propagation to material-dependent transforma-
tion assignment. In contrast to previously cited techniques,
all these methods only work when an appropriate handle
transformation is specified in addition to translation (they
are translation insensitive). It is worth noting that deforma-
tion gradients, closely related to the gradient-based repre-
sentation, were used for deformation transfer of one
deforming mesh sequence onto another by Sumner and
Popovi�c [61].

Lipman et al. [42] developed the frame-based represen-
tation and used it for surface editing and interpolation. This
technique employs a rigid-invariant representation, where
the local transformations are found explicitly by optimiza-
tion (22). The deformation constraints may include very
large rotations (up to 	), and the details remain preserved.
The limitation, however, is again translation insensitivity,
since solving for the frames is decoupled from the
positional constraints; thus, explicit rotational constraints
for handle frames must be specified.

Note that all the differential deformation approaches
require solving global linear sparse systems involving
symmetric positive definite matrices and, thus, can benefit
from fast Cholesky factorization in a preprocess and
interactive back-substitution, as described in Section 2.3.
Nonetheless, it is worth noting that, recently, Shi et al. [54]
developed a multiresolution solver specifically tailored for
solving Poisson systems, which may be useful in scenarios
where the ROI changes frequently or the Cholesky factor is
too large to fit into memory. They also proposed a
modification of the frame-based editing approach of Lip-
man et al. [42] to demonstrate the abilities of their solver:
Instead of solving (22), the frames of the deformed surface
are computed by harmonic interpolation of the handle
transformation, whereas the geometry reconstruction step
(23) remains the same. It can be shown that when all handle
constraints involve rotations about the same axis, this
framework produces optimal results in terms of curvature
preservation [39].

4 COMPARISON AND DISCUSSION

In this section, we compare the different mesh editing
techniques described in Sections 2 and 3. Since it is hard
to evaluate and compare the techniques solely based on
the (differing) examples given in the original papers, we
perform exactly the same deformations by using a
representative subset of the described techniques. Notice
that our goal is not to show the best possible results that
each method can produce, since these images can be
found in the original publications. Instead, we rather
want to show under which circumstances each individual
method fails. Hence, in Fig. 10, we picked extreme
deformations that identify the respective limitations of the
different techniques. For comparison, we show the results
of the nonlinear surface deformation PriMo [12], which
does not suffer from linearization artifacts.

The first technique that we examine is the variational
bending energy minimization [10] in combination with the
multiresolution technique based on deformation transfer
[14]. This approach works fine for pure translations; that is,
it yields a smooth deformation and locally rotates the
geometric details. However, due to the linearization from
(1) to (2), this method has problems with large rotations,
which can be seen in the bend and twist examples. Notice
that for these two examples, anisotropic deformations were
used. After a principal component analysis, the model is
anisotropically scaled along its principal axes to have
uniform variation and the cotangent weights (7) are derived
from the scaled coordinates, similar to [10]. The cactus
model is difficult because of its strongly protruding arms.
The default base surface B, as computed by minimizing
curvature energy, has degenerate triangles in these regions
such that no multiresolution hierarchy was used for this
example.

The gradient-based Poisson editing [71], [72] updates the
surface gradients by using the gradient of the deformation,
that is, its rotation and scale/shear components. Conse-
quently, the technique works very well for rotations.
However, as mentioned in Section 3.2, the explicit propaga-
tion of local rotations is translation insensitive such that the
plane example is neither smooth nor detail preserving.

In contrast, the Laplacian surface editing [60] implicitly
determines the per-vertex rotations and hence works
similarly well for translations and rotations. Its main
drawback is the required linearization of rotations, which
yields artifacts for large local rotations. Notice that although
the original paper employed the uniform Laplacian dis-
cretization, our examples were done using the cotangent
weights (see also Section 5.1).

The rotation-invariant coordinates [42] solve a linear
system to preserve the relative orientation of the local
frames, which works very well for rotations and does not
have problems with protruding features like in the cactus
example. However, since this linear system does not
consider positional constraints, this method is also transla-
tion insensitive. In addition, the linear system for recon-
structing the positions from local frames corresponds to a
uniform Laplacian, which causes the asymmetries for the
regular tessellation of the bumpy plane.

From those examples, one can derive the following
guidelines for picking the “right” deformation technique for
a specific application scenario.

In technical CAD-like engineering applications, the
required shape deformations are typically rather small
since, in many cases, an existing prototype only has to be
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Fig. 9. Varying the weighting of soft positional constraints may be
beneficial, for example, in a sketch-based interface [49]. Here, the
handle is the silhouette curve, and the positional constraints are
sketched in green. A small relative weight � leads to a rough
approximation of the sketch, preserving the surface details along the
silhouette, whereas a larger weight makes the system follow the
sketched curve more precisely.



adjusted slightly, but they have high requirements on

surface fairness, boundary continuity, and the precise

control thereof. For such problems, a linearized shell model

like [10] was shown to be well suited.

In contrast, applications like character animation mostly

involve (possibly large) rotations of limps around bends

and joints. Here, methods based on differential coordinates

clearly are the better choice. Moreover, the required
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Fig. 10. The extreme examples shown in this comparison matrix were particularly chosen to reveal the limitations of the respective deformation

approaches. The respective strengths and weaknesses of the depicted techniques, as well as the reasons of the artifacts, are discussed in

Section 4.



rotations might be available, for example, from a sketching
interface [49], [73] or a motion capture system [54].

Applications that require both large-scale translation and
rotations are problematic for all linear approaches. In this
case, one can either employ a more complex, nonlinear
technique or split up large deformations into a sequence of
smaller ones. Although nonlinear techniques are computa-
tionally and implementationwise more involved, splitting
up deformations or providing a denser set of constraints
complicates the user interaction. With the rapidly increas-
ing computational power of today’s computers, nonlinear
methods have become much more tractable, which already
has led to a first set of nonlinear yet interactive mesh
deformation approaches [4], [12], [31], [36], [53], [62], [66].

5 DEFORMATION FAQ

After describing, comparing, and discussing the various
shape editing techniques in Sections 2 and 3, we finally
want to answer a set of questions most frequently asked in
the context of mesh-based surface deformations.

5.1 What Is the Influence of the Laplacian
Discretization?

Most of the approaches described in Sections 2 and 3 derive
the deformed surface by solving a Laplacian or bi-Laplacian
linear system. Hence, they all require a discretization of the
Laplacian operator and their results strongly depend on this
choice. There exist several variations of the weights used in
the typically employed Laplacian discretization (6). The
uniform Laplacian, employed in [34], [41], [60], and [63], for
instance, uses the weights

wij ¼ 1 ; wi ¼
1P
j wij

:

Since this discretization takes neither edge lengths nor
angles into account, it cannot provide a good approxima-
tion for irregular meshes. Better results can be achieved by

wij ¼
1

2
cot�ij þ cot �ij
� �

; wi ¼ 1;

which now considers angles but not varying vertex
densities [69], [71]. The best results are obtained by
including the per-vertex normalization weights (see
Section 2.2):

wij ¼
1

2
cot�ij þ cot �ij
� �

; wi ¼
1

Ai
;

as proposed in [18], [45], and [51] and employed, for
instance, in [10] and [11]. A qualitative comparison of the
three discretizations is given in Fig. 11. In this example,
curvature energies are minimized by solving �2

Sp ¼ 0, since
smooth surfaces are visually easier to evaluate than smooth
deformations. A more detailed analysis of different dis-
cretizations, with a focus on their convergence properties,
can be found in [27] and [70].

Although the cotangent discretization clearly gives the
best results, it can also lead to numerical problems in the
presence of near-degenerate triangles, since the cotangent
values degenerate and the resulting matrices become
singular. In this case, the degenerate triangles would have
to be eliminated [8] in a preprocess. Alternatively, the
whole base surface B could be remeshed isotropically, as
proposed in [11].

5.2 What Is the Difference between the Thin-Plate

Energy
R
�2

1 þ �2
2 and the Mean Curvature

Energy
R
H2?

With the mean curvature H ¼ �1 þ �2 and Gaussian
curvature K ¼ �1�2, we haveZ

S
H2 dA ¼

Z
S
�2

1 þ �2
2

� �
dA þ 2

Z
S
K dA;

i.e., the two energies basically differ in the integral
R
K,

which, by the Gauss-Bonnet theorem, only depends on the
(fixed) Dirichlet boundary constraints on @ � and therefore
stays constant [19]. Hence, the minimizers of the two
energies are equivalent for identical Dirichlet boundary
constraints. This also holds for the linearized energies,
which areZ

S
�2

1 þ �2
2 dA 	

Z
S
kpuuk2 þ 2kpuvk2 þ kpvvk2dudv;Z

S
H2 dA 	

Z
S
kpuuk2 þ 2pTuupvv þ kpvvk

2dudv:

Variational calculus yields the identical Euler-Lagrange
equation �2p ¼ 0 for both linearized energies, and its
discretization (and symmetrization) leads to LsM

�1Lsp ¼ 0
to be solved for its minimizer surface (see Section 2.3). Even
when discretizing the mean curvature energy instead of the
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Fig. 11. Different Laplace-Beltrami discretizations are evaluated by minimizing the thin-plate energy of (a) the irregular mesh by solving the Euler-

Lagrange equation �2
Sp ¼ 0. Both (b) the uniform Laplacian and (c) the cotangent Laplacian without the area term yield artifacts in regions of high

vertex density. (d) The cotangent discretization including the per-vertex normalization clearly gives the best results. The small images show the

respective mean curvatures.



above Euler-Lagrange equations, one arrives at the same
linear system [67].

5.3 What Is the Difference between Hard
Constraints and Soft Least Squares
Constraints?

As introduced in Section 2, the first n0 vertices ðv1; . . . ; vn0 Þ
are considered free, and the last k ¼ n� n0 vertices ðvn0þ1;

. . . ; vnÞ are constrained by prescribing positions ci or
displacements di ¼ ci � pi.

Most mesh editing approaches consider those constraints
as hard constraints. For instance, solving a bi-Laplacian
system, as described in Section 2, gives the initial linear
system

L2

0 Ik

� � d1

..

.

dn

0
B@

1
CA ¼

0
..
.

0
cn0þ1 � pn0þ1

..

.

cn � pn

0
BBBBBBB@

1
CCCCCCCA
;

with L2 2 IRn�n and Ik being the k� k identity matrix.
Eliminating rows and columns corresponding to the
constrained vertices by bringing them to the right-hand
side then yields the upper left n0 � n0 submatrix as the linear
system to be solved for the displacements d1; . . . ;dn0 .

In contrast, the Laplacian editing papers [41], [49], [60]
handle constraints as soft constraints by adding them to the
energy in the form

Eðp0Þ ¼
Xn
i¼1

k�Sðp0iÞ � ��0ik
2 þ � �

Xn
j¼n0þ1

kp0j � cjk2 :

The minimum of this energy can be found by solving the
overdetermined ðnþ kÞ � n system:

L

0 �Ik

� � p01
..
.

p0n

0
B@

1
CA ¼

��01
..
.

��0n
�cn0þ1

..

.

�cn

0
BBBBBBBB@

1
CCCCCCCCA

in the least squares sense. This requires solving the normal
equations, which leads to the n� n system:

LTLþ 0 0
0 �2Ik

� �	 
 p1

..

.

pn

0
B@

1
CA ¼ LT

��01
..
.

��0n

0
B@

1
CAþ

0
..
.

0
�2cn0þ1

..

.

�2cn

0
BBBBBBB@

1
CCCCCCCA
:

In order to get (close to) the interpolation of the
constraints ci, one has to choose a sufficiently large
weight �, which, unfortunately, depends on the geometric
position of the ci, as well as on the relative number of
constraints k=n. Moreover, since the condition number of
the above matrix grows linearly with �, a higher weight can
cause numerical problems.

However, with growing �, the solution of the above
system approaches the solution of the n0 � n0 system:

LTL

p1

..

.

pn0

0
B@

1
CA ¼ LT

��01
..
.

��0n0

0
B@

1
CA;

with hard constraints. Since its condition number is much
better, it is therefore advisable to solve the latter system
instead when exact interpolation of the constraints is
required. See the effect of varying � in Fig. 9.

5.4 What Is the Relation of the Bending Energy
Minimization and the Laplacian-Based
Differential Deformation?

In the following, we focus on the surface deformation and
neglect detail preservation techniques such as the multi-
resolution decomposition in Section 2 and the rotations of
Laplacians in Section 3. As described in Section 2, the
variational minimization of the bending energyZ

�

kduuk2 þ 2kduvk2 þ kdvvk2 dudv

leads to the Euler-Lagrange equation

�2d ¼ 0 :

Similarly, the Laplacian editing energyZ
�

k�p0 � ��k2 dudv

introduced in Section 3 yields

�2p0 ¼ ��� :

From p0 ¼ pþ d and �� ¼ �p, we can immediately see that
the two Euler-Lagrange equations are equivalent, and so are
their corresponding linear systems L2d ¼ 0 and L2p0 ¼ L��.
Notice that this is not true for the original formulation
presented in [41], [60], since there, the slightly incorrect
system LTLp0 ¼ LT �� was solved (see Section 3.3).

The basic variational bending energy minimization and
Laplacian-based surface deformation can, therefore, be
considered equivalent. They differ in the way that they are
extended to preserve fine-scale details, i.e., finding the local
rotations of the geometric details. Although all multiresolu-
tion approaches derive those rotations from the deformation
of the low-frequency base surface (Section 2.4), there are
several approaches to rotate the differential coordinates
(Section 3.2).

5.5 What Is the Relation of Gradient-Based
Deformation and Deformation Transfer?

In [61], Sumner and Popovi�c transfer the deformation
S 7! S0 for a given source mesh S and its deformed version
S0 onto a target mesh T . This yields a deformed mesh T 0
such that the two deformations S7!S0 and T 7!T 0 are as
similar as possible.

They add a fourth point to each triangle ti, turning the
triangle into a tetrahedron such that these four points in S
and S0 uniquely determine the affine transformation
x 7! Sixþ ti. They then consider the gradient of this affine
mapping (so-called deformation gradient), which is the
3� 3 matrix Si containing the rotation and scale/shear
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part. Finally, new vertex positions p0i 2 T 0 are found such
that the resulting deformation gradients Ti for T are close
to the given Si, which leads to the area-weighted least
squares system

~GTM ~G

p01
T

..

.

p0~n
T

0
B@

1
CA ¼ ~GTM

ST1
..
.

STm

0
B@

1
CA;

where ~n ¼ nþm 	 3n is the number of vertices including
the additional fourth points and ~G is the 3m� ~n matrix
that computes the deformation gradients from the vertex
positions.

In this context, the gradient-based deformation [71] is
similar, but, here, the user directly prescribes the local
rotations Si, which are then applied to the gradients Gi 2
IR3�3 of the original mesh T , resulting in G0i. In order to find
the mesh T 0 that has the desired gradients G0i, the Poisson
system

GTMG

p01
T

..

.

p0n
T

0
B@

1
CA ¼ GTM

G01
..
.

G0m

0
B@

1
CA

is solved, as described in Section 3.
It was shown in [14] that one can safely remove the

fourth points from the first system, which reduces the size
of the system from ~n� ~n to n� n. After that reduction, the
matrices G and ~G—and, hence, the whole linear systems—
can be shown to be equal. Hence, deformation transfer can
also be considered as a special case of Poisson editing,
where the local per-triangle transformations are determined
from S and S0.

6 CONCLUSIONS

In this survey, we attempted to give a systematic descrip-
tion and classification of the plethora of surface editing
methods that can be generally seen as linear variational
techniques. Our goal was to first explain the original
motivation behind these techniques, which comes from
continuous formulations and is closely related to physically
based energies and classical differential geometry. Then, we
showed how the different methods simplify and discretize
these settings in order to achieve interactive and robust
mesh deformation methods. Finally, we performed practical
comparison of several representative methods to reveal the
characteristic strengths and weaknesses of each approach in
extreme deformation cases. We hope that our qualitative
description and practical illustrations will help the readers
understand the ideas behind these methods and also choose
the right method for each particular editing scenario.

We focused on linear variational methods since they
comprise a large body of work over the recent years, yet they
have not been surveyed in an elaborated and comparative
manner. In addition, this group of methods has gained high
visibility in computer graphics research, as evident by the
number of citations. This popularity is owed to the robustness
and ease of implementation of these approaches, especially
thanks to the availability of advanced sparse linear solvers.
One obvious conclusion of this survey, however, is that there
is no perfect technique that would work satisfactory in every
case. Apart from the fact that a “perfect” result may be a

subjective and application-dependent notion, all the re-
viewed methods share the same property: for the sake of
speed and robustness, they linearize the inherently nonlinear
deformation problem. The various types of machinery, which
are meant to mask the linearization errors, work in some
scenarios but fail in others, as we demonstrated. As
computing resources become much faster, and previously
infeasible numerical methods become tractable, there is now
room for nonlinear methods and optimizations to be explored
in interactive applications.

In light of the above, we felt that this is an appropriate
point in time to summarize the linear variational deforma-
tion methods. We are confident that these techniques are yet
to conquer the commercial modeling applications and that
researchwise, there are yet many areas where they can be
incorporated and explored further. Moreover, we anticipate
further development of nonlinear deformation techniques,
exploiting the knowledge and experience gained from the
linear methods. After all, each general problem is solved by
iterating and refining linear approximations.
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Seidel, “Differential Coordinates for Interactive Mesh Editing,”
Proc. Int’l Conf. Shape Modeling (SMI ’04), pp. 181-190, 2004.

[42] Y. Lipman, O. Sorkine, D. Levin, and D. Cohen-Or, “Linear
Rotation-Invariant Coordinates for Meshes,” ACM Trans. Graphics
(Proc. ACM SIGGRAPH), vol. 24, no. 3, pp. 479-487, 2005.

[43] M. Marinov, M. Botsch, and L. Kobbelt, “GPU-Based Multi-
resolution Deformation Using Approximate Normal Field Recon-
struction,” J. Graphics Tools, vol. 12, no. 1, pp. 27-46, 2007.

[44] M. Marinov and L. Kobbelt, “Automatic Generation of Structure
Preserving Multiresolution Models,” Computer Graphics Forum
(Proc. Eurographics), vol. 24, no. 3, pp. 479-486, 2005.

[45] M. Meyer, M. Desbrun, P. Schröder, and A.H. Barr, “Discrete
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[50] P. Pérez, M. Gangnet, and A. Blake, “Poisson Image Editing,”
ACM Trans. Graphics (Proc. ACM SIGGRAPH), vol. 22, no. 3,
pp. 313-318, 2003.

[51] U. Pinkall and K. Polthier, “Computing Discrete Minimal Surfaces
and Their Conjugates,” Experimental Math., vol. 2, no. 1, pp. 15-36,
1993.

[52] T. Popa, D. Julius, and A. Sheffer, “Material-Aware Mesh
Deformations,” Proc. IEEE Int’l Conf. Shape Modeling and Applica-
tions (SMI ’06). pp. 141-152, 2006.

[53] A. Sheffer and V. Kraevoy, “Pyramid Coordinates for Morphing
and Deformation,” Proc. Second Int’l Symp. 3D Data Processing,
Visualization, and Transmission (3DPVT ’04), pp. 68-75, 2004.

[54] L. Shi, Y. Yu, N. Bell, and W.-W. Feng, “A Fast Multigrid
Algorithm for Mesh Deformation,” ACM Trans. Graphics (Proc.
ACM SIGGRAPH), vol. 25, no. 3, pp. 1108-1117, 2006.

[55] K. Shoemake and T. Duff, “Matrix Animation and Polar
Decomposition,” Proc. Conf. Graphics Interface, pp. 258-264, 1992.

[56] O. Sorkine, “Differential Representations for Mesh Processing,”
Computer Graphics Forum, vol. 25, no. 4, pp. 789-807, 2006.

[57] O. Sorkine, “Laplacian Mesh Processing,” PhD dissertation,
School of Computer Science, Tel Aviv Univ., 2006.

[58] O. Sorkine and D. Cohen-Or, “Least-Squares Meshes,” Proc. IEEE
Int’l Conf. Shape Modeling and Applications (SMI ’04), pp. 191-199,
2004.

[59] O. Sorkine, D. Cohen-Or, and S. Toledo, “High-Pass Quantization
for Mesh Encoding,” Proc. Eurographics/ACM SIGGRAPH Symp.
Geometry Processing, pp. 42-51, 2003.

[60] O. Sorkine, Y. Lipman, D. Cohen-Or, M. Alexa, C. Rössl, and H.-P.
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