
EUROGRAPHICS 2000 Tutorial

Geometric Modeling Based on Polygonal Meshes

Leif P. Kobbelt (Organizer) Stephan Bischoff Mario Botsch

Kolja Kähler Christian Rössl Robert Schneider Jens Vorsatz

Geometric Modeling Unit
Computer Graphics Group

MPI Saarbrücken

Abstract
While traditional computer aided design (CAD) is mainly based on piecewise polynomial surface representations,
the recent advances in the efficient handling of polygonal meshes have made available a set of powerful techniques
which enable sophisticated modeling operations on freeform shapes. In this tutorial we are going to give a detailed
introduction into the various techniques that have been proposed over the last years. Those techniques address
important issues such as surface generation from discrete samples (e.g. laser scans) or from control meshes (ab
initio design); complexity control by adjusting the level of detail of a given 3D-model to the current application
or to the available hardware resources; advanced mesh optimization techniques that are based on the numerical
simulation of physical material (e.g. membranes or thin plates) and finally the generation and modification of
hierarchical representations which enable sophisticated multiresolution modeling functionality.

1. Introduction and overview

The use of polygonal meshes for the representation of highly
complex geometric objects has become the de facto standard
in most computer graphics applications. Especially triangle
meshes are preferred due to their algorithmic simplicity, nu-
merical robustness, and efficient display. Flexible and effec-
tive algorithms have been developed which combine results
from approximation theory, numerical analysis and differen-
tial geometry and apply them to the discrete setting of polyg-
onal meshes.

To a certain extend most of these techniques were al-
ready available for NURBS–based surface representations
and have recently been generalized to unstructured polyg-
onal meshes such that today splines can be substituted by
polygonal meshes in many applications. The advantage of
switching to this representation is mainly due to the fact that
algorithms for polygonal meshes usually work for shapes
with arbitrary topology and do not suffer from the severe
restrictions which stem from the rigid algebraic structure of
polynomial patches. Another advantage of triangle meshes
is that they can be used for many stages of the typical pro-
cessing pipeline in geometric design applications without
the need for inter–stage data conversion. This accelerates the

overall processing time and reduces the potential for round–
off errors.

The motivation for using polygons to describe freeform
geometry is quite obvious: while simple shapes can be char-
acterized by manageable functional expressions, the com-
plexity of those expressions explodes if the shapes are be-
coming more complicated. Hence piecewise representations
are preferred since higher complexity can be obtained by
simply using more segments (with constant complexity).
The extreme case of piecewise representations are polygons:
All we need are sample points on the given curve or surface
and the corresponding surface description results from con-
necting these samples by lines or triangles.

Representing a given (real or virtual) surface geometry
by a polygonal mesh is usually an approximation process.
Hence there is no unique polygonal 3D–model but the den-
sity and distribution of sample points and the specific way
how these samples are connected by triangles provide many
degrees of freedom. For efficient storage and modeling with
polygonal meshes, we have to choose a specific instance
among those many possible models.

c© The Eurographics Association 2000.

GMU MPI Saarbrücken / Geometric Modeling

Figure 1: Mesh decimation takes the original data (left) and computes a coarse approximation with less detail (center).
Refinement can either re–insert the removed data to reconstruct the original model (topological hierarchy) or it can insert new
points to generate a smooth mesh with high complexity but low geometric detail (right, geometrical hierarchy).

The most important criteria according to which the differ-
ent polygonal approximations to a freeform surface can be
rated, are: smoothness and complexity. Here the smoothness
of a triangle mesh is measured by some discrete reformula-
tion of concepts known from differential geometry. One sim-
ple example would be to use the angle between the normal
vectors of adjacent triangles to measure the discrete curva-
ture. More sophisticated measures will be presented in Sec-
tion 3.

The complexity of a triangle mesh is measured by the
number of vertices or the number of faces. It characterizes in
some sense the computational costs that are required for dis-
playing or modifying the mesh. Hence for computationally
more expensive operations (or on low–performance com-
puters) a mesh with less triangles would be preferred while
cheap operations and high–performance computers allow for
higher complexities.

In a typical application the choice of a polygonal model
is constrained by a minimum smoothness requirement and
a maximum complexity requirement. Inbetween these lower
and upper bounds an optimal trade–off has to be found since
higher smoothness increases the complexity and lower com-
plexity decreases smoothness. The major techniques that are
used to adjust both properties are refinement to increase
smoothness and decimation to decrease complexity.

Both techniques together enable the generation of hier-
archical models where different levels of the hierarchy are
characterized by a varying level of detail. Here it is impor-
tant to understand the conceptual difference between topo-
logical hierarchies (coarse/fine) and geometrical hierarchies
(smooth/non–smooth) which refer to the above quality cri-
teria respectively. While decimation reduces complexity and
hence always removes detail information, the refinement can
be used to either re–insert detail information or to increase
smoothness without adding detail (cf. Fig. 1).

The mesh processing pipeline

This tutorial is organized according to a (virtual) mesh pro-
cessing pipeline. The first step in such a pipeline is usu-
ally the generation of a geometric model based on measured
point data. The raw data is obtained by mechanical or op-
tical scanning of an object’s surface (Section 2.1) and the
“point cloud” is subsequently converted into a triangle mesh
by connecting nearby samples (Section 2.2). Other sources
for surface samples are volume data sets or the results of
numerical simulations.

Once the mesh models exist, we can analyze their surface
quality. This is done by generalizing quality criteria such
as curvatures from continuous smooth surfaces to discrete
meshes (Section 3).

As mentioned above, the raw triangle mesh data might not
be appropriate for a given application in terms of smoothness
or complexity and hence we have to apply refinement or dec-
imation techniques respectively. In any case we enrich the
plain polygonal mesh data by some hierarchical semantics
in terms of increasing smoothness or decreasing complexity.

Refinement can be considered as building up the hierar-
chy from coarse to fine where so–called subdivision schemes
insert new vertices into the mesh without introducing geo-
metric detail (so that smooth meshes emerge, Section 4.1).
Another approach to generate a coarse–to–fine hierarchy are
remeshing techniques where the newly inserted vertices dur-
ing refinement are sampled from some original, highly de-
tailed surface (Section 4.2). In a remeshing algorithm the
refinement also adds geometric detail such that the resulting
surface is not necessarily smooth but a resampled version of
the original surface.

Mesh decimation builds up the hierarchy from fine to
coarse since vertices are removed from a detailed mesh such
that coarser and coarser approximations are generated (Sec-
tion 5.1). Starting from the coarsest level of detail, the origi-
nal mesh can be reconstructed incrementally by re–inserting

c© The Eurographics Association 2000.

GMU MPI Saarbrücken / Geometric Modeling

the removed vertices in reverse order (progressive meshes).
Alternatively the removed vertices can be re–inserted but
with their position altered in order to increase smoothness
while suppressing any geometric detail. Here, the vertex po-
sitions which guarantee optimal smoothness can be com-
puted by discrete fairing techniques (Section 5.2). The fol-
lowing table depicts the relation between the different tech-
niques presented in the respective sections.

smooth non–smooth

coarse–to–fine Subdivision Remeshing

fine–to–coarse Discrete fairing Mesh decimation

Finally, the preprocessed mesh models can be modified by
sophisticated editing operations. Freeform modeling can be
implemented based on subdivision schemes or based on dis-
crete fairing techniques (Section 6). The hierarchical struc-
ture further enables multiresolution modeling where global
deformations with preservation of the detail information are
possible.

c© The Eurographics Association 2000.

GMU MPI Saarbrücken / Geometric Modeling

2. Data acquisition and mesh generation

When creating a computer model of a real–world object, the
first task is to measure the relevant properties of the object
(its geometry, surface texture, volumetric density informa-
tion, etc.). This raw data then serves as a base for further
processing, for example reconstruction of the object surface.

We define data acquisition as the process starting with
actually capturing the data up to the construction of a con-
sistent model from these samples. This is described in de-
tail in Section 2.1. Techniques to create a surface mesh from
the output of the data acquisition stage are discussed in Sec-
tion 2.2.

2.1. Data acquisition

2.1.1. Introduction

There is a multitude of applications that need to acquire real–
world data, with varying requirements and demands on the
measurement process. The following is a collection of some
popular application domains:

Reverse engineering: The geometry of a real part is
scanned to create a CAD/CAM representation; this model
can then be used for further editing and integration with
other modeled parts, as well as for simulation purposes.
E.g. in the car manufacturing industry, virtual crash tests
can be performed in a non–destructive fashion.

Interrogation: A real part is scanned for comparison with
its specifications; measured deviations can be used for re-
calibration of the manufacturing process.

Pre–surgical planning: To simulate the implantation of an
artificial limb, both the patients body and the part to be
implanted are scanned and the operation can then be sim-
ulated in a virtual environment. For brain surgery, visual-
ization of a volume scan of the patients head enables the
surgeon to plan the path of a probe in advance, in order to
avoid damage to vulnerable tissue.

Diagnostics: Visualization of volume scans is an important
tool in medical diagnostics today. Shape and size of inter-
nal organs can be segmented from the volume data; this
and additional information derived from the scans (mass
density distribution, speed of blood flow, etc.) can provide
much more insight into body–internal structures and pro-
cesses than conventional examination methods.

Surface reconstruction: Using photogrammetric methods,
three–dimensional terrain can be reconstructed from satel-
lite images; this also applies to creation of architectural
models from large buildings.

Custom fitting: Computer models of generic products
(prosthetics, clothes, car seats) are built and manipulated
by software to fit the customer’s needs.

E–commerce: With the rise of Internet shopping, models of
real objects need to be transmitted to potential buyers.

Animation: Models of characters and props can be used in
film production for creation of special effects.

The generation of a CAD model of an industrial part or
a prosthetic requires very precise samples of the object sur-
face; in medical diagnostics one is mainly interested in dis-
tinguishing specific types of body tissues; e–commerce ap-
plications don’t need high precision as much as catching vi-
sual appearance, i.e. color and texture. To satisfy these dif-
ferent needs, a number of scanning techniques exist today.

Apart from mechanical probes, which sample a surface
through physical contact, non–intrusive methods are more
popular today. Since they do not disturb the physical envi-
ronment, it is possible to get reliable data even from soft
materials (e.g. human skin), and the scan process is gener-
ally faster.

A popular way to acquire surface data is range scanning;
here essentially the distance from the scanning device to
sample points on the object surface is estimated. There are
a number of ways to measure distances, depending on range
and application: optical triangulation, interferometric tech-
niques using coherent laser light or “time of flight” (radar
principle).

Especially in the medicine sector, volumetric data is mea-
sured by a number of methods, depending on the specific
type of matter (tissue, bone, etc.) that is of interest. Conven-
tional x–ray imaging can be used to reconstruct the arrange-
ment of blood vessels (angiography). Computer Tomogra-
phy (CT) also relies on x–rays, where slices of the human
body are scanned using a rotating tube. From the variations
in the measured x–ray absorption the spatial distribution of
mass density can be reconstructed. In Magnetic Resonance
Tomography (MRT) high frequency electromagnetic pulses
are generated that alter the spin of protons in the body. When
the protons re–align, a signal is emitted that is measured as
an electric current in a detector coil.

The raw output from these and other methods typically
consists of a three–dimensional voxel grid. For further pro-
cessing, surfaces need to be extracted (segmentation). This
type of volume data is very limited in spatial resolution,
and consequently more accurate 3D surface data is often ac-
quired using different techniques (e.g. by range scanning).
To get more complete information for diagnostic purposes,
datasets from different scans have to be merged and regis-
tered with each other.

Though in this section we will concentrate on range scan-
ning devices, the reconstruction of surfaces from volumetric
datasets will also be a topic in Section 2.2.

3D positions can also be reconstructed from photographic
images, which has been studied already in 191324; this has
led to photogrammetric modeling methods, facilitating re-
construction of geometry from a photographed scene15.

In the context of creating polygonal representations of
complex models, range scanning devices based on the trian-
gulation principle are the most popular ones for their flexi-
bility (scanning devices come in all sizes from pens, portable

c© The Eurographics Association 2000.

GMU MPI Saarbrücken / Geometric Modeling

constructions up to permanently installed whole–body scan-
ners) and wide range of applications.

We are now going to discuss the process of data acquisi-
tion for range scanners based on the triangulation principle.

2.1.2. Range scanning process overview

The scan process is divided into three basic steps:

1. Calibration: The system’s parameters are estimated ac-
cording to hardware and environmental characteristics;
this is a prerequisite for obtaining accurate measure-
ments.

2. Scanning: The object surface is sampled from one view,
resulting in a dense range map. Multiple passes have to be
performed to get a set of samples covering the complete
surface.

3. Registration: The acquired range scans reside within
their own local coordinate system. Thus, they have to be
aligned with each other to express them in a global frame.

The result is a dense set of sample points representing the
object surface. This “point cloud” can then be processed to
e.g. produce a triangulated model (see Section 2.2).

In the following these stages are discussed in explain these
stages in some detail.

2.1.3. Calibration

The image of an object on the scanner’s sensor array is
dependent on physical parameters of the system and the
environment. To be able to compute exact distance mea-
surements for surface samples, proper system calibration is
crucial. This can be an arduous task, if there are a lot of
parameters18.

Object characteristics like shape, color, texture and spec-
tral characteristics of the surface determine the way in which
light is reflected. Laser light of a certain wavelength may be
absorbed, subsurface scattering can distort the laser reflec-
tion, or strong reflections may lead to wrong readings18.

The external parameters of the sensor system are its pose
(rotation and translation of the optical center), the internal
parameters are e.g. size of the CCD array, pixel aspect ra-
tio, focal length and spectral characteristics of the lenses.
These are of course entirely dependent on the specific scan-
ner setup.

In addition, the lighting conditions of the environment
have to be considered.

It is practically impossible to exactly determine all of the
abovementioned parameters (or even more), so the calibra-
tion process works with a mathematical model of the system
approximating its behavior. The behavior of the real system
is measured to adjust the parameters of the model, which
might be a simple standard camera model as used e.g. in
OpenGL39, but can get arbitrarily complex, reflecting rigid

transformations, geometric distortions in the samples as well
as image space color distortions20, 18.

A common procedure is to use a calibration target, typ-
ically a white board with a regular black pattern. Since the
object geometry and surface properties are known, intrinsic
and external camera parameters can be corrected for by ana-
lyzing the captured images (color, geometry distortion) and
scans of the object (camera pose)35.

The calibration process also yields information about the
usable scan volume, i.e. the range in which samples can ac-
tually be taken within reasonable bounds of sampling reso-
lution and error. This volume is often quite small compared
to the size of the object, e.g. 14cm3 for a large statue18.

Multiple iterations of the procedure are often necessary,
manually adjusting system parameters within the degrees of
freedom, to achieve a reasonable balance between resolu-
tion, accuracy and the size of the scan volume — e.g. by
varying the sensor setup, or the distance from the object to
the scanner.

2.1.4. Scanning: range from stereo

Systems based on optical triangulation work by generating
distance values from stereo information. They exist in two
flavors: active and passive.

In a passive system two or more images are taken by (usu-
ally two or more) cameras which are mounted in a fixed spa-
tial relation to each other. The images are either already cap-
tured in digital form (CCD camera) or have to be digitized.
Pixels in one camera image are now matched to pixels in the
image of another camera5. Assuming matched pixels really
correspond to the same surface point, one can calculate an
estimate of its 3D position. The following picture shows the
basic principle in 2D:

object

b

β

α

left sensor

(x,z)
right sensor

Light is reflected off a surface point and projected onto
each camera’s CCD array. Given the length b of the base
line (the line between the two cameras) and the angles α and
β related to the rays from the point through the optical center
of each camera to the sensor, the intersection point (x, z) of
these rays can be computed. By assigning depth values to
each pixel in the sensor array, a range map is created as the
result of a single scan.

c© The Eurographics Association 2000.

GMU MPI Saarbrücken / Geometric Modeling

Successful matching of pixels in a passive stereo system
relies on distinguishable intensity variations of the surface.
This led to development of active systems, where the prin-
ciple is altered by replacing one detector with a controlled
light source such as a laser or a projector casting a grid of
structured light22:

α

laser source

deflector

The sensor now detects the reflection of the point(s) on
the object illuminated by the light source. A laser scanner
traces the surface along a grid, while other systems use a
succession of different stripe patterns or just a single vertical
stripe moving across the surface31.

Because of their increased robustness, active systems
are by far dominant in industrial applications. Problems
may still arise, though, e.g. if textures interfere with dense
stripe patterns. In general, scanning works best with “well–
behaved” surfaces, that are smooth and have low reflectance.

Triangulation scanners have the common problem of
shadowing, due to the separation of light source and detec-
tor; parts of a non–convex object may not be reached by the
light from the projector or may not be seen by the detector,
as shown here:

detector doesn’t see lit point point in shadow of projector

Obviously, the longer the base line, the more shadowing
occurs. On the other hand, a longer base line increases nu-
merical precision of the distance measurements. So there is
a tradeoff between getting enough data and achieving high
accuracy. Some approaches use more than one camera to get
more data and to simultaneously increase the reliability of
the distance estimate29, 31.

Related to shadowing is the beam location error. To lo-
cate the precise position of a detected light spot or stripe
projected onto the object surface, it is generally assumed
that the light beam and its reflection have Gaussian inten-
sity distribution, with the highest intensity at the center of
the “bump”. This results in problems in locating the stripe,
if the basic assumption of a planar surface and a fully visi-
ble stripe is violated; finding the center of the stripe (or spot)
fails in this case:

partial occlusion

ideal reflection

partial illumination

A possible solution to this problem is so–called spacetime
analysis13: Instead of guessing where the center of the beam
on the surface is at a given time, the change in intensity per
pixel over time as the beam sweeps across the surface is con-
sidered. It is assumed that the beam is wide compared to the
step width of the sweep; over time, the intensity of a specific
pixel increases, reaches its maximum, then decreases again.
This time–varying profile is always Gaussian, so it can be re-
liably estimated, when the beam was centered on that pixel.

2.1.5. Registration

When scanning complex objects, multiple scans are taken
— which usually means, that either the object or the scanner
have to be repositioned. After scanning, the range images
are given in their own local coordinate system; these datasets
need to be put into one common frame for reconstruction of
the surface.

The problem can be seen as equivalent to finding the rigid
transformations of the scan sensor between the individual
scans, which for some systems is already known, e.g. cylin-
drical scanners, where the scan head is moved under soft-
ware control — the relative motion is thus likely to be di-
rectly available. Often, especially for surfaces with little in-
herent structure, special markers are applied to the physi-
cal object; the desired transformation is then the one that
matches a marker in one image onto its counterpart in the
other image.

If no such external information can be used, or if re-
finement of the solution is necessary due to lack of preci-
sion, registration is done by an iterative optimization process
that tries to match the point clouds of individual scans by
minimizing distances of point pairs. It is generally assumed
that the scans have enough overlap and are already roughly
aligned (e.g. by interactively pairing prominent surface fea-
tures).

For matching multiple range images the standard ap-
proach is to register them pair–wise using a variant of the
iterated closest point method (ICP)9, 12, 40. For two point sets
A and B this roughly works as follows:

1. Determine starting transformation T from A to B.
2. Estimate correspondences between sample points in A to

points in B (using the current T), where the correspond-
ing point in B either is one of the original samples or lies
on the surface reconstructed from B.

c© The Eurographics Association 2000.

GMU MPI Saarbrücken / Geometric Modeling

3. Update T with the rigid transformation that minimizes
the mean squared distance between the points of these
pairs.

4. Repeat steps 2 and 3 (potentially re–pairing points) until
convergence.

A and B are locked in place and another scan is added.
Ideally, the transformations are computed precisely and after
“working your way around”, all scans fit together perfectly.
In practice though, the data is already contaminated: Surface
points measured from different angles or distances result in
slightly different sampled positions. So even with a good op-
timization procedure, it is likely that the n–th scan won’t fit
to the first. Multiple iterations are necessary to find a global
optimum and to distribute the error evenly.

We have to solve two problems at once here: a) Find cor-
responding point pairs; b) find the transformation that min-
imizes the distance. Since the second step depends on the
first, it is essential to find “good” point pairs. As we are deal-
ing with a non–convex optimization problem, the algorithm
can get stuck in a local minimum, if the initial starting point
is not good (which lowers the chances of correctly pairing
points).

Finding good pairs is a non–trivial task. Common heuris-
tics are to pair each point Ai:

• with its nearest neighbor B j in space;
• with the nearest B j in normal direction (point normals are

usually available with the range data);
• with the intersection point of the normal and the surface

reconstructed from B.

When pairs have been fixed, the transformation that aligns
them can be computed in closed form37. Finding better point
pairs becomes easier and more reliable from one iteration to
the next, so the process converges to some minimum.

A A

project point onto plane

BB

match closest neighbor in space

These methods for pairing points often fail, if the surfaces
are not smooth enough or the current registration is poor. A
number of heuristics have been proposed to choose “good”
pairs and discard the rest; among these are36, 19:

• Only consider overlapping regions.
• Don’t match points if their distance is too large.
• Only match points with similar point normals.
• Don’t pair boundary vertices.
• Only consider the 90% best matches.

Searching closest points in sets of hundreds of thousands
of points in space can take considerable time. The proce-
dure can be sped up by projecting points directly from one
range map into another38 and performing the pairing there,

reducing the problem to 2D. It is also possible to use image
intensity information for the pairing decisions31.

The distance minimization procedure can lead to prob-
lems, if most of the paired points are very close to each other
and only a few are far apart. Then the surface is prevented
from moving closer to the correct solution, sticking to an
unacceptable local optimum:

BA

registration of A and B stuck in local optimum

For this reason, other approaches have been proposed that
do not directly minimize the distance between paired points.
A detailed discussion of these methods is beyond the scope
of this tutorial, so we only give some pointers to the liter-
ature here: Chen and Medioni12 e.g. minimize the distance
of a point to the tangent plane through its peer, Masuda and
Yokoya26 minimize the sum of squared distances between
all given pairs.

2.2. Triangulation of point clouds

2.2.1. Introduction

After the data acquisition (including the registration) phase
the next step in the surface reconstruction process is the gen-
eration of a single surface representation, e.g. one overall
triangle mesh, from the acquired data.

Depending on the application and the structure of the in-
put data different reconstruction problems arise:

Unorganized data: We have no additional information
other than the sampled points. This is the most general
case and therefore also the computationally most expen-
sive one, because we do not exploit any additional infor-
mation we might have. There was a state–of–the–art re-
port at Eurographics ’98 by Mencl and Müller28.

Contour data: In medical applications the input model is
often sliced into thin layers each of which is then digitized
to a contour line. Here one can exploit the fact that these
contours are closed polygons arranged in parallel stacks.

Volumetric data: Also in the medicine sector we have vol-
umetric data measured by e.g. MRT or CT imaging. Here
we get a 3D–grid as input data and basically have to do
iso–surface extraction, e.g. using the well–known March-
ing Cubes algorithm25. But the Marching Cubes algorithm
does not produce optimal results. If the edge length of the
voxel grid is too big, aliasing artifacts are clearly visible.
Additionally, arbitrarily bad shaped triangles can occur in
the resulting mesh (cf. Fig. 2). The grid size should be
chosen carefully since the mesh size grows quadratically.

Range data: The input data is a collection of range images
that are assumed to be registered into a common coordi-
nate system (cf. Section 2.1.5). A range scanner typically
produces a rectangular grid of depth values or 3D–points,
so we have adjacency information for the points of each

c© The Eurographics Association 2000.

GMU MPI Saarbrücken / Geometric Modeling

Figure 2: A model generated by applying the Marching Cubes algorithm to a volumetric distance function (left). Notice the
aliasing artifacts at sharp feature lines and the badly shaped triangles (right).

single scan. The difficulty is the integration of the differ-
ent scans into one single mesh. Another problem is the
huge amount of data, that is typically generated by the
uniform (over–) sampling of the scanner.

Regardless of the underlying structure of the data we can
divide the possible approaches into two groups, depending
on whether they produce an

interpolation of the input data: the vertices in the resulting
mesh are the original sampled points, or an

approximation to the sample points. Especially for range
data we want an approximating rather than an interpolat-
ing mesh to get a result of moderate complexity.

The approaches presented in this section can be classified
as follows:

Sculpting based: This class of algorithms is used to re-
construct a surface from an unorganized point cloud and
produces an interpolating mesh. These algorithms have
in common that they first build a tetrahedrization (usu-
ally the 3D Delaunay triangulation30, 6) of the point set to
get some kind of global shape of the object. Afterwards
heuristics are used to select a subset of the 2–simplices
(i.e. triangles) as the resulting mesh. These approaches
are capable of reconstructing surfaces from very sparsely
sampled data. The drawback is the computational com-
plexity and memory consumption for building the initial
tetrahedrization.

Volume based: This technique can be used to reconstruct
a surface from structured or unstructured sample data.
Here an estimated distance for each sampled point is in-
serted into a voxel or octree structure and the result is ex-
tracted from this structure, e.g. using the Marching Cubes
algorithm. Therefore these approaches produce approxi-
mations to the sampled points, and the edge length of the
volumetric grid controls the complexity of the output.

Incremental/region–growing: This class of algorithms
starts with a seed and incrementally grows this seed un-
til the whole input data is covered. The seed may be a
triangle, an edge, the first range image or a wireframe ap-
proximation.

2.2.2. Sculpting based approaches

2.2.2.1. Alpha–Shapes Edelsbrunner and Mücke17 gener-
alized the notion of convex hull to the parameterized α–
shapes. The α–shape of a set of points in 3–space is a poly-
tope that does not need to be convex, connected or a 2–
manifold. A triangle, edge or vertex belongs to the α–shape
iff it has a circumsphere of radius at most α that is empty of
other sample points. For α =∞, the α–shape is the convex
hull of the point set, for α = 0 it is the point set itself. As
α decreases the α–shape shrinks by developing cavities (cf.
Fig. 3).

The α–shape is related to the Delaunay triangulation (DT,
cf. 30, 6) in the following way:

∀ simplex s ∈ DT ∃ αs > 0 : s ∈ αs-shape.

Conversely for 0≤ k ≤ 2 every k–simplex of the α–shape is
a simplex of the DT and therefore

{k-simplices of DT} =
⋃

0≤α≤∞
{k-simplices of α-shape} .

The α–shape of a point set can be calculated by first build-
ing the DT and eliminating all k–simplices, 0≤ k≤ 3, whose
minimum enclosing sphere has radius greater than α. Think
of the DT filled with styrofoam and the vertices being more
solid. Then the geometric intuition behind α–shapes is to use
a spherical eraser tool with radius α that carves out the sty-
rofoam wherever it can pass between the vertices.

In a last step the triangles that belong to the resulting sur-
face are extracted out of the α–shape based on the following
heuristic: A triangle belongs to the surface if at least one of
the two α–spheres that interpolate the triangle’s vertices is
empty of other points.

The difficulty with this approach is to find a suitable value
for the global parameter α. If it is too small, holes and gaps
will occur; if it is too big, cavities may not be preserved. In
the presence of varying sampling density this gets even more
complicated.

c© The Eurographics Association 2000.

GMU MPI Saarbrücken / Geometric Modeling

Figure 3: α–shapes for decreasing values of α. The models have been created using the “Alpha Shapes” software by Edels-
brunner et al. (http://www.alphashapes.org/alpha/index.html).

Pros/Cons:

+ Elegant theoretical formulation.
– Global variable α has to be found experimentally.
– Problems with varying sampling density.
– Computationally expensive.

2.2.2.2. Voronoi–Filtering Amenta et al.3, 2 present an al-
gorithm for surface reconstruction from a given point cloud.
The remarkable feature is the provability of their algorithm:
given a “good” sample of a smooth surface (i.e. twice–
differentiable manifold) without boundary the algorithm will
reconstruct a surface that is topologically equivalent to the
original surface and will converge to it both pointwise and
in surface normal as the sampling density increases.

The intuition behind the definition of a “good” sample is
that featureless areas can be reconstructed from fewer sam-
ple points, while in detailed regions the sampling has to be
more dense. A set of sample points S of a surface F is good,
if the sampling density is (up to a factor r) inversely propor-
tional to the distance to the medial axis (ME) of F:

S is a “good” sampling :⇔
∀p ∈ F : dist(p,S) ≤ r ·dist(p,ME(F))

The medial axis of F is the closure of all points having
more than one closest point on F and can be thought of as the
continuous extension of the Voronoi diagram30. Therefore
this definition of a good sample respects the curvature of F
as well as the proximity of two sheets of the surface. Amenta
et al. prove their results for r ≤ 0.06, but also state that in
practice r = 0.5 is generally sufficient.

For every sample point s ∈ S two poles p+
s and p−s are

defined as the two vertices of the Voronoi cell of s that are
farthest from s and on opposite sides of the surface F . The
observation is that the Voronoi cell of a vertex is long and
thin and roughly perpendicular to the surface F . Therefore
n+

s := p+
s − s and n−s := p−s − s are good approximations

to the surface normal at s (it can be proven that the angular
error is linear in r).

The actual algorithm is sketched as follows:

1. Compute the Voronoi diagram of S.
2. ∀s ∈ S: compute the poles p+

s and p−s .
3. Compute the Delaunay triangulation of the union of S and

all poles.
4. Keep the triangles whose vertices are all sample points

(Voronoi filtering).
5. Normal filtering and manifold extraction.

After performing steps 1–4 one gets what Amenta et al.
call the crust of the sample points. This is not necessarily a
manifold and therefore a normal filtering step discards trian-
gles whose normals differ too much from n+ or n−. After-
wards manifold extraction keeps only the outside surface of
the remaining triangles.

Pros/Cons:

+ Reconstruction from point clouds.
+ Provable reconstruction.
+ Adaptive resolution (by adaptive sampling).
– Complexity of O(n2) and high memory needs because of

the Delaunay triangulation.
– Problems with noise, sharp edges, boundaries.

2.2.2.3. Others An approach similar to the one by Amenta
et al. is the “Delaunay sculpting” of Boissonnat10. He also
builds the Delaunay triangulation in a first step and removes
tetrahedra using a heuristic based on their circumspheres. To
overcome the problem of the global parameter α in α–shape
based approaches, Edelsbrunner16 introduced weighted α–
shapes. Teichmann and Capps34 use varying values of α to
adapt to the local sampling density. Bernardini et al.7 au-
tomatically determine the optimal value for α and use the
α–shape of the point set for the construction of a signed dis-
tance function.

2.2.3. Volumetric approaches

2.2.3.1. Reconstruction from unorganized points Hoppe
et al.21 address the issue of reconstructing a surface from un-
organized points. The algorithm consists of two stages. In
the first stage a signed distance function is constructed. This

c© The Eurographics Association 2000.

GMU MPI Saarbrücken / Geometric Modeling

function maps a point in 3–space to an estimated signed dis-
tance to the unknown surface. Therefore the unknown sur-
face is approximated by the zero–set of this function, points
outside the object have positive, points inside have negative
distance. In the second stage the zero–set is extracted using
the Marching Cubes algorithm.

The critical step is the first stage, the estimation of the
signed distance. To construct it, an oriented tangent plane
is associated to each sample point. These tangent planes are
a good local approximation to the unknown surface and the
distance of a point p ∈ IR3 to it is defined to be the dis-
tance to the plane associated to the sample point nearest to
p. While the estimation of an unoriented tangent plane to
a sample point s ∈ IR3 only requires a least square fit to s
and its k nearest neighbors, the difficulty is to establish a
consistent orientation of these planes. Consider two samples
points si, s j that are geometrically close. If the sampling is
dense and the surface is smooth, then the corresponding nor-
mal vectors at these points are assumed to be almost paral-
lel, i.e.

∣

∣nin j
∣

∣ ≈ 1. This would give us an unsigned distance
function. To get a signed one we have to ensure that the two
normals are not only almost parallel, but also pointing in ap-
proximately the same direction, i.e. nin j ≈ +1. This condi-
tion should hold for all sample points that are sufficiently
close to each other.

This can be formulated as a graph optimization problem.
The nodes represent the tangent planes and are connected by
an edge if the corresponding sample points are sufficiently
close. To decide which nodes to connect, an enriched Eu-
clidean Minimum Spanning Tree is constructed. The orienta-
tion is propagated along this tree by traversing the minimum
spanning tree with the cost of edge (si, s j) being 1−

∣

∣nin j
∣

∣,
therefore favoring the propagation between samples with
almost parallel normals. After this orientation step we are
now able to define the signed distance function as described
above.

Using a variation of the Marching Cubes algorithm the
zero–set of the distance function is extracted. To alleviate
the problem of badly shaped triangles Hoppe et al. collapse
small edges in a postprocessing step using an aspect ratio
criterion.

Pros/Cons:
+ Can handle large, unstructured point clouds.
+ Robust in the presence of noisy input data.
+ One can control the output size by adjusting the grid size

of the iso–surface extraction step.
– There is no adaptive resolution. The vertices in the out-

put are uniformly distributed, regardless of highly curved
or featureless areas of the surface. If one does not want
to lose small features this will lead to complex output
meshes.

– As already mentioned, the Marching Cubes algorithm
can produce poorly shaped triangles. This makes a post–
processing step necessary.

2.2.3.2. Reconstruction from range images The ap-
proach of Curless and Levoy14 is similar to the method of
Hoppe et al., but tuned for handling complex range data.
They also build a signed distance function and get their re-
sult by an iso–surface extraction step. Additionally they take
into account the special problems and structures that come
with the integration of separate range images:

• Range uncertainty: For every sampled point of a range
image one can derive a reliability value.

• Utilization of all range data, including redundant sam-
plings.

• Incremental updating: After each scan a reconstruction
can be done and be improved by adding another scan. This
should be independent of the order in which the separate
scans are processed.

• Robustness: The algorithm should produce stable results
even in the presence of noise and outliers in the data.

• Ability to fill holes: When scanning non–trivial objects,
there are always regions that cannot be captured because
of self–shadowing (cf. Section 2.1.4).

The global distance function is generated by a weighted
average of the distance functions of the individual range sur-
faces. The weighting should be chosen specific to the range
scanning technology in order to take the range uncertainty
into account. In their case the weights depend on the dot
product between the vertex normal and the scanning direc-
tion, leading to greater uncertainty in regions measured un-
der a flat angle. The averaging of redundant measurements
can reduce sensor noise.

The distance function of a single range image is con-
structed by triangulating the sampled points using the pixel–
grid neighborhood information and assigning a weight to
each vertex. To evaluate this function at a point v ∈ IR3,
this point gets projected onto the range mesh along the sen-
sor’s line of sight. If an intersection x occurs at a triangle t
the weight w is computed by barycentric interpolation of the
weights of t’s vertices and the result is the distance from v to
x weighted by w.

The global distance function is evaluated on the voxel grid
that is used for the iso–surface extraction afterwards. When-
ever an additional range image is generated, the global dis-
tance and weighting function and their values at the grid ver-
tices are updated.

The hole filling operates not on the reconstructed mesh,
but directly on the volume. All points in the volume are clas-
sified to one of three states:

• Unseen: The initial value for all voxels.
• Near the surface: These voxels take on the signed distance

and weighting values as described above.
• Empty: By performing a space carving step, i.e. by trac-

ing all lines of sight from a sensors position to the ob-
served points in the corresponding range image the tra-

c© The Eurographics Association 2000.

GMU MPI Saarbrücken / Geometric Modeling

versed voxels are marked as empty. This technique is very
likely to remove outliers.

Holes in the extracted surface are frontiers between un-
seen and empty regions. To fill these holes the iso–surface
extraction is not only performed for the zero–set of the
distance function, but also between unseen and empty re-
gions. By assigning specific distance and weighting values
to empty and unseen grid vertices this can be done in one
single extraction step.

To achieve space efficiency the volume gets run–length
encoded. To achieve time efficiency by faster volume traver-
sal each range image is resampled so that its scanlines are
aligned to the scanlines of the volume grid. Therefore both
the range image and the volume can simultaneously be pro-
cessed in scanline order. This approach is well suited for
handling huge amounts of data, as was proven in the Dig-
ital Michelangelo project18.

Pros/Cons:

+ Can handle huge amounts of data.
+ Robust (noise, outliers).
+ Output size controllable.
– No adaptive resolution.
– Marching Cubes problems.

2.2.3.3. Others Pulli et al.32 present a method for the re-
construction from a sequence of range maps. They first build
a hierarchical octree representation of the object. Every cube
that is neither completely inside nor completely outside the
object is recursively subdivided up to a maximum level. Af-
terwards a triangle mesh is extracted from the volume data.
Their approach is able to handle noise and outliers and to
fill holes at missing data. Bajaj, Bernardini and Xu4 build
a signed distance function by first computing the α–shape
of the object to which they fit implicit Bernstein–Bézier
patches.

2.2.4. Incremental approaches

2.2.4.1. Ball pivoting The Ball–Pivoting Algorithm (BPA)
of Bernardini et al.8 generates an interpolating triangle mesh
from a given unstructured point cloud. They assume that an
oriented normal vector is available for each point and that the
sampling density has a global minimum. The normal vectors
are used to determine the surface orientation and for con-
sistency checks when generating triangles (all three normals
should point in roughly the same direction). Range data au-
tomatically fulfills both requirements. Otherwise techniques
like the ones described in 21, 3 can be used to estimate the
normal vectors, but this can be quite expensive (orientation
problems, Voronoi diagram).

The basic principle of the BPA is very simple and intu-
itive: we start with a seed triangle and a ball of user defined
radius ρ sitting on this triangle (i.e. interpolating its three
vertices). This ρ–ball is pivoted around an arbitrary edge of

the current boundary (initially the edges of the seed triangle)
until it touches another sample point. This pivoting is basi-
cally a circular movement of the ball’s center in the plane
perpendicularly bi–secting the edge whilst always staying in
contact with the two edge vertices. If the ρ–ball hits another
sample point on its movement around the edge a new triangle
is created from the edge and this point. The boundary is ad-
justed accordingly and the pivoting is continued. The update
of the boundary front may change its topology, e.g. a loop
of edges may be split, or two loops may be merged into one.
As the ball walks on the sample points the mesh grows un-
til the whole connected component is reconstructed. If there
are multiple connected components, a new seed triangle is
chosen and the process is repeated.

A nice feature of the BPA is that it is strongly related to
α–shapes: by construction every BPA–generated triangle has
an empty circumsphere of radius ≤ ρ (cf. Section 2.2.2.1).
Therefore all triangles resulting from pivoting a ρ–ball are
a subset of the ρ–shape of the point set. Because of this
relationship it can be proven that for a sufficient sampling
of a smooth manifold the BPA produces a homeomorphic
approximation with an error bound of ρ. Additionally the
BPA is guaranteed to generate 2–manifolds, so no cleaning
up step is necessary. By using out–of–core processing tech-
niques this algorithm is able to handle very large datasets1.

Pros/Cons:

+ Can handle large real–world scans.
+ Out–of–core triangulation possible.
+ Moderate memory consumption (no Delaunay triangula-

tion).
– No adaptive resolution (requires uniform sampling).

2.2.4.2. Interactive approach While the existing tech-
niques are off–line algorithms, the approach of Kobbelt and
Botsch23 incorporates user interaction during the surface re-
construction. Their approach generates a mesh approximat-
ing hybrid input data (e.g. points, triangles, or even NURBS
patches). Resolution and alignment of the triangles can be
adapted manually to varying detail level and quality require-
ments in different regions of the object (cf. Fig. 4).

The concept behind the user interface is to simulate a vir-
tual 3D scanning device. The input data is displayed in an
OpenGL window, the user can view it from arbitrary posi-
tions and angles. In an interactive scanning session the user
adds one scan after the other to the previously generated
model. One iteration consists of placing, scaling (→ reso-
lution) and orienting (→ alignment) the object on–screen,
determining the valid region of interest, extracting the patch
and automatically stitching it to the already existing mesh.

When rendering geometry with enabled depth–buffering
a depth value for every pixel is stored in the z–buffer. While
the graphics system uses this information to determine mu-
tual occlusion, the virtual scanner reads this data and un–
projects it back into 3–space. The result is a range image

c© The Eurographics Association 2000.

GMU MPI Saarbrücken / Geometric Modeling

Figure 4: The interactive approach provides an intuitive in-
terface to locally adapt the mesh resolution to specific re-
quirements for the resulting model by simply zooming the
point cloud. Here the ear and the eye have been z–buffer
scanned with a higher density.

containing a 3D sample point for every pixel. This range
image is filtered, a user defined mask selects the region of
interest and the remaining vertices can be trivially triangu-
lated because of the underlying pixel–coordinate parameter-
ization. Zooming in on the object will result in a finer tri-
angulation. By rotating the object so that geometric features
are horizontally or vertically aligned, the edges of the trian-
gulation will be aligned to these features by construction.

Since the scanning process is mainly the outcome of one
rendering step all objects that can be rendered can also be z–
scanned. So this approach can also be used for the remeshing
of objects with poor triangle quality. When scanning point
clouds the sampling is assumed to be sufficiently dense,
so that the rendered points form a connected area without
(large) holes on the screen. Smaller holes can be interpo-
lated by the graphics hardware by choosing a bigger point
size (→ nearest neighbor interpolation).

If the acquired scan overlaps with the previously gener-
ated model, an automatic quality mask ensures that only the
better part is kept. This requires a projection of the new scan
onto the old mesh. This expensive quadratic search can be re-
duced to one ID–rendering step that is done by the graphics
hardware. The remaining patch gets stitched into the existing

mesh using a modification of the mesh zippering algorithm
of Turk and Levoy36.

By out–sourcing the computationally expensive tasks to
the graphics hardware (subsampling, range image, mesh pro-
jection) the program stays interactive even for large input
data. The amount of input data only effects the rendering
speed, the scanning and stitching only depends on the size
of the object in screen space. The memory consumption is
much lower than for most other approaches, since no ad-
ditional space partitioning structures have to be generated
(like e.g. Delaunay triangulation, Voronoi diagram or search
structures).

An extension of this approach that uses feature–sensitive
sampling instead of the regular grid of the z–buffer is pre-
sented in 11. This avoids aliasing artifacts at curved feature
lines (cf. Fig. 5).

Figure 5: Using feature–sensitive sampling for curved fea-
ture lines enables optimal alignment of the mesh to the un-
derlying geometry.

Pros/Cons:

+ Interactivity: the user can directly influence the result.
+ Adaptive resolution and adjustable alignment.
+ Fast by using graphics hardware.
+ Low memory consumption.
– Interactivity: no automatic algorithm.

2.2.4.3. Others Boissonnat10 starts with the edge connect-
ing the two closest sample points and generates an interpo-
lating mesh by iteratively adding triangles to the boundary
front. Mencl and Müller27 build a surface description graph,
i.e. an enhanced Euclidean Minimum Spanning Tree, per-
form a feature detection step and finally fill this wireframe
model with triangles, also leading to an interpolating mesh.
The following methods all do reconstruction from range im-
ages. Soucy and Laurendeau19 use Venn diagrams to parti-
tion the input data into non–overlapping regions which are

c© The Eurographics Association 2000.

GMU MPI Saarbrücken / Geometric Modeling

re–parameterized and merged together. In a similar approach
Turk and Levoy36 incrementally take scans, erode overlap-
ping parts and zipper them together, followed by a consen-
sus geometry step in order to minimize registration errors.
Rutishauser et al.33 merge depth images by taking into ac-
count the error along the sensor’s line of sight and a retrian-
gulation step for the redundant data.

References

1. J. Abouaf. The florentine pietá: Can visualization solve
the 450–year old mistery? IEEE Computer Graphics
and Applications, 19:6–10, 1999.

2. N. Amenta and M. Bern. Surface reconstruction by
voronoi filtering. In Annual ACM Symposium on Com-
putational Geometry, 1998.

3. N. Amenta, M. Bern, and M. Kamvysselis. A new
voronoi–based surface reconstruction algorithm. In
SIGGRAPH 98 Conference Proceedings, pages 415–
422, 1998.

4. C. L. Bajaj, F. Bernardini, and G. Xu. Automatic recon-
struction of surfaces and scalar fields from 3D scans.
In SIGGRAPH 95 Conference Proceedings, pages 109–
118, 1995.

5. S. T. Barnard and M. A. Fischler. Computational stereo.
ACM Computing Surveys, 14(4):553–572, 1982.

6. M. Bern and D. Eppstein. Mesh generation and optimal
triangulation. World Scientific, 1992.

7. F. Bernardini, C. L. Bajaj, J. Chen, and D. R. Schikore.
Automatic reconstruction of 3D CAD models from dig-
ital scans. International Journal of Computational Ge-
ometry and Applications, 9(4&5):327–370, 1999.

8. F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and
G. Taubin. The ball–pivoting algorithm for surface re-
construction. IEEE Transactions on Visualization and
Computer Graphics, 5(4):349–359, 1999.

9. P. J. Besl and N. D. McKay. A method for registration
of 3–D shapes. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 14(2):239–258, 1992.

10. J.-D. Boissonnat. Geometric structures for three–
dimensional shape representation. ACM Transactions
on Graphics, 3(4):266–286, 1984.

11. M. Botsch, Ch. Rössl, and L. Kobbelt. Feature sensitive
sampling for interactive remeshing. Preprint, 2000.

12. Y. Chen and G. Medioni. Object modelling by registra-
tion of multiple range images. International Journal of
Image and Vision Computing, 10(3):145–155, 1992.

13. B. Curless and M. Levoy. Better optical triangulation
through spacetime analysis. Technical Report CSL–
TR–95–667, Stanford University, Computer Systems
Laboratory, 1995.

14. B. Curless and M. Levoy. A volumetric method for
building complex models from range images. In SIG-
GRAPH 96 Conference Proceedings, pages 303–312,
1996.

15. P. E. Debevec, C. J. Taylor, and J. Malik. Modeling
and rendering architecture from photographs: A hybrid
geometry– and image–based approach. In SIGGRAPH
96 Conference Proceedings, pages 11–20, 1996.

16. H. Edelsbrunner. Weighted alpha shapes. Technical Re-
port UIUCDCS–R–92–1760, Department of Computer
Science, University of Illinois, Urbana–Champagne,
IL, 1992.

17. H. Edelsbrunner and E. P. Mücke. Three–dimensional
alpha shapes. ACM Transactions on Graphics,
13(1):43–72, 1994.

18. M. Levoy et al. The Digital Michelangelo Project: 3D
scanning of large statues. In SIGGRAPH 00 Conference
Proceedings, to appear.

19. H. Gagnon, M. Soucy, R. Bergevin, and D. Laurendeau.
Registration of multiple range views for automatic 3–D
model building. In Proceedings of the Conference on
Computer Vision and Pattern Recognition, pages 581–
586, 1994.

20. J. Heikkilä and O. Silvén. A four–step camera cali-
bration procedure with implicit image correction. In
Proceedings of the Conference on Computer Vision and
Pattern Recognition, pages 1106–1112, 1997.

21. H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and
W. Stuetzle. Surface reconstruction from unorganized
points. In Computer Graphics (SIGGRAPH 92 Confer-
ence Proceedings), volume 26, pages 71–78, 1992.

22. S. B. Kang, J. A. Webb, C. L. Zitnick, and T. Kanade.
An active multibaseline stereo system with active illu-
mination and real–time image acquisition. In Proc. In-
ternational Conference on Computer Vision, 1995.

23. L. Kobbelt and M. Botsch. An interactive approach to
point cloud triangulation. In Computer Graphics Forum
(Proc. Eurographics 2000), to appear.

24. E. Kruppa. Zur Ermittlung eines Objecktes aus zwei
Perspektiven mit innerer Orientierung. Sitz.–Ber. Akad.
Wiss., Wien, Math. Naturw., Kl. Abt. IIa, 122:1939–
1948, 1913.

25. W. E. Lorensen and H. E. Cline. Marching cubes: a
high resolution 3D surface construction algorithm. In
Computer Graphics (SIGGRAPH 87 Conference Pro-
ceedings), volume 21, pages 163–170, 1987.

26. T. Masuda and N. Yokoya. A robust method for
registration and segmentation of multiple range im-
ages. Computer Vision and Image Understanding,
61(3):295–307, 1995.

c© The Eurographics Association 2000.

GMU MPI Saarbrücken / Geometric Modeling

27. R. Mencl and H. Müller. Graph–based surface recon-
struction using structures in scattered point sets. In Pro-
ceedings of the Conference on Computer Graphics In-
ternational, pages 298–311. IEEE Computer Society,
1998.

28. R. Mencl and H. Müller. Interpolation and approxima-
tion of surfaces from three–dimensional scattered data
points. In Proceedings of Eurographics ’98, State of the
Art Reports, 1998.

29. M. Okutomi and T. Kanade. A multiple–baseline
stereo. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 15(4):353–63, 1993.

30. F. P. Preparata and M. I. Shamos. Computational ge-
ometry : an introduction. Springer, 1985.

31. K. Pulli. Surface Reconstruction and Display from
Range and Color Data. PhD thesis, University of
Washington, 1997.

32. K. Pulli, T. Duchamp, H. Hoppe, J. McDonald,
L. Shapiro, and W. Stuetzle. Robust meshes from multi-
ple range maps. In Proc. IEEE Int. Conf. on Recent Ad-
vances in 3–D Digital Imaging and Modeling, 1997.

33. M. Rutishauser, M. Stricker, and M. Trobina. Merging
range images of arbitrarily shaped objects. In Proceed-
ings of the Conference on Computer Vision and Pattern
Recognition, pages 573–580, 1994.

34. M. Teichmann and M. Capps. Surface reconstruction
with anisotropic density–scaled alpha shapes. In IEEE
Visualization ’98 Conference Proceedings, pages 67–
72, 1998.

35. R. Tsai. A versatile camera calibration technique for
high–accuracy 3–D machine vision metrology using
off–the–shelf TV cameras and lenses. In L. Wolff,
S. Shafer, and G. Healey, editors, Radiometry –
(Physics-Based Vision). Jones and Bartlett, 1992.

36. G. Turk and M. Levoy. Zippered polygon meshes from
range images. In SIGGRAPH 94 Conference Proceed-
ings, pages 311–318, 1994.

37. Z. Wang and A. Jepson. A new closed–form solution
for absolute orientation. In Proceedings of the Con-
ference on Computer Vision and Pattern Recognition,
pages 129–134, 1994.

38. S. Weik. Registration of 3–d partial surface models us-
ing luminance and depth information. In Proc. IEEE
Int. Conf. on Recent Advances in 3–D Digital Imaging
and Modeling, pages 93–100, 1997.

39. M. Woo, J. Neider, and T. Davis. OpenGL Pro-
gramming Guide. Second edition. The Official Guide
to Learning OpenGL, Version 1.1. Addison–Wesley,
1996.

40. Z. Zhang. Iterative point matching for registration of
free–form curves and surfaces. International Journal
of Computer Vision, 13(2):119–152, 1994.

c© The Eurographics Association 2000.

GMU MPI Saarbrücken / Geometric Modeling

3. Discrete differential geometry

3.1. Discrete curvature

While differential geometry analyzes surfaces that are suffi-
ciently often differentiable – which does not apply to meshes
directly – discrete differential geometry is based on the fact
that meshes can be interpreted as approximations of such
smooth surfaces. In the following we will start with a short
survey on differential geometry where we shortly explain
the most important geometric intrinsics, i.e. surface prop-
erties that purely depend on the geometry and not on its
specific parameterization. After that survey we will present
some popular discretization methods for various geometric
invariants.

3.1.1. Geometric intrinsics

Let S be a sufficiently smooth surface and q ∈ S be a point
on that surface.

Surface normal vector
The normal vector~n at q is a unit vector that is perpendicular
to the surface.

Normal curvature
The normal curvature κ(T) is the curvature of the planar
curve at q that results if one intersects the surface S with a
plane that contains the surface normal direction~n. Here T is
a unit vector inside the tangent plane of q, i.e. <~n,T >= 0,
that specifies the direction of the normal cut.

The tensor of curvature
The tensor of curvature assigns to each q the function
that measures the normal curvature κ(T) in the direction
determined by T . As function of the tangent vector T the
normal curvature can be formulated as

κ(T) =

(

tx
ty

)T

·
[

κ11 κ12
κ21 κ22

]

·
(

tx
ty

)

, (1)

where tx and ty are the coordinates of T in an arbitrary or-
thonormal basis of the tangent space and κ12 = κ21. The
maximal normal curvature κ1 and the minimal normal cur-
vature κ2 are called principal curvatures, the associated tan-
gent vectors T1 and T2 are called principal directions.

It is always possible to choose an orthonormal basis of
the tangent space built by two principal directions T1 and
T2. Using such a basis, equation (1) simplifies to Eulers’s
theorem:

κ(θ) = κ(T) = κ1 cos2(θ)+ κ2 sin2(θ), (2)

where θ is the angle between T and T1.

Gaussian curvature
The Gaussian curvature K is defined to be the determinant
of the matrix that defines the quadratic form (1). If we

change the orientation of the surface normal vector the
Gaussian curvature does not change. If K > 0 both prin-
cipal curvatures have the same sign, for K < 0 they have
different signs. K can be expressed in terms of the principal
curvatures:

K = κ1κ2. (3)

Mean curvature
The mean curvature H is defined to be half the trace of the
matrix in (1). It can be expressed in terms of the principal
curvatures:

H =
κ1 + κ2

2
. (4)

If we change the orientation of the surface normal vector the
mean curvature changes its sign.

The mean curvature can be interpreted as the average of
the normal curvatures since it satisfies

H =
1
π

∫ π

0
κ(θ) dθ.

3.1.2. Discretization techniques

Surface normal vector
A popular way to discretize the normal vector ~n is to use
an average of the unit normals of the triangular faces that
surround the vertex. Various averages occur in the literature,
e.g. arithmetic, area weighted or angle weighted average8.

Normal curvature
Given a normal vector ~n at a vertex q, we can discretize the
normal curvature in the direction given by a unit tangent
vector Tj that results if we project a vertex q j that is adjacent
to q into the tangent plane defined by ~n. A frequently used
discretization for such a normal curvature is given by the
formula

κ(Tj) = 2
< q j−q,~n >

< q j −q,q j−q >
. (5)

This equation results if one discretizes the mathematical
formula for the continuous case11, but there is also a
geometric explanation. This equation can be interpreted as
interpolating the vertices q and q j with a circle whose center
lies on the line defined by q and ~n and to use the inverse of
the resulting radius as normal curvature9 .

Local polynomials
A popular method to discretize geometric intrinsics is based
on the idea to interpolate or approximate a local submesh by
using polynomials. In practice the most common type are
quadratic polynomials

f (x,y) = a1x2 + a2y2 + a3xy + a4x + a5y + a6.

To be able to use that approach, one requires a planar param-
eter domain and has to assign planar coordinates to every

c© The Eurographics Association 2000.

GMU MPI Saarbrücken / Geometric Modeling

vertex in a local neighborhood of q. The straightforward ap-
proach is to first estimate a surface normal vector at a vertex
and then project the vertices into that plane. However, this
requires that the estimated normal is chosen accurately. The
surface triangulation induces an ordering on the adjacent
neighbors and this order should be preserved in the param-
eterization. If the normal plane is badly chosen, this is not
guaranteed. A solution is to choose the exponential map12 of
the 1-neighborhood around q. This operator maps the neigh-
borhood onto the plane while preserving the distances of the
vertex to its neighbors and the ratio of the adjacent angles.
The drawback is that this approach is more expensive to cal-
culate because it requires the usage of trigonometric func-
tions.

Quadratic interpolation requires that the vertex has va-
lence 5. Therefore, to be able to use all vertex information
for arbitrary vertex valences one uses least square approxi-
mation. Here the most efficient method to solve the problem
is to use the normal equations approach5 , since this mainly
involves to calculate the inverse of a symmetric matrix of
low dimension.

Once the polynomial is determined, the geometric invari-
ants of the polynomial can be used as discretization values.
For the discrete curvatures this only requires to determine
the tensor of curvature of the polynomial.

However, problems occur if the parameter values that are
assigned to the vertices lie on an algebraic curve of degree
2. In that case the least squares approximation fails and a
special case treatment — e.g. reduction of the number of
basis functions — is necessary12.

Taubin’s approach
Taubin11 proposed an algorithm to derive the tensor of
curvature. The principal curvature and principal directions
are obtained by computing in closed form the eigenvalues
and eigenvectors of certain 3 × 3 symmetric matrices
defined by integral formulas, and closely related to the
matrix representation of the tensor of curvature. As input
to his algorithm he requires discretized normal vectors and
discretized normal curvatures (equation (5)).

Moreton and Séquin’s approach
Another algorithm to estimate the tensor of curvature at
q is derived by Moreton and Séquin9. The idea behind
this approach is to use the fact that the normal curvature
distribution can’t be arbitrary, but is determined by Euler’s
theorem (2). The 2×2 matrix occurring in equation (1) can
be expressed as

K =

[

ex ey

−ey ex

]

·
[

κ1 0
0 κ2

]

·
[

ex ey

−ey ex

]−1

,

where ex and ey are the coordinates of the principal direction
T1 in the chosen orthonormal basis. Moreton and Séquin’s
idea is to estimate a discrete normal ~n and use the normal

curvatures given by equation (5) to create a linear system.
Solving this system using a least squares algorithm one
can find estimates for the unknown principal curvatures
and principal directions. A special case treatment is only
necessary, if the adjacent vertices project to two lines
intersecting at q.10.

Estimating the Gaussian curvature
The advantage of the last three methods is that once the
principal curvatures are discretized, one can also derive
other important invariants from that information, as the
Gaussian curvature or the mean curvature using eq. (3) or
(4). If only the Gaussian curvature is needed, one can use
the spherical image method or the angle deficit method.
The idea of these approaches is to discretize a theorem for
defining the Gaussian curvature on a smooth surface derived
from a theorem by Rodrigues (see e.g.3).

Using the angle deficit method one can discretize the
Gaussian curvature at q with the well known formula

K =
2π−∑ j θ j

1
3 ∑ j A j

,

where θ j are the inner angles adjacent to q and A j the corre-
sponding triangle areas.

3.2. Quality control for meshed surfaces

This section gives a brief overview over techniques for rat-
ing the quality of triangular meshes. Quality control may be
applied on the raw data immediately after mesh generation
or on preprocessed data (cf. Section 2).

The techniques presented here are used to visualize sur-
face quality in order to detect surface defects. They can
be implemented in a straightforward way while still being
effective and can be used interactively. The methods are
adapted from smooth free-form surfaces (e.g. NURBS), and
we may take advantage of the previously introduced con-
cepts of discrete differential geometry (cf. Section 3.1).

3.2.1. What is the quality of a triangle mesh?

The answer to this question depends on what the mesh is
used for. Different applications may require different quality
criteria. We concentrate on the following:

Smoothness: Take a brief look at the situation when using
NURBS patches: They have inherent Cn smoothness (e.g.
C2 for cubic splines) by construction and one is usually
interested in smooth connections across patch boundaries.
Naturally, one would not expect something like “patch
boundaries” inside a triangle mesh. But such boundaries
may emerge e.g. when filling holes in a given mesh.

Fairness: A smoothness criterion is not sufficient for gen-
erating high quality, highly aesthetic surfaces. A so called
fairness criterion must be added. Usually this is defined
as low variation of curvature in contrast to continuity of

c© The Eurographics Association 2000.

GMU MPI Saarbrücken / Geometric Modeling

0

1

0.7

0.7

0.7

light

1D texture

0.3

0.2

0.9

Figure 6: Isophotes. The middle part of the surface was blended between the three tubes, the boundary conditions are C1.
The discontinuities of the curvature at the joints are hard to detect from the flat shaded image (left), but clearly visualized by
isophotes (middle) since C1 blends cause C0 isophotes. The right image sketches the rendering of isophotes with a 1D-texture:
The illumination values are calculated for the vertices of a triangle from vertex normals and the light direction. These values
are used as texture coordinates. The texel denoting the iso-value is colored black. Iso-lines are interpolated within the triangle.

curvature (smoothness). So, we will use the results of the
previous section for rating fairness (see also Section 5.2).

Shape of triangles: Some applications require “well
shaped” triangles, e.g. simulations using Finite Element
Methods (FEM) or Computational Fluid Dynamics (CFD)
while other applications (e.g. rendering) may neglect
this property. So we need to check constraints on shape
parameters such as angles and area (cf. Section 5.1.7).

3.2.2. Visualizing smoothness

Our aim is interactive surface visualization; hence we try to
exploit graphics hardware. Therefore a given surface is tes-
sellated to a set of triangles for rendering (in contrast to non-
interactive rendering techniques like ray-tracing). As we can
think of the mesh as an accurate tessellation of e.g. a set of
NURBS patches we will use the same techniques for quality
control that are used for smooth surfaces6.

3.2.2.1. Specular shading The simplest visualization
technique is to use standard lighting and shading (Phong il-
lumination model, flat- or Gouraud shading) as provided by
the graphics subsystem 4, 13.

The local illumination of a vertex depends on the position
of the light sources, on the surface normal and on the view
point/direction.

This approach to surface interrogation is the most straight-
forward one, but it is difficult to find minor perturbations of
a surface (cf. Fig. 6, left).

3.2.2.2. Isophotes Isophotes are lines of constant illumi-
nation on a surface. Here, one assumes that there is only dif-
fuse or Lambertian reflection. As a consequence, isophotes
are independent of the view point. For this application one

single, infinitely distant point light source is assumed. So the
illumination IP of a surface point P is given by

IP = max
{〈

NP L
〉

,0
}

,

where NP is the surface normal at P and L is the direction
of light4. Both vectors are normalized, so the value of IP is
in the interval [0,1]. Now some values Ic, j ∈ [0,1] = const

(e.g. Ic, j = j
n , j = 0, . . .,n) are chosen and the isophotes/iso-

curves I = Ic, j are rendered.

The resulting image makes it easier to detect irregularities
on the surface compared to standard shading. The user can
visually trace the lines, rate their smoothness and transfer
these observations to the surface: If the surface is Ck contin-
uous then the isophotes are Ck−1 continuous (cf. Fig. 6).

There are two approaches to rendering iso-curves such
as isophotes: The first approach is to explicitly extract the
curves or curve segments and then display them as lines.
Here, in principle the same algorithms as for extracting iso-
surfaces can be applied (Marching Cubes7, cf. Section 2.2).
Fortunately the situation for extracting a curve on a surface
is easier (“marching triangles”).

The second approach takes advantage of the graphics
hardware and allows direct rendering of isophotes from il-
lumination values in the vertices of a triangle mesh:

A one-dimensional texture is initialized with a default
color C. Illumination values IP are now treated as texture
coordinates, and for the isophote values Ic, j the correspond-
ing texels are set to color C j 6= C. The illumination values
Ic, j are evaluated at every vertex and used as texture coor-
dinates. With this setup the graphics subsystem will linearly
interpolate the 1D texture within the triangles resulting in a
rendered image of the isophotes (colors C j) that are drawn
onto the surface (color C) 13 (cf. Fig. 6).

c© The Eurographics Association 2000.

GMU MPI Saarbrücken / Geometric Modeling

The 1D texture approach benefits more from the graphics
hardware in contrast to explicitly calculating line segments.
A drawback is that the width of the curves varies due to tex-
ture interpolation.

3.2.2.3. Reflection lines In contrast to isophotes a specular
surface is assumed for reflection lines. As a consequence re-
flection lines change when the point of view is modified resp.
when the object is rotated or translated. The light source con-
sists of a set of “light-lines” that are placed in 3-space space.
Normally, the light-lines are parallel lines (cf. Fig. 7).

Traditionally, reflection lines have been used in the pro-
cess of designing cars. An arrangement of parallel fluores-
cent tubes is put in front of the car model to survey the sur-
face and its reflection properties.

eye

light sources

lines
reflection

Figure 7: Reflection lines. The light source consists of par-
allel lines that are reflected by the surface. The reflection
property requires that angles of incidence (light,normal) are
equal to angles of emission (viewing direction,normal).

Under the assumption that the light source is infinitely far
away from the object, environment mapping13 can be used
to display reflection lines in real-time. A texture for envi-
ronment mapping is generated once by ray-tracing the light
sources over a sphere. The graphics subsystem will then au-
tomatically generate appropriate texture coordinates for ev-
ery vertex depending on its relative position and normal.

Reflection lines are an effective and intuitive tool for sur-
face interrogation. If the surface is Ck continuous then the re-
flection lines are Ck−1 continuous. Just like isophotes, they
can be efficiently rendered by taking advantage of graphics
hardware and they are also sensitive to small surface pertur-
bations. In addition, the concept that a real-world process is
simulated makes their application very intuitive even for un-
experienced users. Fig. 8 shows reflection lines for C0, C1

and C2 surfaces. Reflection lines are also used to show sur-
face quality in Section 5.2.

3.2.3. Smoothness vs. fairness

The first two quality criteria listed above are smoothness and
fairness. Smoothness denotes the mathematical definition of
continuous differentiability (Cn). While smoothness is nec-
essary to guarantee high quality surfaces, it is not sufficient.

A surface may be smooth in a mathematical sense but still
looking awkward from an aesthetical point of view. This is
where fairness comes in: fairness is an aesthetic measure of
“well-shapedness”, it is therefore more difficult to define in
technical terms than smoothness (distribution vs. variation
of curvature) 1:

An important rule is the so called principle of simplest
shape that is derived from fine arts. A surface is said to be
well-shaped if it is simple in design and free of unessential
features. So a fair surface meets the mathematically defined
design goals (e.g. interpolation, continuity) while being nice
looking in this sense. There are several approaches to formu-
late the latter term in a precise, mathematical way.

The most common measures for fairness are motivated by
physical models like the strain energy of a thin plate

∫

κ2
1 + κ2

2 dA

or differential geometry like the variation of curvature

∫

(

∂κ1

∂~e1

)2

+

(

∂κ2

∂~e2

)2

dA

with principal curvatures κi and principal directions~ei.

In general, some surface energy is defined that punishes
“bad-shapedness”, and curvature is used to express these
terms as it is independent from the special parameterization
of a surface. A fair surface is then designed by minimizing
these energies (cf. Section 5.2). Our current goal is not to
improve but to check surface quality, so we need to visualize
these energies.

Note that there are also different characterizations of fair-
ness like aesthetical shape of isophotes/reflection lines14.

3.2.4. Visualizing curvature and fairness

If fairness is expressed in terms of curvature we have to visu-
alize curvature to evaluate fairness. We obtain curvature val-
ues in every vertex of a triangle mesh by applying the tech-
niques presented in the previous section (cf. Section 3.1).

3.2.4.1. Curvature values The technique suggested in the
following sections will visualize arbitrary “curvature val-
ues”. Any useful scalar value d that is a measure for discrete
curvature can be used (cf. textbooks on differential geometry
like 3 for detailed explanations). Here are some examples:

• the Gaussian curvature K = κ1κ2 that indicates the local
shape of the surface (elliptic for K > 0, hyperbolic for
K < 0 and parabolic for K = 0∧H 6= 0 resp. flat for K =
0∧H = 0). A local change of the sign of K may denote a
(even very small) perturbation of the surface.

• the mean curvature H = 1
2 (κ1 + κ2)

• the maximum curvature κmax = max{|κ1|, |κ2|}
• the total curvature κ2

1 + κ2
2 that is used in the previously

mentioned thin plate energy.

c© The Eurographics Association 2000.

GMU MPI Saarbrücken / Geometric Modeling

Figure 8: Reflection lines on C0, C1 and C2 surfaces. One clearly sees that the differentiability of the reflection lines is one
order lower, i.e. C−1, C0 and C1 respectively.

3.2.4.2. Color coding scalar values We visualize scalar
values directly on the surface, i.e. every vertex is assigned a
color value. The graphics subsystem will then linearly inter-
polate colors within the triangles. All lighting calculations
must be turned off for this purpose. There are lots of ways
for color coding, one of them is the following:

Assume a scalar value di is given for every vertex Vi,
e.g. di may denote any type of curvature. Now let dmax :=
max{di} and dmin := min{di}. Data values are scaled by the
following function scale : [dmin,dmax]→ [−1,1] with

scale : d 7→
{

−d/dmin : d < 0
d/dmax : d ≥ 0

Positive and negative values are scaled separately such that
the zero level is preserved. Notice that the value 0 is usually
of special interest. So dmin ≤ 0 ≤ dmax is assumed. Other-
wise, the origin (“green line”, see below) should be shifted
appropriately.

The red and blue color components are used to indicate
positive resp. negative data values. All vertices and all dis-
played pixels are to have equal intensity (r+g+b=1). So the
green component is used to “fill up” intensity. Assume color
components range from 0 to cmax, e.g. cmax = 255. The func-
tion rgb : [−1,1]→ [0,cmax]

3 assigns to each value a RGB
triple with intensity cmax.

rgb : d′ 7→
{

(0, (1 + d′)cmax,−d′cmax) : d′ < 0
(d′cmax, (1−d′)cmax,0) : d′ ≥ 0

Fig. 10 shows the RGB mapping on the right side. Zero
values are displayed in bright green, dmin and dmax result in
blue and red respectively.

Data values d ∈ [dmin,dmax] can now be mapped to RGB
values by rgb(scale(d)). Many applications need enhanced
contrast in the vicinity of zero and less near dmin and dmax.
Therefore a new parameter γ ∈ (0,1] is introduced that ad-
justs the “contrast” of the visualized data. Then the value d

is mapped to a RGB triple by

rgb(scale(d)γ)

For γ = 1 we obtain the original mapping. With decreasing γ,
the resolution increases for values near 0, i.e. a greater range
in the color table is used for those values. Fig. 9 illustrates
the color coding for γ = 1 and γ < 1 on a model of captured
from a bust of Max Planck.

G

R

scale(d)

B

1

-1 -0.5 0 0.5 1

0.5

0

-0.5

-1

Figure 10: Color coding. Left: d is mapped to [−1,1] by
scale, resolution near 0 may be enhanced by using γ < 1, the
transformed value is then coded as (r,g,b).

3.2.4.3. Isocurvature lines Isocurvature lines are lines of
constant curvature on a surface. They can be displayed simi-
larly to isophotes. Instead of illumination values curvature
values are used. If the surface is Ck continuous then the
isocurvature lines are Ck−2 continuous, so isocurvature lines
are also even more sensitive to discontinuities than isophotes
or reflection lines.

A problem when rendering isocurvature lines with 1D-
textures may be a wide range of curvature values that may
not map appropriately to the [0,1] interval of texture coor-
dinates resp. the actual texels. One solution is to clamp the
curvature values to a suitable interval, the other solution is
to explicitly extract the curves and draw them as lines.

c© The Eurographics Association 2000.

GMU MPI Saarbrücken / Geometric Modeling

Figure 9: Color coding. From left: Gouraud-shaded model of Max Planck bust; mean curvature with γ = 1; with enhanced
contrast γ = 1

2 .

Figure 11: Lines of curvature. Lines of curvature are super-
imposed on a flat shaded image of a VW Beetle model.

3.2.4.4. Lines of curvature Besides the scalar principal
curvatures the principal directions also carry information on
the local surface properties. They define a discrete direction
field on the surface with one tangential direction per ver-

tex. By linearly interpolating directions over triangles using
barycentric coordinates a continuous field can be defined.

Lines of curvature can then be traced on this direction
field. The tracing algorithm does Euler integration steps in-
side a triangle until an edge is crossed. Then a neighboring
triangle is entered. Fig. 11 shows lines of curvature.

The visualized curvature flow may give a very good and
intuitive impression of the surface. Alternatively texture
based techniques like line integral convolution (LIC)2 can
also be used on triangle meshes. Tracing and constructing a
huge number of lines of curvature is rather expensive com-
pared to the other techniques.

3.2.5. The shape of triangles

Some applications need “well-shaped”, round triangles in or-
der to prevent them from running into numerical problems.
This includes numerical simulations based on FEM or CFD.
For this purpose, “round” triangles are needed, e.g. the ratio
of the radius of the circumcircle to the shortest edge should
be as small as possible (cf. Fig. 12).

The most common way to inspect the quality of triangles
is to view a wireframe or hidden-line rendered image. This
may not be an option for very complex meshes. A straight-
forward solution is a color coding criterion based on triangle
shapes. This helps to identify even single “badly shaped” tri-
angles.

c© The Eurographics Association 2000.

GMU MPI Saarbrücken / Geometric Modeling

Figure 12: triangle mesh optimized for smooth appearance, leading to flat triangles (left), and for triangle shape, leading to
surface artifacts (right).

3.2.6. Summary

The most important issue about quality control is probably
the fact that techniques that are well known from the interro-
gation of smooth surfaces can be adapted and used for trian-
gle meshes in a straightforward way. Discrete curvature anal-
ysis is the key to achieve this result. In addition to smooth-
ness and fairness there are criteria on triangle shape that may
be important for specific applications.

References

1. H. G. Burchard, J. A. Ayers, W. H. Frey, and N. S. Sa-
pidis. Approximation with aesthetic constraints. In De-
signing Fair Curves and Surfaces, pages 3–28, 1994.

2. B. Carbal and L. C. Leedom. Imaging vector fields us-
ing line integral convolution. In SIGGRAPH 93 Con-
ference Proceedings, pages 263–274, 1993.

3. M. P. do Carmo. Differential Geometry of Curves and
Surfaces. Prentice–Hall, Inc Englewood Cliffs, New
Jersey, 1993.

4. J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes.
Computer Graphics: Principles and Practice, second
edition in C. Addison–Wesley, 1996.

5. G. H. Golub and C. F. Van Loan. Matrix Computations.
Johns Hopkins University Press, Baltimore, 1989.

6. H. Hagen, S. Hahmann, Th. Schreiber, Y. Nakayima,
B. Wördenweber, and P. Hollemann-Grundstedt. Sur-
face interrogation algorithms. IEEE Computer Graph-
ics and Applications, 12(5):53–60, 1992.

7. W. E. Lorensen and H. E. Cline. Marching cubes: a
high resolution 3D surface construction algorithm. In
Computer Graphics (SIGGRAPH 87 Conference Pro-
ceedings), volume 21, pages 163–170, 1987.

8. D. S. Meek and D. J. Walton. On surface normal and
gaussian curvature approximations given data sampled
from a smooth surface. Computer Aided Geometric De-
sign, 17:521–543, 2000.

9. H. P. Moreton and C. H. Séquin. Functional optimiza-
tion for fair surface design. In Computer Graphics
(SIGGRAPH 92 Conference Proceedings), volume 26,
pages 167–176, 1992.

10. R. Schneider and L. Kobbelt. Geometric fairing of ir-
regular meshes for free–form surface design. submit-
ted.

11. G. Taubin. Estimating the tensor of curvature of a sur-
face from a polyhedral. In Proc. International Confer-
ence on Computer Vision, pages 902–907, 1995.

12. W. Welch and A. Witkin. Free–form shape design us-
ing triangulated surfaces. In SIGGRAPH 94 Conference
Proceedings), pages 247–256, 1994.

13. M. Woo, J. Neider, and T. Davis. OpenGL Pro-
gramming Guide. Second edition. The Official Guide
to Learning OpenGL, Version 1.1. Addison–Wesley,
1996.

14. C. Yifan, K.-P. Beier, and D. Papageorgiou. Direct
highlight line modification on nurbs surfaces. Com-
puter Aided Geometric Design, 14(6):583–601, 1997.

c© The Eurographics Association 2000.

GMU MPI Saarbrücken / Geometric Modeling

4. Coarse–to–fine hierarchies

Coarse–to–fine hierarchies are built up by successively re-
fining a coarse base mesh (i.e. by inserting new vertices and
triangles). The resulting degrees of freedom can be used in
two ways: Subdivision schemes position the new vertices
such that the resulting meshes become smooth — the geo-
metric information inherent to the base mesh is therefore not
changed. Remeshing methods on the other hand position the
vertices such that more and more geometric detail becomes
visible by sampling points from the original surface — the
resulting meshes therefore need not be smooth. The follow-
ing two sections describe these approaches in more detail.

4.1. Stationary subdivision

4.1.1. Introduction

Subdivision schemes have become increasingly popular in
recent years because they provide a uniform and efficient
way to describe smooth curves and surfaces. Their beauty
lies in the elegant mathematical formulation and simple im-
plementation: Given an arbitrary control polygon, perform
the following subdivision step ad infinitum (see Figure 13):

1. Splitting step: Insert a new vertex at the midpoint of each
edge.

2. Averaging step: Relocate each vertex according to given
refinement rules.

If the refinement rules are chosen carefully the resulting con-
trol polygons will converge to a smooth limit curve. In prac-
tice the algorithm is stopped after a sufficient number of sub-
division steps and the resulting control polygon is rendered
as an approximation of the curve.

Figure 13: Subdivision step: original polygon (upper left),
after splitting step (upper right), after averaging step (lower
left) and limit curve (lower right).

Even though subdivision schemes have many applications
in the univariate case, their real strengths are only revealed
when looking at the bivariate case: they are able to handle
surfaces of arbitrary topology while automatically maintain-
ing continuity properties.

In the following we give a brief historical overview
and cite the necessary references. Subdivision methods (for
curves) were introduced and mathematically analyzed for
the first time by G. de Rham in 1947. However, only their

re–invention in 1974 by G. M. Chaikin5 made them available
for the computer graphics community. Chaikin used them
to derive a simple algorithm for the high–speed generation
of curves. In 1978 the concept of subdivision was carried
over from curves to surfaces: Catmull and Clark described a
generalization of bicubic tensor product B–splines4 and Doo
and Sabin introduced a generalization of biquadratic ten-
sor product B–splines9. In the following decades many new
schemes were proposed: the Butterfly scheme12, the Loop
scheme28 and variational schemes20 (see also Section 5.2) to
name only a few. However, the subdivision rules of the early
schemes were only “ad hoc” generalizations of known rules
for regular cases (knot insertion) and lacked a precise math-
ematical analysis with respect to convergence behavior and
differentiability properties. A first and important approach
was already given by Doo and Sabin: they performed a spec-
tral analysis of the so–called subdivision matrix to prove the
convergence of their scheme in extraordinary vertices. This
approach was further enhanced by Storry and Ball2. A sec-
ond way to analyze subdivision schemes are the so called
generating functions10: this formalism allows the subdivi-
sion step to be expressed as a simple multiplication of two
formal power series. However, it was not until 1995 when
U. Reif introduced the concept of the characteristic map of a
subdivision scheme30 that one was finally able to rigorously
prove the continuity properties of subdivision schemes34.

Nowadays the research is focusing on applications of sub-
division schemes: Methods to interpolate points and curves
were developed16, 27, physical simulations based on subdivi-
sion methods were examined6 . Subdivision techniques are
used for animations in computer generated movies7 as well
as in raytracing applications22 . New techniques to efficiently
handle and render subdivision surfaces were developed and
even implemented in hardware29. The modeling power of
subdivision schemes was greatly enhanced by introducing
schemes that are able to model corners and creases17, 3.
At present almost everything one can do with traditional
NURBS–based systems can also be achieved by subdivision
techniques33.

Before starting we, some preliminary notions: In the fol-
lowing we are dealing mostly with triangular and quadran-
gular meshes, i.e. the faces are triangles or quadrangles, re-
spectively. The number of edges emanating from a vertex is
called the valence of the vertex. A vertex of a quadrangular
mesh is said to be regular, if it is an inner vertex of valence
4 or a boundary vertex of valence 3, otherwise it is called ex-
traordinary. Likewise a vertex of a triangular mesh is called
regular, if it is an inner vertex of valence 6 or a boundary
vertex of valence 4, and extraordinary otherwise.

4.1.2. Catmull–Clark subdivision

In order to get a feeling for subdivision schemes we will
describe one of them in more detail: the Catmull–Clark
scheme, which is widely used because its quadrangular
structure fits well into existing CAD systems.

c© The Eurographics Association 2000.

GMU MPI Saarbrücken / Geometric Modeling

Let s(u,v) = ∑i ∑ j ci jN
3
i (u)N3

j (v) be a bicubic tensor
product B–spline: the ci j are the control points arranged in
a regular quadrilateral grid (see Figure 14) and the N3

i (·) are
the uniform cubic B–splines over the knot–vector Z. The
surface s is built of quadrilateral polynomial patches each
of them being determined by a regular 4×4 submesh of the
original mesh (compact support of the B–splines!).

Figure 14: B–Spline subdivision: Each patch of a tensor
product B–Spline surface is fully determined by a 4×4 sub-
mesh of the original mesh (left). Knot insertion yields a re-
fined mesh (right).

By inserting knots we see that s can be rewritten as a ten-
sor product B–spline over the refined knot vector 1

2 Z, i.e.
s(u,v) = ∑i ∑ j di jN

3
i (2u)N3

j (2v). The control points di j con-
stitute a finer quadrilateral mesh (see Figure 14) and are eas-
ily computed by the following masks:

1 1

1 1

66

11

1 1

6

6

6

6

36
1 1

1 1

Figure 15: Masks for knot–insertion of bicubic tensor prod-
uct B–splines.

In this and the following figures already existing edges are
shown as solid lines while new edges are dashed. To com-
pute the new position of the vertex marked by a square one
has to take the weighted average of the depicted vertices. By
repeatedly inserting knots the resulting control meshes con-
verge to the limit surface s. Now suppose we have a quadri-
lateral mesh with extraordinary vertices; we can still inter-
pret every 4×4 submesh as control net of a polynomial patch
— but this will leave a hole in the surface (see Figure 16).

In order to carry over the concept of subdivision to ex-
traordinary vertices Catmull and Clark extended the masks
for the regular case by a set of new masks — one mask for
each valence (see Figure 17).

Now they were able to do subdivision as above and add
a further ring of patches to the surface thus making the hole

Figure 16: Catmull–Clark subdivision: Interpreting each
regular 4× 4 submesh as the control net of a polynomial
patch still leaves holes (left), subdividing the control mesh
results in a larger regular region and thus gradually fills
these holes with rings of patches (right).

β

β

β

β

β

γ

γ

γ

γ

α

Figure 17: Catmull–Clark subdivision: mask for extraordi-
nary vertices14. The coefficients depend on the valence n of
the center vertex: β = 3

2n2 , γ = 1
4n2 , α = 1−nβ−nγ.

smaller (see Figure 16). The new masks were designed such
that the resulting control meshes converge to a limit sur-
face which is C2 except for the extraordinary vertex where
it is C1. Note that the choice of the masks is not unique —
there exist other variants which also generalize bicubic ten-
sor product B–splines32.

4.1.3. Analysis of subdivision schemes

There are two major approaches to mathematically analyze
the properties of subdivision schemes (convergence behav-
ior, continuity/differentiability of the limit function, repro-
duction properties): generating functions and spectral analy-
sis of the subdivision matrix.

Generating functions

Generating functions are used to analyze univariate subdivi-
sion schemes and the regular parts of bivariate subdivision
schemes. To avoid messy multi–indices we will restrict our-
selves to the univariate case. We start with a definition:

Let P = (p j) j=−∞,...,∞ be an arbitrary sequence, then we
call the formal series P(z) = ∑ j p jz

j the generating function
(or the symbol) of P.

c© The Eurographics Association 2000.

GMU MPI Saarbrücken / Geometric Modeling

pi
0

pi
1

pi
2

pi
−1

pi
−2

pi+1
0

pi+1
1

pi+1
2

pi+1
3

pi+1
4

pi+1
−1

pi+1
−2

pi+1
−3

pi+1
−4

Figure 18: A polygon Pi = (pi
j) (solid lines) is mapped to a

refined polygon Pi+1 = (pi+1
j) (dashed lines). Note that this

is an interpolatory scheme: pi+1
2 j = pi

j.

As an example consider the 4–point scheme11 (see Fig-
ure 18):

A polygon Pi = (pi
j) is mapped to a refined polygon

Pi+1 = (pi+1
j) by applying the following two subdivision

rules:

pi+1
2 j = pi

j,

pi+1
2 j+1 =

1
16

(−pi
j−1 + 9pi

j + 9pi
j+1− pi

j+2).

In general such a subdivision step can be compactly written
in a single equation

pi+1
j =

∞

∑
k=−∞

α2k− j pi
k,

where the α j are coefficients depending on the subdivision
rules. Note that the index 2k− j alternatingly selects the even
indexed α’s or the odd indexed α’s. In this case we have

α = (α j) =
1

16
[. . . ,0,0,−1,0,9,16,9,0,−1,0,0, . . .]

After some computation we see that the subdivision step can
be expressed in the generating function formalism as a sim-
ple multiplication of the corresponding symbols:

Pi+1(z) = α(z)Pi(z2).

Note that α(z) is the symbol of the sequence α. The basic
idea of proving convergence to a continuous limit function
is to show that the polygons Pi form a Cauchy sequence,
which follows if the distance ||Pi+1−Pi||∞ of two succes-
sive polygons decreases exponentially in i. Some computa-
tion shows that this is the case, if the so–called difference
scheme which is given by the symbol

α′(z) =
z

1 + z
α(z)

exists (i.e. α(−1) = 0) and is contractive. This is the case if

max

{

∑
j
|α′2 j|,∑

j
|α′2 j+1|

}

= q < 1.

So we have an simply criterion to check the convergence
of a subdivision scheme to a continuous limit function. Like-
wise one can prove convergence to higher order continuous
functions by examining higher order difference schemes.

Subdivision matrix formalism

The subdivision matrix formalism is used to describe the
behavior of bivariate subdivision schemes near extraordi-
nary vertices. The basic idea is to keep track of a vertex p0
through different subdivision levels. To do this, it turns out
that it is necessary not only to keep track of p0 but also of
the vertices p1, . . ., pn in a finite neighborhood of p0 — in
the case of Loop subdivision this is the 1–ring of neighbors,
i.e. all vertices adjacent to p0 (see Figure 19). In general, the
size of the neighborhood is determined by the support of the
subdivision masks.

S

pi
0

pi
1

pi
2

pi
3

pi
4

pi
5

pi+1
0

pi+1
1

pi+1
2

pi+1
3

pi+1
4

pi+1
5

Figure 19: Subdivision matrix formalism: The subdivision
matrix S maps a neighborhood of a vertex on level i to the
neighborhood of the same vertex on level i + 1.

Now let pi = [pi
0, pi

1, . . ., pi
n] be a column vector compris-

ing the positions of p0, p1, . . ., pn at subdivision level i. Then
there is a (n + 1)× (n + 1) matrix S satisfying

pi+1 = Spi.

This matrix is called the subdivision matrix of the scheme.
Let λ0 ≥ λ1 ≥ . . . ≥ λn be the eigenvalues of S and
x0,x1, . . .,xn the corresponding eigenvectors (i.e. Sx j =
λ jx j). Note that affine invariance of subdivision schemes im-
plies λ0 = 1 and x0 = [1, . . .,1]T . Since the x j form a basis
we can expand p0 to

p0 = ∑
j

x jω j

for some vector–valued coefficients ω j . Subdividing the
mesh m times means applying Sm to p0:

pm = Sm p0 = ∑
j
(λ j)

mx jω j = λm
0 x0ω0 + λm

1 x1ω1 + · · · .

Now suppose that 1 = λ0 > λ1. Then it is easy to see that
the limit position limi→∞ pi

0 of p0 is given by ω0. Similar
formulas can be derived for the limit tangents in ω0. Thus the
analysis of the subdivision matrix provides formulas (masks)
for limit positions and tangents (if they exist).

c© The Eurographics Association 2000.

GMU MPI Saarbrücken / Geometric Modeling

However, it turns out that the above analysis is not enough
to show that the limit surface in the neighborhood of an ex-
traordinary vertex is smooth. This means that the derived for-
mulas are only valid, if the convergence to a differentiable
function has already been shown by some other method.
For this one has to consider a larger neighborhood of p0
and to analyze the spectral properties of the corresponding
subdivision matrix. Furthermore one needs to analyze the so
called characteristic map of the subdivision scheme. It can
be shown that if this map is regular and injective the subdi-
vision scheme itself produces C1–continuous surfaces in the
limit30, 34.

4.1.4. Technical terms

In this section we explain some of the common technical
terms used in the subdivision literature.

According to the way they relate the topology of the origi-
nal mesh to the topology of the subdivided mesh, subdivision
schemes are classified (see Figure 20) as

• primal or face–split schemes
• dual or vertex–split schemes
• other, e. g.

√
3–scheme, honeycomb refinement and bi-

section31

Figure 20: Classification of subdivision schemes: face split
schemes — quadrangular (left) and triangular (middle) —
and vertex split schemes (right).

Furthermore one distinguishes between interpolatory
(existing vertices are not relocated) and approximating
schemes. A subdivision scheme is said to be stationary, if
the subdivision rules do not depend on the overall struc-
ture of the mesh nor on the subdivision level (all subdivi-
sion schemes presented here are stationary), otherwise it is
called non–stationary. Variational schemes 20 are an exam-
ple of non–stationary schemes which are based on optimiza-
tion techniques to generate smooth meshes (see also Sec-
tion 5.2). A subdivision scheme has compact support, if only
a finite number of coefficients in the subdivision masks is
non–zero.

4.1.5. Common subdivision schemes

In this section we present some common subdivision sche-
mes. The following table gives a brief overview of the basic
properties (note that Ck really means Ck almost everywhere,
i.e. except for the extraordinary vertices, where all schemes
are C1).

Doo–Sabin9 approx. C1 quadrilateral dual
Catmull–Clark4 approx. C2 quadrilateral primal
Kobbelt19 interp. C1 quadrilateral primal
Butterfly12 interp. C1 triangular primal
Loop28 approx. C2 triangular primal√

3 21 approx. C2 triangular other

We will only give the basic refinement rules and discuss
some of their properties. For further information (refinement
rules for boundary edges, masks for limit positions, etc.) the
reader is referred to the literature. Generally interpolatory
schemes allow for a more intuitive control of the limit sur-
face (vertices are interpolated, no shrinking effect) and for
a simpler implementation of many algorithms. However, the
surface quality is usually not as good as that of approximat-
ing schemes.

Doo–Sabin scheme The Doo–Sabin scheme9 (see Fig-
ure 21) generalizes quadratic tensor product B–splines. Its
refinement rules are given in Figure 22. It is interpolatory
in the sense that the barycenters of the faces of the original
mesh are interpolated.

Figure 21: The Doo–Sabin scheme is the most prominent
example of a dual or vertex–split subdivision scheme. Note
that the number of extraordinary faces (i.e. faces which are
not quadrilateral) remains constant.

Kobbelt scheme The Kobbelt scheme19 is an interpolatory
scheme for quadrilateral meshes which emerges from gen-
erating the tensor product of the 4–point scheme.

(Modified) Butterfly scheme This scheme was originally
proposed by Dyn, Gregory and Levin12 and modified by
Zorin, Schröder and Sweldens35 to yield an everywhere
C1–continuous surface. The refinement rule for the un-
modified scheme is depicted in Figure 23.

Loop scheme The Loop scheme28 generalizes quartic box-
splines. Its refinement rules are given in Figure 24.

c© The Eurographics Association 2000.

GMU MPI Saarbrücken / Geometric Modeling

α0

α1

α2

αn−1

αn−2

Figure 22: Doo–Sabin scheme: There is only one mask pa-
rameterized by the number n of vertices adjacent to the

face14: α0 = 1
4 + 5

4n , αi = 3+2 cos(2iπ/n)
4n for i = 1, . . .,n−1.

−

1
16

1
8 −

1
16

1
2

−

1
16 −

1
16

1
8

1
2

Figure 23: Butterfly scheme: As this is an interpola-
tory scheme we only need a mask for the newly inserted
vertices14.

√
3–scheme This scheme was only recently proposed by
Kobbelt21. It produces a C2 surface almost everywhere but
is not based on polynomials. It is especially well suited
for adaptive subdivision since one doesn’t need to insert
auxiliary triangles. In a first step every original triangle is
split in three by inserting a new vertex at its barycenter. In
the second step the original edges are flipped, yielding a
triangle mesh rotated by 30 degrees (see Figure 25). The
subdivision masks are shown in Figure 26.

4.2. Remeshing

Using the powerful means of subdivision, the preceding sec-
tion illustrates how one can define a surface as the limit of a
sequence of successively refined polyhedral meshes. In this
section we do not deal with the geometric part of the sub-
division that leads to mathematically smooth and visually
appealing surfaces, but we focus on the special connectivity,
the so called subdivision–connectivity that emerges, when
iteratively applying a regular refinement operator to a coarse
triangle mesh. A well–known refinement operator is the 1–
to–4 split that recursively splits each triangular face into 4
subtriangles by introducing 3 new vertices on the edges (cf.
Fig. 20). Since every submesh that corresponds to one base
triangle has the structure of a regular grid and the whole hier-
archy is based on an arbitrary coarse base mesh (cf. Fig. 27),
the resulting meshes are said to be semi-regular.

The implicitly defined connectivity established on a
coarse base mesh and the direct availability of multireso-
lution semantics gives rise to many techniques exploiting

αn
nαn

n

1−αn

αn
n αn

n

αn
n

1
8

1
8

3
8

3
8

Figure 24: Loop scheme: In case of a regular mesh this
scheme produces quartic boxsplines. We have αn = 1

64 (40−
(3 + 2cos(2π/n))2) where n is the valence of the center
vertex28.

Figure 25:
√

3–scheme : original mesh (upper left), after
inserting barycenters (upper right) and after edge flipping
(lower left). Note that two

√
3–subdivision steps result in a

tri–section of the original triangle edges (lower right), hence
the name of the scheme.

this convenient representation as the following enumeration
shows.

Compression/progressive transmission Lounsberry et
al. 8 perform a multiresolution analysis, i.e. they introduce
a wavelet decomposition for meshes with subdivision–
connectivity. By suppressing small wavelet coefficients, a
compressed approximation within a given error tolerance
can be achieved. Moreover such a wavelet representation
can easily be transmitted in a progressive fashion. (Send
the base mesh first and refine it with successively arriving
wavelet coefficients.)

Multiresolution editing For instance Zorin and co–
workers36 combine subdivision and smoothing techniques
and present an interactive multiresolution mesh editing
system, which is based on semi–regular meshes and
enables efficient modifications of the global shape while
preserving detailed features.

Parameterization Each submesh (subdivision–patch) can
be parameterized naturally by assigning barycentric co-
ordinates to the vertices. Combining the local parameteri-
zations of the subdivision–patches yields a global param-

c© The Eurographics Association 2000.

GMU MPI Saarbrücken / Geometric Modeling

Figure 27: Meshes with subdivision–connectivity are generated by uniformly subdividing a coarse base mesh S0 (left). On the
refined meshes we can easily identify regular submeshes (right) which topologically correspond to a single triangle of the base
mesh S0 (left).

αn
nαn

n

1−αn

αn
n

αn
n

αn
n

1
3

1
3

1
3

Figure 26:
√

3–scheme : This scheme has the masks with

the smallest possible support21. We have αn =
4−2 cos(2π/n)

9
where n is the valence of the center vertex.

eterization. Texturing is just one application of such a pa-
rameterization.

Level–of–detail control Standard rendering libraries are
able to display objects at various levels of detail, that is
they display a coarse approximation, if the object is far
away and switch to a finer one, if the viewer zooms in. The
different subdivision levels naturally support this feature.
In combination with multiresolution analysis, switching
to finer resolutions can be done smoothly by fading in the
wavelet coefficients.

Recent investigations show, that compact and convenient
representations for multiple of the applications above can be
derived when using semi-regular meshes15, 25, 18.

However, even if semi–regular meshes are particularly
convenient for various types of applications, in practice it
is rather unlikely that a given triangle mesh has this special
type of connectivity (except those meshes originating from
subdivision). During the last years, a couple of methods have
been presented to convert a manifold triangle mesh into one
having subdivision–connectivity and thus having access to
the powerful methods developed for semi–regular meshes
when an arbitrary input mesh is given.

Before we give an overview over three conversion
schemes, we start by establishing the notation and describe
some quality criteria. Let an arbitrary (manifold) triangle

mesh M be given. The task of remeshing the input data M
means to find a sequence of meshes S0, . . .,Sm such that
each S i+1 emerges from S i by the application of a uniform
subdivision operator which performs a 1–to–4 split on every
triangular face of S i (cf. Fig. 27). Since the S i should be dif-
ferently detailed approximations of M, the vertices p ∈ S i

have to lie on the continuous geometry of M but they do
not necessarily have to coincide with M’s vertices. Further-
more it is allowed but not required, that the vertices of S i are
a subset of S i+1’s vertices.

In general it would be enough to generate the mesh
Sm since the coarser levels of detail S i can be extracted
by subsampling. Nevertheless, building the whole sequence
S0, . . .,Sm from coarse to fine often leads to more efficient
multi–level algorithms.

The quality of a subdivision–connectivity mesh is mea-
sured in two different aspects. First, we want the resulting
parameterization which maps points from the base mesh S0
to the corresponding points on Sm to be close to isometric,
i.e. the local distortion of the triangles should be small and
evenly distributed over the patch. To achieve this, it is nec-
essary to adapt the triangles in the base mesh S0 carefully to
the shape of the corresponding surface patches in the given
mesh M.

The second quality requirement rates the base mesh S0
itself according to the usual quality criteria for triangle
meshes, i.e. uniform size and aspect ratio of the base trian-
gles.

As previously stated, a global parameterization of M can
easily be derived if Sm is given. This is also possible the
other way around, i.e. a semi–regular mesh can easily be
constructed, if a global parameterization is available. There-
fore, schemes that build a global parameterization onM can
also be adapted to our task24, 1, 17.

However, this tutorial focuses on the “classical” schemes
that convert an input mesh into one with subdivision–
connectivity.

c© The Eurographics Association 2000.

GMU MPI Saarbrücken / Geometric Modeling

4.2.1. Eck’s scheme

In 1995 Eck et al.13 were the first who came up with a three–
step remeshing scheme. This can roughly be described as
follows:

Partitioning partitionsM into regions T0, . . .,Tr using dis-
crete Voronoi tiles. The union of these tiles is dual to a
triangulation which is used as the base triangulation.

Parameterization constructs a local parameterization for
each submesh of M that corresponds to a base triangle
and joins them which results in a global parameterization.

Resampling recursively performs 1–to–4 splits on the base
domain triangles in S0 and maps the new vertices into R3.

In order to be able to compare this scheme with the two
other schemes, that were recently published, we focus on
some aspects of the algorithm. For a complete coverage we
refer to the original paper.

The partitioning starts with a single seed–triangle. By suc-
cessively adding adjacent triangles, the seed grows to a tile.
New seed–triangles are added if one of the restrictions that
ensure that the dual of the tiles builds a proper triangulation,
is violated. The growing process terminates, when the tiles
cover the complete surface M and the tiles’ dual serves as
the base triangulation. The vertices are located at the cen-
troids of the seed–triangles. Thus the base–vertices are rela-
tively equally spread over M. However, the positions of the
vertices heavily depend on the growing process, i.e. the algo-
rithm cannot take the second quality criterion into account.

Using harmonic maps, a parameterization is constructed
as follows. At first, one computes a harmonic map that car-
ries each Voronoi tile Ti into a planar polygon Pi. The in-
verse mapping is a parameterization of Ti over Pi. This pa-
rameterization is evaluated to get the triangular submeshes
which are dual to the Voronoi tiles Ti. Finally, harmonic
maps are used to map these submeshes to the correspond-
ing triangle in S0. The combination of these mappings leads
to an optimal parameterization for the base–triangles but it
provides C0 continuity over the edges of adjacent triangles
only.

Pros/Cons:

+ Arbitrary manifold input–meshes.
+ Parameterization on base–triangles is close to isometric.
– Only C0 continuity across the edges of base–triangles.
– Base–domain S0 not optimal according to quality criteria.
– Costly computations (harmonic mappings).

4.2.2. MAPS

An alternative approach addressing the remeshing problem
is the MAPS algorithm presented by Lee et al. 26 Within
the scope of this tutorial we sketch the key features of the
scheme. For a more elaborate discussion, please refer to the
original paper. The base domain S0 is found by applying
an incremental mesh decimation algorithm to the original

mesh, cf. Section 5.1 for a closer look at mesh decimation.
Compared to Eck’s scheme, this provides more control on
the generation of the base mesh since feature lines and lo-
cal curvature estimates can be taken into consideration. The
atomic simplification step is the vertex removal. Figures 28
and 29 illustrate how a parameterization over S0 can be de-
rived. This parameterization is, again, not globally smooth
but only locally within each patch corresponding to a base
triangle. The actual remeshing is not done by sampling the
initial parameterization at the dyadic barycentric parameter
values as usual but an additional smoothing step based on a
variant of Loop’s subdivision scheme28 is used to shift the
sample sites within the parameter domain.

retriangulation

flattening into parameter plane

3 space

Figure 28: In order to remove a vertex, its one–ring is
mapped into the plane (exponential map), the vertex is re-
moved, the resulting hole retriangulated, and finally mapped
back into 3 space (figure inspired by the original paper26).

assign barycentric
coordinates to old
point in new triangle

Figure 29: After retriangulation (cf. Fig. 28), the removed
vertex (black dot) gets assigned barycentric coordinates
with respect to the containing triangle on the coarser level.
Barycentric coordinates of previously removed vertices (hol-
low dots) are updated accordingly (figure inspired by the
original paper26).

c© The Eurographics Association 2000.

GMU MPI Saarbrücken / Geometric Modeling

Pros/Cons:

+ Arbitrary manifold input–meshes.
+ User defined feature lines.
+ Parameterization on base–triangles is close to isometric.
+ Sm smooth over the edges of S0.
– Without user input: base–domain S0 not optimal accord-

ing to quality criteria, i.e. it depends on the mesh decima-
tion only.

4.2.3. Shrink wrapping

A completely different approach to the remeshing problem
for genus–zero objects is presented by Kobbelt et al.23. The
physical model behind the algorithm is the process of shrink
wrapping where a plastic membrane is wrapped around an
object and shrunk either by heating the material or by evacu-
ating the air from the space inbetween the membrane and the
object’s surface. At the end of the process, the plastic skin
provides an exact imprint of the given geometry. To simu-
late the shrink wrapping process, they approximate the plas-
tic membrane by a semi–regular mesh Sm. Two forces are
applied to its vertices. An attracting force pulls them towards
the surface. A relaxing force is applied in order to optimize
the local distortion energy and to avoid folding. This ensures
an even distribution of the vertices. The attracting part is re-
alized by a projecting operator P that simply projects Sm’s
vertices onM. The relaxing is done by applying an operator
U to all vertices in Sm, that iteratively balances the vertex
distribution. Thus, shrink–wrapping is an iterative process,
where one alternates the operators P and U.

Nevertheless, the proposed scheme works slightly dif-
ferent in order to accelerate the underlying optimization
process. Instead of immediately shriveling up Sm , the
remeshing process starts with an initial convex mesh S0
(e. g. an icosahedron). Once the iteration converges on level
Si, the scheme switches to the next refinement level Si+1.
Hence, this multi–level approach generates intermediate lev-
els, which are close to the final solution, with relatively low
computational costs.

Unfortunately, the algorithm described so far works for
simple input meshes M only. One of the problems that arise
is that especially for the coarser approximations, the projec-
tion operator P might produce counter–intuitive results.

For this reason, they extend the basic shrink–wrapping al-
gorithm with the aid of a parameterization F of M over the
unit sphere. Both,M (using F’s inverse) and S0 (projection)
are mapped onto a sphere. Thus, P becomes trivial. The re-
laxation operator U is adapted to this in such a way, that it
still measures the geometry on the original surface. This is
done by associating triangles ofM to corresponding surface
areas of S0 (which is trivial, if both meshes are mapped to
a sphere). This guarantees an equal distribution of S0’s ver-
tices on M when evaluating F(S0). In areas where the sur-
face metric of S0 and M differ considerably, which would

lead to severe stretching in the resulting remesh, new ver-
tices are inserted into S0 by performing simple edge–splits.
Once S0 is found, successive levels can be computed by ei-
ther using the stabilizing parameterization over the sphere or
directly, if Si and M do not differ too much.

Pros/Cons:

+ Custom tailored base–domain S0 which is optimized with
respect to both quality criteria.

– In its basic form the algorithm works for genus–zero ob-
jects only.

References

1. C. L. Bajaj, F. Bernardini, and G. Xu. Automatic recon-
struction of surfaces and scalar fields from 3D scans.
In SIGGRAPH 95 Conference Proceedings, pages 109–
118, 1995.

2. A. A. Ball and D. J. T. Storry. Conditions for tangent
plane continuity over recursively generated B–spline
surfaces. ACM Transactions on Graphics, 7(2):83–102,
1988.

3. H. Biermann, A. Levin, and D. Zorin. Piecewise
smooth subdivision surfaces with normal control. In
SIGGRAPH 00 Conference Proceedings, to appear.

4. E. Catmull and J. Clark. Recursively generated B–
spline surfaces on arbitrary topological meshes. Com-
puter Aided Design, 10:350–355, 1978.

5. G. Chaikin. An algorithm for high speed curve gen-
eration. Computer Graphics and Image Processing,
3:346–349, 1974.

6. F. Cirak, M. Ortiz, and P. Schröder. Subdivision sur-
faces: A new paradigm for thin–shell finite–element
analysis. Internat. J. Numer. Methods Engrg., 47,
2000.

7. T. DeRose, M. Kass, and T. Truong. Subdivision sur-
faces in character animation. In SIGGRAPH 98 Con-
ference Proceedings, pages 85–94, 1998.

8. T. DeRose, M. Lounsbery, and J. Warren. Multiresolu-
tion analysis for sufaces of arbitrary topological type.
Technical Report 93–10–05, Department of Computer
Science and Engineering, University of Washington,
1993.

9. D. Doo and M. Sabin. Behaviour of recursive subdi-
vision surfaces near extraordinary points. Computer
Aided Design, 10:356–360, 1978.

10. N. Dyn. Subdivision schemes in computer aided ge-
ometric design. Advances in Numerical Analysis II,
Wavelets, Subdivisions and Radial Functions, pages
36–104, 1991.

c© The Eurographics Association 2000.

GMU MPI Saarbrücken / Geometric Modeling

Figure 30: A remeshed version (right) of a bust model (left) obtained with the shrink–wrapping approach.

11. N. Dyn, D. Levin, and J. A. Gregory. A 4–point interpo-
latory subdivision scheme for curve design. Computer
Aided Geometric Design, 4:257–268, 1987.

12. N. Dyn, D. Levin, and J. A. Gregory. A butterfly sub-
division scheme for surface interpolation with tension
control. ACM Transactions on Graphics, 9(2):160–169,
1990.

13. M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Louns-
bery, and W. Stuetzle. Multiresolution analysis of arbi-
trary meshes. In SIGGRAPH 95 Conference Proceed-
ings, pages 173–182, 1995.

14. D. Zorin et. al. Subdivision for modeling and anima-
tion. In SIGGRAPH 00 Course Notes, to appear.

15. I. Guskov, K. Vidimce, W. Sweldens, and P. Schröder.
Normal meshes. In SIGGRAPH 00 Conference Pro-
ceedings, to appear.

16. M. Halstead, M. Kass, and T. DeRose. Efficient,
fair interpolation using catmull–clark surfaces. In
SIGGRAPH 93 Conference Proceedings, pages 35–44,
1993.

17. H. Hoppe, T. DeRose, T. Duchamp, M. Halstead,
H. Jin, J. McDonald, J. Schweitzer, and W. Stuet-
zle. Piecewise smooth surface reconstruction. In SIG-
GRAPH 94 Conference Proceedings, pages 295–302,
1994.

18. A. Khodakovsky, P. Schröder, and W. Sweldens. Pro-
gressive geometry compression. In SIGGRAPH 00
Conference Proceedings, to appear.

19. L. Kobbelt. Interpolatory subdivision on open quadri-
lateral nets with arbitrary topology. Computer Graphics
Forum, 15(3):409–420, 1996.

20. L. Kobbelt. A variational approach to subdivision.
Computer Aided Geometric Design, 13(8):743–761,
1996.

21. L. Kobbelt.
√

3–subdivision. In SIGGRAPH 00 Con-
ference Proceedings, to appear.

22. L. Kobbelt, K. Daubert, and H.-P. Seidel. Ray tracing
of subdivision surfaces. Eurographics Rendering Work-
shop, pages 69–80, 1998.

23. L. Kobbelt, J. Vorsatz, U. Labsik, and H.-P. Seidel.
A shrink wrapping approach to remeshing polygonal
surfaces. Computer Graphics Forum, 18(3):119–130,
1999.

24. V. Krishnamurthy and M. Levoy. Fitting smooth sur-
faces to dense polygon meshes. In SIGGRAPH 96 Con-
ference Proceedings, pages 313–324, 1996.

25. A. Lee, H. Moreton, and H. Hoppe. Displaced subdivi-
sion surfaces. In SIGGRAPH 00 Conference Proceed-
ings, to appear.

26. A. W. F. Lee, W. Sweldens, P. Schröder, L. Cowsar, and
D. Dobkin. MAPS: Multiresolution adaptive parame-
terization of surfaces. In SIGGRAPH 98 Conference
Proceedings, pages 95–104, 1998.

27. A. Levin. Interpolating nets of curves by smooth sub-
division surfaces. In SIGGRAPH 99 Conference Pro-
ceedings, pages 57–64, August 1999.

28. C. T. Loop. Smooth subdivision surfaces based on tri-
angles. Master’s thesis, University of Utah, Department
of Mathematics, 1987.

29. K. Pulli and M. Segal. Fast rendering of subdivision
surfaces. Eurographics Rendering Workshop, pages
61–70, 1996.

c© The Eurographics Association 2000.

GMU MPI Saarbrücken / Geometric Modeling

30. U. Reif. A unified approach to subdivision algorithms
near extraordinary vertices. Computer Aided Geometric
Design, 12(2):153–174, 1995.

31. M. C. Rivara. Mesh refinement processes based on
the generalized bisection of simplices. SIAM J. Numer.
Anal., 21(3):604–613, 1984.

32. M. Sabin. Cubic recursive division with bounded cur-
vature. In Curves and Surfaces, pages 411–414, 1991.

33. J. Stam. Exact evaluation of catmull–clark subdivision
surfaces at arbitrary parameter values. In SIGGRAPH
98 Conference Proceedings, pages 395–404, 1998.

34. D. Zorin. Ck Continuity of Subdivision Surfaces. PhD
thesis, California Institute of Technology, Department
of Computer Sciences, 1996.

35. D. Zorin, P. Schröder, and W. Sweldens. Interpolating
subdivision for meshes with arbitrary topology. In SIG-
GRAPH 96 Conference Proceedings, pages 189–192,
1996.

36. D. Zorin, P. Schröder, and W. Sweldens. Interactive
multiresolution mesh editing. In SIGGRAPH 97 Con-
ference Proceedings, pages 259–268, 1997.

c© The Eurographics Association 2000.

GMU MPI Saarbrücken / Geometric Modeling

5. Fine-to-coarse hierarchies

In the previous section methods were presented that gener-
ate mesh hierarchies from a coarse base mesh by refining
“bottom–up” to a specified detail level. In this section we
are going to discuss ways to build a hierarchy “top–down”:
Given a detailed mesh, a coarse base mesh is created by suc-
cessively removing detail information.

Again, two types of hierarchies can be discerned: Levels
of complexity are created through mesh decimation (Section
5.1) while levels of smoothness are achieved by fairing tech-
niques (Section 5.2).

5.1. Mesh decimation

5.1.1. Introduction

The aims of this section are

• to provide an overview of the current body of literature
that can be used as a starting point for further investiga-
tions;

• to aid in identifying application–specific needs and point
you to common problems with simplification algorithms;

• to sum up what’s involved in “rolling your own” mesh
simplification tool.

First of all, to give you an idea of what geometry simpli-
fication can be used for, here are some typical applications:

Oversampled scan data: Meshes generated from scan data
are usually huge and mostly uniformly sampled; the den-
sity of the mesh doesn’t correspond to the detail needed
locally.

Overtesselated surfaces: Dense meshes are also often gen-
erated from other surface representations; a typical exam-
ple is the extraction of iso–surfaces using e.g. the march-
ing cubes algorithm (see Section 2.2), which samples the
surface at a fixed detail level. Also parametric surfaces,
like NURBS patches (as used in CAD programs), are of-
ten just uniformly sampled in parameter space and thus
also not adapted to the detail actually needed to represent
local geometry.

Level–of–detail rendering: To speed up rendering, many
systems support switching to a lower resolution model
when the object is far away from the viewer. It is desir-
able to generate these simplified models automatically.
Also, mesh simplification enables the display of origi-
nally highly complex models even on low–end devices
(see Fig. 31).

Progressive transmission: Transferring a complete object
description might not be feasible on low–bandwidth chan-
nels. With progressive meshes, the basic shape of an ob-
ject is transmitted first and can already be viewed; detail
is subsequently transmitted until the target resolution is
reached.

Multiresolution editing: If an object can be transformed
into a representation of varying coarseness, large–scale

modifications can be accomplished by working on a
coarse level and automatically re–applying the detail in-
formation (see Section 6).

Figure 31: Low–polygon approximation (2k triangles) of
the Max Planck bust (∼400k triangles, see Figure 9) on the
PalmPilot PDA

So, how do you go about geometry simplification? As a
first approach, we could define the task at hand in loose
terms as “creation of a low–polygon approximation of a
complex model that is good enough for the intended appli-
cation”.

A close examination of this preliminary definition already
raises a lot of questions:

• What are the properties of the model we have to consider?
Geometry, topology, attributes may or may not be impor-
tant.

• What exactly is an “approximation”? We have to define
the actual error in some way.

• Finally, what is “good enough”? This is also entirely de-
pendent on the application. We probably have to specify
quality criteria on the model.

As you can see, the above problem statement is very
vague and application–dependent, which might help to ex-
plain why there are so many mesh simplification algorithms,
with their own particular strengths and weaknesses. In the
following section we briefly review the major developments
and approaches that have been taken until today.

5.1.2. A brief history

For domain–specific geometric models automated methods
to generate lower levels of detail exist since the 1980s39, 40.
The first more general simplification algorithms that were
not tied to a particular application and data structure ap-
peared in 1992:

c© The Eurographics Association 2000.

GMU MPI Saarbrücken / Geometric Modeling

Turk’s re–tiling approach36 places new vertices on the
existing geometry, inserting more points in areas of high
surface curvature, and distributes them by point repulsion
forces. Most of the existing vertices are then removed and
a triangulation is created from the remaining set of vertices.
While the optimization process leads to well–shaped trian-
gles, there is no real way to guide the simplification pro-
cess and to bound the surface error with this method, as Turk
points out himself.

The same year, an incremental method was proposed in
the pioneering work of Schroeder et al.34; simplification of
the mesh is accomplished by removing a vertex and retrian-
gulating the resulting hole. Approximation error is measured
as the distance of the removed vertex to the (average) result-
ing plane of the retriangulation. There is no bound for the
deviation from the original mesh.

Rossignac and Borrel introduce vertex clustering30: A
spatial grid is superimposed onto the geometry, and all ver-
tices in a cell are merged into one, collapsing the associated
parts of the geometry. The maximum vertex error in this case
is the size of a cell. The algorithm is simple and efficient, but
since it is purely vertex–based, it ignores properties of the
surface such as curvature and does not preserve the original
topology.

In mesh optimization20, minimization of an energy func-
tion is used to find an approximation of a triangular mesh
that has a low number of vertices, which is achieved by re-
moving and repositioning vertices and flipping edges. The
desired approximation constraints are directly modeled into
this function. The work is motivated by the surface recon-
struction problem, but applies to mesh simplification as well.

Hoppe18 later proposes a simpler variant of mesh opti-
mization (using now only one operation, the edge collapse)
to generate levels of detail and presents the progressive mesh
representation for transmitting and storing a coarse approx-
imation plus the detail information from which the original
surface can then be reconstructed. The method extends to
scalar surface attributes, such as vertex colors and normals.
Feature edges (here called “discontinuity curves”) are sup-
ported as well. To generate a progressive mesh representa-
tion, the history of the applied simplification operations is
stored together with the information needed to invert the pro-
cess (basically the positions of the removed vertices). Be-
ginning with the coarse base mesh, the original geometry
can now be successively reconstructed. With efficient data
structures19, this representation usually consumes even less
memory than the original, non–hierarchical mesh. Nearly all
current mesh simplification algorithms are able to support
progressive mesh representations6.

A number of incremental methods have been proposed in
the years following, mainly differing in the way the approx-
imation error is estimated15, 24, 14, 10, 6, with different conse-
quences for memory consumption and running time, respec-
tively. Cignoni et al. have compiled a detailed survey of

current mesh decimation algorithms8. The incremental ap-
proach dominates the field of mesh decimation today in var-
ious refinements; because of their modular structure, flex-
ible choices in mesh data structure, evaluated criteria and
local operations performed on the mesh are possible, thus
enabling a wide range of applications; for this reason, in the
following we will concentrate on incremental methods.

Most authors concentrate on simplification within some
geometric error bound, though many algorithms extend to
surface attributes as well. A few authors have concentrated
on visual appearance, most notably Cohen et al.11 who intro-
duce a texture deviation metric to guarantee an upper bound
on the screen–space error. Other than in previous algorithms,
surface attributes are decoupled from the geometry by means
of texture and normal maps, which leads to fewer restrictions
on the simplification of geometry in order to retain a level of
visual faithfulness.

Probably the biggest current challenge for mesh simplifi-
cation methods lies in handling the ever–increasing amount
of data in an efficient way: Polygonal models with millions
or even billions of vertices are becoming more and more
commonplace, and efficient as well as effective reduction of
the complexity is often a prerequisite for any further process-
ing. Due to limited main memory capacities the model has
somehow to be processed without ever loading it completely
into memory26.

Nearly all decimation algorithms restrict to triangle
meshes, for a number of reasons:

• Triangles are always planar, wherever you move a vertex.
• Following from this: The surface is piecewise linear

throughout, thus simplifying evaluations.
• Every polygonal surface can be triangulated.
• Constant–size data structures can be implemented more

efficiently.

In the following, we first discuss suitable mesh data struc-
tures and then explain the general incremental decimation
approach; existing methods will be discussed and classified
by noting how particular subproblems are handled.

5.1.3. Prerequisites: mesh data structures

A mesh decimation algorithm usually needs more informa-
tion than just vertex positions: the connectivity of the mesh
needs to be accessible (and mutable), in order to easily ex-
amine and update mesh regions. Common queries to such a
mesh data structure are:

• Which are the vertices forming a given triangle?
• Which triangles are adjacent to a given triangle?
• Which triangles are adjacent to a given vertex?
• Is a vertex/edge on a boundary?

There are a number of data structures that contain neigh-
borhood information and can be used in mesh decimation,
for example winged–edge1 or half–edge data structures4, 21.

c© The Eurographics Association 2000.

GMU MPI Saarbrücken / Geometric Modeling

complex edgeboundary vertex non−manifold vertexsimple inner vertex

Figure 32: Manifold and non–manifold triangle configura-
tions

These data structures cannot represent arbitrary triangula-
tions, but are basically restricted to bounded two–manifolds,
i.e. the surface has to be topologically disk–like at every
point, or halfdisk–like on boundaries. This rules out edges
with more than two adjacent triangles or points where two
triangles meet only at their tips. Figure 32 shows triangle
configurations, where the left two are legal for a manifold
surface, the others are not.

This is a common restriction for topology–preserving
mesh decimation algorithms. A topology–changing algo-
rithm though is allowed to merge disconnected components
of a triangle mesh. To deal with “real world” meshes, which
often have some non–manifold parts, the offending vertices
are usually marked as such and ignored during simplifica-
tion.

5.1.4. Incremental methods outline

This is the outline of a simple incremental decimation
algorithm34:

Repeat:
find region with estimated error < epsilon
remove triangles in region
retriangulate hole

Until no further reduction possible

The problem with this naive approach is, that we are try-
ing to solve a global optimization task by applying opera-
tions only based on local decisions. A greedy algorithm like
this is prone to get stuck in a local optimum that may be far
away from the globally optimal solution.

A way to alleviate this problem is to introduce a global
ranking for all candidate operations: Each currently possible
operation is assigned a cost value and then — if the cost is
acceptable — inserted into a priority queue. On each step of
the algorithm the current least–cost operation is applied and
the priorities for the affected neighborhood is reevaluated
and updated. It should be noted, that this still doesn’t guaran-
tee that a global optimum will be found: No operation is ever
performed that violates the prescribed error bound, even if at
a later stage the surface would lie well within these bounds.

The improved queue driven algorithm now has an initial
preprocessing phase to initialize the queue:

For all possible regions:
op := operation on region
c := cost of local decimation
if c < epsilon

(op,c) -> queue

Repeat:
Apply least-cost operation
Update queue

Until queue empty

Having a closer look at the local simplification step, there
are still open questions:

• What exactly is a “region”?
• How should it be retriangulated?

Before we can answer these, we need to decide on the
required behavior of the mesh decimation algorithm:

• Are we allowed to change the mesh topology or not?
• Does the simplified mesh have to consist of a subset of the

original vertices or do we want to optimize the shape by
shifting vertices around?

• Should the process be invertible for reconstruction (pro-
gressive mesh)?

• What region of the mesh is affected by the change? (We
need to know this to compute an error estimate.)

The answers to these questions are all connected to the
choice of the atomic changes we apply to the mesh; since
they affect the connectivity of the mesh, they are called topo-
logical operators. The idea is, to have a small set of opera-
tors, or even only one operator, that changes the mesh in a
clearly defined region in a computationally cheap, useful and
well–defined way; this concept has been first introduced by
Hoppe20.

The following section gives an overview of common ele-
mentary operators. All the following operations have a cor-
responding inverse operation, varying in the information that
has to be stored to perform it.

5.1.5. Topological operators

The first operator that may come to mind is close to our def-
inition above: Remove a vertex and retriangulate the hole.

Vertex Insertion

Vertex Removal

Simple as it is, we still have some degrees of freedom
here, namely how we retriangulate the hole after remov-
ing the vertex. Optimizing for the best retriangulation can
be algorithmically cumbersome for special cases have to be
considered34, and computationally expensive, depending on
the valence of the vertex, i.e. the number of vertices con-
nected to the removed vertex by triangle edges. As an ad-
ditional drawback, a lot of information needs to be kept to
invert the operation.

c© The Eurographics Association 2000.

GMU MPI Saarbrücken / Geometric Modeling

To reduce the number of degrees of freedom, a very com-
mon operation is the edge collapse20, where two end vertices
of an edge are merged, effectively removing one vertex and
two triangles. Here, the only degree of freedom left is the
position of the merged vertex.

Edge Split

Edge Collapse

This operator can be restricted even further, if we choose
the target position to be at one of the original two vertex
positions. No new vertex positions are “invented”, the only
choice left is into which vertex to collapse the edge. This
operation is called restricted edge collapse or half–edge col-
lapse, because giving the half–edge completely specifies the
operation24.

Half Edge Collapse

Restricted Vertex Split

The previous operators do not modify the topology of the
mesh, i.e. no unconnected regions of the mesh will be con-
nected and no tears will disappear or be introduced. In
topology–modifying algorithms, two vertices are allowed to
merge even if they are not connected by an edge:

Vertex Contraction

Vertex Separation

In this operation we may again choose to position the target
vertex freely or restrict to one of the two previous vertex
positions (this variant is shown in the picture).

Another common operator, the edge flip, does not change
the vertices at all, but only the connectivity. This is often
used as an optimization step, because flipping an edge may
result in a better local approximation of the surface20.

Edge Flip

Edge Flip

In the above pictures only the case of inner vertices are
shown. To apply them to boundary vertices/edges/triangles,
special care has to be taken to ensure a topologically consis-
tent mesh.

Even in the non–boundary case, situations arise where an
operator cannot be applied, e.g. it may generate coplanar tri-
angles, as shown in Fig. 33. So, when choosing an operation,
there has to be a check of the local topology, whether this op-
eration can actually be applied24.

5.1.6. Error metrics

Now we have clearly specified local operations to perform
on a given mesh. Given that the operation of choice is topo-
logically legal, we still have to check whether the approxi-
mation error it introduces lies within the given bounds. The
definition of this error metric is where incremental decima-
tion algorithms differ most. There are three main points one
has to consider for classifying these metrics:

Measured properties: Topology, geometry, attributes
Global vs. local: Is the error evaluated only from one step

to the next, or is there a comparison to the original geom-
etry?

Interpretation: To be useful for specifying the error bound,
the metric must be intuitive; also, there shouldn’t be too
many parameters, that the user has to adjust manually.

An example for a local measure is the distance to the pre-
vious mesh34. The problem here is of course, that no useful
statement can be made as for how faithful the simplified ge-
ometry is compared to the original. Even if one accumulates
the error values obtained at each step, this results only in
an overly conservative estimate of the global error, prohibit-
ing high simplification rates. Having a tight, reliable upper
bound for the surface error is crucial in e.g. CAD design or
medical applications.

Many algorithms try to guarantee an upper bound on the
distance error between the original and the simplified sur-
face, as in the conceptually straightforward approach by Co-
hen et al.12: inner and outer offset surfaces are computed
and used by an incremental procedure to simplify the mesh
within these global bounds.

A common way to define distances between meshes is
the Hausdorff distance between to shapes A and B, which
is defined as max(d(A,B),d(B,A)), where d(X ,Y) (the so–
called one–sided Hausdorff distance) is the maximum of the
distances from any point on X to the closest point on Y . It
should be noted, that the distance from shape A to shape B
is in general not the same as the distance from B to A (see
Fig. 34).

The Hausdorff distance is an intuitive global error mea-
sure, but difficult to compute22. In the case of scanned data,
one can argue that only the vertices of the original mesh hold

Figure 33: A collapse along the arrow would cause the dark
triangles to share all three vertices and thus cause a non-
manifold configuration.

c© The Eurographics Association 2000.

GMU MPI Saarbrücken / Geometric Modeling

B

A
d(A,B)

d(B,A)

Figure 34: One–sided Hausdorff distance d(A,B) compared
to d(B,A)

actual information, while the triangulation merely interpo-
lates these points. From this point of view, it is sufficient to
estimate the one–sided Hausdorff distance by measuring the
distance from the original surface vertices to the triangles of
the simplified surface24.

Measuring the global error usually requires to carry along
some sort of global history during simplification, e.g. the
removed vertices24 or information about the current error
bound in the form of scalar values, error volumes or other
data14, 33.

By preserving global volume of the shape with each local
simplification step27, 28, no global history needs to be main-
tained, but although the method yields in general very good
approximations, no upper bound on the surface error can be
given. Recently, error quadrics where introduced14 , which
can be computed very fast and in general give pleasing re-
sults, but unfortunately the interpretation of the surface er-
ror is unintuitive (“squared distance of vertex to a set of
planes”). It is not obvious how this measure relates to the
Hausdorff distance.

Only a few authors elaborate explicitly on how sur-
face attributes like colors, vertex normals and texture
can be preserved, though most methods extend to these
properties7, 11, 18.

Meshes with boundaries (as opposed to solids) involve
treatment of special cases. E.g. if a vertex on a boundary is
removed, the distance error now needs to be measured from
that vertex to the boundary polygon, not a triangle. Some
methods apply completely different criteria than for simpli-

Figure 35: Situation after an edge collapse; the dark re-
gion of the mesh has changed, thus for each vertex adjacent
to that region (here shown exemplary for one vertex only),
the potential collapses (marked by arrows) need to be re-
evaluated.

fication of inner vertices (such as preservation of the length
of the boundary polygon16).

When rejecting removal of a vertex due to violation of
the error bound, it is important to re–evaluate that vertex in
a later stage, since it may again become a candidate due to
changes in the nearby regions of the mesh. This is usually
achieved by updating priority queue entries for the neigh-
borhood of the removed vertex (commonly involving all tri-
angles in the 2–ring of that vertex, i.e. the triangles adjacent
to the changed regions, as shown in Fig. 35.

For validation of the error bounds the Metro tool9 is a
useful, publically available software to compare meshes in
terms of surface distances and volume difference.

5.1.7. Quality metrics

The error metric explained in the previous section serves to
select the valid candidate operations for the next simplifica-
tion step. But we still need to know, in what order these op-
erations should be performed, to guide the process towards
“better” surfaces. This is achieved by evaluating the opera-
tions using a quality metric, which is conceptually separate,
but in practice often intertwined with the error metric.

As a simple example, an algorithm that relies on bounding
the distance error between two surfaces can’t detect fold–
overs: A point moving in the plane can cause the orientation
of adjacent triangles to flip. To generate “reasonable” ap-
proximations, more control needs to be exerted (e.g. by dis-
allowing a more than 90 degree change of the face normal).
Also, self intersections of a shape can appear, if the opposite
sides of a model are closer together than the bound on the
distance error.

We can group quality criteria by their domain:

Geometry: Smooth surfaces are usually desirable; apart
from the “triangle flipping” problem, there may be user–
imposed limits on surface curvature. Also, good preserva-
tion of features can be understood as controlling quality.
Decimation algorithms often optimize for well–shaped
triangles employing some measure for “roundness” (gen-
erally maximizing triangle area with respect to edge
lengths, cf. Section 3.2).

Topology: A regular mesh structure is often preferable. In a
topology–changing decimation algorithm, one might want
to minimize the number of separate components.

Attributes: Common surface attributes are colors, texture
coordinates and vertex normals. Faithful reproduction of
the original appearance requires minimizing texture dis-
tortion, preserving discontinuities in surface colors and
minimizing normal deviation (cf. Fig. 36).

Often, the evaluated criteria are used both for error and
quality estimation: E.g. we may optimize for low distortion
of a triangle, given some scalar measure, but have a thresh-
old where we simply reject the operation, if the achievable
quality is too low.

c© The Eurographics Association 2000.

GMU MPI Saarbrücken / Geometric Modeling

Figure 36: Example of mesh decimation using error metrics for preservation of surface attributes; left: original model (400K
triangles); center: decimated without respecting color attributes (5K triangles); right: decimated preserving color discontinu-
ities (5K triangles). The algorithm trades geometry preservation for color preservation in this case.

5.1.8. Practicalities

Besides the core decimation routines, authoring a general
simplification tool often involves more to make it valuable
in practice. The following list states in a nutshell a few key
points to consider; this does of course not claim to be com-
plete, as domain–specific demands always have to be added.

Feature preservation: The user should be able to specify
features on the surface that are retained; this can be done
completely manually by selecting individual vertices or
edges, or semi–automatically (the program detects and
marks features based on user–specified criteria).

Configuration: The default parameters for error bounds
and quality criteria should already be useful; named pre-
sets are a way to hide complex parameter sets (“optimize
for triangle shape”; “optimize for smoothness”).

Progressive mesh generation: The decimation algorithm
needs to store the record of applied operations along with
information to invert them.

Robustness: If the decimation algorithm cannot handle
non–manifold or degenerate mesh regions, these should
be detected and dealt with in a graceful way — e.g. by
simply ignoring them. This also influences the mesh data
structure of choice: If a mesh cannot even be represented
internally, there is obviously no way to deal with degen-
eracies.

Speed: The choice of decimation criteria has a great effect
on speed and scalability of the algorithm. It should be
carefully investigated, whether exact error bounds are a
necessity – this can make the difference between a run-
ning time of a few seconds versus several minutes, or even
hours.

Memory requirements: When meshes in the range of a
few million triangles have to be simplified in–core, eas-
ily hundreds of megabytes of RAM are consumed. Effi-
cient data structures are very important here, and again
the choice of error bounds plays a role, because mem-

ory usage is higher, if e.g. a global history has to be
maintained.28

5.2. Discrete fairing

Besides technical requirements, high quality surfaces usu-
ally have to satisfy aesthetical requirements as well. While
the notion of aesthetic appearance is always subjective (if not
emotional), it is nevertheless possible to formulate a mathe-
matical principle to quantify surface fairness: the principle of
the simplest shape3 . Generally speaking, a shape should be
free of unnecessary details such as noise or oscillations (cf.
Section 3.2). In the context of discrete surface representa-
tions, discrete fairing techniques create meshes that are free
of unwanted detail because they minimize some bending en-
ergy functional. Since shape optimization is a computation-
ally expensive task, sophisticated multigrid algorithms based
on mesh decimation (cf. Section 5.1) are often integrated in
the fairing algorithms 23.

There are two major setups where mesh fairing algorithms
are applied. In one case we are interested in smoothing out
the high frequency details (noise) of an existing mesh with
the constraint to preserve the low frequency components
(global shape). Typical fields of application are smoothing
of polyhedral surfaces like those extracted from volumetric
medical data or those resulting from 3D laser range scan-
ners. Due to the huge mesh size in such applications, it is
especially important to run fast algorithms here. The other
setup is freeform surface modeling from scratch. Here the
problem is to create and modify a well defined smooth sur-
face that is fair. Tightly connected to this application is mul-
tiresolution editing where fairing algorithms are needed that
locally preserve the characteristics of the triangulation to en-
able simple detail encoding. In this context topological hier-
archies resulting from mesh decimation in combination with
discrete fairing are used to generate geometric hierarchies
(cf. Section 6).

c© The Eurographics Association 2000.

GMU MPI Saarbrücken / Geometric Modeling

When quantifying the quality of a mesh we have to dis-
tinguish two different fairness types, namely outer and inner
fairness. The outer fairness measures the fairness of the mesh
geometry, i.e. the quality of the shape that is approximated
by the mesh. The inner fairness addresses the parameteriza-
tion of the mesh vertices, i.e. their distribution over the sur-
face (cf. Fig. 37). Figure 12 demonstrates that both fairness
types cannot always be optimized simultaneously.

Most mesh fairing schemes are based on linear fairing op-
erators. These algorithms cannot strictly separate the outer
and inner fairness since the parameterization enters the def-
inition of the operators. Hence, the inner fairness strategy
greatly affects the outer fairness and therefore the shape of
the resulting mesh. Other important factors such as mesh
size and connectivity also have strong impact on the re-
sult (cf. Fig. 37). In contrast, non-linear approaches which
depend on intrinsic surface properties only, usually lead to
significantly better shapes. Non-linear fairing operators can
be formulated purely geometric such that altering the mesh
size, the mesh connectivity, or the inner fairness criteria only
produces another discretization of the same smooth surface
(cf. Fig. 37).

However, linear approaches have some important advan-
tages compared to their nonlinear counterparts. The result-
ing algorithms are simple and enable a fast implementa-
tion. Another important property is that linear schemes are in
general mathematically well understood. It is known under
which conditions a solution exists and the construction pro-
cess converges. Intrinsic fairing is a non-linear problem and
often considerably more involved. For many standard fair-
ing functionals it is still unknown if a solution always exists
within specific smoothness classes (although in practice they
work perfectly fine).

5.2.1. Linear methods

Energy minimization
The standard approach for fair surface construction is
based on the idea to minimize a fairness metric, punishing
unintended surface features that are inconsistent with the
principle of simplest shape. Since this leads to non-linear
functionals in general, a standard technique to simplify the
computation is to give up the parameter independence and
to approximate the geometric invariants with higher order
derivatives. For some important fairness functionals this
results in algorithms that compute the optimal surface by
solving a linear system23.

Diffusion flow
A very effective method for smoothing polyhedral surfaces
is the discrete diffusion flow35 where each vertex qi is
iteratively updated by adding a displacement vector which
is a scaled discrete Laplacian.

qnew
i = qi + t ∆qi (6)

Assigning a scalar weight λi j to every vertex q j that is adja-
cent to qi with the constraint ∑ j λi j = 1, the discrete Lapla-
cian ∆qi is defined as

∆(qi) = ∑
q j∈N(qi)

λi jq j − qi

where N(qi) denotes the set of all vertices adjacent to qi. The
coefficients λi j are determined based on a local parameteri-
zation or some other heuristic. For stability reasons the scale
factor t has to be a positive number satisfying 0 < t < 1. This
approach can be interpreted as forward Euler discretization
of the diffusion equation. Using backward Euler discretiza-
tion, Desbrun et al.13 showed that it is possible to develop
a diffusion flow that is unconditionally stable and hence en-
ables larger scaling factors t.

The main purpose of the diffusion flow is to smooth out
the high frequencies in noisy meshes. Since the equilibrium
surface of the flow only allows for C0 boundary conditions,
it is of limited use in freeform surface design. To enable
smooth boundary conditions one has to consider diffusion
equations of higher order. Taubin35 proposed to combine
two such smoothing steps with positive and negative scale
factors and developed an algorithm that satisfies various
interpolation constraints. Another idea that enables smooth
boundary conditions would be to use higher powers of the
Laplacian in the diffusion flow. A good trade-off between
efficiency and quality is the bilaplacian flow, enabling
C1 boundary conditions. This flow also results if we
choose scaling factors of equal absolute value in Taubin’s
algorithm25.

Laplacian smoothing
A special case of the diffusion flow is known as Laplacian
smoothing. Here the idea is quite simple: Each vertex qi is
replaced such that ∆(qi) = 0 is satisfied locally, that means
we have

qi = ∑
q j∈N(qi)

λi jq j.

Obviously this equation results from (6) by setting t = 1.
Although this value is outside the specified range allowed
for the diffusion flow, convergence is guaranteed if proper
boundary conditions are specified. There are two principal
methods to update the vertices qi simultaneous and sequen-
tial Laplacian smoothing37. In the first case we update the
vertices in a Jacobi like manner, in the second case we
perform a Gauss-Seidel type algorithm where previously
computed intermediate results are used. Although the
simultaneous version needs more storage space for the old
positions of qi, it is computationally less expensive.

PDE discretization
Another mesh fairing approach is based on the idea to
discretize the PDE approach of Bloor and Wilson2. Kobbelt

c© The Eurographics Association 2000.

GMU MPI Saarbrücken / Geometric Modeling

(a) (b) (c)

(d) (e) (f)

Figure 37: a) - c) show examples of mesh fairing based on discretizing the equation ∆2 f = 0. The boundary condition is
determined by 3 cylinders that are arranged symmetrically. In a) and b) we see the results for two different mesh sizes, if a
local uniform parameterization is assumed. In c) we used a discretization of a Laplacian that locally preserves the shape of
the triangles. We can see that the mesh size and the local parameterization strategy strongly affect the results. The rectangular
patch introduced in the original mesh leads to local as well as global shape distortions and prevents a symmetric solution.
d) - f) show examples of an intrinsic fairing operator, whose outer fairness is based on the non-linear PDE ∆BH = 0. We can
see that the chosen inner fairness operator and the mesh structure have only marginal influence on the shape. The influence of
the mesh size is also much weaker than in the linear setting.

et al.25 proposed to discretize

∆2 f = 0 (7)

to create triangle meshes satisfying prescribed C1 boundary
conditions. This equation results if one applies variational
calculus to the minimization of the thin plate energy

∫ ∫

f 2
xx + 2 f 2

xy + f 2
yy dxdy.

In practice equation (7) is discretized and the resulting lin-
ear system is solved using an iterative multigrid solver. The
multigrid approach considerably speeds up the computation.
In this formulation it is fast enough to be used in interactive
freeform mesh modeling25. The hierarchies for the multigrid
approach are generated using a mesh decimation algorithm
(see Section 5.1.2).

The fairing schemes mentioned above can be classified
into three categories, depending on whether fairing is based
on some kind of diffusion flow, energy minimization or
whether they discretize a PDE that characterizes the smooth
solution. All three approaches are tightly connected. For ex-
ample the two diffusion flow algorithms can be seen as per-
forming some steps of a Jacobi or Gauss-Seidel solver on the
linear system that is derived from the equation ∆ f = 0. On
the other hand we can compute the surface that is given by
the PDE (7) using the fact that the bilaplacian diffusion flow
converges to an equilibrum that solves this equation. In all
three cases the discretization of the Laplacian plays a central
role. Consequently, during the last years various linear dis-
cretizations of the Laplacian have been proposed35, 25, 13, 17

differing in how the geometry of the mesh influences the dis-
cretization. The specific discretization determines the inner

c© The Eurographics Association 2000.

GMU MPI Saarbrücken / Geometric Modeling

fairness but it also greatly affects the outer geometry of the
resulting mesh (cf. Fig. 37).

5.2.2. Nonlinear methods

Energy minimization
A common method to create fair surfaces is based on the
idea to minimize a fairness metric that punishes unaesthetic
surface features. Welch and Witkin38 proposed a mesh fair-
ing algorithm that enables G1 boundary conditions based on
the idea to minimize the total curvature

∫

κ2
1 + κ2

2 dA,

thus preferring small curvatures. The intrinsic curvature
values are estimated based on quadratic approximations
over local planar parameterizations. The parameter domains
are constructed by using an exponential map of the 1-
neighborhood around each vertex, i.e. the neighborhood of
a vertex is mapped onto a plane while preserving the dis-
tances of the vertex to its neighbors and the ratio of the adja-
cent angles. The quadratic polynomials are then constructed
using least squares approximation. If the least squares prob-
lem is underdetermined, the number of basis functions is re-
duced, making the discretization process discontinuous and
thus leading to potential instabilities in the mesh fairing al-
gorithm. To overcome that problem, Welch and Witkin pro-
pose to optimize some auxiliary norm in the underdeter-
mined cases, which requires an orthogonal matrix decom-
position.

q
j

q

q
j-1

j+1

i
q

j-1

j+1

j

βj

α

i

qq

q

j

q

Figure 38: The mean curvature vector at the vertex qi can
be discretized by using the 1-disk.

Diffusion flow
An intrinsic diffusion operator that is the non-linear analo-
gon to (6) was presented by Desbrun et al.13 using the dis-
crete mean curvature flow

q′i = qi + λH~n,

where H is the mean curvature and~n is the outer unit surface
normal. They showed that the mean curvature vector can be
discretized by

H~n =
1

4A ∑
q j∈N(qi)

(cotα j + cotβ j)(qi−q j),

where A is the sum of the triangle areas of the 1-disk around
qi and α j and β j are the triangle angles shown in figure 38.
Assuming that changes induced in each time step will be
small, it can be handled quite analogously to the linear dif-
fusion equation (6) and it is also possible to formulate an
unconditionally stable flow.

While this fairing algorithm is mainly designed to opti-
mize the outer fairness, Ohtake et al.29 combined this algo-
rithm with an inner fairness criterion which leads to more
regular meshes. To achieve this result, they propose to move
the vertices in the direction defined by the linear diffusion
flow using local uniform parameterization but with a speed
equal to a properly chosen function of the true mean curva-
ture.

These intrinsic diffusion operators are appropriate for
smoothing noisy meshes, but since these algorithms con-
verge to a discrete minimum surface satisfying H = 0,
they only enable C0 boundary conditions which doesn’t
allow for globally smooth surface design. Just like for the
linear diffusion flow algorithms, a solution would be to use
curvature flows of higher order as for example the Laplacian
of curvature flow5.

PDE discretization
A fairing algorithm for arbitrary triangle meshes, which
enables G1 boundary conditions (prescribed vertices and
unit normals) and which allows the designer to completely
separate outer and inner fairness criteria was proposed
by Schneider et al.32. To achieve this, the outer fairness
functional is based on the intrinsic PDE

∆BH = 0, (8)

which can be interpreted as one possible nonlinear analogon
to thin plate splines (7). Here ∆B is the Laplace Beltrami
operator and H is the mean curvature. The equation charac-
terizes the equilibrium state of the Laplacian of the curvature
flow5. The PDE only depends on geometric intrinsics and is
a relatively simple fourth order equation. Due to the mean
value property of the Laplacian, it is guaranteed that the ex-
tremal mean curvature values of a solution of (8) will be
obtained at the boundary and that there are no local extrema
in the interior31. Thus it satisfies the principle of simplest
shape. Since surfaces with constant mean curvature satisfy
this equation, important basic shapes like spheres and cylin-
ders can be reconstructed.

Figure 37 shows that a coarse mesh already approximates
very well the shape of the smooth surface that is defined
by the PDE. Hence, increasing the mesh size mainly im-
proves the smoothness of the approximation but not the ac-
tual shape. This property is exploited to improve the ef-
ficiency of the construction algorithm by using multigrid
methods for arbitrary meshes25. The necessary mesh hier-
archies are created using progressive mesh representations
as introduced by Hoppe18.

c© The Eurographics Association 2000.

GMU MPI Saarbrücken / Geometric Modeling

(a) (b) (c)

Figure 39: 6 circles with C1 boundary–conditions are used to define a “tetra thing”. Due to the symmetry the final solution is
actually G2 continuous in this case, which is indicated in c) by the smooth reflection lines. The pictures are constructed using
an intrinsic fairing operator whose outer fairness is based on ∆BH = 0.

To further speed up the construction scheme, the fourth
order PDE is factorized into two second order problems. We
first compute mean curvature values Hi for each vertex qi by
solving the outer second order problem ∆BHi = 0 and then
we compute vertex positions such that the given mean cur-
vature values are interpolated H(qi) = Hi. Figure 39 shows
an example surface generated by this technique.

References

1. B. G. Baumgart. Winged–edge polyhedron representa-
tion. Technical Report STAN–CS–320, Stanford Uni-
versity, Computer Science Department, 1972.

2. M. I. G. Bloor and M. J. Wilson. Using partial differ-
ential equations to generate free–form surfaces. IEEE
Transactions on Visualization and Computer Graphics,
22:202–212, 1990.

3. H. G. Burchard, J. A. Ayers, W. H. Frey, and N. S. Sa-
pidis. Approximation with aesthetic constraints. In De-
signing Fair Curves and Surfaces, pages 3–28. SIAM,
Philadelphia, 1994.

4. S. Campagna, L. Kobbelt, and H.-P. Seidel. Directed
edges: A scalable representation for triangle meshes.
Journal of Graphics Tools, 3(4):1–11, 1998.

5. D. L. Chopp and J. A. Sethian. Motion by intrinsic
laplacian of curvature. In Interfaces and Free Bound-
aries 1, pages 1–18, 1999.

6. A. Ciampalini, P. Cignoni, C. Montani, and
R. Scopigno. Multiresolution decimation based
on global error. The Visual Computer, 13(5):228–246,
1997.

7. P. Cignoni, C. Montani, C. Rocchini, R. Scopigno, and
M. Tarini. Preserving attribute values on simplified
meshes by re–sampling detail textures. The Visual
Computer, 15(10):519–539, 1999.

8. P. Cignoni, C. Montani, and R. Scopigno. A compar-
ison of mesh simplification algorithms. Computers &
Graphics, 22(1):37–54, 1998.

9. P. Cignoni, C. Rocchini, and R. Scopigno. Metro: Mea-
suring error on simplified surfaces. Computer Graphics
Forum, 17(2):167–174, 1998.

10. J. Cohen, Dinesh M., and M. Olano. Simplifying polyg-
onal models using successive mappings. In IEEE Visu-
alization ’97 Conference Proceedings, pages 395–402,
1997.

11. J. Cohen, M. Olano, and D. Manocha. Appearance–
preserving simplification. In SIGGRAPH 98 Confer-
ence Proceedings, pages 115–122, 1998.

12. J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber,
P. Agarwal, F. P. Brooks, Jr., and W. Wright. Simplifi-
cation envelopes. In SIGGRAPH 96 Conference Pro-
ceedings, pages 119–128, 1996.

13. M. Desbrun, M. Meyer, P. Schröder, and A. H. Barr.
Implicit fairing of irregular meshes using diffusion and
curvature flow. In SIGGRAPH 99 Conference Proceed-
ings, pages 317–324, 1999.

14. M. Garland and P. S. Heckbert. Surface simplification
using quadric error metrics. In SIGGRAPH 97 Confer-
ence Proceedings, pages 209–216, 1997.

15. A. Guéziec. Surface simplification with variable tol-
erance. In Second Annual Intl. Symp. on Medical

c© The Eurographics Association 2000.

GMU MPI Saarbrücken / Geometric Modeling

Robotics and Computer Assisted Surgery, pages 132–
139, 1995.

16. A. Guéziec. Locally toleranced surface simplifica-
tion. IEEE Transactions on Visualization and Com-
puter Graphics, 5(2), 1999.

17. I. Guskov, W. Sweldens, and P. Schröder. Multiresolu-
tion signal processing for meshes. In SIGGRAPH 99
Conference Proceedings, pages 325–334, 1999.

18. H. Hoppe. Progressive meshes. In SIGGRAPH 96 Con-
ference Proceedings, pages 99–108, 1996.

19. H. Hoppe. Efficient implementation of progressive
meshes. Computers and Graphics, 22(1):27–36, 1998.

20. H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and
W. Stuetzle. Mesh optimization. In SIGGRAPH 93
Conference Proceedings), pages 19–26, 1993.

21. L. Kettner. Designing a data structure for polyhedral
surfaces. Technical Report TR 278, ETH Zürich, Insti-
tute of Theoretical Computer Science, 1997.

22. R. Klein, G. Liebich, and W. Straßer. Mesh reduction
with error control. In IEEE Visualization ’96 Confer-
ence Proceedings, pages 311–318, 1996.

23. L. Kobbelt. Discrete fairing. In Proceedings of the Sev-
enth IMA Conference on the Mathematics of Surfaces,
pages 101–131, 1996.

24. L. Kobbelt, S. Campagna, and H.-P. Seidel. A general
framework for mesh decimation. In Graphics Interface,
pages 43–50, 1998.

25. L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Sei-
del. Interactive multi–resolution modeling on arbitrary
meshes. In SIGGRAPH 98 Conference Proceedings,
pages 105–114, 1998.

26. P. Lindstroem. Out–of–core simplification of large
polygonal models. In SIGGRAPH 00 Conference Pro-
ceedings, to appear.

27. P. Lindstrom and G. Turk. Fast and memory efficient
polygonal simplification. In IEEE Visualization ’98
Conference Proceedings, pages 279–286, 1998.

28. P. Lindstrom and G. Turk. Evaluation of memoryless
simplification. IEEE Transactions on Visualization and
Computer Graphics, 5(2), 1999.

29. Y. Ohtake, A. G. Belyaev, and I. A. Bogaevski. Poly-
hedral surface smoothing with simultaneous mesh reg-
ularization. In Proceedings Geometric Modeling and
Processing, pages 229–237, 2000.

30. J. Rossignac and P. Borrel. Multi–resolution 3D ap-
proximation for rendering complex scenes. In Sec-
ond Conference on Geometric Modelling in Computer
Graphics, pages 453–465, 1993. Genova, Italy.

31. R. Schneider and L. Kobbelt. Generating fair meshes
with g1 boundary conditions. In Proceedings Geomet-
ric Modeling and Processing, pages 251–261, 2000.

32. R. Schneider and L. Kobbelt. Geometric fairing of ir-
regular meshes for free–form surface design. submit-
ted.

33. W. J. Schroeder. A topology modifying progressive
decimation algorithm. In IEEE Visualization ’97 Con-
ference Proceedings, pages 205–212, 1997.

34. W. J. Schroeder, J. A. Zarge, and W. E. Lorensen. Dec-
imation of triangle meshes. In Computer Graphics
(SIGGRAPH 92 Conference Proceedings), volume 26,
pages 65–70, 1992.

35. G. Taubin. A signal processing approach to fair sur-
face design. In SIGGRAPH 95 Conference Proceed-
ings, pages 351–358, 1995.

36. G. Turk. Re–tiling polygonal surfaces. In Computer
Graphics (SIGGRAPH 92 Conference Proceedings),
volume 26, pages 55–64, 1992.

37. J. Vollmer, R. Mencl, and H. Muller. Improved lapla-
cian smoothing of noisy surface meshes. In Computer
Graphics Forum (Proc. Eurographics), pages 131–138,
1999.

38. W. Welch and A. Witkin. Free–form shape design us-
ing triangulated surfaces. In SIGGRAPH 94 Conference
Proceedings), pages 247–256, 1994.

39. L. Williams. Pyramidal parametrics. In Computer
Graphics (SIGGRAPH 83 Conference Proceedings),
volume 17, pages 1–11, 1983.

40. S. A. Zimmerman. Applying frequency domain con-
structs to a broad spectrum of visual simulation prob-
lems. Technical report, Evans & Sutherland, 1987.
Presented at the IMAGE IV Conference, Phoenix, Ari-
zona.

c© The Eurographics Association 2000.

GMU MPI Saarbrücken / Geometric Modeling

6. Geometric modeling based on polygonal meshes

Finally we come to the last stage in our virtual mesh process-
ing pipeline. Until now we presented many powerful meth-
ods to efficiently process polygonal meshes. Having all the
means at hand, we are able to focus on (interactive) multires-
olution modeling, where a designer modifies a given surface
using sophisticated editing operations. We distinguish be-
tween two different approaches: Freeform modeling is the
process of modifying subregions of the surface in a smooth
manner whereas the notion of multiresolution modeling de-
scribes edits where we can additionally preserve little geo-
metric features1.

Traditionally, geometric modeling is based on polyno-
mial surface representations2, 9, 10. However, while special
polynomial basis functions are well suited for describing
and modifying smooth triangular or quadrilateral patches, it
turns out to be rather difficult to smoothly join several pieces
of a composite surface along common (possibly trimmed)
boundary curves. As flexible patch layout is crucial for the
construction of non–trivial geometric shapes, spline–based
modeling tools spend much effort on maintaining the global
smoothness of a surface. The situation is simpler for triangle
meshes. For this reason, considerable research has been done
to extend these traditional methods to polygonal meshes.

Just like in the two previous sections (where we carried
many of the advantageous features of parametric surfaces
over to polygonal surfaces, while getting rid of the severe re-
strictions inherent to them) this section discusses approaches
that make freeform and multiresolution modeling available
for triangle meshes. Opposed to splines, where the control
vertices provide a convenient way to smoothly edit the sur-
face, this is a challenging task, since plain triangle meshes
do not have any reasonable control mechanism. Before we
describe in detail, how intuitive modeling metaphors for tri-
angle meshes can be accomplished, we describe the general
requirements a modeling tool should satisfy.

Intuitive I.e. editing the overall shape with an easy to use
control mechanism (cf. control vertices of splines) in a
broad, smooth manner while preserving little features re-
siding on the surface should be possible.

Independent The editing interface should abstract from the
underlying mesh representation, since in general a de-
signer is not interested in how the surface is actually rep-
resented.

Interactive This is crucial, since a designer heavily depends
on immediate visual feedback when performing further
edits.

This part of the tutorial is organized as follows. At first
we will deal with freeform modeling. This can be done with
the help of discrete fairing or subdivision respectively. Since
we explained these methods in previous sections (cf. Sec-
tions 5.2, 4.1), we restrict ourselves to describe, how an
efficient control mechanism (similar to the control–points
of spline–based methods) can be derived. In the second

part we will show, how to build a hierarchical structure for
semi–regular and for unstructured meshes. Combined with
freeform modifications, this enables us to perform multires-
olution modeling. Finally we will briefly discuss some spe-
cific modeling schemes, that were proposed during the last
years.

6.1. Freeform modeling

Subdivision schemes can be considered as the algorithmic
generalization of classical spline techniques enabling con-
trol meshes with arbitrary topology. They provide easy ac-
cess to globally smooth surfaces of arbitrary shape by itera-
tively applying simple refinement rules to the given control
mesh. A coarse–to–fine hierarchy of meshes generated by
this process quickly converges to a smooth limit surface. For
most practical applications, the refined meshes are already
sufficiently close to the smooth limit after only a few refine-
ment steps. Lets assume we are given a semi–regular mesh
Mn, which was generated by applying some subdivision op-
erator S to a base mesh M0, and we want to modify Mn

with specific support. The usual way to implement this op-
eration is to run a decomposition scheme several steps until
the desired resolution level corresponding to the meshMi is
reached. In our setting, this can simply be done by subsam-
pling, i.e. we just switch to Mi. On this level the mesh Mi
is edited. Applying S to the modified meshM′

i (n− i)–times
yields the final result. This operation can be performed quite
efficiently due to the simplicity and numerical robustness of
S. (Fig. 40 illustrates the varying support of modifications at
different levels). The major drawback of this procedure is the
fact, that edits are restricted to vertices residing on a specific
level. However, one can fake low–frequency modifications
by moving a group of vertices from a finer level simulta-
neously. But besides being cumbersome, this annihilates the
mathematical elegance of the multiresolution representation.

In order to apply global and smooth modifications to ar-
bitrary (manifold) triangle meshes we make use of a com-
pletely different approach. In Sec. 5.2 we introduced the no-
tion of discrete fairing that provides elegant means for our
purposes. The key idea is relatively simple and can roughly
be stated as follows:

Define the edit by imposing boundary conditions
to the mesh, choose an appropriate fairing scheme
and solve the corresponding optimization prob-
lem.

Fig. 41 shows a convenient way how boundary condi-
tions can be defined by the user. However, more sophisti-
cated methods can easily be derived. The following sections
show how to apply discrete fairing in the context of interac-
tive modeling.

c© The Eurographics Association 2000.

GMU MPI Saarbrücken / Geometric Modeling

Figure 40: A simple subdivision–surface (left) is modified by moving the vertices of corresponding control meshes. Editing the
coarse control mesh leads to a wide “bump” (middle) whereas altering a vertex on a finer level affects a smaller area (right).

Figure 41: Freeform edits for unstructured meshes: The dark line indicates the area which is subject to the modification.
The bright line defines the handle geometry which can be moved by the designer (middle,right). Both boundaries can have an
arbitrary shape and hence they can, e.g. be aligned to geometric features in the mesh. The dark and the bright line impose
C1 and C0 boundary conditions to the mesh respectively and the modified smooth version is found by discrete fairing while
preserving these conditions. Notice, that the designer can apply arbitrary modifications to the handle polygon and she does not
have to take the mesh connectivity into account.

Since interactivity is crucial, an efficient solver for the
chosen fairing scheme has to be available. Linear methods
(cf. Sec. 5.2) lead to large sparse linear problems and nu-
merical analysis shows, that straight forward iterative solvers
(Jacobi/Gauß–Seidel) are not appropriate in this case. Never-
theless, more sophisticated solvers exploit knowledge about
the structure of the problem, e.g. the large class of multi–grid
schemes solve the problem hierarchically and thus achieve
linear running times in the number of degrees of freedom.
These multi–level schemes solve the problem on a coarse
level first and use this solution to predict initial values for a
solution on the next refinement level. In our case, we can use
incremental mesh decimation (cf. Sec. 5.1) to build a fine–
to–coarse hierarchy of the mesh in such a way that interme-
diate meshes can be used to solve the optimization problem
(OP). This is done in the following way.

go to coarsest level
solve OP directly
Repeat:

reinsert some vertices
solve OP in vicinity of new vertices

Until mesh is reconstructed

Discrete fairing adjusts for vertex positions only, which
might be insufficient for certain boundary conditions,
e.g. extremely large or distorted triangles can occur. For-
tunately another degree of freedom inherent to triangle
meshes can be exploited. In other words the connectivity
can be changed to get rid of badly shaped triangles. This
can e.g. be done by prescribing a maximal/minimal edge–
length5, 6. Long edges are removed by inserting new ver-
tices at their center (the two triangles adjacent to this edge
are split into four subtriangles). Subsequently a simple local
optimization procedure balances the vertices’ valences thus
strongly distorted triangles can be avoided.

6.2. Multiresolution modeling

The previous section shows how to perform freeform model-
ing on triangle meshes. Let us now assume we want to mod-
ify the face of the bust model (see Fig. 43) and we would
e.g. like to shift its nose. This could be accomplished with
the above methods but the face would lose its features like
eyes and mouth since this detail information would be re-
moved by the optimization process. In order to enable such

c© The Eurographics Association 2000.

GMU MPI Saarbrücken / Geometric Modeling

Figure 42: A flexible metaphor for multiresolution edits. On the left, the original mesh is shown. The smooth version of the
original mesh is found by applying discrete fairing while observing the boundary constraints (dark and bright line, cf. Fig. 41).
The center left shows the result of the curvature minimization. The geometric difference between the two left meshes is stored as
detail information with respect to local frames. Now the designer can move the handle polygon and this changes the boundary
constraints for the curvature minimization. Hence the discrete fairing generates a modified smooth mesh (center right). Adding
the previously stored detail information yields the final result on the right. Since we can apply fast multi-level smoothing
when solving the optimization problem, the modified mesh can be updated with several frames per second during the modeling
operation. Notice that all four meshes have the same connectivity.

types of edits, we have to extend freeform modeling to Mul-
tiresolution modeling which means that we have to be able to
distinguish between high–frequency detail information that
has to be preserved and the low–frequency shape we want to
edit. This is where multiresolution representations for trian-
gle meshes come in. In the course of this tutorial we already
got to know two different ways to build hierarchies (coarse–
to–fine and fine–to–coarse). In the context of multiresolution
modeling however, we do not want hierarchies of different
coarseness, i.e. with varying triangle count but of different
smoothness. Nevertheless, it will turn out, that both types of
hierarchies are closely related.

Given an arbitrary surface Sm, a multiresolution decom-
position consists of a sequence of topologically equivalent
surfaces Sm−1, . . .,S0 with decreasing level of geometric
detail. The difference Di = Si+1 − Si between two suc-
cessive surfaces is the detail on level i which is added
or removed when switching between the two approxima-
tions. The reconstruction Sm = Si +Di + . . . +Dm−1 of
the original surface Sm can start on any level of detail Si.
Multiresolution modeling means that on some level of de-
tail, the surface Si is replaced by S ′i . This operation does
not have any effect on S0, . . .,Si−1 but Di−1 and hence
Si+1, . . .,Sm change since the (unchanged) detail informa-
tion Di, . . .,Dm−1 is now added to the modified base sur-
face S ′i for the reconstruction of S ′m. In order to guarantee
the intuitive preservation of the shape characteristics after a
modification on some lower level of detail, this basic setting
has to be extended in the sense that the detail information
Di is encoded with respect to local frames. These frames are
aligned to the surface geometry of Si

3, 2, 7, 11. Section 6.2.1
will elaborate on this.

For semi–regular meshes based on subdivision the recon-
struction operator is given by the underlying subdivision
scheme. We transform the mesh Si to the next refinement

level S ′i+1 = SSi by applying the stationary subdivision op-
erator S and move the obtained control vertices by adding
the associated detail vectors: Si+1 = S ′i+1 +Di. In order
to generate a smooth low–frequency approximation of Sm,
we simply suppress the detail reconstruction starting from
some intermediate level j (Di = 0, i ≥ j). The decomposi-
tion operator has to be the inverse of the subdivision oper-
ator, i.e. given a fine mesh Si+1 we have to find a mesh Si

such that Si+1 ≈ SSi. In this case the detail vectors become
as small as possible7.

If we build the hierarchy by using an incremental mesh
decimation scheme, the decomposition operator D applies
to arbitrary meshes. Given a fine mesh Si+1 we find Si =
DSi+1, e.g. by applying a number of edge collapse opera-
tions (cf. Sec. 5.1). However, it is not clear how to define
the detail coefficients, since inverse mesh decimation (pro-
gressive meshes) always reconstructs the original mesh and
there is no canonical way to generate smooth low frequency
geometry by suppressing the detail information during re-
construction. To solve this problem we split each step of
the progressive mesh refinement into a topological operation
(vertex insertion) and a geometric operation which places
the re–inserted vertex at the original position. In analogy
to the plain subdivision operator without detail reconstruc-
tion we have to figure out a heuristic which places the new
vertices such that they lie on a smooth surface (instead of
their original position). This can be done by discrete fair-
ing (see. Sec. 5.2). The difference between this “predicted”
position and the original location can then be used as the
associated detail vector.

6.2.1. Detail encoding

In order to guarantee intuitive detail preservation under mod-
ification of the global shape, we cannot simply store the de-
tail vectors with respect to a global coordinate system but we

c© The Eurographics Association 2000.

GMU MPI Saarbrücken / Geometric Modeling

Figure 43: Multiresolution editing of a bust (62k triangles,left). The handle lies around the nose, the whole face is marked as
the area of influence. The edits where achieved by scaling and translating the nose (from left to right).

have to define them with respect to local frames which are
aligned to the low–frequency geometry. Usually, the associ-
ated local frame for each vertex has its origin at the location
predicted by the reconstruction operator with suppressed de-
tail. However, in many cases this can lead to rather long de-
tail vectors with a significant component within the local tan-
gent plane. Since we prefer short detail vectors to guarantee
intuitive reconstructions, we use a different origin for the lo-
cal frame. In fact, the optimal choice is to find that point
on the low–frequency surface, whose normal points directly
to the original vertex. In this case the detail is not given in
(x,y,z)–coordinates but rather by the base point p = p(u,v)
on the low–frequency geometry plus a scalar value h for the
offset in normal direction.

The general setting for detail computation is that we have
given two meshes Si+1 and S ′i+1 where Si+1 is the origi-
nal data while S ′i+1 is reconstructed from the low–frequency
approximation Si with suppressed detail, i.e. for coarse–to–
fine hierarchies, the mesh S ′i+1 is generated by applying a
stationary subdivision scheme and for fine–to–coarse hier-
archies S ′i+1 is optimal with respect to some global bend-
ing energy functional. Encoding the difference between both
meshes requires us to associate each vertex p of Si+1 with a
corresponding base point q on S ′i+1 such that the difference
vector p−q is parallel to the normal vector at q. Any point q
on S ′i+1 can be specified by a triangle index i and barycentric
coordinates within the referred triangle.

To actually compute the detail coefficients, we have to de-
fine a normal field on the mesh S ′i+1. The most simple way
to do this is to use the normal vectors of the triangular faces
for the definition of a piecewise constant normal field. How-
ever, since the orthogonal prisms spanned by a triangle mesh
do not completely cover the vicinity of the mesh, we have to
accept negative barycentric coordinates, if S ′i+1 is not suffi-
ciently smooth. This may lead to “unnatural” detail recon-
struction if the low–frequency geometry is modified.

We therefore propose a different approach8 where the nor-
mal vectors are estimated at the vertices and a continuous
normal field for the interior of the triangles is computed by
linearly blending the vertex normals.

6.3. Modeling tools based on triangle meshes

6.3.1. Semi–regular meshes

In 1997 Zorin et al. came up with a modeling tool for semi–
regular meshes11. It implements the control mechanism we
described in the context of freeform modeling for semi–
regular meshes and it uses a decomposition operator similar
to the one we sketched in Section 6.2.

Pros/Cons:
+ Intuitive modifications (detail preserving large scale ed-

its).
+ Fast and stable due to simple analysis/synthesis operators.
– Restricted to semi–regular input meshes.
– Topological hierarchy pinpoints degrees of freedom for

edits on different scales.

6.3.2. Unstructured meshes

Kobbelt et al.7 generalized multiresolution techniques to ar-
bitrary triangle meshes (cf. Fig. 42). They introduced the
fine–to–coarse geometric hierarchy by using the simple Um-
brella algorithm (cf. Equation (7) in Sec. 5.2) to generate the
low–frequency version of the input mesh. In 8 they extend
the two stage hierarchy to multiple geometric hierarchies. A
similar approach has been investigated by Guskov4 .

Pros/Cons:
+ Intuitive modifications (detail preserving large scale ed-

its).
+ Unstructured input meshes.
+ Flexible modeling metaphor (arbitrary area/handle).
– Fixed mesh–connectivity.

c© The Eurographics Association 2000.

GMU MPI Saarbrücken / Geometric Modeling

6.3.3. Dynamic vertex connectivity

In 6 Kobbelt et al. introduced the notion of multiresolution
modeling for meshes with dynamic connectivity. They no
longer require a global hierarchical structure that links the
different detail levels, but they represent the detail informa-
tion implicitly by the difference between independent sur-
faces. Since describing the scheme in detail would go be-
yond the scope of this tutorial, we refer to the original paper
in the proceedings.

Pros/Cons:

+ Unstructured input meshes.
+ Adaptive connectivity.
– No flexible/intuitive modeling metaphor (modeling with

ellipsoids).

References

1. L. DeFloriani, E. Puppo, P. Cignoni, and R. Scopigno.
Multiresolution modeling of surfaces and volume data.
In Eurographics ‘99 Tutorial Notes, 1999.

2. D. Forsey and R. H. Bartels. Surface fitting with hi-
erarchical splines. ACM Transactions on Graphics,
14(2):134–161, 1995.

3. D. R. Forsey and R. H. Bartels. Hierarchical B–spline
refinement. In Computer Graphics (SIGGRAPH 88
Proceedings), volume 22, pages 205–212, 1988.

4. I. Guskov, W. Sweldens, and P. Schröder. Multiresolu-
tion signal processing for meshes. In SIGGRAPH 99
Conference Proceedings, pages 325–334, 1999.

5. H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and
W. Stuetzle. Mesh optimization. In SIGGRAPH 93
Conference Proceedings), pages 19–26, 1993.

6. L. Kobbelt, T. Bareuther, and H.-P. Seidel. Multires-
olution shape deformations for meshes with dynamic
connectivity. In Computer Graphics Forum (Proc. Eu-
rographics 2000), to appear.

7. L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Sei-
del. Interactive multi–resolution modeling on arbitrary
meshes. In SIGGRAPH 98 Conference Proceedings,
pages 105–114, 1998.

8. L. Kobbelt, J. Vorsatz, and H.-P. Seidel. Multiresolution
hierarchies on unstructured triangle meshes. Computa-
tional Geometry: Theory and Applications, 14, 1999.

9. V. Krishnamurthy and M. Levoy. Fitting smooth sur-
faces to dense polygon meshes. In SIGGRAPH 96 Con-
ference Proceedings, pages 313–324, 1996.

10. S. Lee. Interactive multiresolution editing of arbi-
trary meshes. Computer Graphics Forum, 18(3):73–82,
1999.

11. D. Zorin, P. Schröder, and W. Sweldens. Interactive
multiresolution mesh editing. In SIGGRAPH 97 Con-
ference Proceedings, pages 259–268, 1997.

c© The Eurographics Association 2000.

GMU MPI Saarbrücken / Geometric Modeling

c© The Eurographics Association 2000.

	Introduction and overview
	Data acquisition and mesh generation
	Data acquisition
	Introduction
	Range scanning process overview
	Calibration
	Scanning: range from stereo
	Registration

	Triangulation of point clouds
	Introduction
	Sculpting based approaches
	Alpha--Shapes
	Voronoi--Filtering
	Others

	Volumetric approaches
	Reconstruction from unorganized points
	Reconstruction from range images
	Others

	Incremental approaches
	Ball pivoting
	Interactive approach
	Others

	Discrete differential geometry
	Discrete curvature
	Geometric intrinsics
	Discretization techniques

	Quality control for meshed surfaces
	What is the quality of a triangle mesh?
	Visualizing smoothness
	Specular shading
	Isophotes
	Reflection lines

	Smoothness vs. fairness
	Visualizing curvature and fairness
	Curvature values
	Color coding scalar values
	Isocurvature lines
	Lines of curvature

	The shape of triangles
	Summary

	Coarse--to--fine hierarchies
	Stationary subdivision
	Introduction
	Catmull--Clark subdivision
	Analysis of subdivision schemes
	Technical terms
	Common subdivision schemes

	Remeshing
	Eck's scheme
	MAPS
	Shrink wrapping

	Fine-to-coarse hierarchies
	Mesh decimation
	Introduction
	A brief history
	Prerequisites: mesh data structures
	Incremental methods outline
	Topological operators
	Error metrics
	Quality metrics
	Practicalities

	Discrete fairing
	Linear methods
	Nonlinear methods

	Geometric modeling based on polygonal meshes
	Freeform modeling
	Multiresolution modeling
	Detail encoding

	 Modeling tools based on triangle meshes
	 Semi--regular meshes
	Unstructured meshes
	 Dynamic vertex connectivity

