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Figure 1: The dragon model (left) is artificially corrupted by Gaussian noise (σ = 1/5 of the mean edge length) (middle), then
smoothed in a single pass by our method (right). Note that features such as sharp corners are preserved.

Abstract

With the increasing use of geometry scanners to create 3D
models, there is a rising need for fast and robust mesh
smoothing to remove inevitable noise in the measurements.
While most previous work has favored diffusion-based iter-
ative techniques for feature-preserving smoothing, we pro-
pose a radically different approach, based on robust statistics
and local first-order predictors of the surface. The robust-
ness of our local estimates allows us to derive a non-iterative
feature-preserving filtering technique applicable to arbitrary
“triangle soups”. We demonstrate its simplicity of imple-
mentation and its efficiency, which make it an excellent so-
lution for smoothing large, noisy, and non-manifold meshes.

Keywords: mesh processing, mesh fairing, robust estima-
tion, mesh smoothing, anisotropic diffusion, bilateral filter-
ing.

1 Introduction

With geometry scanners becoming more widespread and
a corresponding growth in the number and complexity
of scanned models, robust and efficient geometry pro-
cessing becomes increasingly desirable. Even with high-
fidelity scanners, the acquired 3D models are invariably
noisy [Rusinkiewicz et al. 2002; Levoy et al. 2000], and there-
fore require smoothing. Similarly, shapes extracted from
volume data (obtained by MRI or CT devices, for instance)
often contain significant amounts of noise, be it topologi-
cal [Guskov and Wood 2001; Wood et al. 2002] or geomet-
ric [Taubin 1995; Desbrun et al. 1999], that must be removed
before further processing. Removing noise while preserving
the shape is, however, no trivial matter. Sharp features are
often blurred if no special care is taken. To make matters

worse, scanned meshes often have cracks and non-manifold
regions.

1.1 Previous Work

A wide variety of mesh smoothing algorithms have been pro-
posed in recent years. Taubin [1995] pioneered fast mesh
smoothing by proposing a simple, linear and isotropic tech-
nique to enhance the smoothness of triangulated surfaces
without resorting to expensive functional minimizations.
Desbrun et al. [1999] extended this approach to irregular
meshes using a geometric flow analogy, and introduced the
use of a conjugate gradient solver that safely removes the
stability condition, allowing for significant smoothing in rea-
sonable time even on large meshes. Other improvements fol-
lowed, such as a method combining geometry smoothing and
parameterization regularization [Ohtake et al. 2000]. How-
ever, these efficient techniques are all isotropic, and therefore
indiscriminately smooth noise and salient features: a noisy
cube as input will become extremely rounded before becom-
ing smooth. This lack of selectivity is limiting in terms of
applications.

Feature-preserving surface fairing has also been proposed
more recently [Desbrun et al. 2000; Clarenz et al. 2000;
Meyer et al. 2002; Zhang and Fiume 2002; Bajaj and Xu
2003], mostly inspired by image processing work on scale-
space and anisotropic diffusion [Perona and Malik 1990].
The idea behind these approaches is to modify the diffusion
equation to make it non-linear and/or anisotropic. The cur-
vature tensor determines the local diffusion, thus preserving
(or even enhancing) sharp features. Although the results are
of much higher quality, these methods rely on shock forma-
tion to preserve details, which affects the numerical condi-
tioning of the diffusion equations. This can cause significant
computational times, even after mollification of the data.

Other researchers have proposed diffusion-type smoothing
on the normal field itself [Taubin 2001; Belyaev and Ohtake
2001; Ohtake et al. 2002; Tasdizen et al. 2002]; fairing is
achieved by first smoothing the normal field, and then evolv-
ing the surface to match the new normals. Here again, the
results are superior to those from isotropic techniques, but
with roughly similar computational cost as anisotropic dif-
fusion on meshes.

Locally adaptive Wiener filtering has also been used with
success for 3D meshes by Peng et al. [2001], and for point-
sampled surface by Pauly and Gross [2001]. However, these
methods rely on semi-regular connectivity or local param-
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eterization, respectively. A different approach is taken by
Alexa [2002], similar to anisotropic diffusion, though with
larger neighborhoods used for filtering. This also results in
a fast method, and avoids some of the limitations discussed
below, but still relies on a connected mesh and iterative ap-
plication.

The diffusion-based feature-preserving techniques are, in
essence, all local and iterative. From very local derivative ap-
proximations, geometry is iteratively updated until the noise
has been diffused sufficiently. Numerical tools, such as pre-
conditioned conjugate gradient solvers or algebraic multigrid
solvers, can be used to improve efficiency by making the iter-
ations more stable. Nevertheless, the diffusion-type setting
that is the basis of these approaches requires manifoldness,
not always present in raw scanned data. In order to address
the need for robust and fast feature preserving smoothing,
we propose to recast mesh filtering as a case of robust sta-
tistical estimation.

1.2 Robust Statistics

The field of robust statistics is concerned with the develop-
ment of statistical estimators that are robust to the presence
of outliers and to deviations from the theoretical distribu-
tion [Huber 1981; Hampel et al. 1986]. Näıve estimators
such as least-squares give too much influence to outliers, be-
cause the error function or norm they minimize is large for
data points far from the estimator (quadratic in the case of
least squares). In contrast, robust estimators are based on
minimizing an energy that gives low weight to outliers, as
illustrated by the Gaussian robust norm in Fig. 2: after a
certain distance from the estimator, controlled by a scale σ,
an increasingly distant outlier has only limited effect.
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Figure 2: Least-square vs. Gaussian error norm (after [Black
et al. 1998]).

Black et al. [1998] showed that anisotropic diffusion can
be analyzed in the framework of robust statistics. The edge-
stopping functions of anisotropic diffusion [Perona and Ma-
lik 1990] serve the same role as robust energy functions.
Anisotropic diffusion minimizes such a function using an it-
erative method.

The bilateral filter is an alternative edge-preserving fil-
ter proposed by Smith and Brady [1997] (see also [Tomasi
and Manduchi 1998]). The output E(p) at a pixel p is a
weighted average of the surrounding pixels in the input im-
age I , where the weight of a pixel q depends not only on
the spatial distance ||q−p||, but also on the signal difference
||I(q) − I(p)||:

E(p) =
1

k(p)

∑
q∈Ω

I(q) f(q − p) g(I(q)− I(p)), (1)

where k(p) is the normalization factor

k(p) =
∑
q∈Ω

f(q − p) g(I(q) − I(p)) (2)

In practice, a spatial Gaussian f and a Gaussian influence
weight g are often used.

This dependence on the signal difference allows one to
give less influence to outliers. Durand and Dorsey [2002]
show that bilateral filtering is a robust estimator and that
a Gaussian influence weight corresponds to minimizing a
Gaussian error norm. They also show that bilateral filter-
ing is essentially similar to anisotropic diffusion. However,
the bilateral filter is a non-iterative robust estimator, or w-
estimator [Huber 1981], which makes it more efficient than
iterative schemes. In particular, this approach does not have
to deal with shock formation at strong edges, and is therefore
more stable than anisotropic diffusion. See also the work by
Barash [2001] and Elad [2002].

1.3 Contributions

In this paper, we propose a novel feature-preserving fair-
ing technique for arbitrary surface meshes based on non-
iterative, robust statistical estimations1. Contrasting dras-
tically with previous diffusion-based methods, our fast and
stable approach relies on local robust estimations of shape.
Moreover, our method does not require manifoldness of the
input data, and can therefore be applied to “triangle soup”.

One of our key insights is that feature preserving smooth-
ing can be seen as estimating a surface in the presence of
outliers. The extension from existing robust statistics tech-
niques to surface filtering is, however, far from trivial be-
cause of the nature of the data: in a mesh, the spatial loca-
tion and the signal are one and the same. This makes the
definition of outliers and the control of their influence chal-
lenging. We propose to capture the smoothness of a surface
by defining local first-order predictors. Using a robust esti-
mator, we find the new position of each vertex as weighted
sum of the predictions from the predictions in its spatial
neighborhood. We will show that our method treats points
on opposite sides of a sharp feature as outliers relative to
one another. This limits smoothing across corners, which
preserves features.

2 Non-Iterative, Feature-Preserving Mesh
Smoothing

We cast feature-preserving mesh filtering as a robust esti-
mation problem on vertex positions. The estimate for a
vertex is computed using the prediction from nearby trian-
gles. Moving each vertex to a robust estimate of its position
removes noise and smoothes the mesh while preserving fea-
tures.

2.1 Robust Estimation of Vertex Positions

To allow the proper definition of outliers, we must separate
spatial location and signal. We capture surface smoothness
using first-order predictors, i.e., tangent planes. In practice
we use predictors based on triangles of the mesh as they
represent natural tangent planes to the surface. The surface
predictor Πq defined by a triangle q is just the tangent plane
of q (see Fig. 3a).

We use a method analogous to bilateral filtering for images
[Smith and Brady 1997; Tomasi and Manduchi 1998], but we
form the estimate for the new position of a vertex p based
on the predictions Πq(p) from its spatially nearby triangles.

1In a contemporaneous work, Fleishman et al. [2003] present
a similar technique (cf. Section 4).
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Figure 3: (a) The prediction Πq(p) for a point p based on the surface at q is the projection of p to the plane tangent to
the surface at q. Points across a sharp feature result in predictions that are farther away, and therefore given less influence.
(b) Noisy normals can lead to poor predictors. (c) Mollified normal alleviate this problem. Note that corners are preserved
because points are not displaced by the mollification: only the normals are smoothed.

We employ a spatial weight f that depends on the distance
||p− cq || between p and the centroid cq of q. We also use an
influence weight g that depends on the distance ||Πq(p)−p||
between the prediction and the original position of p. Finally
we weight by the area aq of the triangles to account for
variations in the sampling rate of the surface. The estimate
p′ for a point on surface S is then:

p′ =
1

k(p)

∑
q∈S

Πq(p) aq f(||cq − p||) g(||Πq(p) − p||), (3)

where k is a normalizing factor (sum of the weights)

k(p) =
∑
q∈S

aq f(||cq − p||) g(||Πq(p) − p||), (4)

Gaussians are used both for the spatial weight f and for
the influence weight g in this paper. Other robust influence
weights could also be used, but Gaussians have performed
well in our experiments, as well as the work of others [Smith
and Brady 1997; Tomasi and Manduchi 1998; Durand and
Dorsey 2002]. The amount of smoothing is controlled by the
widths σf of the spatial and σg of the influence weight Gaus-
sians. As can be seen in Fig. 3(a), predictions from across a
sharp feature are given less weight because the distance be-
tween the prediction Πq(p) and p is large, and is penalized
by the influence weight g.

Filtering a mesh involves evaluating Equation (3) for every
vertex and then moving them as a group to their estimated
positions. Note that no connectivity is required beyond tri-
angles: we simply use the Euclidean distance to the centroid
of surrounding triangles to find the spatial neighborhood of
a vertex. A wider spatial filter includes a larger number
of neighbors in the estimate, and can therefore remove a
greater amount of noise, or smooth larger features. The in-
fluence weight determines when the predictions of neighbors
are considered outliers (by according them less weight), and
thereby controls the size of features that are preserved in the
filtering.

As shown by Black et al.[1998] and Durand and
Dorsey [2002], the evaluation of Equation (3) corresponds
to approximately minimizing

E(p) =

∫
q∈S

f(||cq − p||) ρ(||Πq(p) − p||) dq, (5)

where ρ(||Πq(p) − p||) is the distance between a vertex and
its predicted position under a robust error norm ρ [Hampel
et al. 1986]. Robust error norms are bounded above by some
maximum error, as discussed in Section 1.2. In our case, we
seek to minimize a Gaussian error norm (see Fig. 2); The
relation between ρ and g is g(x) ≡ ρ′(x)/x [Black et al.
1998; Durand and Dorsey 2002; Hampel et al. 1986].

2.2 Mollification

Our predictors are based on the orientation of the tangent
planes, as defined by the facet normals. Since the normals
are first-order properties of the mesh, they are more sensi-
tive to noise than vertex positions (Fig. 3(b)). Even so, the
robust estimator performs well; we can however significantly
improve the estimate with mollification [Huber 1981; Murio
1993]. We mollify our estimators by smoothing the normals.

We first perform a pass of non-robust smoothing using
Equation (3) without the influence weight, and with the sim-
plest predictor, Πq(p) = cq, corresponding to simple Gaus-
sian smoothing. We use a different width for the spatial filter
during mollification, and in practice have always set this to
σf/2. The normals of the mollified mesh are then copied to
the facets of the original mesh before the robust filtering is
performed. Notice that we do not alter the positions of the
vertices at all: we only need to mollify the first-order prop-
erties (the normals), not the 0-order location (see Fig. 3(c)).
Some normals might be improperly smoothed by mollifica-
tion near corners. This is why it is important not to move
the vertices during mollification in order to preserve these
features. Fig. 4 shows a comparison of filtering with and
without mollification. Without mollification, the facet nor-
mals of the mesh are much noisier, resulting in less effective
smoothing.

2.3 Feature Preservation

The filtering method we have proposed preserves features
through two combined actions. First is the use of a robust
influence weight function, as discussed, while the second is
our use of a predictor for vertex positions based on the tan-
gent planes of the mesh. This predictor does not move ver-
tices located at sharp features separating smooth areas of
the mesh, since feature vertices are “supported” by the pre-
diction from both sides. Neither of these actions is sufficient
alone (see the discussion of Fig. 7 below for examples of
how the influence weight affects the filter), but together they
provide excellent feature-preserving behavior. Note the con-
nection to bilateral filtering for images, which uses a prior
of piecewise constant images. This is a special case of our
formulation, corresponding to the predictor Πq(p) = cq. As
well, the use of the existing mesh facets helps to simplify our
formulation and its implementation, as they provide direct
estimates for surface tangents.

In essence, our technique also relates to ENO/WENO
methods [Osher and Fedkiw 2002], a class of finite-difference-
based, shock capturing numerical techniques for hyperbolic
PDE integration. In a nutshell, they seek to avoid dissi-
pation of shocks –the equivalent of sharp features in our
geometric setting. They base their local evaluation of differ-
ential quantities only on the local neighbors of similar field
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(a) Initial mesh (b) isotropic smoothing (c) our approach (d) our approach with (e) our complete
[Desbrun et al. 1999] without mollification no influence weight g approach

Figure 4: Isotropic filtering vs. our method. Notice that details such as the upper and lower lids and the eye are better
preserved, while flat regions are equivalently smoothed. (Original mesh courtesy of Jean-Yves Bouguet.)

value. For example, the evaluation of a second derivative
at a shock is not centered as this would use information on
both sides; in contrast the evaluation is one-sided to prevent
numerical dissipation. Robust statistics offers a principled
framework to extend similar key concepts to geometry.

3 Results

We demonstrate our results in Figs. 1 and 4-8. In each
case, we use Gaussians for the spatial (f), influence weight
(g), and mollification filters with standard deviations of
σf , σg,

σf

2
, respectively. This choice for g corresponds to

a Gaussian error norm. All meshes are rendered with flat
shading to show faceting. Table 1 summarizes our results
and the parameters used to generate them, given in terms of
the mean edge length (||e||) of the particular mesh. The cost
of each evaluation of Equation (3) depends on the number of
facets that lie within the support of f , so the time to filter a
mesh grows approximately as the size of the mesh times σ2

f .
Fig. 4 shows a portion of a mesh from a 3D scan of a head.

We show the original mesh, the result of isotropic smoothing
by Desbrun et al. [1999], and our technique. We present this
comparison to demonstrate the effectiveness of our approach
for smoothing, even on noisy meshes with topological errors.

A comparison to the Wiener filtering approach of Peng et
al [2001] is shown in Fig. 6. The parameters for our method
were chosen to visually match the smoothness in flat areas.
Our method preserves features better for larger amounts of
smoothing (compare 6(d) and 6(e)). Also, as noted previ-
ously, Wiener filtering requires resampling the input to a
semi-regular mesh, and only operates on surfaces with man-
ifold topology, while our method can be applied more gener-
ally, to non-regular and disconnected meshes. We estimate
that their implementation would take about 15 seconds to fil-
ter this mesh on our machine, in comparison to 60 (or more,
depending on the smoothing parameters) for our technique.

In Fig. 10 we compare our method to anisotropic diffu-
sion smoothing by Clarenz et al. [2000]. The original, noisy
mesh is smoothed and smaller features removed by four it-
erations of diffusion. We have chosen the parameters of our
method to match the result as closely as possible. One bene-
fit of anisotropic diffusion is the ability to iteratively enhance

Model Fig. Verts. Time σf/||e||/ σg/||e||
Dragon 1 100k 80 s 4 (14) 1 (4)
head

Face 4(d) 41k 16 s 1.5 (9.2) 0.4 (2.4)
(c) 10 s 1.5 (0.9) 0.5 (0.3)

Dog 6(c) 195k 82 s 2.7 (6.6)) 0.4 (0.9)
(e) 132 s 4 (9.9) 1.3 (3.3)

Bunny 7(b) 35k 11 s 2 (12) 0.2 (1.2)
(c) 12 s 2 (1.2) 4 (24)
(d) 23 s 4 (24) 4 (24)

Venus 10 134k 54 s 2.5 (8.1) 1 (3.3)
Dragon 8 100k 79 s 4 (14) 2 (7)

Table 1: Results on a 1.4Ghz Athlon with 2GB of RAM.
Times do not include the time to load meshes. The σs are
expressed as ratios of the mean edges length ||e||, and the
numbers in parentheses are in thousandths of the bounding
box diagonal for the particular meshes.

Figure 5: (a) Values of σf and σg that yield the most accu-
rate denoising for a mesh corrupted with Gaussian noise, as
a function of the variance of the noise. (b) Evolution of the
error for a given noise level as a function of σf and σg. All
values are in terms of the mean edge length.

edges and corners. Our method is not able to perform such
enhancement in a single pass, resulting in a slightly differ-
ent overall appearance, particularly in the hair, and slightly
more noise around edges in the model.

We also show a false-color plot of the confidence mea-
sure k in Fig. 10. As can be seen, smoother areas (such as
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Original Wiener (low noise) our method Wiener (high noise) our method

Figure 6: Comparison of our method and Wiener filtering. Parameters for Wiener filtering from [Peng et al. 2001]. Parameters
for our method chosen to approximately match surface smoothness in flat areas. (Original and Wiener filtered meshes courtesy
of Jianbo Peng.)

original noise removal smooth small features smooth large features
narrow spatial, narrow influencenarrow spatial, wide influence wide spatial, wide influence

(σf = 2, σg = 0.2) (σf = 2, σg = 4) (σf = 4, σg = 4)

Figure 7: The effect of varying spatial and influence weight functions. Filter widths σf , σg given in terms of mean edge length
in the mesh. (Mesh from the Stanford University Computer Graphics Laboratory 3D scanning repository.)

the cheek) and features bordered by smooth areas (such as
the edges of the nose) have higher confidence, while curved
areas or those near more complicated features have lower
confidence. See also Fig. 8.

We show the effects of varying spatial and influence weight
function widths in Fig. 7. For a wide spatial filter but narrow
influence weight, the mesh is smoothed only in mostly flat
areas. In the converse, a narrow spatial filter and wide in-
fluence weight, small features are smoothed away but larger
variations kept. Finally, for a wide spatial filter and wide
influence weight, only the largest and strongest features are
preserved. See Fig. 8 for a similar example of our method
used to remove all but the most salient features of a mesh.

In order to facilitate denoising with our approach, we have
performed experiments to find good values for σf and σg to
smooth a model corrupted with a given amount of noise,
such as might be produced by a scanner. If the amount of
noise can be quantified, by examining an area on the model
known to be flat, for example, then the plot in Fig. 5(a)
shows the optimal values for σf , σg from our experiments.
These values have been found effective on several models.
The surface plot in Fig. 5(b) shows how, for a particular
(representative) noise level, the post-filtering error changes.
As can be seen, the error is most sensitive to σf . We compute
the error as the L2 distance between the original mesh before
corruption and the filtered mesh [Khodakovsky et al. 2000].

In other applications, our general approach has been to
increase σf and σg together until the filtered mesh is suf-

ficiently smooth for our goals. We then decrease σg until
features or noise that we are trying to remove begin to reap-
pear.

All of our results demonstrate the effectiveness of our tech-
nique at feature preservation, due to a combination of a ro-
bust influence weight function and a first-order predictor, as
discussed in Section 2.3. In particular, the tips of the ears
of the bunny are preserved, as are the head and extremities
of the dragon. See also Fig. 9, part of a scan of an origami
piece.

We apply our filtering method to a mesh corrupted with
synthetic noise in Fig. 1. In the noisy mesh, each vertex
is displaced by zero-mean Gaussian noise with σnoise = 1

5
of the mean edge length, along the normal. We filter the
dragon mesh to recover an estimate of the original shape.
For comparison, in the scanned mesh of Fig. 4 we estimate
σnoise ≈ 1

7
. These results shows the ability of our method

to smooth even in the presence of extreme amounts of noise.
Fig. 4 also indicates an area where our algorithm could be
improved. Where a feature and noise coincide (e.g. in the
nose), it is difficult to correctly separate the two. In Fig. 1,
we have aimed for a smoother reconstruction, but lose some
details in the process.

We have applied two basic optimizations to our imple-
mentation. We truncate the spatial filter at 2σf to limit
the number of estimates that must be considered per vertex.
This does not noticeably affect the results. We also group
vertices and facets spatially for processing, to improve local-
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ity of reference.
As presented, our method is not necessarily volume pre-

serving. We have not encountered a mesh where this is an
issue. Adjusting the mesh after filtering to preserve its vol-
ume is a straightforward extension [Desbrun et al. 1999].

4 Conclusion and Future Work

We have developed a novel, fast feature-preserving surface
smoothing and denoising technique, applicable to triangle
soups. We use a first-order predictor to capture the local
shape of smooth objects. This decouples the signal and the
spatial location in a surface, and allows us to use robust
statistics as a solid base for feature preservation. A robust
error norm is applied to the predictors and the vertex posi-
tions, from which we derive an efficient and stable one-step
smoothing operator. Mollification is used to better capture
shape and to obtain more reliable detection of outliers and
features. We have demonstrated our algorithm on several
models, for both noise removal and mesh smoothing.

Contemporaneous with this work, Fleishman et al. [2003]
have proposed an extension of bilateral filtering to meshes
with similar goals as this work, but with a different approach.
The main contrasts are that vertex normals are computed
from the mesh to perform local projections, after which a
vertex’s updated position is computed as the bilateral filter
of its neighborhood treated as a height field. In rough terms,
their method is faster but requires a connected mesh. The
speed increase is due to two factors: they do not mollify
normals, and the density of triangles is roughly half that of
vertices in a mesh. They require connectivity to estimate
normals. They also apply their filter iteratively, while we
have concentrated on a single-pass technique. There is also
a fundamental difference in how the two methods form pre-
dictions for a vertex’s filtered position. Our method projects
the central vertex to the planes of nearby triangles, while
that of Fleishman et al. projects nearby vertices to the plane
of the central vertex. The relative costs and benefits of these
two approaches merits further study.

There are several avenues for improvement of our method.
The normalization factor k in Equation (3) is the sum of
weights applied to the individual estimates from a point’s
neighborhood (see Fig. 10). It therefore provides a mea-
sure of the confidence that should be attached to the esti-
mate of the point’s new position, as noted by Durand and
Dorsey [2002]. We have not made use of the confidence mea-
sure k in this work, but feel that it could be a valuable tool
in future approaches. In particular, we believe that it could
be used to detect areas where a good estimate could not be
formed, as on the sharp features in Fig. 1. Such areas could
be processed further, perhaps by iterative filtering.

In our experience, the O(σ2
f ) growth rate of our algorithm

has not been a limiting factor. If it were to become so, a
promising approach is to subsample the mesh by simplify-
ing it with some fast method, and then filter the original
mesh vertices based on the simplified version. Our method
should also extend easily to out-of-core evaluation, since it
does not require connectivity information and since the com-
putations are spatially local. This would allow our method
to be applied to extremely large models.

Finally, the extension of robust statistics to meshes sug-
gests other possibilities for their application. The influence
weight could include other data on the mesh, such as color.
It should also be straightforward to extend our filter to other
shape representations, such as volume data or point-sample
models [Zwicker et al. 2002]. In the latter case, where each

Figure 8: Original and smoothed dragon, and the confidence
k for the smoothed dragon. Note that sharp features are pre-
served while other details are removed. (Mesh from the Stan-
ford University Computer Graphics Laboratory 3D scanning
repository.)

sample includes a normal, the methods transfer directly, as
should the results. We also plan to explore how robust statis-
tics could be added to existing techniques for surface ap-
proximation, such as Moving Least Squares [Levin 2001], to
improve their robustness and sensitivity to noise.
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