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Abstract
Multiresolution shape representation is a very effective way to decompose surface geometry into several levels of
detail. Geometric modeling with such representations enables flexible modifications of the global shape while pre-
serving the detail information. Many schemes for modeling with multiresolution decompositions based on splines,
polygonal meshes and subdivision surfaces have been proposed recently. In this paper we modify the classical
concept of multiresolution representation by no longer requiring a global hierarchical structure that links the dif-
ferent levels of detail. Instead we represent the detail information implicitly by the geometric difference between
independent meshes. The detail function is evaluated by shooting rays in normal direction from one surface to
the other without assuming a consistent tesselation. In the context of multiresolution shape deformation, we pro-
pose a dynamic mesh representation which adapts the connectivity during the modification in order to maintain
a prescribed mesh quality. Combining the two techniques leads to an efficient mechanism which enables extreme
deformations of the global shape while preventing the mesh from degenerating. During the deformation, the detail
is reconstructed in a natural and robust way. The key to the intuitive detail preservation is a transformation map
which associates points on the original and the modified geometry with minimum distortion. We show several
examples which demonstrate the effectiveness and robustness of our approach including the editing of multireso-
lution models and models with texture.

1. Introduction

With the increasing resolution and complexity of geomet-
ric models in computer graphics applications, the necessity
of hierarchical representations is getting more and more im-
portant. Multiresolution decompositions for highly detailed
surface geometries are likely to become the future standard
since they enable the surface complexity to be adapted to the
available (hardware) resources and the quality requirements
of a given application. In addition to complexity control,
multiresolution representations enable intuitive and power-
ful modeling operations since modifications can be applied
on any level of detail without affecting coarser levels and
with automatic adaption of the finer detail features.

A multiresolution representation consists of a sequence of
differently detailed approximations � 0 ��������� � m of an origi-
nal surface ����� m. Alternatively, � m can also be decom-
posed into a sequence of detail components 	 i �
� i � 1 � � i.
The efficient use of multiresolution representations requires
to find an appropriate mathematical description for the sur-
faces � i. For this purpose hierarchical splines have been
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used in 9 � 10 where the displacement 	 i between successive
levels � i is defined by pasting tensor-product splines onto
each other.

To get rid of the topological restrictions emerging from
the use of tensor-product basis functions, wavelet techniques
have been generalized to surfaces with arbitrary topology in
25 � 30 � 32 � 39. Here, the surfaces � i are represented by subdivi-
sion schemes what can be considered as a compromise be-
tween spline-surfaces and triangle meshes.

Subdivision schemes exploit the convergence of spline
control meshes to the associated surface under knot inser-
tion. The corresponding algorithms apply a set of general-
ized knot insertion operators (refinement rules) which gen-
erate a sequence of finer and finer meshes eventually con-
verging to a smooth limit surface. 2 � 6 � 24 � 17 � 38. Consequently,
subdivision surfaces are in fact triangle meshes but with an
additional mechanism to change the mesh resolution. This is
the reason why subdivision techniques are very well suited
for computer graphics applications where most of the data is
represented by triangle meshes anyway.

In the context of subdivision schemes, the surfaces � i nat-
urally emerge from an i-times refined base mesh � 0. The
major drawback of this surface representation is that subdi-
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vision connectivity is mandatory for the original (fine) mesh
� m � � m. As most of the mesh data sets do not come in this
form, remeshing is required as a preprocessing step 7 � 22 � 20.

In 19 and 13 multiresolution techniques have been gener-
alized to meshes with arbitrary connectivity by exploiting
fine-to-coarse hierarchies emerging from the application of
a mesh decimation algorithm 31 � 29 � 15 � 11 � 18. This enables mul-
tiresolution functionality for arbitrary meshes. However, the
progressive mesh type multiresolution representations are
still associated with the structure of the given mesh. This
means that the techniques proposed there cannot be general-
ized to modeling operations that change the mesh connectiv-
ity.

What is common to all these approaches is the fact that
the multiresolution representations always impose a global
hierarchical structure on the data. In the case of hierarchical
splines and subdivision surfaces, this structure is provided by
the common domain Ω on which all surfaces � i are param-
eterized. For the fine-to-coarse mesh hierarchies this struc-
ture is determined by the connectivity of the finest resolution
mesh.

The existence of a global structure implies that the repre-
sentations of the different levels of detail � i are not indepen-
dent from each other. Hence, we cannot perform arbitrary
changes on each level. In the context of surface modeling
this is a severe restriction since drastic modifications of the
geometry cause strong changes in the surface metric. Hence,
reparameterization (of the surface) or restructuring (of the
mesh) might be necessary to preserve the surface quality.

In this paper we therefore propose a new approach to mul-
tiresolution representation and modeling which enables the
decomposition of arbitrary geometries and does not require
any compatibility condition between the levels � i (other than
that they are differently detailed approximations of the same
surface). The basic idea is to represent the detail informa-
tion 	 i between the levels by a displacement field without
assuming any specific parameterization of the involved sur-
faces � i and � i � 1. This enables us to perform arbitrary mod-
ifications on each level of a multiresolution decomposition.

The paper is organized as follows: In Section 2, we ex-
plain the details of the multiresolution representation which
is the basis for the multiresolution shape deformation tech-
nique explained in Section 3. Section 4 introduces meshes
with dynamic connectivity that enable arbitrary shape mod-
ifications while preserving the quality of the tesselation. In
Section 5 we explain a simple animation technique based on
control ellipsoids which span a membrane surface. In Sec-
tion 6 we show how the multiresolution shape deformations
can be used to globally deform meshes with changing con-
nectivity while the geometric detail is preserved. In Section 7
we demonstrate that the same techniques can also be applied
to the deformation of textured models. Finally, we give some
hints concerning the efficient implementation of the algo-
rithm in Section 8.

2. Multiresolution Representation

Given an arbitrary surface � m, a multiresolution decompo-
sition consists of a sequence of topologically equivalent sur-
faces � m � 1 ������� � � 0 that approximate � m with decreasing
level of detail. The difference 	 i � � i � 1 � � i between two
successive surfaces is the detail on level i which is added or
removed when switching between the two approximations.
The reconstruction

� m � � i
� 	 i

��������� 	 m � 1

of the original surface � m can start on any level of detail � i.

Multiresolution editing means that on some level of de-
tail, the surface � i is replaced by ���i . This operation does not
have any effect on � 0 ��������� � i � 1. However 	 i � 1 and hence
� i � 1 ������� � � m change since the (unchanged) detail informa-
tion 	 i ������� � 	 m � 1 is now added to the modified base surface
� �i for the reconstruction of � �m.

To guarantee the intuitive preservation of shape character-
istics after a modification on some lower level of detail, this
basic setting has to be extended in the sense that the detail in-
formation 	 i is encoded with respect to local frames. These
frames are aligned to the surface geometry of � i

9 � 10 � 19 � 39. If
the surfaces � i are defined as parameteric functions over a
common parameter domain Ω, the use of local frame coding
for the details 	 i makes the definition of a proper hierarchy
of nested function spaces (multiresolution analysis) impossi-
ble since the shape of � i influences the structure of all higher
frequency subspaces.

A closely related concept to local frame coding is the rep-
resentation of detail information 	 i by a displacement map
on � i

3 � 21 � 28. Let Ni be a continuous vector field defined on
the surface � i which assigns a normal vector Ni

�
p 	 to every

point p 
 � i. Then the detail information 	 i can be repre-
sented by a scalar function λi such that

� i � 1 ��� q 
�� p 
 � i : q � p
� λi

�
p 	 Ni

�
p 	�� �

From the continuity of the normal field Ni it follows that
� i and � i � 1 have the same topology. Nevertheless, self in-
tersections of � i � 1 are possible if λi

�
p 	 is larger than the

minimum curvature radius at p. As λi
�
p 	 is unique, no point

of � i can be mapped to several points on � i � 1. This implies
some restrictions on the geometric relation between � i and
� i � 1.

When � i is transformed into � �i by some modeling oper-
ation, the reconstruction of ���i � 1 is done by using the un-
changed detail function λi with respect to the new normal
field N �i on � �i (cf. Fig. 2). Hence, to perform a multiresolu-
tion modification, we need a (inverse) transformation map T
which associates each point p � on the new surface � �i to a lo-
cation p � T

�
p � 	 on the old surface � i. The modified surface

� �i � 1 is then given by

� �i � 1 ��� q � 
�� p � 

� �i : q � � p � � λ �i � p � 	 N �i � p � 	��
with

λ �i � p � 	 � λi � T � p � 	�� �
c
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Figure 1: The multiresolution shape deformation is evaluated from left to right: � 1, � 0,
�

, � �0, and � �1. First we have the
original geometry � 1 and its low-frequency approximation � 0. The displacement function λ is sampled by shooting rays from
� 0 in normal direction onto � 1. The middle mesh is the linking mesh

�
between the original and the modified low frequency

meshes � 0 and � �0 respectively. The vertices of
�

are projected onto the geometry of � 0. Hence, the detail function λ does not
change significantly if we replace � 0 by

�
when sampling λ. On the other hand,

�
has the same connectivity as � �0 (middle

right) which establishes a one-to-one correspondence between the points on both surfaces. Finally, the deformed surface � �1
with reconstructed detail is obtained by shifting the vertices of � �0 in normal direction by the amount λ.

Figure 2: Left: The geometry � i � 1 (grey) is defined rela-
tive to the circle � i (black). For p ��� cos

�
t 	 � sin

�
t 	�� T 
 � i we

have λ
�
p 	 � 1

4 cos
�
5t 	 . Right: When deforming the base ge-

ometry � i � � �i the modified geometry � �i � 1 is reconstructed
by using the same detail function λ with respect to the new
normal field N �i on � �i . To evaluate λ at the correct location,
the points on � �i and � i must be linked by a transformation
map T .

This general definition for multiresolution representations
enables us to define the different levels of detail completely
independent from each other. There is no need for a global
hierarchical structure like in the approaches that are based
on a nested sequence of spaces or grids 25 � 32 � 39. We do not
even have to use the same surface type (parametric, implicit,
polygonal meshes) for all surfaces � i. The only require-
ments are that we have to be able to compute normal vectors
Ni and find ray-intersections. Under these assumptions it is
not necessary to set up an explicit formulation for the detail
functions λi since the evaluation of λi at some point p 
 � i
can be accomplished by computing the intersection of the
ray p

� λNi
�
p 	 with the surface � i � 1 on demand.

3. Multiresolution shape deformation

In computer graphics and geometric modeling, we have sev-
eral standard techniques for the definition of surface geome-
try. Besides the implicit definition (iso-surfaces) and the pa-
rameteric definition (spline-patches) we find the explicit def-

inition by polygonal meshes particularly useful. Especially
triangle meshes can be considered the most versatile repre-
sentation for general free-form surface geometry. Due to the
simplicity and robustness of algorithms operating on triangle
meshes, we can approximate arbitrarily complicated objects
by sufficiently refined tesselations. With increasing resolu-
tion (refinement level) the non-smooth character of the piece-
wise linear approximations is quickly vanishing and can be
forced below any prescribed tolerance. The complexity of
explicit representations can be reduced by efficient schemes
to compress the mesh data 4 � 12 � 35.

In the sequel we will therefore focus on the use of triangle
meshes for the representation of the surfaces � i in our mul-
tiresolution decomposition. Notice that despite their discrete
nature, triangle meshes represent continuous surfaces. More-
over, we can easily define a continuous normal field by linear
interpolation of vertex normals. Hence, given two meshes � i
and � i � 1, we can evaluate the detail function λi at arbitrary
locations on the mesh � i. This means in particular that we
can arbitrarily super-sample the detail function without any
restrictions imposed by the actual resolution of the under-
lying tesselation. This is an important observation that we
exploit when a multiresolution shape deformation strongly
changes (e.g., stretches) the global shape of an object.

For simplicity we restrict our explanation to a two-band
decomposition of the given geometry. The generalization to
multi-band decompositions is straightforward since the eval-
uation/reconstruction procedure on the ith level of detail re-
cursively calls the same evaluation procedure for the next
coarser approximation level. Without loss of generality we
further assume that a single multiresolution modeling oper-
ation applies modifications only on one frequency band.

Let the two-band representation of a surface be given by
two triangle meshes � 0 and � 1 with arbitrary connectivity
each. The multiresolution deformation replaces the mesh � 0
by � �0 (again with a completely different connectivity). We
want to reconstruct the result of the operation � �1.

According to the multiresolution representation of the last
section, we find points q � on � �1 by displacing points p � 
 � �0
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in normal direction. The distance λ � � p � 	 by which p � is
moved, has to be sampled from the displacement map that
is implicitly defined by the geometries of the two original
surfaces � 0 and � 1. Hence, suppose we know the transfor-
mation map T , we can compute the point p � T

�
p � 	 on � 0

and shoot a ray p
� λN0

�
p 	 . The distance to the first inter-

section point on � 1 yields the value λ
�
p 	 � : λ � � p � 	 .

The remaining question is how to find an appropriate map

T : � �0 � � 0 �
This is not trivial since � 0 and � �0 can have different geom-
etry and different connectivity. Yet, the quality of the detail
reconstruction strongly depends on the distortion caused by
T .

We propose to generate the map T by constructing an ad-
ditional mesh

�
which has the same connectivity as � �0 and

the same geometry as � 0, i.e. whose vertices p 
 � lie on
the continuous surface � 0. Due to the fact that

�
and � 0 are

smooth tesselations (low frequency approximations) which
have approximately the same geometry, the difference be-
tween the displacement function λ sampled from either mesh
is neglectible. One the other hand, since

�
and � �0 have the

same connectivity, it is trivial to establish a one-to-one cor-
respondence between both by using a barycentric parameter-
ization within each triangle. Hence, for a given point p � on
� �0 we can compute the displacement value λ � � p � 	 by shoot-
ing a ray in normal direction from the corresponding point p
on
�

.

Fig. 1 shows all the meshes involved in this multiresolu-
tion modeling operation. The distortion of the transforma-
tion map T and hence the quality of the detail reconstruction
is determined by the distribution of the vertices of

�
on the

surface � 0. This distribution has to optimize two conflicting
objectives. First, the points should be distributed evenly over
� 0 in order to guarantee a uniform sampling densitiy for λ.
On the other hand, the relative position of neighboring ver-
tices should be similar to the corresponding configuration on
the mesh � �0 in order to minimize local distortions (e.g. pre-
serve the triangle’s aspect ratios). The degree of difficulty
for this optimization task depends on the geometric differ-
ence between the shapes of � 0 and � �0.

Let us assume that the shape difference between � 0 and
� �0 is small, i.e. both meshes have only a small Hausdorff-
distance from each other. This assumption does not restrict
the set of possible modeling operations since we can de-
compose every drastic shape deformation into a sequence
of small deformations (in the Hausdorff-sense). In order to
compute the transformation map T for a big deformation we
simply concatenate the corresponding maps for the small de-
formations.

For the generation of
�

we start by copying the connectiv-
ity of � �0 and apply two operators that control the distribution
of the vertices p 
 � on the surface � 0. The first operator P
(project) computes initial positions for each vertex p 
 � .
The second operator D (distribute) then shifts the points p
in order to distribute them more evenly over the surface � 0.
This operator reduces the global distortion of the map T .

In Sect. 8 we explain a simple and efficient method to find
the closest triangle F � � �

A � B � C 	�
 � 0 to a vertex q � 
 ���0.
The P operator projects each vertex q ��
 � �0 onto the nearest
point q̃ on F (this is not necessarily an orthogonal projec-
tion) which yields the initial position for the corresponding
vertex of

�
. After the application of the P operator, the dis-

tribution of the vertices in the initial mesh
�

are ”as similar
as possible” to the distribution of the vertices in � �0.

The D operator equalizes the density of the vertices q 
 �
scattered over the surface � 0. For this, we first estimate the
local density d for each vertex q, e.g., by computing the av-
erage length of the adjacent edges. We then update the vertex
positions for all q 
 � by the density weighted umbrella rule
19 � 5

q �
1

∑ j d j

n � 1

∑
j � 0

d j q j (1)

where n is the valence of q and q j are its direct neighbors
with their corresponding density d j . The effect of the weight
coefficients is that vertices with low point density (large av-
erage edge length) pull harder. Hence, the density egalization
is performed more aggressively. On the other hand, neigh-
boring vertices with high density have reduced attraction
which avoids clustering effects (shrinking) known from the
uniform umbrella operator 19 � 34.

After the application of (1) the vertices q are no longer
lying on the surface � 0. Hence, another projection P onto
the nearest triangle concludes the D operation. Usually, the
D operator has to be applied several times to obtain a good
vertex distribution.

Fig. 1 shows a simple example for the detail reconstruc-
tion based on the transformation map T after the shape de-
formation. In Sect. 6 and 7 we will see more examples which
demonstrate that this basic technique enables strong mul-
tiresolution deformations while keeping the distortion of the
map T minimal. However, before we go into the details of
multiresolution animation, we have to define a triangle mesh
based surface representation which is flexible enough to per-
form arbitrary shape deformations.

4. Dynamic Connectivity Meshes

In general, a triangle mesh is defined by the position of
its vertices pi and their connectivity

�
pi � p j 	 . When modi-

fying the shape of an object (not its topology) it is often
considered sufficient to merely change the position of the
vertices but not to adapt their connectivity. Since the actual
continuous surface of a triangle mesh is defined by piece-
wise linear interpolation between the vertices, the modifica-
tion of each control vertex p is equivalent to changing the
vector valued coefficient of a locally supported fixed piece-
wise linear basis function (hat-function) centered at p. As
global modifications usually require to update the positions
of many vertices, such modeling operations are controlled
by coarse scale basis functions (shape functions) which are
super-imposed over a whole subregion of the given mesh.

c
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Figure 3: Moving a selection of vertices in a triangle mesh causes distortion of the adjacent triangles (far left). This effect
cannot be removed by uniform subdivision (center left). However, dynamically restructuring the mesh yields better shaped
triangles (right). The resolution of the mesh can be controlled by prescribing the minimum and maximum edge length.

The major problem emerging from this kind of geomet-
ric modification is that moving a selection of mesh vertices
causes a distortion of the adjacent triangles and hence affects
the quality of the mesh (cf. Fig. 3). Applying uniform 1-to-4
splits in regions where the discrete curvature is above some
threshold or the length of the edges exceeds a prescribed
bound 39 does not solve this problem since uniform splits do
not improve the aspect ratio of the triangles. Moreover, we
are interested in finding a surface representation where the
number of triangles is proportional to the total surface area.
However, when using uniform refinement (subdivision con-
nectivity), the number of triangles increases quadratically if
the mesh is streched in one direction (cf. Fig. 3).

We therefore prefer a mesh optimization technique similar
to 16 � 33 � 37 which uses simple operations to improve the qual-
ity of a given mesh by changing its connectivity. Our goal
is to find a mesh representation which guarantees a certain
mesh quality according to the following requirements 1:

� No edge should be shorter than εmin
� No edge should be longer than εmax
� A vertex’ valence should be six.
� Long and thin triangles should be avoided

We call this representation dynamic triangle meshes since
every geometric modification (alteration of the vertices’ po-
sition) is followed by a restructuring of the mesh, i.e., by
the application of simple operations which change the mesh
connectivity in order to re-establish the above quality re-
quirements. As the surface representation is not static any-
way, it is not necessary to treat the quality requirements as
hard limits. In order to avoid strong distortions in the mesh it
is sufficient to at least reduce the number of violations with
every restructuring step. This guarantees that the mesh qual-
ity stays sufficiently close to an optimal configuration.

The restructuring is performed in several stages. First all
edges which are shorter than εmin are removed by collapsing
the two end-vertices. To avoid problems with ”chains” of
short edges, we collapse that end-vertex with lower valence

Figure 4: Small edges are removed by edge collapses. The
accumulation of edge collapses (middle) is prevented by col-
lapsing into the vertex with higher valence (bottom). This
simple heuristic works because high valence vertices stay
fixed and every collapse reduces the number of adjacent
short edges. Moving a high valence vertex v, however, can
lead to an unbounded accumulation of edge collapses since
new short edges can become adjacent to v.

into the one with higher (cf. Fig. 4). Then, all edges which
are longer than εmax are split by inserting a new vertex at its
mid-point. The two adjacent triangles are bisected accord-
ingly (cf. Fig. 5). Notice that the upper and the lower bound
on the edge lengths are only compatible if εmax

� 2εmin
since otherwise the edge split operation would generate two
invalid edges.

After all edge lengths lie within the target interval
� εmin � εmax � we perform edge-flipping in order to regularize

c
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Figure 5: Long edges are removed by mid-point insertion.
If this operation generates short edges (the thick ones) with
length � εmax, these will be removed in the next restructur-
ing step.

the connectivity. This becomes necessary since both oper-
ations, i.e., the edge collapse and the edge split, do affect
the valence balance for the involved vertices. For example
the edge-splitting always introduces vertices of valence four
and hence disturbes the balance. If the edge flipping should
generate edges which are too long or too short, those will be
removed in the next restructuring step.

For every two neighboring triangles
� �

A � B � C 	 and� �
C � B � D 	 we maximize the number of vertices with va-

lence six by flipping the diagonal BC if the total valence
excess

∑
p ��� A � B �C �D �

� valence
�
p 	 � 6 � 2

is reduced. The exponent 2 disallows to trade, e.g., two va-
lence 5 vertices for one valence 8 vertex. Fig. 6 shows the
different stages of the restructuring process.

(1)

(2)

(3)

(4)

Figure 6: The quality of a modified mesh (1) can be im-
proved by (2) collapsing short edges, (3) splitting long
edges, and (4) flipping edges where the valence excess can
be reduced.

The last quality requirement concerning the aspect ratio
of the triangles turns out to be automatically satisfied by the
above restructuring algorithm since the edge length ratio is
bounded by εmax � εmin and all vertex valences are close to
six which restricts the minimum angle.

5. Animation by control ellipsoids

We suggest a simple mesh animation technique in order to
demonstrate how dynamic connectivity meshes can be used
to generate high quality meshes for each frame of an anima-
tion sequence. The goal is to have a smooth free form object
like a bubble which moves and deforms in time. This was
motivated by watching a lava lamp.

The shape deformations in a lava lamp can be modeled
in the following manner: Two or more ellipsoids move in
space. Their radii, aspect ratio, and orientation changes in
time. Around these control ellipsoids we span a membrane
surface which tends to minimize its surface area due to in-
ternal forces. The result is a physically based model for the
skin of lava lamp bubbles.

In 19 � 5 a simple scheme is proposed to generate trian-
gle meshes which are optimal with respect to the (discrete)
membrane energy. Solving the optimization problem for a
given mesh by an iterative Gauß-Seidel solver requires to
compute only simple linear combinations of vertex posi-
tions. For each vertex p with neighbors p0 ��������� pn � 1 the
Gauß-Seidel update rule is

p �
1
n

n � 1

∑
i � 0

pi � (2)

In order to make the optimization problem well-defined, it is
necessary to impose additional boundary conditions. How-
ever, without boundary conditions the update rules of the it-
erative solver can still be applied as a smoothing convolution
filter 34.

In our case we provide boundary conditions by using the
control ellipsoids. After each Gauß-Seidel iteration of the
umbrella algorithm, we check for every mesh vertex whether
it happens to lie in the interior of one of the ellipsoids. If this
is the case then we project it back to the corresponding el-
lipsoid’s surface. In order to generate a lava lamp animation
we simply have to prescribe the ellipsoid parameters for ev-
ery frame. The bubble surface for a given time step ti � 1 is
computed by projecting the vertices of the surface from the
previous time step ti onto the modified control ellipsoids,
applying umbrella iterations, and re-enforcing the boundary
constraints.

These operations only affect the geometric position of the
vertices. In order to additionally maintain the mesh qual-
ity, the restructuring algorithm of the last section which up-
dates the connectivity, is applied to the resulting mesh. Fig. 7
shows several frames of an animation created by this simple
technique.

As mentioned in 19, the convergence of the Gauß-Seidel
scheme applied to the membrane energy optimization, is
rather slow. A standard technique in numerical analysis to
cope with this problem is to use multi-grid solvers 14 which
compute solutions to the optimization problem on coarser
tesselations in order to find better starting values.

Usually, such multi-level algorithms are applied to a se-
quence of nested grids which are generated from coarse to
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Figure 7: A bubble object can be animated by spanning a membrane skin around a set of control ellipsoids. Since the skin is
represented by a dynamic connectivity mesh, the quality of the triangular faces is guaranteed by restructuring the mesh between
the frames.

fine by uniform refinement of a coarse base mesh. In 19 the
method is generalized to meshes with arbitrary connectiv-
ity where a hierarchy of nested grids can be generated from
fine to coarse by incremental mesh decimation 11 � 15 � 18 � 29 � 31.
In the case of dynamic connectivity meshes, however, we
cannot generate a sequence of nested grids since the actual
connectivity is determined by the restructuring step and un-
known a priori.

We therfore use a multi-level solver which controls the
coarseness of the tesselation by adapting the bounds for the
edge lengths εmin and εmax. For every frame of the anima-
tion sequence, we start with rather large values for εmin and
εmax and apply several steps of alternating umbrella updates
and projection onto the control ellipsoids (inner loop). Then
we slowly decrease the bounds by some factor q � 1. In the
restructuring step this triggers edge split operations which
refine the mesh. The alternating mesh optimization and re-
structuring is repeated until the target resolution is reached
(outer loop). The following pseudo-code implements the
multi-level solver.

for each frame
init εmin, εmax
while (εmax

� τ)
while not convergence

minimize energy
project to ellipsoid

εmin
� � q, εmax

� � q
restructure

Fig. 8 shows several intermediate meshes of this process.
The generalized multi-level version of the membrane energy
minimization is significantly faster than plain Gauß-Seidel
iterations — especially for high target resolutions. For mod-
erately complex models ( � 104 �

) we can easily compute
several frames per second on a standard graphics worksta-
tion (SGI O2, R10K).

As demonstrated in 27, the control ellipsoid animation
technique can also be applied to geometric modeling. The
designer can use control ellipsoids as modeling tools to push
or pull the surface. Even more general shapes are possible
for the tool geometry as long as the inside test can be com-
puted effectively and the projection onto the tool’s surface is

well-defined. Similar to 19 � 37 we could also use the thin-plate
energy instead of the membrane energy and we could restrict
the influence of a modification to a presribed sub-region of
the mesh.

6. Animating a multiresolution object

We now apply the multiresolution shape deformation tech-
nique to surface representations based on triangle meshes
with dynamic connectivity. This enables us to compute ani-
mation sequences where the deformation of the global shape
is prescribed while the detail information is preserved in a
natural fashion. The shape deformation during the animation
might require to dynamically adapt the connectivity from
frame to frame in order to maintain the mesh quality. Hence,
we have to be able to resample the detail function λ at arbi-
trary locations since we cannot tell a priori where additional
detail information will be required.

The basic idea is to take an arbitrary triangle mesh � 1
and a low-frequency approximation � 0 as a two-band mul-
tiresolution representation of the input data. The mesh � 0
is then animated, e.g., by using the control ellipsoid tech-
nique. For every frame, the detail will be reconstructed by
shifting the vertices of the current mesh in normal direction
according to the resampled detail function λ.

For the computation of the animation sequence we need
four different meshes. First we need the low-frequency ap-
proximation of the current frame � current and the linking
mesh

�
current which has the same connectivity as � current

but with vertex positions lying on the surface � 0. This mesh
represents the current transformation map Tcurrent that links
the points p on � current to locations T

�
p 	 on � 0 where the

detail function λ has to be sampled in order to compute the
displacement for the detail reconstruction at p. For the first
frame, both meshes are indentical to � 0 (starting configu-
ration).

As the animation progresses to the next frame, the new
low-frequency shape of the animated object is stored in
� next. We do not assume any coherence between the con-
nectivities of � current and � next. For the proper reconstruc-
tion of the detail, we have to find the new transformation map
Tnext : � next � � 0 which is difficult to compute directly
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Figure 8: The concept of multi-level smoothing can be generalized to meshes with dynamic connectivity. The different hierarchy
levels are defined by adapting the upper and lower bound for the edge lengths. From left to right, the values εmin and εmax are
halved in every step. Notice that these meshes are not generated by uniform refinement but by dynamic restructuring.

since � next and � 0 can have completely different shapes.
However, as it is usually the case in smooth animations, we
can assume that the geometric shape of � current and � next
do not differ very much. Hence, we can try to adapt the cur-
rent transformation map Tcurrent to the next frame.

As explained in Sect. 3, the map Tnext is completely de-
termined by the vertex positions of the mesh

�
next which

have to lie on the surface � 0. The distribution of these ver-
tices should to be optimized in order to minimize the distor-
tion of the resulting map Tnext.

To accomplish this, we start by computing the projection
of the vertices of � next onto the mesh � current. This can
be done rather efficiently as explained in Sect. 8. If the ver-
tex p 
 � next is projected onto the triangle

� �
A � B � C 	 


� current then the projection point p̃ can be written in
barycentric coordinates

p̃ � αA
� βB

� γC �
By applying the same linear combination to the correspond-
ing vertices of

�
current we obtain a good initial guess for

the position of the vertex p � 
 � next.

The quality of the mesh
�

next (and hence of the transfor-
mation map Tnext) can be further improved by several appli-
cations of the D operator of Sect. 3. If we use triangle meshes
with dynamic connectivity as explained in Sect. 4, we can
accelerate the convergence of the density weighted umbrella
algorithm by the multi-level smoothing technique of Sect. 5.
As � next and

�
next have to have identical connectivities

anyway we can perform the restructuring operations on both
meshes in parallel. Of course, since the purpose of the re-
structuring is to improve the quality of the mesh � next, all
edge collapses and splits are triggered by the edge lengths
of � next alone! During the smoothing phase on each level
of resolution, the uniform umbrella operator (2) is applied
to � next while the density weighted umbrella operator (1) is
applied to

�
next. The vertices of

�
next have to be projected

back to the surface � 0 after every smoothing step.

7. Animating a textured object

The same technique for multiresolution shape deformation
can also be applied to the animation of textured objects. In

fact, the texture coordinates which are assigned to the points
of a surface can be considered as a special type of detail
information. The handling of texture information is easier
than the treatment of geometric detail since no local frame
coding is necessary.

Many authors (e.g., 26 � 23) proposed sophisticated tech-
niques to optimize the mapping of plane texture data to pa-
rameteric surfaces in space. In our case, we assume the tex-
ture coordinates

�
u j � v j 	 are already assigned to the vertices

p j of the input mesh � 0. The problem is then to adapt the
texture coordinates during the shape deformation in order to
minimize the distortion.

The animation of a textured object works exactly as the
two-band multiresolution animation in the last section. The
only difference is that the high-band � 1 is replaced by the
texture information. We still use the four meshes � current,�

current, � next, and
�

next to adapt the transformation map
T from frame to frame.

Fig. 10 shows several examples of a deformed textured
globe. The deformation is modeled by control ellipsoids and
the mesh representation is based on dynamic connectivity
meshes. The D operator in the computation of the transfor-
mation map T obviously works very effective in reducing
the texture distortion.

8. Implementation

Besides the mapping and smoothing operations explained in
the previous sections, we need to optimize some lower level
operations to let the algorithm run efficiently. One very time
consuming (and frequent) step in the multiresolution defor-
mation process is the projection of points from one mesh
onto the triangles of another. We can greatly reduce the com-
putational complexity by caching some local information
and by exploiting spatial coherence in the meshes.

In the P operation we have to find for each vertex p of the
deformed mesh � �0, the nearest point p̃ on the previous mesh
� 0. We cannot build a global space partition like an octree
to accelerate this search since the geometry and connectiv-
ity are changing dynamically and hence the maintainance of
the space partition would be too expensive. One important
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observation, however, that leads to an efficient algorithm, is
that for two nearby vertices on ���0 the corresponding clos-
est points on � 0 are very likely to be nearby as well. This is
true because � 0 and � �0 only have a rather small Hausdorff-
distance (compared to their size).

As the P operation has to project all vertices of � �0, we
can exploit this observation by enumerating the vertices in a
recursive traversal algorithm such that the expected distance
between successive vertices is small. In this case we can use
the projection point of the previous vertex as a starting point
for finding the next projection point.

Suppose the vertex p 
 � �0 is projected onto p̃ 
� �
A � B � C 	 � � 0 and q 
 � �0 is a vertex close to p then we

start with the triangle
� �

A � B � C 	 and compute

q � A � αN
� β

�
B � A 	 � γ

�
C � A 	

where N �
�
B � A 	�� � C � A 	 is the normal vector to� �

A � B � C 	 . As we are only interested in the orthogonal pro-
jection

�
1 � β � γ 	 A � βB

� γC, it is sufficient to solve the
symmetric

�
2 � 2 	 -system� �

B � A 	 T � B � A 	 �
C � A 	 T � B � A 	�

B � A 	 T � C � A 	 �
C � A 	 T � C � A 	�� � β

γ � �� �
P � A 	 T � B � A 	�
P � A 	 T � C � A 	 � �

If the barycentric coordinates are positive, we have found
the projected point q̃. Otherwise we proceed in any direction
indicated by a negative barycentric coordinate. To terminate
the marching algorithm correctly we have to check for loops,
i.e., for triangles that are visited twice. If this happens, then
the closest point to q lies on an edge of � 0. Once we detect
a loop, we can easily compute the projected point by scal-
ing the non-negative barycentric coordinates such that they
sum to one. For sufficiently smooth meshes � 0, this case is
relatively unlikely to occur.

The traversal by which the vertices of � �0 are enumerated
is similar to algorithms that generate triangle strips 8. How-
ever in our case we are not that much interested in long strips
but more in avoiding far jumps during the traversal. Our al-
gorithm starts with an arbitrary edge in the mesh. For the
first vertex we have to find the projection point by brute-
force testing. For the second and all subsequent vertices we
can use the above marching technique.

We recursively enumerate the vertices of � �0 by depth-first
traversal of a binary tree which is implicitly defined by the
neighbor relation between the triangles (each node has three
neighbors, i.e., one parent and two children) 36. For every
new vertex q for which we have to compute the projection,
we find at least one direct neighbor p that has already been
processed. Hence, we immediately find a nearby triangle on
� 0 to start the marching algorithm. Practical experiments
proved that the marching usually has to bridge only rather
small distances. For example if both geometries � 0 and � �0
have the same resolution we need less than two marching
steps in average to reach the destination triangle.

In some rare cases, this procedure can fail to find the cor-
rect projection point q̃. In these cases the wrongly reported
point typically lies quite far away on the opposite side of
the mesh. This malfunction occurs if the starting triangle for
the marching procedure is too far from the actual projec-
tion point. We can easily check the feasibility of a reported
projection point q̃ by testing its distance to the point q. For
example in the animations controlled by moving ellipsoids,
we know that the surface cannot move further than the max-
imum shift of one of the ellipsoids plus its maximum change
of radius. Hence projection points which lie farther away
than this distance must be wrong.

In practice, it turned out that the occurence of this error is
very rare. So we use a brute-force fall-back solution which
simply tests the vertex agains all triangles of the mesh � �0.
This does not affect the overall performance of the algo-
rithm.

9. Conclusions

In this paper we presented a new approach to multiresolution
free-form deformations. Instead of defining a global hierar-
chy across all levels of the multiresolution decomposition,
we define detail information as the geometric difference be-
tween two differently detailed approximations � i and � i � 1
of the same object with no further restrictions. The detail in-
formation is implicitly represented as a displacement field
with respect to the normal vectors on � i. The detail can be
sampled (evaluated) at arbitrary points by computing ray in-
tersections with � i � 1. A global parameterization of the sur-
faces � i is not necessary.

The technique enables very general multiresolution defor-
mations and animations with very stable reconstruction of
the detail information. The underlying surface representa-
tion is based on triangle meshes with dynamic connectivity
which guarantees high mesh quality since the tesselation au-
tomatically adapts to the deformation. Using multi-level al-
gorithms for the mesh smoothing significantly accelerates
the animation such that realtime editing with moderately
complex meshes is possible on standard graphics worksta-
tions.

The technique has also been applied to the animation of
textured objects. In this case the low distortion of the trans-
formation map which transfers the detail information from
the original surface to the deformed one, generates realistic
texture maps.
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Figure 9: Examples for multiresolution deformations. The multiresolution decomposition of the input data uses the well-known
Spock-head model � 1 and a sphere as its low-frequency approximation � 0. We show the modified low-frequency geometries
after applying a modeling operation based on control ellipsoids (wireframe) and the resulting reconstruction of the detail
information (solid). The intuitive preservation of the detail is accomplished by constructing a transformation map T from the
modified low-frequency geometry to the original mesh � 0. This map is used for resampling the displacement function λ.

Figure 10: A textured sphere is deformed by the control ellipsoid technique. Again we show the deformed models together with
their underlying triangle mesh whose dynamic connectivity guarantees high quality in terms of the triangular faces’ aspect
ratio. We super-imposed a longitude/latitude system in order to demonstrate the small local distortion of the texture. This is due
to the construction of the map T which associates points on the modified surface with points on the original sphere. A colored
version of this figure can be found in the color section.
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