
Anisotropic Geometric Diffusion in Surface Processing

U. Clarenz, U. Diewald, M. Rumpf �

Institute for Applied Mathematics
University of Bonn, Germany

Abstract

A new multiscale method in surface processing is presented here
which combines the image processing methodology based on non-
linear diffusion equations and the theory of geometric evolution
problems. Its aim is to smooth discretized surfaces while simul-
taneously enhancing geometric features such as edges and corners.
This is obtained by an anisotropic curvature evolution, where time
is the multiscale parameter. Here, the diffusion tensor depends on
the shape operator of the evolving surface.

A spatial finite element discretization on arbitrary unstructured
triangular meshes and a semi-implicit finite difference discretiza-
tion in time are the building blocks of the easy to code algorithm
presented here. The systems of linear equations in each timestep
are solved by appropriate, preconditioned iterative solvers. Differ-
ent applications underline the efficiency and flexibility of the pre-
sented type of surface processing tool.

Keywords: Image Processing, Geometric Modeling, Numerical
Analysis

1 INTRODUCTION

The processing of detailed triangulated surfaces is an important
topic in computer graphics [5, 12, 13, 19]. Nowadays, various such
surfaces are delivered from different measurement techniques [4] or
derived from two- or three dimensional data sets [14]. Recent laser
scanning technology for example enables very fine triangulation of
real world surfaces and sculptures. Also from medical image gen-
eration methods such as CT and MRI devices or 3D ultrasound cer-
tain surfaces of interest can be extracted - frequently in triangulated
form - at a high resolution for further post processing and analy-
sis. These surfaces are often characterized by interesting features,
such as edges and corners. On the other hand, they are typically
disturbed by some noise, which is often due to local measurement
errors.

The aim of this paper is to discuss a method which allows the
smoothing of discrete surfaces and thus permits a drastic reduction
of high frequency perturbations. Additionally it is able to retain
and even enhance important features such as edges and corners
on the surface. Figure 1 shows the performance of this method
and compares it with the smoothing by mean curvature flow, the
appropriate geometric “Gaussian” smoothing filter.

The core of the method is a geometric formulation of scale space
evolution problems for surfaces. These techniques were originally
developed for image processing purposes. Thus the method not
only delivers a single resulting surface, but a complete scale of sur-
faces in time. For increasing time, we obtain successively smoother
surfaces with continuously sharpened edges.

First, we derive a continuous model, which leads to a nonlin-
ear system of parabolic partial differential equations for the coor-
dinate mapping of the evolving surface. An anisotropic diffusion
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Figure 1: A noisy initial surface (top left) is evolved by discrete
mean curvature flow (top right) and by the new anisotropic diffu-
sion method (bottom right). Furthermore for the latter surface the
dominant principal curvature - on which the diffusion tensor de-
pends - is color coded (bottom left). The snapshots are taken at the
same timesteps.

tensor depending on the shape operator and thus on the principal
curvatures and principal directions of curvature, is sensitive to the
identification of the important surface features and decreases the
diffusivity in certain directions in close vicinity to edges or corners.

Two parameters are at the disposal of the user to influence the
performance of the method:

- A threshold value � for principal curvatures which are as-
sumed to indicate an edge and thus require local sharpening
and

- a filter width �which controls the noise reduction on the actual
surface before evaluating principal curvatures.

Especially the latter is essential to make the proposed method ro-
bust and mathematically well-posed. The method presented in this
paper starts with the description of a continuous model, which has
many nice qualitative properties. Then in a second step we seek a
robust and efficient discretization. Hence, we derive an appropriate
finite element method with respect to a formulation of the continu-
ous problem in variational form.

The paper is organized as follows.



First, in Section 2 we will discuss the background work on sur-
face fairing by geometric smoothing and on image processing on
planar images. In the following Section 3 we introduce neces-
sary mathematical notation and discuss the basic type of geometric
evolution problems. Then in Section 4 we present the continuous
model of anisotropic diffusion, which afterwards, in Section 5, is
discretized by finite elements. The definition of a shape operator
on triangulated surfaces is given in Section 6. Finally, Section 7 is
concerned with the concrete implementation and in Section 8 we
draw conclusions.

2 REVIEW OF RELATED WORK

In physics, diffusion is known as a process that equilibrates spatial
variations in concentration. If we consider some initial noisy con-
centration or image intensity �0 on a domain 
 � IR2 and seek
solutions of the linear heat equation

@t���� = 0 (1)

with initial data �0 and natural boundary conditions on @
, we ob-
tain a scale of successively smoothed concentrations f�(t)gt2IR+ .
For 
 = IR2 the solution of this parabolic problem coin-
cides with the filtering of the initial data using a Gaussian filter
G�(x) = (2��2)�1e�x

2=(2�2) of width or standard deviation �,
i. e. �(�2=2) = G� � �0. If we discretize (1) and use an explicit
Euler scheme we have to compute a sequence f�ngn=0;��� with

�
n+1 = (Id + ��h)�

n

where � is the timestep, �h an approximation of the Laplacian and
�0 = �. Concerning the smoothing of disturbed surface geometries
one may ask for analogues strategies. The counterpart of the Eu-
clidian Laplacian � on smooth surfaces is the Laplace Beltrami
operator �M [6, 3]. Thus, one obtains the geometric diffusion
@tx = �M(t)x for the coordinates x on the corresponding fam-
ily of surfaces M(t). On triangulated surfaces as they frequently
appear in computer graphics applications, several authors intro-
duced appropriate discretized operators. Taubin [19] discussed this
and related approaches in the context of generalized frequencies
on meshes and Kobbelt [12] used interpolation schemes. Explicit
time discretizations are known to have strong timestep restrictions
to ensure stability [20]. Thus, many iterations are required to ob-
tain appropriate results. Kobbelt et al. [13] introduced multilevel
strategies in the context of multiresolutional editing to improve the
efficiency of these methods. Guskov et al. [8] discussed relaxation
schemes with weights depending on the local geometry.

Rescently Desbrun et al. [5] considered an implicit discretization
of geometric diffusion to obtain strongly stable numerical smooth-
ing schemes. Furthermore they improved the consistency of the
discrete operator on arbitrary meshes significantly. The problem of
tangential coordinate shifts on the surface could be avoided, which
is a drawback of some explicit methods concerning the geometric
positioning of an accompanying texture. The mathematical reason
for this shifting problem in geometric diffusion is that the Laplace
Beltrami operator depends on the metric (cf. Section 3), thus the
metric of the discrete surface should be kept fixed during a single
explicit or implicit smoothing iteration.

From differential geometry [6] we know that the mean-curvature
vector HN equals the Laplace Beltrami operator applied to the
identity Id on a surface M:

H(x)N(x) = ��Mx: (2)

Thus geometric diffusion is equivalent to mean curvature motion
(MCM )

@tx = �H(x)N(x) ; (3)

where H(x) is the corresponding mean curvature (here defined as
the sum of the two principal curvatures), and N(x) is the normal
on the surface at point x. Already in ’91 Dziuk [7] presented a semi
implicit finite element scheme for MCM on triangulated surface.

The mean curvature motion model is known as the natural local
surface area decreasing flow. I.e., we obtain for the area Ar(!(t))
of a subset !(t) of a smooth surface M undergoing the MCM
evolution (cf. [9])

d

dt
Ar(!(t)) = �

Z
!(t)

H
2 dx : (4)

This is one indication for the strong regularizing effect of MCM .
Unfortunately MCM not only decreases the geometric noise

due to unprecise measurement but also smoothes out geometric fea-
tures such as edges and corners on the surface. Hence, we seek
models which improve a simple high pass filtering.
In image processing Perona and Malik [16] proposed a nonlinear
diffusion method, which modifies the diffusion coefficient at edges.
Edges are indicated by steep intensity gradients. For a given initial
image �0 they considered the evolution problem

@t�� div(G(kr�k)r�) = 0 :

For increasing time t - the scale parameter - the original image at
the initial time is now successfully smoothed and image patterns are
coarsened. But simultaneously edges are enhanced if one chooses
a diffusion coefficient G(:) which suppresses diffusion in areas of
high gradients . A suitable choice for g is

G(s) =

�
1 +

s2

�2

��1
(5)

for a positive constant �. Thus edges are classified by �. I. e.
sharpening by backward diffusion is invoked whenever kr�k��
whereas the image is smoothed by forward diffusion for kr�k��.
Kawohl and Kutev [11] gave a detailed analysis of the diffusion
types in this method. Unfortunately the above original Perona and
Malik model is still ill-posed because there is a true backward dif-
fusion in areas of large gradients. Catté et al. [2] proposed a regula-
rization method where the diffusion coefficient is no longer eval-
uated on the exact intensity gradient. Instead they suggested to
consider the gradient evaluation on a prefiltered image, i.e., they
consider the equation

@t�� div(G(kr��k)r�) = 0 (6)

where �� = G� � � with a suitable local convolution kernel G�.
For instance we again take into accout the Gaussian filter kernel.

This model turns out to be well-posed, edges are still enhanced.
The evolution and the prefiltering avoid the detection and pro-
nouncing of artificial edges, which are due to the initial noise.

Weickert [22] improved this method taking into account
anisotropic diffusion, where the Perona Malik type diffusion is
concentrated in one direction, for instance the gradient direction
of a prefiltered image. This leads to an additional tangential
smoothing along edges and amplifies intensity correlations along
lines. Preußer and Rumpf [18] took up this idea for the construction
of streamline type patterns in flow fields.

Concerning the numerical implementation Weickert proposed fi-
nite difference schemes [21] and Kac̆ur and Mikula [10] suggested a
semi-implicit finite element implementation for the isotropic model
by Catté et al. Large stencils have to be considered in case of the



implementation of anisotropic diffusion by finite differences. This
is a crucial shortcoming of such methods, especially if we consider
a geometric counterpart on discrete surfaces. Preußer and Rumpf
[17] discussed adaptive finite element methods in 2D and 3D image
processing by anisotropic nonlinear diffusion.

In the axiomatic work by Alvarez et al. [1], general nonlinear
diffusion problems were introduced. More precisely they derive
parabolic equations with elliptic terms which are based on the cur-
vature of isolines or isosurfaces in images. Sethian and Malladi
[15] presented a numerical level set method which also considers
the curvature of level lines.

3 NOTATION AND GEOMETRIC SETTING

Before we develop our model of nonlinear geometric surface pro-
cessing, let us first briefly review the basic notation of manifolds,
differential calculus and geometric diffusion. For a detailed intro-
duction to geometry and differential calculus we refer to [6] and
[3, Chapter 1]. For the sake of simplicity we assume our surfaces
to be compact embedded manifolds without boundaries. Thus we
consider a smooth manifold M, which we suppose to be embedded
in IR3. By f(x�;
�)g� we denote a countable atlas of M, where

� � IR2 is an open reference domain and

x
� : 
� !M ; �� 7! x

�(��)

is the corresponding coordinate map. For each point x on M a
tangent space TxM is spanned by the basis f @

@��
1

; @

@��
2

g. We regard

tangent vectors as linear functionals on C1(M), i. e. for f 2
C1(M) we define

@

@��i
(x)f :=

@f(x�)

@��i
(�)

where x = x�(�).
Due to the embedding in IR3 we identify @

@��
i

with the tangent

vector @x�

@��
i

. By TM we denote the tangent bundle. Integration on

M requires the definition of a metric

g(�; �) : TxM�TxM! IR ;

where g = (gij)ij is supposed to be a quadratic positive definite
form. In our embedded case we obtain

gij = g(
@

@��i
;
@

@��j
) =

@x�

@��i
� @x

�

@��j
; (7)

where � indicates the scalar product in IR3. The inverse of g is
denoted by g�1 = (gij)ij .

Now we can define the integration of a function f on M. Let
f��g� be a finite partition of unity on M with supp �� � 
�,
then Z

M

f dx :=
X
�

Z

�

��f(x
�
)
p

det g d�� : (8)

Note that this definition is independent of the choice of the partition
of unity. Integrating either a product of two functions f , g on M
or the product of two vector fields v, w on TM we obtain the
following scalar products on C0(M) and C0(TM) respectively:

(f; g)M :=

Z
M

fg dx ;

(v; w)TM :=

Z
M

g(v; w) dx :

In the following we use the sloppy notation dropping the index �.
Next we proceed considering the fundamental differential operators
onM. Suppose f 2 C1(M) then the total differential df is a linear
functional on TM (df 2 TM0), i. e. h @

@�i
; dfi := @

@�i
(�)(f) =

@(fÆx)

@�i
(�). The gradient rMf of f is defined as the representation

of df with respect to the metric g: g
�
rMf; @

@�i

�
=



@

@�i
; df
�

.
We obtain in coordinates

rMf =
X
i;j

gij
@(f Æ x)
@�j

@

@�i
: (9)

Furthermore, we define the divergence divMv for a vector field v 2
TM as the dual operator of the gradient byZ

M

divMv � dx := �
Z
M

g(v;rM�) dx

for all � 2 C10 (M).
Once we have introduced the gradient of a function on M, we

directly obtain the Dirichlet form on M by

(rMu;rMv)TM :=

Z
M

g(rMu;rMv) dx :

Furthermore, the Laplace Beltrami operator �M applied to any
function u 2 C2(M) is given by the duality

(��Mu; �)M := (rMu;rM�)TM (10)

for all � 2 C1(M). A simple computation leads to the follow-
ing representation of �Mu in local coordinates :

�Mu =
X
i;j

1p
det g

@

@�i

�
g
ij
p

det g
@u

@�j

�
:

In the anisotropic diffusion method to be presented in this paper
we will make intensive use of some fundamental curvature quan-
tities. We are now introducing the corresponding notation. Let
us assume that M is orientable; then we have a well defined nor-
mal N : M ! S2 � IR3 on M. The second fundamental form
II : TxM�TxM! IR is locally given by

II(v; w) :=
X
i;j

v
i
w
j
N;i � x;j ;

where the Gauss map N : 
 ! S2 is a representation of the
normal with respect to a coordinate map x : 
 ! M and
v = v1 @

@�1
+ v2 @

@�2
, w = w1 @

@�1
+ w2 @

@�2
, are two tangent

vectors in TxM. We point out that II is well defined, i. e. it is
invariant under reparametrization. Furthermore, II is a symmet-
ric bilinear form and therefore there is a symmetric endomorphism
S : TxM! TxM with

g(Sv; w) = II(v; w) ; v; w 2 TxM :

The endomorphism S is called shape operator. Its eigenvalues are
the principal curvatures ofM at the point x and the eigenvectors are
the principal directions of curvature. Now, one can define notions
of curvature as the mean-curvature H and the Gaussian curvature
K by

H := trS ; K := det S : (11)



(Note that in our notation the mean-curvature H is only the sum
of the principal curvatures.) With the Laplace Beltrami operator at
hand we can finally define a geometric diffusion problem in analogy
to the linear diffusion problem in Euclidian space. We look for a
solution u : IR+

0 �M! IR of the parabolic equation @tu(t; x)�
�Mu(t; x) = 0 on IR+

0 �M for given initial data u(0; � ) = u0.
Here, u0 is some function on M. Furthermore, we can consider a
diffusion of the manifold geometry itself (cf. Section 2). I. e., we
seek an one parameter family of embedded manifolds fM(t)gt�0
and corresponding parametrizations x(t), such that

@tx(t)��M(t)x(t) = 0 ; (12)

M(0) = M0 :

For the sake of simplicity we define MCM(M0; t) :=
M(t), where M(t) is the solution surface at time t. Thus
MCM(M; �2=2) can be regarded as the application of a “geo-
metric ” Gaussian filter of width � to M.

By integration by parts, we obtain

(@tx; �)M(t) + (rM(t)x;rM(t)�)TM(t) = 0 : (13)

This is the corresponding weak variational formulation which holds
for all test functions � 2 C1(M(t)). The fundamental observa-
tion is that this geometric diffusion on the coordinate mapping itself
coincides with the motion by mean curvature (MCM ); in fact for
any manifold M we have �Mx = �H(x)N(x) as already stated
above in Section 2.

4 ANISOTROPIC GEOMETRIC DIFFU-
SION

We are now prepared to discuss the concept of anisotropic geomet-
ric diffusion as a powerful multiscale method in surface processing.
The aim is to appropriately carry over approved methodology from
scale space theory in image processing. Let us first summarize the
building blocks of the new method:
� We consider a noisy initial surface M0 to be smoothed and re-

place the linear diffusion from the Euclidian case of flat images by
an appropriate diffusion of the surface geometry itself. The natural
geometric diffusion process is curvature flow, which leads to an al-
ready nonlinear parabolic system of equations with initial dataM0.
Thereby a family of surfaces fM(t)g

t2IR
+

0

is generated, where the

time t serves as the scale parameter.
� In addition to the smoothing of the surface our aim is to main-

tain or even enhance sharp edges on the surface. Gradients of a
coordinate mapping are not intrinsic objects on manifolds. The
canonical quantity is the curvature tensor, in the case of embedded
surfaces represented by the shape operator S. An edge is indicated
by a sufficiently large eigenvalue. Hence we consider a diffusion
tensor depending on S, which enables us to decrease diffusion sig-
nificantly at edges indicated by S. Furthermore we will introduce a
threshold parameter � as in (5) for the identification of edges.
� The evaluation of the shape operator on a noisy surface might

be misleading with respect to the original but unknown surface and
its edges. Thus we prefilter the current surface M(t) before we
evaluate the shape operator. The straightforward “geometric Gaus-
sian” filter is a short timestep of mean curvature flow. Hence, we
compute a shape operator S� on the resulting prefiltered surface
M�(t), where � is the “geometric Gaussian” filter. Let us em-
phasize that this choice also leads to a mathematically well-posed
parabolic problem. Hence we avoid ill-posed backward diffusion in
our model.
� With an appropriately chosen scalar diffusion coefficient a�

depending on the eigenvalues ��;1; ��;2 of S�, which are the prin-
cipal curvatures of M�(t), it is already possible to smooth in ap-
proximately flat surface areas and to enhance edges. Along these

Figure 2: Different discrete evolution problems are solved for
a noisy initial surface (top left): MCM evolution (top right),
isotropic nonlinear evolution (bottom left), anisotropic nonlinear
evolution (bottom right).

edges the surfaces M(t) still retains its noisy structure from M0

(cf. Fig. 2). We incorporate anisotropic diffusion now based on
a proper diffusion tensor a� which enables tangential smoothing
along edges. Thereby, the tangential edge direction on the tangent
space TxM(t) is indicated by the principal direction of curvature
corresponding to the subdominant principal curvature. The second,
perpendicular direction is considered to be the actual sharpening
direction. Figure 2 clearly outlines the advantage of an anisotropic
diffusion tensor.
� The resulting method leads to spatial displacement and the vol-

ume enclosed byM(t) is changed in the evolution. Selecting either
a retrieving force towards the initial surface M0 or a constant forc-
ing which leads to volume preservation, we can further improve our
multiscale method.

We end up with the following type of parabolic problem. Given
an initial compact embedded manifold M0 in IR3, we compute a
one parameter family of manifolds fM(t)g

t2IR
+

0

with correspon-

ding coordinate mappings x(t)which solve the anisotropic geomet-
ric evolution equation generalizing the system (12):

@tx� divM(t)(a�rM(t)x) = f on IR+ �M(t); (14)

and satisfy the initial condition

M(0) =M0:

Here, for every point x on M(t) the diffusion tensor a� is supposed
to be a symmetric, positive definite, linear mapping on the tangent
space TxM:

a�(x) : TxM! TxM :

Furthermore, f represents the forcing on the right-hand side that
maintains certain geometric properties of M(t).

Let us point out that an anisotropic timestep � corresponds to a
nonlinear Æ-filtering, where � = Æ2=2. The corresponding varia-
tional formulation is given by

(@tx; �)M(t) + (a�rM(t)x;rM(t)�)TM(t) = (f; �)TM(t) ; (15)



for all � 2 C1(M(t)). We can express the above equation not
only in the variational form but also in coordinates. This formula-
tion is as follows (cf. equation (10)):

@tx�
X
i;j;k;l

1p
det g

@

@�i

�p
det g gija�;jkg

kl @x

@�l

�
= f

on IR+ �M(t), where a�;jk = g

�
a�

@

@�j
; @

@�k

�
. We will never-

theless focus on the variational formulation - especially when we
implement a suitable finite element algorithm.

In the simplest model we consider a scalar diffusion coefficient
and set

a� = G

�q
�2�;1 + �2�;2

�
Id;

for a function G similar to the one which was introduced for the
nonlinear diffusion on planar images (see (5)). We slightly modify
the original definition of G for the following reason. We already
know that the fundamental MCM evolves the surface only in nor-
mal direction (cf. equations (12) and (2) ). This is no longer true for
an edge enhancing evolution as proposed here. It is a concentration
effect in the coordinate mapping accompanied by some tangential
displacement which allows the actual sharpening at an edge. Nev-
ertheless we want to restrict any necessary tangential displacement
in close vicinity to an edge and we intend to prescribe the standard
MCM evolution outside this area. Thus we define a generalization
of (5)

G(s) =

(
1 ; jsj � ���
1 + (jsj���)2

(1��)2�2

��1
; jsj > ��

:

Here � serves as a threshold value for the identification of edges.
If one of the principal curvatures is larger than �, then we suppose
there is an edge which we want to be sharpened. In the model with-
out prefiltering this shows up in the steepening behaviour of back-
ward diffusion for jsj > �. Below a fraction � of this threshold �
we set fast MCM type smoothing without tangential displacement
and in between �� and � some suitable transition is prescribed. In
our applications we always consider � = 0:5.

As already announced, an improved model integrates tangential
smoothing along edges into the multiscale approach. Therefore we
consider a true diffusion tensor a� which is no longer restricted
to multiples of the identity and which leads in such a way to a
scalar diffusion coefficient. We introduce the prefiltering by mean-
curvature flow as follows: M�(t) := MCM(M(t); �2=2). At
any point x on the prefiltered surface M�(t) the shape operator S�
is a symmetric endomorphism TxM� ! TxM�. Thus there is an
orthonormal basis fw1; w2g of TxM� such that S� is represented
by

S� =

�
��;1 0
0 ��;2

�
:

Now we consider a diffusion tensor in equation (14) which is
defined with respect to the above orthonormal basis by

a� = a(S�) =

�
G(��;1) 0

0 G(��;2)

�
(16)

with the function G from above. Hence, in a principal direction
of curvature with curvature larger than � we enforce a signal en-
hancement. If the second principal curvature is smaller than � we
regard the first direction as an orthogonal direction of an important
edge on the surface which has to be sharpened. Simultaneously, in

the other direction - the tangent direction along the edge - we al-
low smoothing. At corners both principal curvatures are large, thus
sharpening takes place in both directions. Here, we again expect
tangential shifting only if one of the principal curvatures is larger
then ��.

In the simple case of a� = � Id, where � is a smooth function,
we can determine the tangential part of divM(t)(a�rM(t)x) ex-
plicitly. It is simply given by the differential d�(x). Thus tangential
displacement is just caused by the change of �.

With respect to a concrete implementation let us remark that we
can interprete a� also as a mapping on the product of the embed-
ded tangent space and the one dimensional space spanned by the
normal. In order to do this we decompose a vector z 2 IR3 in the
orthogonal basis fv1; v2; Ng

z = (z � v1)v1 + (z � v2)v2 + (z �N)N

where v1, v2 denote the embedded tangent vectors corresponding
to w1, w2 (after projection and renormalization). Then using the
definition of a� in equation (16), we have

a� z = G(��;1)(z � v1)v1 +G(��;2)(z � v2)v2 + (z �N)N : (17)

Motivated by our definition of the diffusion tensor we define as
a generalization of the mean curvature (see (11))

Ha� := tr(a� Æ S)

as a generalization of the mean curvature (see (11)). This we will
call a�-mean curvature. Using this notion, we can express the
changing-rate of the area Ar(M(t)) and the volume Vol(M(t))
enclosed by the compact surface M(t). Here M(t) is assumed
to be the solution of the homogenous evolution problem @tx �
divM(t)(a�rM(t)x) = 0:

d

dt
[Ar(M(t))]t=t0 = �

Z
M(t0)

HHa� dx ;

d

dt
[Vol(M(t))]t=t0 = �

Z
M(t0)

Ha� dx :

The first equation expresses one aspect of smoothing in our model.
There is a significant regularization, indicated by the area mini-
mization in areas which are expected to be flat with respect to the
prefiltering. The second equation leads to a formulation of a flow
which keeps the volume enclosed by the evolution surfaces M(t)
constant (cf. Huisken [9] for the MCM case). To achieve this
we have to select a right-hand side which compensates the overall
change in volume by a constant forcing in normal direction, i. e. we
consider in equation (14)

f(t; x) = h(t)N(x) ; (18)

where h(t) := 1

Ar(M(t))

R
M(t)

Ha� dx. Alternatively, we can select

a simple retrieving force

f(t; x) = C (x0 � x(t)) (19)

where x0 is the original point location on the initial surface M0.

5 FINITE ELEMENT DISCRETIZATION

Up to now we have considered surfaces M which have been con-
tinuous manifolds. Concerning the implementation of the proposed
multiscale method we now discretize our model. We use a finite
element discretization to avoid large stencils as they would appear



in our problem using e.g. finite difference schemes. Thus, we have
to choose a spatial discretization and some timestepping scheme.
To clarify the notation we will always denote discrete quantities
with upper case letters to distinguish them from the corresponding
continuous quantities in lower case letters. In the application sur-
faces are typically represented by triangular meshes. Hence, we
suppose our meshes to be triangulations as well. Let us denote
such a discrete surface Mh. We are interested in a family of dis-
crete successively smoothed and sharpened surfaces starting from
some initially given noisy surface Mh;0. We suppose them all to
be equivalent with respect to a unique topological triangulation

T = fTi j i 2 Ig ;

where I is some index set. For the sake of convenience, we identify
a discrete surface and its triangulation. Here the subscript h indi-
cates the grid size, which we regard as a piecewise constant function
on the current triangulation. Its value on a triangle is the length of
the longest edge. On T and therefore also on Mh we define the
space of piecewise linear continuous functions

V
h
= f� 2 C

0
(Mh) j�jTi 2 P1 8i 2 Ig ;

where P1 is the space of linear polynomials. The identity Id(Mh)
on the triangulation Mh, which coincides with the pointwise co-
ordinate vector X can be regarded as a function in (V h)3. Here,
we consider every reference map from a single reference triangle
T̂ � IR2 onto some Ti on Mh as a coordinate map. Integration
over Mh is defined in analogy to the continuous case (see defini-
tion (8)), now summing over local contributions on the triangles of
the mesh. The metric and the gradients of functions on Mh are
evaluated accordingly on each triangle T with respect to the refer-
ence triangle T̂ .

Now we are able to formulate our discrete problem. Discretiz-
ing first only in space we obtain a variational formulation (cf. for
the continuous case (14)) of an evolution problem for a family
fMh(t)g of discrete surfaces with coordinate maps X(t). In anal-
ogy to (15) we obtain

(@tX(t);�)hMh(t)
+

(A�rMh(t)
X(t);rMh(t)

�)TMh(t)
= (f(t);�)hMh(t)

for all test functions � 2 (V h)3 and Mh(0) = Mh;0. Here,
we use the lumped mass scalar product (�; �)hMh

, which is the ge-
ometric counterpart of the lumped masses for standard parabolic
problems on domains in IR2. It replaces the scalar product from the
variational formulation of our problem in the continuous case and
is defined by

(U; V )hMh
:=

X
T2Mh

Z
T

Ih(U V ) dx

for two discrete functions U; V 2 V h (cf. [20]). Here, Ih :
C0(Mn

h) ! V h denotes the nodal projection operator. As an
immediate consequence the mass matrix is diagonal. This sim-
plifies the resulting scheme significantly. Our discrete anisotropic
diffusion tensor A�, to be defined later, is supposed to be an endo-
morphism on the discrete tangent space TMh(t) approximating a�
from the continuous case.

We end up with a system of ordinary differential equations for
the three coordinates of all triangulation nodes.

Next, we have to discretize in time, which includes the choice of
some timestepping scheme and the decision which terms to be han-
dled implicitly and which explicitly. Here we proceed in analogy to
the approach presented by Dziuk [7] for the discretization of mean

Figure 3: Triangular grids at different timesteps of the anisotropic
evolution.

curvature motion. We expect Xn to be an approximation of X(n�)
where � is the selected timestep. Hence, the time derivative can be
discretized applying a backward Euler scheme

@tX((n+ 1)� ) � Xn+1 �Xn

�
:

We obtain:

Find a sequence of discrete coordinate maps fXn
h gn=0;��� which

defines a family of triangular surfaces fMn
hgn=0;��� such that

(
Xn+1 �Xn

�
;�)

h
Mn

h

+

(An
�rMn

h

X
n+1

;rMn

h

�)TMn

h

= (Fn
;�)hMn

h

:

for all discrete test functions � 2 (V h)3.

Fig. 3 shows evolving finite element meshes under the discrete
anisotropic flow. In what follows we explain in detail the above
notation and discuss at which timestep to evaluate functions, metric
and diffusion tensor. As the governing metric we always consider
the one at the old timestep, here indicated by the subscript Mn

h ,
TMn

h respectively. Thus, also the gradients rMn

h

are considered
with respect to the metric on TMn

h . Furthermore, the diffusion
tensor A� is evaluated explicitly at time tn, which we indicate by
an upper index n. Concerning the right hand side, we evaluate f at
the old time tn and define Fn = f(tn).

Finally, in each step of the discrete evolution we have to solve a
single system of linear equations. In terms of nodal vectors, which
we indicate by a bar on top of the corresponding discrete function
we can rewrite the scheme and get

(Mn + �L
n(An

� )) �X
n+1 =M

n �Xn + �M
n �Fn (20)

for the new vertex positions �Xn+1 at time tn+1 = (n+1)� . Here,
we assume the lumped mass matrix

M
n =

�
(�i;�j)

h
Mn

h

�
ij



Figure 4: The noisy initial venus head (the diameter is scaled to 1).

and the nonlinear stiffness matrix

L
n(An

� ) =
�
(An

�rMn

h

�i;rMn

h

�j)TMn

h

�
ij

to be applied simultaneously to each of the three coordinate compo-
nents. If in addition a nonvanishing right-hand side is considered,
we have to evaluate the vector �Fn representing the right-hand side
on each node X , i. e. ( �Fn)i = Fn(Xn

i ). Here, we either choose
in case of the retrieving force Fn(X) = C(X0 � X), which has
to be evaluated only at the nodes of the current triangulation due to
the selected lumped mass integration formula, or the constant force
Fn(X) = 1

jMn

h
j

R
Mn

h

tr(An Sn� ) dxN(X) for an interpolated nor-

mal N(X), which corresponds to the area preserving evolution in
the continuous model (compare the forces in (18) and (19)).

The diffusion tensor An
� is supposed to be piecewise constant on

the triangles of our mesh. As in the continuous model the evaluation
of the diffusion tensor has to be based on a regularized, prefiltered
surface. Here we consider a single timestep of the discrete mean
curvature evolution as a geometric appropriate regularization, i. e.
we compute

�Xn
� = (Id +

�2

2
M

n
L
n(Id))�1 �Xn (21)

where Ln(Id) is the above stiffness matrix for the isotropic diffu-
sion tensor Id. Then the corresponding coordinate map Xn

� defines
a discrete surface Mn

h;�. Thus, we have filtered the probably noisy
initial coordinates with a “geometric” and discrete Gaussian filter of
width � before we identify edges to be enhanced by our actual dis-
crete evolution. Hence, high frequency noise is suppressed and we
obtain well-posed discrete problems whose asymptotic behaviour
is independent of the grid size. Let us emphasize that we apply
this geometric filter only to evaluate the diffusion tensor and not as
an evolution step of the surface itself. The required solver for this
smoothing problem is already available by a slight modification of
our original scheme for a single timestep.

In the continuous model a suitable construction of a diffusion
tensor, which incorporates edge sharpening and tangential smooth-
ing along edges, involves the principal curvatures and curvature di-
rections deduced from the shape operator. Now in the discrete case,
we are interested in some discrete counterpart. At first, triangulated
surfaces have no canonical curvature tensor. For every triangle T
the curvature evaluation is based on local L2-projections of the tri-
angulated and regularized surface Mn

h;� onto graphs of quadratic
polynomials over the tangent space. In our case the embedded tan-
gent space coincides with the plane containing T . For these poly-
nomials the corresponding shape operator Sn� can be computed ex-
plicitly. For details we refer to Section 6. Finally, we evaluate the
required diffusion tensor An

� on every triangle T by (see (16))

A
n
� jT = a(Sn� ) ;

Figure 5: Four timesteps (top left to bottom right) from the evo-
lution of a venus head consisting of 268714 triangles (� = 10,
� = 0:02). The evolution times are 0:0002, 0:0004, 0:0006, and
0:0008.

where we take up our original definition (cf. Section 4) for the con-
tinuous problem and apply it now to the numerically approximated
shape operator Sn� .

Figure 5 shows results from the semi-implicit algorithm for a
venus head data set. The corresponding initial data is displayed
in Fig. 4. Figure 6 gives a comparison of the evolution results at
time t = 0:0004 for different prefilter width �. Finally, we com-
pare in Fig. 7 the dependance of the solution on the parameter �.
For smaller values of � more and more feature edges are enhanced.
Here we consider the data set from Fig. 1, with initial diameter 1 of
the object.

6 CURVATURE ON A DISCRETE SUR-
FACE

Let T be an element of a triangulation Mh with vertices
P 1; P 2; P 3 and barycenter CT = 1

3
(P 1 + P 2 + P 3). The nor-

mal of T is denoted by N . First we assume a normalized situation
such that CT = 0 and N = (0; 0; 1), i.e. P 1; P 2; P 3 2 fz = 0g,
where points in IR3 are denoted by (x; y; z). This can be obtained
by a rotation with some matrix Q 2 SO(3) and a translation.

In the following we will assume that !T =
fT 0 2 Mh jT 0 \ T 6= ;g is given as a graph over the plane
fz = 0g. The image of the projection of !T on fz = 0g is
denoted by !̂T . Then the graph !T is represented by a piece-
wise linear function ' : !̂T ! IR. Now we compute the
L2(!̂T )-projection of ' onto the subspace Q of the space of
quadratic polynomials P2 spanned by fx2; xy; y2g. To this end,
let p(x; y) = �x2 + �xy+ y2 be this P2-function, characterized
by � = (�; �; ) 2 IR3 and let '1 = x2; '2 = xy; '3 = y2 be
the canonical basis of Q. Then � is given by the linear equation



Figure 6: The discrete solutions at time t = 0:00005 are calculated
for different values of the prefilter width (� = 0:005 (left) and � =
0:08 (right)).

Figure 7: For � = 10 (top left) and � = 30 (top right) the discrete
solutions are shows at time t = 0:0001 (the dominant principal
curvature is depicted in color, � = 10 (bottom left) and � = 30
(bottom right)).

X
j

0
@Z

!̂T

'i'jdxdy

1
A�j =

Z
!̂T

''idxdy; i = 1; 2; 3 :

The discrete principal curvatures �1; �2 and the principal direc-
tions of curvature of Mh on T will be defined as the corresponding
quantities for the smooth surface (x; y; p(x; y)) in the origin 0.

The matrix representing the shape operator S(0) in the basis
f @

@x
; @

@y
g is given by:

�
2� �
� 2

�
:

For the mean-curvature H and the Gaussian curvature K in the
point 0 we obtain

H = 2 (�+ )

K = 4� � �
2
:

Figure 8: The dominant principal curvature is color coded on the
evolution shown in Figure 5.

This enables us to compute �1; �2 as follows:

�1;2 =
H

2
�
r

H2

4
�K:

Figure 8 shows the numerically calculated dominant principal cur-
vature for the timesteps of an anisotropic evolution.

Then we easily obtain the embedded principal directions of
curvature V 1; V 2. If � =  and � = 0, one can choose as
fV 1; V 2g any orthonormal basis of the tangential space. Otherwise
let W 1 = (W 1

1 ;W
1
2 ); W

2 = (W 2
1 ;W

2
2 ) be non-zero solutions of�

��  �
p
H2=4 �K

�
W

1
1 + �W

1
2 = 0�

��  +
p
H2=4 �K

�
W 2

2 + �W 2
1 = 0 :

In a last step we normalize the vectors W1; W 2 and compute the
embedded principal directions of curvature V 1; V 2 by a push for-
ward onto the embedded tangent space applying the inverse of the
rotation Q from our normalization step above

V
1 =

Q�1p
(W 1

1 )
2 + (W 1

2 )
2

 
W 1

1

W 1
2

0

!
; (22)

V
2 =

Q�1p
(W 2

1 )
2 + (W 2

2 )
2

 
W 1

1

W 1
2

0

!
:

Note that V 1, V 2 are the discrete analogues of v1, v2 in Section
4. In our considerations we obtain a regularization by prefiltering
the corresponding surface. We would like to point out that choosing
larger stencils instead of !T is a further possibility for a regulariza-
tion.

7 ALGORITHM AND IMPLEMENTATION

Based on our description of the method of anisotropic diffusion in
surface processing let us now focus on the concrete implementation



of the corresponding scheme for a single timestep of the discrete
evolution problem. Due to the considered semi-implicit approach
the algorithm is easy to code following the standard finite element
procedure. Here we will give a detailed explanation, especially to
outline how the solution of the discrete problem breaks up into ele-
mentary and mainly local calculation steps.

Each timestep consists of the assembly of the matrices, the so-
lution of the prefiltering problem, the evaluation of the diffusion
tensor and finally the solution of the actual diffusion problem:

timestep(Mn) f
compute the prefiltered surface Mn

h;� solving

(Mn + �2

2
Ln(Id)) �Xn

� =Mn �Xn;
calculate Sn� and An

� ;
compute Mn+1

h solving for the nodal coordinates
(Mn + �Ln(An

� )) �X
n+1 = Mn �Xn;

g

The assembly of each matrix Mn, Ln(An
� ) or Ln(Id) - here de-

noted by B - is based on the standard Finite Element procedure. It
consists of an initialization B = 0 followed by a traversal of all
surface triangles T . On each T with nodes P0; P 1; P 2, a corre-
sponding local matrix (bTij)ij is computed first. It corresponds to
all pairings of local nodal basis functions. Then the matrix entries
are added to the matching entries in the global matrix B, i. e. for
every pair i; j we update B�(i);�(j) = B�(i);�(j) + bTij . Here �(i)
is defined as the global index of the node with local index i. Thus
we can now focus on the computation of the local mass matrix mT

and the local stiffness matrices lT (A) and lT (Id) respectively. Due
to the applied lumped mass integration we immediately verify

m
T
ij =

1

3
Æij jT j

where jT j is the area of the triangle T and Æij the usual Kronecker
symbol.

Next, let us consider for every triangle T the reference triangle
T̂ � IR2 with independent variables �1; �2 and nodes �0 = (0; 0),
�1 = (1; 0), and �2 = (0; 1). Then an affine coordinate map X

maps T̂ onto T and its nodes �i onto the corresponding nodes Pi

of T on the discrete surface in IR3. Hence the corresponding metric
tensor is as in the continuous case (7) given by

gij =
@X

@�i
� @X
@�j

;

where @Xk

@�i
= P i

k �P 0
k . Now we are able to evaluate the gradients

of the linear basis functions �l corresponding to the nodes P l in
the embedded tangent space spanned by P1 � P 0 and P 2 � P 0,
i. e. (cf. equation (9))

rMn

h

�l =
X
i;j

g
ij @�

l

@�j
(P i � P

0) ;

where we refer to the derivatives of �l with respect to the reference
coordinates �: 

@�l

@�1
@�l

@�2

!
=

�
�1
�1

�
;

�
1
0

�
;

�
0
1

�
:

Thus for the linear stiffness matrix required in the presmoothing
step we obtain lTij = jT jrMn

h

�i � rMn

h

�j . If our actual diffusion
tensor A� on T diagonalizes with respect to an orthogonal basis
fV 1; V 2g with entries g1, g2 on the diagonal in the corresponding

Figure 9: The resulting surface mesh (top) from an adaptive algo-
rithm is compared with the corresponding grid of an evolution with
fixed triangulation (bottom). The areas of high curvature are clearly
visible as refinement regions.

representation (see definition (16)), for the local nonlinear stiffness
matrix we finally obtain

l
T
ij(A) = jT j [g1(rMn

h

�i � V 1)(rMn

h

�j � V 1) +

g2(rMn

h

�i � V 2)(rMn

h

�j � V 2)] :

Grid Adaptivity

Due to the possible tangential displacement in the vicinity of edges
the results of the evolution can be significantly improved taking
into account adaptive grid refinement depending on the dominant
principal curvature (cf. Fig. 9). Here, we apply a Delauney type
refinement.

Iterative Solver

The resulting systems of linear equations, which arise in each
timestep of the discrete anisotropic curvature evolution are solved
either by a preconditioned conjugate gradient method or by an al-
gebraic multigrid method. For small timesteps and moderately fine
meshes the conjugate gradient method converges in several itera-
tions in case of a diagonal preconditioning. For instance for the
venus data set and timestep 5 � 10�5 the relative residual in l2 norm
drops below 10�12 after 4 iterations.

If we consider larger timesteps and fine grids the condition of the
matrix O(1 + �h�2) becomes large. Thus the number of required
iterations increases significantly. Unfortunatly standard multigrid
strategies are not available on arbitrary meshes. But applying an
algebraic multigrid solver O(1) iterations are required to solve the
system independent of the grid size and the timestep. In the appli-
cation we obtain a reduction of the residual in each timestep by a
factor of 0:5.



8 COMPARISON AND CONCLUSIONS

We have presented a novel multiscale technique for surface fair-
ing. It is able to successively smooth noisy initial surfaces while
simultaneously enhancing edges and corners on the surface. The
evolution time is the scale parameter.

The method is based on an anisotropic curvature evolution prob-
lem. The corresponding nonlinear partial differential equations
have been discretized by finite elements in space and a semi im-
plicit backward Euler scheme in time. This allows the efficient and
flexible processing of arbitrary triangulated surfaces, as they are
common in computer graphics applications. The user controls the
surface evolution mainly by two parameters which have an intuitive
meaning. A regularization parameter � has to be chosen to filter out
high frequency noise before the diffusion coefficient is evaluated.
Here a suitable choice in the application is � = Ch with C 2 [1; 4].
Furthermore, � can be regarded as a user given threshold for edge
detecting, with the meaning that a principal curvature larger than �
indicates an edge which is to be preserved by the fairing scheme.

Previous work on surface fairing already involves the idea of cur-
vature motion. Taubin [19] and Kobbelt [12] considered an um-
brella operator, which is a “spring force type” implementation of
the Laplace Beltrami operator and they used a nonlinear Gauss Sei-
del iteration for the related second order, respectively fourth order
geometric diffusion problem. The shortcoming of tangential shifts
in their work is mainly due to the successive local change of the
metric in the interation scheme itself. Moving a single node the lo-
cal metric is already non properly modified, which influences the
adjustment of the neighbouring nodes in the same interation. Fur-
thermore, due to the explicit character of the scheme, timestep lim-
itations show up. Desburn et al. [5] avoided both shortcomings by
considering an implicit scheme which holds the metric fixed and
is unconditionally stable. Sharp edges on the surface are rapidly
smoothed by all previous approaches because of the high local cur-
vature which leads to fast smoothing in these regions. Our method
is able to detect such edges and their direction and incorporates ap-
propriate direction dependent smoothing only. Concerning multi-
grid methods for the smoothing, Kobbelt et al. [13] discuss a V cy-
cle type smoothing with straightforward prolongation and restric-
tion, where we propose a true algebraic multigrid which involves
appropriate matrix dependent prolongations and restrictions.

Interesting future research directions are
� the combination of the presented multiscale method with mul-

tiresolutional techniques, which should appropriately reflect the
continuous coarsening in the evolution,
� further investigations on surface modeling concerning suitable

choices of the diffusion tensor and the forcing on the right hand side
of the parabolic system, and
� the simultaneous processing of the geometry and the texture if

such an additional texture is given on the surface.
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