
Reconstruction and Representation of 3D Objects with Radial Basis
Functions

J. C. Carr1;2 R. K. Beatson2 J. B. Cherrie1 T. J. Mitchell1;2 W. R. Fright1 B. C. McCallum1

T. R. Evans1

1Applied Research Associates NZ Ltd�

2 University of Canterburyy

(a) (b)

Figure 1: (a) Fitting a Radial Basis Function (RBF) to a 438,000 point-cloud. (b) Automatic mesh repair using the biharmonic RBF.

Abstract

We use polyharmonic Radial Basis Functions (RBFs) to reconstruct
smooth, manifold surfaces from point-cloud data and to repair in-
complete meshes. An object’s surface is defined implicitly as the
zero set of an RBF fitted to the given surface data. Fast methods for
fitting and evaluating RBFs allow us to model large data sets, con-
sisting of millions of surface points, by a single RBF — previously
an impossible task. A greedy algorithm in the fitting process re-
duces the number of RBF centers required to represent a surface and
results in significant compression and further computational advan-
tages. The energy-minimisation characterisation of polyharmonic
splines result in a “smoothest” interpolant. This scale-independent
characterisation is well-suited to reconstructing surfaces from non-
uniformly sampled data. Holes are smoothly filled and surfaces
smoothly extrapolated. We use a non-interpolating approximation
when the data is noisy. The functional representation is in effect a
solid model, which means that gradients and surface normals can
be determined analytically. This helps generate uniform meshes
and we show that the RBF representation has advantages for mesh
simplification and remeshing applications. Results are presented
for real-world rangefinder data.
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1 Introduction

Interpolating incomplete meshes (hole-filling) and reconstructing
surfaces from point-clouds derived from 3D range scanners are
ubiquitous problems in computer graphics and Computer Aided
Design (CAD). Smoothly blending between surfaces and ensuring
surfaces are manifold, and therefore manufacturable, are related
problems in CAD. Similarly, smoothing and remeshing existing
noisy surfaces are important problems in both CAD and computer
graphics. These problems have mostly been considered indepen-
dent from one another and received much attention in the litera-
ture (see [8] and the references therein). In this paper we propose
that the implicit representation of object surfaces with Radial Basis
Functions (RBFs) simplifies many of these problems and offers a
unified framework that is simple and elegant. An RBF offers a com-
pact functional description of a set of surface data. Interpolation
and extrapolation are inherent in the functional representation. The
RBF associated with a surface can be evaluated anywhere to pro-
duce a mesh at the desired resolution. Gradients and higher deriva-
tives are determined analytically and are continuous and smooth,
depending on the choice of basic function. Surface normals are
therefore reliably calculated and iso-surfaces extracted from the im-
plicit RBF model are manifold (i.e., they do not self-intersect).
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The benefits of modeling surfaces with RBFs have been recog-
nised by Savchenko [19], Carret al. [10] and by Turk &
O’Brien [23, 22]. However, this work was restricted to small prob-
lems by theO(N2) storage andO(N3) arithmetic operations of
direct methods. For example, direct fitting of the dragon in Fig. 1(a)
would have required 3,000GB just to store the corresponding ma-
trix. Consequently, fitting RBFs to real-world scan data has not
been regarded as computationally feasible for large data sets. The
fast fitting and evaluation methods introduced in this paper mean
modeling surface data from large data sets and complicated objects
is now feasible. In this paper we:

� describe the computational advantages offered by new fast
methods for fitting and evaluating RBFs.

� introduce RBF center reduction for implicit surface model-
ing. This results in significant data compression and speed
improvements.

� demonstrate that modeling very large data sets and topologi-
cally complicated objects is possible.

� introduce RBF approximation for the problem of reconstruct-
ing smooth surfaces from noisy data.

� apply RBFs to the problem of mesh repair (hole-filling) and
point-cloud surface fitting.

1.1 Implicit surfaces

The surface representation or reconstruction problem can be ex-
pressed as

Problem 1.1. Given n distinct points f(xi; yi; zi)gni=1 on a sur-
face M in R3 , find a surface M 0 that is a reasonable approximation
to M .

Our approach is to model the surface implicitly with a function
f(x; y; z). If a surfaceM consists of all the points(x; y; z) that
satisfy the equation

f(x; y; z) = 0; (1)

then we say thatf implicitly definesM . Describing surfaces im-
plicitly with various functions is a well-known technique [9].

In Constructive Solid Geometry (CSG) an implicit model is
formed from simple primitive functions through a combination of
Boolean operations (union, intersection etc) and blending func-
tions. CSG techniques are more suited to the design of objects in
CAD rather than their reconstruction from sampled data. Piece-
wise low-order algebraic surfaces, sometimes referred to as im-
plicit patches or semi-algebraic sets, have also been used to define
surfaces implicitly. These are analogous to piecewise parametric
splines except that the surface is implicitly defined by low degree
polynomials over a piecewise tetrahedral domain. An introduction
to these techniques and further references can be found in [9].

The distinction between our approach and these well-known
techniques is that we wish to model the entire object with a single
function which is continuous and differentiable. A single functional
description has a number of advantages over piecewise parametric
surfaces and implicit patches. It can be evaluated anywhere to pro-
duce a particular mesh,i.e., a faceted surface representation can
be computed at the desired resolution when required. Sparse, non-
uniformly sampled surfaces can be described in a straightforward
manner and the surface parameterization problem, associated with
piecewise fitting of cubic spline patches, is avoided.

The representation of objects with single functions has pre-
viously been restricted to modeling “blobby” objects such as

molecules [9] and has generally been believed to be infeasible for
real-world objects acquired by 3D scanners. Turk & O’Brien [23]
have tried modeling laser scan data with RBFs. However they have
been restricted to blobby approximations derived from small sub-
sets of data consisting of a few hundred to a thousand surface points.
More recent work [25] has focussed on simplifying larger data sets
to make them computationally manageable. However, the ability
to represent complicated objects of arbitrary topology and model
the detail obtainable with modern laser scanners, is compromised.
Carret al. [10] used RBFs to reconstruct cranial bone surfaces from
3D CT scans. Data surrounding large irregular holes in the skull
were interpolated using the thin-plate spline RBF. Titanium plate
was then molded into the shape of the fitted surface to form a cranial
prosthesis. That paper exploited the interpolation and extrapolation
characteristics of RBFs as well as the underlying physical proper-
ties of the thin-plate spline basic function. However, the approach
is restricted to modeling surfaces which can be expressed explicitly
as a function of two variables. In this paper we demonstrate that by
using new fast methods, RBFs can be fitted to 3D data sets consist-
ing of millions of points without restrictions on surface topology —
the kinds of data sets typical of industrial applications.

Our method involves three steps:

� Constructing a signed-distance function.

� Fitting an RBF to the resulting distance function.

� Iso-surfacing the fitted RBF.

Section 2 of this paper describes how we formulate the surface
fitting problem as a scattered data interpolation problem. Section 3
introduces RBFs and Section 4 describes the use of new fast meth-
ods which overcome problems that have prevented the use of RBFs
in the past. Section 5 introduces RBF center reduction which re-
sults in a compact surface representation as well as faster fitting
and evaluation times. Section 6 introduces RBF approximation as a
means of smoothing noisy surface data and demonstrates this by re-
constructing smooth surfaces from noisy LIDAR (laser rangefinder)
data. Section 7 describes iso-surface extraction. Section 8 demon-
strates the abilities of RBFs to reconstruct non-trivial surfaces from
point-clouds and interpolate incomplete meshes. Section 9 draws
conclusions and discusses future work.

surface points

off-surface ‘normal’ points

Figure 2: A signed-distance function is constructed from the sur-
face data by specifying off-surface points along surface normals.
These points may be specified on either or both sides of the surface,
or not at all.

2 Fitting an implicit function to a surface

We wish to find a functionf which implicitly defines a surfaceM0

and satisfies the equation

f(xi; yi; zi) = 0; i = 1; : : : ; n;
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Figure 3: Reconstruction of a hand from a cloud of points with and without validation of normal lengths.

wheref(xi; yi; zi)gni=1 are points lying on the surface. In order
to avoid the trivial solution thatf is zero everywhere, off-surface
points are appended to the input data and are given non-zero values.
This gives a more useful interpolation problem: Findf such that

f(xi; yi; zi) = 0; i = 1; : : : ; n (on-surface points);

f(xi; yi; zi) = di 6= 0; i = n+ 1; : : : ; N (off -surface points):

This still leaves the problem of generating the off-surface points
f(xi; yi; zi)gNi=n+1 and the corresponding valuesdi.

An obvious choice forf is a signed-distance function, where
thedi are chosen to be the distance to the closest on-surface point.
Points outside the object are assigned positive values, while points
inside are assigned negative values. Similar to Turk & O’Brien [23],
these off-surface points are generated by projecting along surface
normals. Off-surface points may be assigned either side of the sur-
face as illustrated in Fig. 2.

Experience has shown that it is better to augment a data point
with two off-surface points, one either side of the surface. In
Fig. 3(a) surface points from a laser scan of a hand are shown in
green. Off-surface points are color coded according to their dis-
tance from their associated on-surface point. Hot colors (red) rep-
resent positive points outside the surface while cold colors (blue) lie
inside. There are two problems to solve; estimating surface normals
and determining the appropriate projection distance.

If we have a partial mesh, then it is straightforward to define off-
surface points since normals are implied by the mesh connectivity
at each vertex. In the case of unorganised point-cloud data, nor-
mals may be estimated from a local neighbourhood of points. This
requires estimating both the normal direction and determining the
sense of the normal. We locally approximate the point-cloud data
with a plane to estimate the normal direction and use consistency
and/or additional information such as scanner position to resolve
the sense of the normal. In general, it is difficult to robustly es-
timate normals everywhere. However, unlike other methods [16]
which also rely on forming a signed-distance function, it is not crit-
ical to estimate normals everywhere. If normal direction or sense
is ambiguous at a particular point then we do not fit to a normal at
that point. Instead, we let the fact that the data point is a zero-point
(lies on the surface) tie down the function in that region.

Given a set of surface normals, care must be taken when pro-
jecting off-surface points along the normals to ensure that they
do not intersect other parts of the surface. The projected point is
constructed so that the closest surface point is the surface point
that generated it. Provided this constraint is satisfied, the recon-
structed surface is relatively insensitive to the projection distance
jdij. Fig. 3(c) illustrates the effect of projecting off-surface points
inappropriate distances along normals. Off-surface points have
been chosen to lie a fixed distance from the surface. The result-
ing surface, wheref is zero, is distorted in the vicinity of the fin-

gers where opposing normal vectors have intersected and generated
off-surface points with incorrect distance-to-surface values, both in
sign and magnitude. In Fig. 3(a) & (b) validation of off-surface dis-
tances and dynamic projection has ensured that off-surface points
produce a distance field consistent with the surface data. Fig. 4 is a
cross section through the fingers of the hand. The figure illustrates
how the RBF function approximates a distance function near the
object’s surface. The approximately equally spaced iso-contours at
+1, 0 and�1 in the top of the figure and the corresponding function
profile below, illustrate how the off-surface points have generated
a function with a gradient magnitude close to 1 near the surface
(which corresponds to the zero-crossings in the profile shown).

m
m

Figure 4: Cross section through the fingers of a hand reconstructed
from the point-cloud in Fig. 3. The iso-contours corresponding to
+1, 0 and -1 are shown (top) along with a cross sectional profile of
the RBF (bottom) along the line shown.

3 Radial Basis Function interpolation

Given a set of zero-valued surface points and non-zero off-surface
points we now have a scattered data interpolation problem: we want
to approximate the signed-distance functionf(x) by an interpolant
s(x). The problem can be stated formally as follows,

Problem 3.1. Given a set of distinct nodes X = fxigNi=1 � R
3

and a set of function values ffigNi=1 � R, find an interpolant
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s : R3 ! R such that

s(xi) = fi; i = 1; : : : ; N: (2)

Note that we use the notationx = (x; y; z) for pointsx 2 R3 .
The interpolant will be chosen fromBL(2)(R3), the Beppo-Levi

space of distributions onR3 with square integrable second deriva-
tives. This space is sufficiently large to have many solutions to
Problem 3.1, and therefore we can define the affine space of inter-
polants:

S = fs 2 BL(2)(R3) : s(xi) = fi; i = 1; : : : ; Ng: (3)

The spaceBL(2)(R3) is equipped with the rotation invariant semi-
norm defined by

ksk2 =

Z
R3

�
@2s(x)

@x2

�2
+

�
@2s(x)

@y2

�2
+

�
@2s(x)

@z2

�2

+ 2

�
@2s(x)

@x@y

�2
+ 2

�
@2s(x)

@x@z

�2

+ 2

�
@2s(x)

@y@z

�2
dx: (4)

This semi-norm is a measure of the energy or “smoothness” of func-
tions: functions with a small semi-norm are smoother than those
with a large semi-norm. Duchon [12] showed that the smoothest
interpolant,i.e.,

s? = argmin
s2S

ksk;

has the simple form

s?(x) = p(x) +
NX
i=1

�ijx� xij; (5)

wherep is a linear polynomial, the coefficients�i are real numbers
andj � j is the Euclidean norm onR3 .

This function is a particular example of aradial basis function
(RBF). In general, an RBF is a function of the form

s(x) = p(x) +

NX
i=1

�i�(jx� xij); (6)

wherep is a polynomial of low degree and thebasic function � is
a real valued function on[0;1), usually unbounded and of non-
compact support (see,e.g., Cheney & Light [11]). In this context
the pointsxi are referred to as thecenters of the RBF.

Popular choices for the basic function� include the thin-plate
spline�(r) = r2 log(r) (for fitting smooth functions of two vari-
ables), the Gaussian�(r) = exp(�cr2) (mainly for neural net-
works), and the multiquadric�(r) =

p
r2 + c2 (for various ap-

plications, in particular fitting to topographical data). For fitting
functions of three variables, good choices include the biharmonic
(�(r) = r, i.e., Equation (5)) and triharmonic (�(r) = r3) splines.

RBFs are popular for interpolating scattered data as the associ-
ated system of linear equations is guaranteed to be invertible under
very mild conditions on the locations of the data points [11, 18].
For example, the biharmonic spline of Equation (5) only requires
that the data points are not co-planar, while the Gaussian and mul-
tiquadric place no restrictions on the locations of the points. In par-
ticular, RBFs do not require that the data lie on any sort of regular
grid.

An arbitrary choice of coefficients�i in Equation (5) will yield
a functions? that is not a member ofBL(2)(R3). The requirement
thats? 2 BL(2)(R3) implies the orthogonality or side conditions

NX
i=1

�i =
NX
i=1

�ixi =
NX
i=1

�iyi =
NX
i=1

�izi = 0:

More generally, if the polynomial in Equation (6) is of degreem
then the side conditions imposed on the coefficients are

NX
i=1

�iq(xi) = 0; for all polynomialsq of degree at mostm: (7)

These side conditions along with the interpolation conditions of
Equation (2) lead to a linear system to solve for the coefficients
that specify the RBF.

Let fp1; : : : ; p`g be a basis for polynomials of degree at most
m and letc = (c1; : : : ; c`) be the coefficients that givep in terms
of this basis. Then Equations (2) and (7) may be written in matrix
form as �

A P
P T 0

��
�
c

�
= B

�
�
c

�
=

�
f
0

�
; (8)

where

Ai;j = �(jxi � xj j); i; j = 1; : : : ; N;

Pi;j = pj(xi); i = 1; : : : ; N; j = 1; : : : ; `:

In the specific case of the biharmonic spline in 3D, if it is assumed
that the polynomial part of the RBF in Equation (5) has the form
p(x) = c1 + c2x+ c3y + c4z, then

Ai;j = jxi � xj j; i; j = 1; : : : ; N;

P is the matrix withith row(1; xi; yi; zi),� = (�1; : : : ; �N)T and
c = (c1; c2; c3; c4)

T.
Solving the linear system (8) determines� and c, and hence

s(x). However, the matrixB in Equation (8) typically has poor
conditioning as the number of data pointsN gets larger. This means
that substantial errors will easily creep into any standard numerical
solution.

On initial inspection, the essentially local nature of the Gaussian,
inverse multiquadric (�(r) = (r2 + c2)�1=2) and compactly sup-
ported basic functions appear to lead to more desirable properties in
the RBF. For example, the matrix B now has special structure (spar-
sity) which can be exploited by well-known methods and evaluation
of Equation (6) only requires that the sum be over nearby centers
instead of allN centers. However, non-compactly supported ba-
sic functions are better suited to extrapolation and interpolation of
irregular, non-uniformly sampled data. Indeed, numerical experi-
ments using Gaussian and compactly supported piecewise polyno-
mials for fitting surfaces to point-clouds have shown that these basic
functions yield surfaces with many undesirable artifacts in addition
to the lack of extrapolation across holes.

The energy minimisation properties of biharmonic splines make
them well suited to the representation of 3D objects. Since the cor-
responding basic function�(r) = r is not compactly supported
and grows arbitrarily large asr tends to infinity, the correspond-
ing matrixB of Equation (8) is not sparse and, except for sym-
metry, has no obvious structure that can be exploited in solving
the system. Storing the lower triangle of matrixB requires space
for N(N + 1)=2 real numbers. Solution via a symmetric solver
will require N3=6 + O(N2) flops. For a problem with20; 000
data points this is a requirement for approximately1:6� 109 bytes
(1.5GB) of core memory, and1013 flops, which is impractical. Fur-
thermore, ill-conditioning of the matrixB is likely to make any
solution one gets from such a direct computation highly unreliable.
Thus, it is clear that direct methods are inappropriate for problems
with N & 2; 000. Moreover, a single direct evaluation of Equa-
tion (6) requiresO(N) operations. These factors have led many
authors to conclude that, although RBFs are often the interpolant
of choice, they are only suitable for problems with at most a few
thousand points [13, 14, 20]. The fast methods described in the
following section demonstrate that this is no longer the case.
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Figure 6: A greedy algorithm iteratively fits an RBF to a point cloud resulting in fewer centers in the final function. In this case the 544,000
point cloud is represented by 80,000 centres to a relative accuracy of5� 10�4 in the final frame.

output surface

evaluation accuracy
fitted RBF

fitting accuracies

output evaluation points
interpolation nodes

Figure 5: Illustration of the fast fitting and evaluation parameters.

Direct methods Fast methods
Fitting
storage required N(N + 1)=2 O(N)
flops to solve system N3=6 +O(N2) O(N logN)
Evaluation
flops per evaluation O(N) O(1) after

O(N logN) setup

Table 1: Comparison of direct and fast methods.

4 Fast methods

Fast evaluation of RBF’s is performed via the Fast Multipole
Method (FMM) of Greengard & Rokhlin [15]. The FMM was de-
signed for the fast evaluation of potentials (harmonic RBF’s) in two
and three dimensions. However Beatsonet al. [7] have adapted the
expansion and translation theory for the potential to higher order
polyharmonic RBFs. Note that polyharmonic RBFs include the bi-
harmonic spline of Equation (5). The FMM may also be used with
polyharmonic splines in two [5] and four dimensions [3].

A full description of the FMM is beyond the scope of this paper
and the interested reader is directed towards the introductory short
course [4] for an expository treatment of the FMM. However, we

give a brief outline of the method.
The FMM makes use of the simple fact that when computations

are performed, infinite precision is neither required nor expected.
Once this is realised, the use of approximations is allowed. For
the evaluation of an RBF, the approximations of choice are far- and
near-field expansions. With the centers clustered in a hierarchical
manner, far- and near-field expansions are used to generate an ap-
proximation to that part of the RBF due to the centers in a particular
cluster. A judicious use of approximate evaluation for clusters “far”
from an evaluation point and direct evaluation for clusters “near” to
an evaluation point allows the RBF to be computed to any prede-
termined accuracy and with a significant decrease in computation
time compared with direct evaluation.

These fast evaluation methods, when used together with fitting
methods particular to RBFs [2, 6], greatly reduce the storage and
computational costs of using RBFs. They reduce the cost of evalu-
atings(x) atM points fromO(MN) toO(M + N logN) oper-
ations. The cost of simultaneously computing the gradientrs(x)
with s(x) is approximately twice that of computings(x) alone.
Table 1 summarises the gains of fast methods over direct methods.

Fig. 5 illustrates two parameters introduced by fast methods: a
fitting accuracy and anevaluation accuracy. The fitting accuracy
specifies the maximum allowed deviation of the fitted RBF value
from the specified value at the interpolation nodes. If desired, a dif-
ferent fitting accuracy may be specified at each data point, as illus-
trated by the varying error bars in Fig. 5. The evaluation accuracy
specifies the precision with which the fitted RBF is then evaluated.
Fig. 5 shows an RBF evaluated at regular intervals lying between
the dashed evaluation accuracy bands either side of the actual func-
tion. It is sensible to choose the evaluation accuracy to be numeri-
cally smaller than the fitting accuracy. The resulting dotted curve is
an approximation to the smooth and continuous RBF.

5 RBF center reduction

Conventionally, an RBF approximation uses all the input data
points (thexi ’s in Equation (2)) as nodes of interpolation, and as
centers of the RBF. However, the same input data may be able to
be approximated to the desired accuracy using significantly fewer
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RBF centers reduced subset
of RBF centers

Figure 7: Illustration of center reduction.

centers, as illustrated in Fig. 7. A greedy algorithm can therefore be
used to iteratively fit an RBF to within the desiredfitting accuracy.

A simple greedy algorithm consists of the following steps:

1. Choose a subset from the interpolation nodesxi and fit an
RBF only to these.

2. Evaluate the residual,�i = fi � s(xi), at all nodes.

3. If maxfj�ijg < fitting accuracy then stop.

4. Else append new centers where�i is large.

5. Re-fit RBF and goto 2.

If a different accuracyÆi is specified at each point, then the condi-
tion in step 3 may be replaced byj�ij < Æi.

Center reduction is not essential when using the fast methods
described in Section 4. For example, no reduction was used when
fitting to the LIDAR example of Fig. 8. However, reducing the
number of RBF centers results in smaller memory requirements and
faster evaluation times, without a loss in accuracy. Fig. 6 illustrates
the fitting process with center reduction. As more centers are added
to the RBF, the zero-surface more closely approximates the entire
set of data points. In this case, a laser scan of a Buddha figurine,
consisting of 544,000 points, has been approximated by an RBF
with 80,000 centers to a relative accuracy of1:4� 10�4 (achieved
at all the data points).

The greedy algorithm often results in a net faster fitting time,
even with a moderate reduction in the number of centers. This
is due to the efficiencies associated with solving and evaluating a
similar system at each iteration and the fact that initial iterations
involve solving much smaller problems. The results presented in
Section 8 are typical of our experience and show that dense laser
scan data can be represented by significantly fewer centers than the
total number of data points.

6 RBF approximation of noisy data

In Section 3 we looked for an interpolant that minimized a measure
of smoothness. However, if there is noise in the data, the interpola-
tion conditions of Equation (2) are too strict and we would prefer to
place more emphasis on finding a smooth function, where smooth-
ness is measured by Equation (4). Thus, consider the problem

min
s2BL(2)(R3)

�ksk2 + 1

N

NX
i=1

�
s(xi)� fi

�2
; (9)

where� � 0 and k � k is defined in Equation (4). The param-
eter� balances smoothness against fidelity to the data. It can be
shown [24] that the solutions? to this problem also has the form of

Equation (5), but now the coefficient vector(�T; cT)T is the solu-
tion to

�
A� 8N��I P

P T 0

��
�
c

�
=

�
f
0

�
; (10)

where the matricesA andP are as in Equation (8). The parameter�
can be thought of as the stiffness of the RBFs(x). The system (10)
can also be solved using fast methods.

In Fig. 8 we illustrate RBF approximation (also known as spline
smoothing) in the context of reconstructing a surface from 3D LI-
DAR data. LIDAR data is often noisy and irregular due to limited
range resolution and misregistration between scans taken at differ-
ent scanner positions. Restricted physical viewing angles for the
scanner mean increased susceptibility to occlusion and therefore re-
gions of incomplete data. Elsewhere, due to overlapping scans, the
data may contain redundancy. Consequently, LIDAR scans repre-
sent one of the more difficult surface fitting problems. In this exam-
ple a smooth surface has been automatically fitted to LIDAR scans
of a fountain in Santa Barbara using an RBF approximation. The
statue is approximately 2m�5m and was scanned using a CYRAX
2400 scanner. The data set consists of 350,000 points imaged from
several viewpoints in front of the statue. Three spheres apparent on
top of and beside the statue correspond to landmarks added to the
scene in order to align the scans. Fig. 8(a) is the point-cloud taken
from several scanner positions in front of the statue. Note the large
occluded regions where no data has been recorded. Fig. 8(b) is the
automatically fitted RBF surface. Fig. 8(c) is a detailed view of the
fitted surface which illustrates how the smoothness constraint inher-
ent in the biharmonic RBF has correctly preserved the gap between
the arm and the rest of the statue, despite having no data in these
regions. Along the cut-away planes in this figure we show the mag-
nitude of the RBF. Lighter colored points have smaller magnitudes,
i.e., they are “closer” to the zero-surface than darker points.

Fig. 9 illustrates the affect of varying� on a detailed portion of
the surface in Fig. 8. Fig. 9(a) is an exact fit to the raw data (� = 0),
Fig. 9(b) is the value of� corresponding to Fig. 8(b) and Fig. 9(c)
illustrates increased smoothing with a larger value for�.

In this example a global value for� has been chosen, however,
by dividing Equation (9) by� it is possible to specify a particular
smoothing parameter�i for each data point or group of points.

7 Surface evaluation

An RBF fitted to a set of surface data forms asolid model of an ob-
ject. The surface of the object is the locus of points where the RBF
is zero. This surface can be visualised directly using an implicit
ray-tracer [9], or an intermediate explicit representation, such as a
mesh of polygons, can be extracted. In the latter case, well-known
iso-surfacing algorithms such as Marching Cubes [17] can be used
to polygonize the surface. However, conventional implementations
are optimised for visualising a complete volume of data sampled on
a regular voxel grid. The cost associated with evaluating an RBF
means that an efficient surface-following algorithm is desirable.

In this paper a marching tetrahedra variant, optimised for surface
following, has been used to polygonize surfaces. A mesh optimisa-
tion scheme adapted from [21] results in fewer triangles with better
aspect ratios,i.e., thin and elongated triangles are avoided. A typ-
ical output mesh from this algorithm is illustrated in Fig. 10(b).
Wavefronts of facets spread out from seed points across the surface
until they meet or intersect the bounding box. For clarity, awave-
front from a single seed is shown in red in Fig. 10(a) spreading over
the surface of the Buddha figurine during iso-surfacing. Surface-
following is initiated from seed points corresponding to RBF cen-
ters. By design, many centers will lie on, or very near, the surface.
In the case of off-surface centers, the RBF gradient is used to search
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(a) (b) (c)

Figure 8: RBF approximation of noisy LIDAR data. (a) 350,000 point-cloud, (b) the smooth RBF surface approximates the original point-
cloud data, (c) cut-away view illustrating the RBF distance field and the preservation of the gap between the arm and the torso.

(a) (b) (c)

Figure 9: (a) Exact fit, (b) medium amount of smoothing applied (the RBF approximates at data points), (c) increased smoothing.

for the nearest zero-crossing. Convergence is rapid because the
gradient is approximately constant near the surface. Local minima
have not been observed in our experience, but this is not surprising
since we deliberately constructed the function in Section 2 to have
these properties. In any case, only a small subset of centers is re-
quired to seed the surface, one for each distinct surface section. The
surface-following strategy avoids the conventional requirement for
a 3D array of sample points and therefore minimises the number of
RBF evaluations. Consequently, the computational cost increases
with the square of the resolution, rather than the cube, as it would if
a complete volume were sampled. Memory overhead is also min-
imised since it is only necessary to retain the sample vertices as-
sociated with the advancingwavefronts. Quadrilateral meshes can
also be produced in this manner. Surfacing ambiguities can be re-
solved easily due to the ability to analytically evaluate the gradient
of the RBF.

8 Results

Table 2 quantifies the fitting and evaluation times for the figures
presented in this paper. In all cases the biharmonic spline was fit-

ted. Two off-surface points were generated for every second point
in the original surface data, hence the number of interpolation nodes
to which an RBF is fitted is approximately twice the number of sur-
face points. Center reduction was used throughout, except in the
LIDAR example, where the number of RBF centers consequently
equals the number of interpolation nodes. Fitting and evaluation
was performed on a 550MHz PIII Pentium with 512MB RAM.
Figs. 1(a), 3, 6, 12, 13 and 14 illustrate fitting surfaces to point-
clouds while Figs. 1(b) and 11 illustrate fitting to partial meshes.
Fig. 8 demonstrates approximation with an RBF in the context of
fitting a smooth surface to noisy LIDAR data.

The dragon in Fig. 1(a), the Buddha figurine (Fig. 6) and the
skeleton hand (Fig. 12) demonstrate the ability of fast methods to
model large complicated data sets to high accuracy and the com-
pact nature of the RBF representation. The dragon data was derived
from a mesh consisting of 438,000 vertices and 871,000 faces, the
Buddha from 544,000 vertices and 1,087,000 faces. Normals were
computed at vertices from the adjacent faces. Direct methods would
inevitably fail on these problems. For example, a direct approach
to fitting the Buddha data would require 4,700GB of storage just
to store the matrix of the interpolation system (8). The peak core
memory requirements of the new fast methods in Table 2 are par-
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(a) (b)

Figure 10: Iso-surfacing an RBF. (a) Surface-following from a single seed, (b) example of an optimised mesh.

Figure Number of Number of inter- Number of Peak RAM Fitting Surfacing Relative
surface points -polation nodes RBF centers (MB) time time accuracy

Face 14,806 29,074 3,564 29 68s 27s 7�10�4
Hand 13,348 26,696 4,299 29 97s 32s 1�10�3

Dragon 437,645 872,487 72,461 306 2:51:09 0:04:40 8�10�4
Buddha 543,652 1,086,194 80,518 291 4:03:26 0:04:07 5�10�4

Cherub statue 331,135 662,269 83,293 187 3:09:06 0:06:41 4�10�4
Skeleton hand 327,323 654,645 85,468 188 3:08:44 0:04:04 3�10�4
LIDAR statue 345,910 518,864 518,864 390 3:08:21 0:25:39 6�10�3

Table 2: Comparison of RBF fitting and evaluation times on a 550MHz PIII with 512MB RAM.

ticularly noteworthy in this respect.
Fig. 1(b) and Fig. 11 illustrate the application of RBFs to mesh

repair. In Fig. 1(b) an RBF is fitted to a partial mesh obtained from a
laser scanner. This figure demonstrates the ability of the biharmonic
spline to smoothly interpolate across large irregular holes, for ex-
ample under the chin, and smoothly extrapolate a surface far from
the data. In Fig. 11 an RBF has been fitted to a large statue data
set. Although carefully scanned, the statue contains many small
holes and larger holes corresponding to occluded regions between
the embracing figures. The fitted RBF has automatically filled all
the holes and generated a water-tight model of the statue without
the user having to specify any parameters other than the desired fit-
ting accuracy. Note how the fragment of shoulder data on the right
figurine has been extrapolated to reconstruct the missing chest data.

Fig. 13 illustrates the reconstruction of the asteroid Eros from
scattered range data. This is a good example of non-uniformly
distributed data, often difficult to reconstruct using other methods.
Furthermore, in this example the accuracy associated with the range
measurements varies at each point.

Table 3 compares the size of the original meshes in the dragon,
Buddha and skeletal hand data sets with the size of the equivalent
RBF representation. The uncompressed mesh sizes were derived
by assigning 3 floats (12 bytes) to each vertex and 3 integers (12
bytes) to each triangular facet. The uncompressed RBF file size
corresponds to representing each center with 3 floats (12 bytes) and
each coefficient (�i) with a double precision number (8 bytes). It is
likely that single precision would be adequate, which would result
in more compression, but we have not yet quantified the effect of
coefficient precision on the evaluated surface. This table demon-
strates the significant compression of both point-cloud and mesh
data that an RBF representation offers. We have also listed the size

of the meshes derived from evaluating the RBF at a comparable
resolution to the original data. It appears from initial results that a
promising application of RBFs is the remeshing of existing meshes.
Fitting an RBF not only fills holes, but a more uniform (and hence
more compact) mesh can be derived from it.

Finally, for the doubting reader, we demonstrate in Figure 14 that
a single RBF can model an extremely complicated surface with a
high genus. In this case 594,000 centers were required to model
the turbine blade to10�4 accuracy. The fast evaluation methods
described in Section 4 are essential for working with RBFs of this
size. The RBF has reproduced intricate internal structure along with
surface detail present in the original data. The point-cloud data
were only available as a Marching Cubes (MC) mesh derived from
X-ray CT data. However, if the CT data were available, then we
would fit an RBF directly to the CT values. Specifically, we would
fit to a subset of the data with values in the vicinity of the threshold
used by Marching Cubes to iso-surface the data. This would result
in a smaller fitting problem since the MC mesh contains extraneous
vertices and the construction of a signed-distance function, which
requires adding off-surface points, would be avoided. Smooth RBF
interpolation of the CT data would also be preferable to the linear
interpolation used in the MC algorithm, particularly between CT
slices, which are usually spaced further apart relative to the pixel
resolution within a slice. An approximating spline could also be
used to reduce noise in the CT data.

9 Summary and future work

Fast methods make it computationally possible to represent com-
plicated objects of arbitrary topology by RBFs. The scale-
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Original mesh New mesh RBF representation
Figure # vertices # facets Storage # vertices # facets StorageRBF centers Storage
Dragon 437,645 847,414 15.4MB 126,998 254,016 4.5MB 72,461 1.4MB
Buddha 543,652 1,086,798 19.6MB 96,766 193,604 3.5MB 80,518 1.6MB

Skeleton hand 327,323 654,666 11.8MB 81,829 163,698 2.9MB 85,468 1.7MB

Table 3: Comparison of storage requirements for RBF representations and derived meshes.

Figure 11: An RBF has automatically filled small holes and extrap-
olated across occluded regions in the scan data (left), to produce
a closed, water-tight model (right). The complex topology of the
statue has been preserved.

Figure 12: With sufficient sampling, complicated objects can be
represented with RBFs.

independent, “smoothest interpolator” characterisation of polyhar-
monic splines make RBFs particularly suited to fitting surfaces to
non-uniformly sampled point-clouds and partial meshes that con-
tain large irregular holes. The smoothest surface, most consistent
with the input data, is produced. Details are resolved, provided they
are adequately sampled. The functional nature of the RBF represen-
tation offers new possibilities for surface registration algorithms,
mesh simplification, compression and smoothing algorithms.

Within a Constructive Solid Geometry (CSG) framework the
RBF offers a new way of modeling real-world (scanned) objects
since it is inherently a solid model. It can be manipulated through
a series of Boolean unions and intersections with other objects in
a manner similar to how simpler geometric primitives are currently
used to construct more complicated objects.

RBFs are also relevant to the problem of visualising volume data

Figure 13: RBF reconstruction of the asteroid Eros from non-
uniformly distributed range data (top). Photograph and model from
a similar view (bottom).

acquired on an irregular grid, as can occur in medical imaging and
geophysical data. Here an RBF can be fitted to the sampled data
in order to approximate the underlying scalar distribution. Vector
fields can be modeled easily if the components are independent.
In that case, an RBF can be fitted to each field component. This
does not require much extra computation time since the matrix in
Equation (8) depends only on the location of the interpolation nodes
and is therefore common to each component RBF.

Planned future work includes improving the performance of
the reduction algorithm presented in Section 5. We have already
achieved better reductions in the number of centers than those given
in Table 2 but at the cost of slower fitting times. For example, the
dragon has been modeled by as few as 32,000 centers and the Bud-
dha by 42,000 centers, to the same fitting accuracy. This improve-
ment was achieved by simply adding fewer centers to the RBF at
each iteration. The global nature of the RBF representation implies
RBFs inherit the drawbacks of any global model when manipula-
tion of part of that model or ray-tracing is required. However, we
believe that it should be straightforward to decompose a global RBF
description into a piecewise mesh of implicit surface patches in the
spirit of [1] to facilitate local manipulation and ray-tracing. Future
speed improvements in computing and evaluating RBFs are likely
to come from the inherent suitability of the algorithms to parallel
processing and by tailoring to particular applications. In particular,
we believe that significant speed improvements are likely if the data
lie on a grid, albeit an incompletely sampled grid.
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Figure 14: Solid and semi-transparent renderings of an RBF model of a turbine blade containing intricate internal structure. The RBF has
594,000 centers.
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