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Abstract. As virtual worlds demand ever more realistic 3D models,

attention is being focussed on systems that can acquire graphical models

from real objects. This paper describes a system which, given a sequence

of images of an object rotating about a single axis, generates a textured

3D model fully automatically. In contrast to previous approaches, the

technique described here requires no prior information about the cameras

or scene, and does not require that the turntable angles be known (or

even constant through the sequence).
From an analysis ofthe projective geometry of the situation, it is shown

that the rotation angles may be determined unambiguously, and that

camera calibration, camera positions and 3D structure may be deter-

mined to within a two parameter family. An algorithm has been im-

plemented to compute this reconstruction fully automatically. The two

parameter reconstruction ambiguity may be removed by specifying, for

example, camera aspect ratio and parallel scene lines. Examples are pre-

sented on four turn-table sequences.

1 Introduction

Numerous graphics and computer vision papers have dealt with the construction
of 3D solid models by volume intersection from multiple views. As pointed out
by Ponce [19] the idea dates back to Baumgart [2] in 1974. Well engineered
systems built on this idea have yielded 3D texture mapped graphical models
of impressive quality [5, 19]. A good example is the system of Hannover [17]
where, as is usual for such systems, the object is rotated on a turntable against
a background which can easily be removed by image segmentation. Such systems
are generally completely calibrated, i.e. the camera internal parameters, rotation
angles, distance to the rotation axis etc are all accurately known.

In this paper we develop the projective geometry of single axis rotation and
describe its automatic and optimal estimation from an image sequence with no
other a priori information supplied. It is shown that 3D structure and cameras
can be estimated (including auto-calibration) up to an overall two-parameter
ambiguity. The angle of rotation between views is not ambiguous. This geom-
etry is described in section 2, and an algorithm to automatically estimate this
geometry from an image sequence is given in section 3.
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Hannover dinosaur [17], 36 frames

Cup, 36 frames

Head, 72 frames

Freiburg, 36 frames

Fig. 1. Some example sequences.

We then describe a modelling system based on this estimated geometry. The
input is a turn-table image sequence, the output is the set of cameras and a 3D
VRML texture mapped model of the object, with all processing automatic. Other
than the estimation of the camera geometry, the system is much the same as the
calibrated Hannover system, and involves: volume intersection; representation of
the surface as a triangulated network; triangle grouping; and texture mapping.
This is described in section 4. The output models are of equal quality to those
of fully calibrated sequences|a fact demonstrated on a sequence supplied by
Hannover and shown in �gure 1.

General uncalibrated multiple-view geometry Before specializing to single axis
rotation, consider �rst the general case of reconstruction from multiple pinhole
cameras viewing a 3D scene [10]. 3D points X in the scene are represented as
homogeneous 4-vectors [x;y; z; 1]>, while their 2D projections x are represented
as homogeneous 3-vectors [x; y; 1]>. The action of each camera is represented by
a 3� 4 projection matrix P:

xij = PiXj

The m cameras are indicated by Pi while the n 3D points are Xj .
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In the case where m di�erent cameras view a scene, there is no relation-
ship between the Pi. Therefore 11m parameters are required to specify all the
cameras. When the cameras have identical internal parameters, such as when a
camera is moved through a static scene without any change in focus or zoom,
the internal parameters are constant over the sequence. This reduces the number
of parameters required to specify the cameras from 11m to 6m+ 5.

Uncalibrated single-axis multiple-view geometry In the single-axis case, we shall
see that the number of parameters is reduced to m + 8, and that estimation is
relatively straightforward. It is worth contrasting the reduction in the number
of parameters that occurs in this special motion case, with a popular alternative
which is to reduce the number of parameters by approximating the perspec-
tive camera as a weak perspective camera [8, 18]. Such \a�ne" cameras are an
approximation of the geometry, and under imaging conditions which typically
apply in close-range model acquisition, this approximation can be quite poor.
However, the advantage of this approximation is a simple, non-iterative estima-
tion algorithm [23]. In contrast, specializing the motion to single axis is an exact
model of the geometry, not an approximation, yet it admits a closed-form so-
lution. Previous investigations of turn-table sequences [12, 20, 22] have not fully
exploited the special motion to simplify camera recovery.

2 The projective geometry of single axis motion

A single axis motion consists of a set of Euclidean actions on the world such that
the relative motion between the scene and camera can be described by rotations
about a single �xed axis. In the language of screw decompositions, any Euclidean
action can be decomposed as a rotation about a screw axis (which is parallel to
the Euclidean rotation axis) together with a translation along the screw axis. In
the case of single axis motions there is zero translation along the screw axis, and
the screw axes of each Euclidean action coincide.

There are many cases of this motion commonly occurring in computer vision
applications. The most common, and the one that is used here, is the case of a
static camera viewing an object rotating on a turntable. A second case is that
of a camera rotating about a �xed axis. For example, imagine a QuickTime VR
acquisition device where the camera is o�set along its principal axis, so that
it does not rotate about its centre. A third case is that of a camera viewing a
rotating mirror.

It will be helpful in the following to consider that the object is �xed and that
the camera rotates about it. The camera internal parameters are �xed. To aid
visualisation, we assume that the rotation axis is vertical, so that the camera
rotates in a horizontal plane.

We now describe the camera and image geometry arising from this con-
strained motion, particularly the �xed entities of the motion, which play an
important rôle. It will be seen that the fundamental matrix, F, trifocal tensor
T and camera matrices P all have additional properties, and that the multiple

In L. Van Gool and R. Koch, Editors, Structure and Motion from Multiple Images

in Large-Scale Environments, Lecture Notes in Computer Science, Springer 1998.



Automatic 3D Model Construction for Turn-Table Sequences 157

view tensors (F and T ) determine a two-parameter family of camera matrices.
This ambiguity is removed using internal and external constraints.

2.1 3D Geometry

Under a single axis rotation the camera centre describes a circle in a horizontal
plane �h. The geometry is illustrated in �gure 2. There are a number of geometric
entities which are �xed under this motion, including:

{ The (vertical) rotation axis denoted Ls (\s" for \screw" axis). This is a line
of �xed points.

{ The plane �h, and indeed the pencil of horizontal planes. Each plane is �xed
as a set.

s

Xs

Axis L

Turntable

∆θ

Fig. 2. 3D geometry. The cameras are indicated by their centres (spheres), and image

planes. The point Xs is the intersection of the plane, �h, containing the camera centres

with the rotation axis Ls.

2.2 Image �xed entities

The 3D �xed entities are sequence invariants since they are imaged at the same
position in every view. Their images include:

{ The line ls which is the image of the rotation axis Ls. Since points on Ls are
�xed under the motion, their images are also �xed under the motion.

{ The line lh in which �h intersects each image plane. It is the vanishing line
of �h (and indeed of all planes parallel to �h).

In L. Van Gool and R. Koch, Editors, Structure and Motion from Multiple Images

in Large-Scale Environments, Lecture Notes in Computer Science, Springer 1998.



158 Fitzgibbon, Cross and Zisserman

{ The point xs which is the image of the �xed point Xs.

{ The point v which is the vanishing point of the rotation axis.

These sequence invariants are illustrated schematically in Figure 3a, and the two
�xed lines are illustrated in Figure 4 on a real sequence.

sl

xs

h3

lh h1
h2

image

v

sl

xa

e’
xs

3h

image

lh
e

2
h

h1

Fig. 3. (a) Fixed image entities over the sequence, and their relation to the columns

hi of H. (b)Two-view entities. The entities which can be determined from F and their

relation to the columns of H. The symmetric part of F is a degenerate conic consisting

of the two lines ls and lh. The anti- symmetric part is represented by the point xa.

Points xs and xa have �xed position over all view pairs. The position of the epipoles

depends on the angle of rotation ��i between views.

2.3 Camera matrices

We have the freedom to choose the world coordinate system so that the rotation
axis is aligned with the world z axis, and the �rst camera centre is at position t

on the x axis. Thus the �rst camera may be written

P0 = H[I j t]

where H is a homography representing the camera internal parameters and rota-
tion about the camera centre, and t = (t; 0; 0)>. A rotation of the camera by �

about the z axis is achieved by post-multiplying P0 by

�
RZ(�) 0
0> 1

�

yielding the camera P� = H[RZ(�) j t]. In detail, with hi the columns of H:

P� =

2
4h1 h2 h3

3
5
2
4 cos � sin � 0 t

� sin � cos � 0 0
0 0 1 0

3
5 (1)
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Fig. 4. Fixed image lines. The �xed image lines are shown overlaid on images from

the head sequence. The almost vertical line is ls, the horizontal line is lh (see also

�gure 3a). The eyebrow of the mannequin, which is approximately coplanar with �h,

remains tangent to lh as the object rotates. These �xed lines are automatically com-

puted from the images using the algorithm of x3.

This division of the internal and external parameters means that H and t are
�xed over the sequence, only the angle of rotation, �i, about the z axis varies
for each camera Pi. Given this parametrization, the estimation problem can now
be precisely stated: we seek the common matrix H and the angles �i in order to
estimate the set of cameras Pi for the sequence. Thus a total of 8+m parameters
must be estimated for m views, where 8 is the number of degrees of freedom
of the homography H. Note, the magnitude of translation only determines the
overall scaling and need not be considered further as we are interested only in a
similarity reconstruction. The relative angle between views i and i+1 is denoted
��i.

We now relate the columns of H to the �xed image entities:

{ xs is the image of Xs = (0; 0; 0; 1)>, so under any P�, xs = H(t; 0; 0)> = th1.

{ v is the image of the direction of the world z axis (0; 0; 1; 0)>, giving v = h3.

{ ls = h1 � h3.

{ lh = h1 � h2.

These relations are shown in �gure 3a. To see that ls, the image of the z axis, is
given by ls = h1 �h3, consider a general point on z, (0; 0; u; v)>. Its projection
by any P� is H(tv; 0; u)> = tvh1 + uh3, a point on the line through h1 and h3.
Similar consideration of a general point on �h leads to lh = h1 � h2.

The columns of H are the vanishing points of an orthogonal triad of directions.
This triad rotates with the camera such that these vanishing points are related
to the �xed entities. h2 is the vanishing point of the direction orthogonal to
those corresponding to h1 and h3.

The procedure from here on is to determine the columns of H from the multi-
ple view tensors (F, T ). We �rst consider the reconstruction ambiguity, where it
will be seen that from the multiple view tensors (i.e. from image measurements
alone) H is not determined uniquely, but is restricted to a two-parameter family.
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2.4 Reconstruction ambiguity

It is well known [6, 11] that if nothing is known of the calibration of 2 or more
cameras, nor their relative placement, then the reconstruction of the scene and
cameras is determined only up to an arbitrary projective transformation of 3-
space. For if T is any 4� 4 invertible matrix, representing a projective transfor-
mation of P3, then replacing points Xj by TXj and cameras Pi by PiT

�1 does
not change the image points since xij = PiXj = PiT

�1
TXj .

In the case of single axis rotation we know that the cameras Pi have the
restricted form (1), so we may ask the question: suppose we determine a recon-
struction with a set of cameras of the form (1), how are these cameras related
to the actual cameras?

To answer this question [16], consider the class of transformations T which
preserve the form (1). Suppose we have two reconstructions with sets of cameras
Pi = H[RZ(�i) j t] and P

0

i = H
0[RZ(�

0

i) j t
0] of the correct form. Then, T is an

admissible transformation if the sets of cameras are related as:

P
0

i = H
0[RZ(�

0

i) j t
0] = H[RZ(�i) j t] T 8i (2)

over at least 3 views (i.e. m � 3). We require that both H and H
0 are full rank

3� 3 matrices independent of � and �
0, and t = (t; 0; 0)>; t0 = (t0; 0; 0)>. Since

we are not concerned with the Euclidean transformation part of the ambiguity,
T may be written as

T =

�
U 0

a
> 1

�

where U is an upper triangular matrix. It can be shown that that (2) has a
solution provided: �0i = �i and

T =

2
664
1 0 0 0
0 1 0 0
0 0 � 0
0 0 � 1

3
775 (3)

with � and � arbitrary scalars.
This shows: (i) from image measurements alone the camera matrices can

be recovered only up to a two parameter ambiguity parametrized by � and �.
Note that the angle � is not ambiguous; (ii) the actual cameras lie in this two
parameter family, so the reconstruction is also related to the actual cameras
by (3); (iii) the matrix H is only determined up to this ambiguity. To see this,
note that

P
0 =

2
4h1 h2 h3

3
5
2
4 cos � sin � 0 t

� sin � cos � 0 0
0 0 1 0

3
5
2
664
1 0 0 0
0 1 0 0
0 0 � 0
0 0 � 1

3
775

=

2
4h1 h2 h3

3
5
2
41 0 �t0 1 0
0 0 �

3
5
2
4 cos � sin � 0 t

� sin � cos � 0 0
0 0 1 0

3
5
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This means that the last column of H can only be determined to within a 2-
parameter ambiguity from image measurements alone. We will see this ambiguity
arising when computing H from F and T in the following sections, and return in
section 2.7 to methods of resolving the ambiguity.

2.5 Two-view geometry

The 2-view geometry of single axis rotation is identical to that of planar motion,
for which many of the following properties of F have been derived [1, 4, 24]. In
the planar motion case, however, the axis Ls varies between view pairs, i.e. it is
not �xed over the sequence.

The fundamental matrix may be parametrized in terms of the �xed image
lines and an image point xa as

F = � [xa]� + tan
��

2

�
lslh

> + lhls
>
�

with xa
>
lh = 0 (4)

where the 3-vectors xa; lh; ls are scaled to unit norm.
Once F is estimated from two view correspondences then the points xa and

xs and lines ls and lh are known. Their relation to H is shown in �gure 3b, and
also can be read o� from the expression for F in terms of H and ��:

F = [h2]� �
1

(det H)
tan

��

2

�
(h1 � h3)(h1 � h2)

> + (h1 � h2)(h1 � h3)
>
�

Taking account of the unknown scaling of the homogeneous 3-vectors, the
columns of H are determined from F (i.e. the 2-view geometry), to within the
3-parameter family

H = [h1;h2;h3] = [xs; �xa; �xs + !d] (5)

parametrized by the as yet undetermined scalars �; �; and !, where d is an
(arbitrary) point on ls, which may be chosen as d = ls � (0; 0; 1)>. In detail the
columns are determined by the following procedure:

1. Extract xa from the antisymmetric part of F, F� F
> = [xa]�.

2. Extract epipoles e and e
0, and compute lh = e� e

0.
3. Compute ls = (2lh

>
lhI� lhlh

>)(F+ F
>)lh.

4. Compute xs = ls � lh.
5. Set H according to (5).

Although the ratio ki, where � = ki tan
��i
2

may be computed from F, the value
of � is unknown. This means that ��i cannot be computed from two views.

2.6 Three view geometry

From three views, it can be shown that the trifocal tensor may be written as a
pencil of tensors, parametrized by �:

T = �
2K +K0
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where the elements of the tensors K and K0 are computed from the two-view
quantities ki and H. Thus, one three-view point correspondence allows �, and
hence the ��i, to be recovered uniquely. The only remaining ambiguity is in the
third column h3 of H. As shown in section 2.4 this ambiguity cannot be reduced
further by the single axis motion constraint alone.

2.7 Removing the reconstruction ambiguity

The reconstruction ambiguity of (3) is the following [25]: metric structure is
recovered in planes perpendicular to the axis of rotation; there is an unknown
1D projective transformation along the axis. The ambiguity may be written:

0
@x

y

z

1
A!

0
@ x=(�0z+ 1)

y=(�0z+ 1)
�
0
z=(�0z+ 1)

1
A

Note that since metric structure is determined in planes perpendicular to the
axis, the angle of rotation between views is known. Figure 5 illustrates this
projective ambiguity.

Fig. 5. Projective ambiguity:With no information about the camera or scene, there

is a 1D projective ambiguity in the z direction. Five models of the cup with di�erent

choices for h3.

To this point no information on the internal calibration of the camera, or on
the 3D shape of the object has been used. Internal constraints are provided, for
example, by that fact that the image pixels have zero-skew, and known aspect
ratio. Often the zero-skew constraint is not useful in practice because it does
not resolve the ambiguity [26]. For example, if the image plane is parallel to
the rotation axis then all members in the family of solutions for the calibration
matrix will already satisfy the zero-skew constraint, so it does not provide any
additional information.

It can be shown that specifying the aspect ratio places a quartic constraint
on the parameters �, �.

The easiest method of resolution is to use a vanishing point in the scene
to identify the plane at in�nity (we already have the vanishing line of �h), for
example by identifying two or more parallel scene lines. This determines h3 up
to scale (i.e. the ratio � : �), and the only remaining ambiguity is then a relative
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scaling of the z and plane directions:

0
@x

y

z

1
A!

0
@ x

y

�
00
z

1
A

Given h3 up to scale, the internal aspect ratio then determines � and � uniquely
(up to sign). Alternatively, the aspect ratio of the object can be used to resolve
the ambiguity.

3 Estimation of camera matrices

This section describes the implementation of the algebra developed in the previ-
ous section. From a raw input sequence we wish to compute the P matrices and
3D point structure. We �rst summarize the algebraic procedure of the previous
section, with the estimation steps then described in more detail below.

3.1 Algorithm summary

Robust point tracks are computed a priori using our general-motion trifocal
tensor based system [7].

1. For each pair of views �t the planar-motion fundamental matrix (eq. 4).

2. From one of the Fs determine H up to a 3-parameter ambiguity.1

3. From each Ti determine � and the two angles ��i and ��i+1.

4. Average � over the sequence, and angles from overlapping triplets.

5. Bundle adjust, varying H, �i and 3D points Xj to minimize reprojection errorP
i;j d

2(xij ; H[RZ(�i)jt]Xj).

3.2 Point tracking

This is achieved by tracking interest points (Harris corners [9]) through the
sequence. Tracking is easily achieved by our current general motion system [3, 7],
based on the trifocal tensor. This functionality is used unchanged in the current
system, although some speed improvements would certainly accrue if this process
were also modi�ed to make use of the specialized geometry. Example point tracks
and track lifetimes are shown in �gure 6. Typically, about 150 points are tracked
in each image triplet, with 2000{3000 points appearing through a sequence.

1 In the special case where the between-view angles ��i are known to be identical, F is

estimated from all 2-view correspondences (typically thousands). Then H is extracted

from this F. Similarly T is �tted to all triplets.
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Frame
10 20 30

(a) (b)

Fig. 6. (a) Point tracks: Some point tracks from the dinosaur sequence. For clarity,

only the 200 tracks which survived for longer than 7 successive views are shown. In

total, 3070 points were tracked for 3 or more views. (b) Track lifetimes for dinosaur

sequence: Each horizontal bar corresponds to a single point track, extending from the

�rst to last frame in which the point was seen. The measurement matrix is relatively

sparse, and few points survived longer than 15 frames.

3.3 F estimation

The fundamental matrix is estimated by �rst �tting a general-motion F to the
points. Then the symmetric part of F is truncated to rank 2, and decomposed
to recover ls and the epipoles. This provides a starting point for the special
parametrized form (4), which is �tted by minimizing the distance of points to
epipolar lines. The average number of point matches per view pair varied from
137 for the Head sequence to 399 for the Dinosaur. The average distance from
points to epipolar lines is about 0.3 pixels.

3.4 T estimation

The trifocal tensor is used only to determine � from three views. From the
special-form fundamental matrices for the views, the two tensors K and K0 are
computed. Then single point correspondences provide candidates for �. The
median of the candidates yields the estimate of � for the triplet.
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3.5 Bundle adjustment

The two and three view geometry provides an (excellent) initial estimate for the
camera matrices. In order to determine the maximum likelihood estimate, we
assume that errors in the positions of the 2D points are normally distributed.
An optimal estimate is then obtained by nonlinear minimization of the distances
between the reprojected 3D points and the 2D corners [10]. Typical results for
geometry estimation are shown in �gure 7. These results are of comparable
quality with those of [22] where the camera matrices were determined using a
calibration pattern. Convergence is generally achieved in 8 iterations, reducing
the RMS reprojection error from 0.3 pixels to 0.1 pixels. For 2000 points, compute
time per iteration is of the order of 10 seconds on a 300MHz UltraSparc. The
radius of convergence is large, the correct minimum being achieved from initial
estimates where the �i are in error by up to a factor of 2, although of course
many more iterations (about 100) are required.
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(a) Dinosaur (b) Head (c) Freiburg (d)

Fig. 7. Geometry estimation. The graphs show the recovered angles between suc-

cessive views for each of three sequences. (a) Object rotated by a mechanical turntable

with a resolution of 1 millidegree. The RMS di�erence between the angle recovered by

our algorithm and the nominal value is 40 millidegrees. This demonstrates the accu-

racy of the angle recovery. (b) (c) Turn-table rotated by hand. The angle increment

is irregular and unknown a priori. Variation is up to 20� due to missing and repeated

views. (d) 3D points for dinosaur sequence.

4 Space carving and surface rendering

The object is computed as the intersection of the outline cones back-projected
from all views. The outline in each image is determined by blue-screening. The
surface of the object is determined very e�ciently by an octree based algorithm.

Octree Growing The octree is initialised as a cube bounding the object, and
is recursively subdivided to determine the surface. Each cube has one of three
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Fig. 8. Octree generation: the dinosaur octree is grown from a single bounding box.

The images above show the octree after (left to right) 3, 5, 7 and 8 subdivisions, given

36 images of the dinosaur.

labels [21] depending on whether it lies entirely inside; entirely outside; or par-
tially intersects the surface. The former two cases are not of interest, and the
nodes are not subdivided. The subdividing is stopped at a preset depth. The
label of a cube is determined by successively projecting it into each image in the
sequence. An example of the octree \surface" developing is shown in �gure 8.

Surface Generation The standard marching cubes algorithm[15] provides an
initial consistent surface which is then smoothed using a localised surface deci-
mation algorithm. Examples are shown in �gures 9 through 11.

5 Conclusions

This paper has demonstrated that uncalibrated structure recovery systems based
on the single-axis motion constraint can produce models of equivalent quality
to fully calibrated systems, making a-priori calibration and expensive control of
the viewing environment unnecessary.

Also of interest are the results of volume intersection as a means of produc-
ing fully 3D models of arbitrary topologies. Although the \visual hull" e�ect[14]
might be expected to severely limit the range of models that can be acquired, the
dinosaur and cup experiments (see especially Figure 11) show that surprisingly
complex models can be acquired. However, it is on the model acquisition phase
that most plans for future work are centred|given the excellent camera geom-
etry, more advanced techniques [13] can be applied. Particularly, correlation of
the surface texture is expected to allow true super-resolution texture mapping,
and simultaneously get \inside" the visual hull.
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(a) (b) (c)

Fig. 10. (a) Top view of reconstructed cup points (no points were detected on the

handle). RMS di�erence from a �tted cylinder is 0.004 of the diameter. (b) Texture-

mapped cup model. (c) Shaded Freiburg model. The visual hull e�ect is apparent here,

with too few views to penetrate to the object surface.

Fig. 11. Closeup: High-resolution model of dinosaur hand, showing the �ne detail

recoverable using volume intersection. Head: Texture-mapped model. The shades of

grey indicate the view from which each texture was taken|for each triangle, the view

in which it has largest visible area is chosen as the texture source.
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