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This article introduces a method for mesh editing that is aimed at preserving shape and volume. We present two new developments: The first is a minimization

of a functional expressing a geometric distance measure between two isometric surfaces. The second is a local volume analysis linking the volume of an

object to its surface curvature. Our method is based upon the moving frames representation of meshes. Applying a rotation field to the moving frames defines

an isometry. Given rotational constraints, the mesh is deformed by an optimal isometry defined by minimizing the distance measure between original and

deformed meshes. The resulting isometry nicely preserves the surface details, but when large rotations are applied, the volumetric behavior of the model may

be unsatisfactory. Using the local volume analysis, we define a scalar field by which we scale the moving frames. Scaled and rotated moving frames restore

volumetric properties of the original mesh, while properly maintaining the surface details. Our results show that even extreme deformations can be applied to

meshes, with only minimal distortion of surface details and object volume.
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1. INTRODUCTION

Triangular meshes are the de facto common representation of 3D

objects in computer graphics. Recently, several researchers have

studied the manipulation of meshes while preserving their surface

details [Kobbelt et al. 1998; Yu et al. 2004; Lipman et al. 2004, 2005;

Sorkine et al. 2004; Zhou et al. 2005]. The common idea in these

works is to represent the surface with differential coordinates, and to

minimize the changes in these coordinates under some constraints

defining the editing objectives. One of the main issues is to find

the quantities which should be preserved during the deformation. In

previous works, the assumption was that preserving the differential

coordinates which represent the local shape of the surface would

lead to a detail-preserving operation. However, it has been noted

that differential coordinates defined in a global coordinate system

are not rotation-invariant, and as a result, the details in the deformed

mesh are distorted. In Lipman et al. [2004], Yu et al. [2004], and

Sorkine et al. [2004], it is shown that transforming the differential

coordinates with respect to the given constraints alleviates the prob-

lem, provided that the deformations are not too large and the shapes

not too complex.
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Representing the surface by rotation-invariant differential coordi-

nates [Lipman et al. 2005] decomposes the problem into finding the

rotational transformation and residual general deformation. Solving

first for the rotations and then for the positional constraints preserves

the rigidity of the local details. The representation, introduced by

Lipman et al. [2005], is based on moving frames encoded by dif-

ferential values. Their technique is particularly attractive since it

only requires solving two sequential linear least-squares systems.

However, the geometric relevance of the quantity minimized in this

process remains unclear. Moreover, the linear least-squares solution

is not optimal, and under large deformations the shape of the model

and its volume may be quite distorted. Furthermore, the deformation

operators for over π radians are undefined, and can only be realized

by a series of operators of smaller angles.

Drawing upon the moving frames representation, we introduce

in the article a new mathematical framework which leads to a new

method for mesh editing, aiming at the preservation of shape and

volume. We developed two transformation fields that are applied to

the moving frames, which in turn are used for the reconstruction

of the deformed surface. The first is an optimal rotation field that

preserves the surface local shape, and the second is a scaling field
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Fig. 1. The elephant model is deformed in one step with a 2π rotation

applied to the tip of his trunk.

that preserves the local volume. The new technique allows applying

large deformations in a single step, while preserving both the shape

and volume of the subject. Figure 1 shows an example of a large

rotation (2π radians) applied to the trunk of an elephant. Another,

more general deformation is shown in Figure 4.

1.1 Our Approach and Contributions

A shape is a geometric property that is invariant to rigid transforma-

tions. As such, a shape can be characterized by differential invariants

of rigid transformations. In surface differential geometry, the first

and second fundamental forms are used as such invariants, which

form a complete local representation. Our approach to preservation

of shape under a deformation that is subject to geometrical con-

straints is to look for a deformation which maintains the first fun-

damental form intact (an isometry), and minimizes changes in the

second fundamental form. This leads to defining a distance measure

Dist(M, M̃) between two isometric surfaces M and M̃ based on

differences of the corresponding second fundamental forms. Thus,

we are looking for shape-preserving isometries, which are isometric

deformations that minimize the distance measure (see Figure 2).

Given a surface M and set of rotational constraints, we look for a

deformation M̃ = f (M) minimizing Dist(M, f (M)), where f is an

isometric map that satisfies the prescribed constraints. Inspired by

Cartan’s moving frames theory [do Carmo 1994; Ivey and Lands-

berg 2003], we show a reduction of this problem to minimizing a

Dirichlet-type integral, for which we devise an efficient solution.

Shape-preserving deformations tend to preserve volume better

than other mesh deformation techniques. However, large deforma-

tions may still lead to undesirable volume changes. We introduce

a method that scales the local frames to compensate for volume

changes. Our approach is based on the general Stokes’ theorem, us-

ing a carefully designed differential form which establishes a con-

nection between local volume and surface properties. Our approach

avoids the explicit construction of any volumetric representation

and its inevitable cubic complexity. It enables volume correction by

merely scaling the moving frames on the surface.

2. BACKGROUND

Deforming shapes has been intensively investigated in the context of

interactive editing (e.g., Kobbelt et al. [1998], Botsch and Kobbelt

[2004]) and shape blending (e.g., Igarashi et al. [2005], Xu et al.

[2005]). The main challenge is to handle nontrivial transforma-

tions, that is, transformations which include rotations (especially

large rotations) while preserving as much as possible the visual

characteristic of the shape at interactive rates.

In shape blending, it has been accepted that deforming shapes as
rigid as possible provides plausible results. The key idea is to fac-

tor out the rotation from the deformation. Since rotations are rigid

transformations, such factorization enables treating the deforma-

tion as pure rotation plus a residual elastic deformation. Cohen-Or

et al. [1998] have applied this concept to minimize the global de-

formation during shape interpolation.

Alexa et al. [2000] show how this can be applied locally as a

means of treating the volume (area) of a shape as rigid as possible.

Xu et al. [2005] have recently extended these principles to the surface

of a shape. They factor out rotations of the transformed triangles and

have shown that the volume of the interpolated mesh is well behaved.

In the context of shape editing, the problem of factoring out the

rotation turns out to be significantly harder. Since the target shape is

not explicitly given (as in a shape interpolation setting) the factoriza-

tion and shape definition have to be solved simultaneously [Sorkine

et al. 2004]. Recently, Huang et al. [2006] and Botsch et al. [2006]

have successfully introduced algorithms based on nonlinear formu-

lations. Huang et al. [2006] used a subspace domain to reduce the

problem dimensionality via mean value coordinates [Floater 2003;

Ju et al. 2005]. Botsch et al. [2006] introduced a local shape repre-

sentation based on prisms and used a hierarchial multigrid solver to

reduce the problem complexity.

Instead of factoring out the rotation, a better solution is to rep-

resent the shape with intrinsic [Sedeberg et al. 1993] or rotation-

invariant coordinates [Lipman et al. 2005]. With purely rotation-

invariant coordinates, the factorization of the rotation is given for

free. Lipman et al. [2005] proved that by representing the mesh

vertices within their own local frames, it is possible to uniquely

represent a mesh, and that its reconstruction merely requires solv-

ing a sequence of two linear systems. However, the least-squares

solution for rotations is not optimal. For large deformations, it may

cause counterintuitive distortions to the surface, and consequently,

implausible deformations (see Figure 8). Zayer et al. [2005] used a

harmonic scalar field to better propagate deformations to the entire

mesh from the constraints. They use a scalar harmonic field that

ranges from one at the handles to zero on the fixed vertices con-

straints to interpolate the quaternions representing global rotations.

A different research direction aims at preservation of the volume

of a shape. The prominent approach directly enforces volume preser-

vation through an explicit construction of a representation that mod-

els the interior of the shape (e.g., Rappaport et al. [1995], Aubert

and Bechmann [1997], Hirota et al. [1999], Botsch and Kobbelt

[2003], and Zhou et al. [2005]). A common approach to solving a

physically-based model is the finite element method (FEM) [Bathe

1982]. With these methods, the shape can be accurately preserved by

simulating the behavior of the deformed volume. These techniques

model the entire volume of objects and solve the deformation in

small time steps. Given a detailed surface, the construction of the

elements is quite involved. Furthermore, to allow interactive times,

typically only a relatively small number of elements are modeled.
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Fig. 2. Illustration of two isometric deformations (b) and (c) of the shape in (a). The two deformations are isometric, as they both preserve the length of the

perimeter. However, the shape in (c) better preserves the shape of (a) in the sense that the curvature of corresponding points (along the arc length) are better

preserved than in (b).

Another problem is the nonlinearity of the strain function. To alle-

viate the problem, some approximations can be used; for example,

Muller et al. [2002] approximate the stiffness matrix of the strain

function at each time step using a warping of the original stiffness

matrix by a rotation field.

Recently, Zhou et al. [2005] developed a mesh deformation that

strives to preserve the local volume. They build an internal structure

of points with neighboring relations. While their construction is

simpler than a tetrahedral structure, its complexity is still cubic in the

general case. To propagate the transformation of the handle, they use

a geodesic distance field, which may lead to counterintuitive results

for large-scale details [Zayer et al. 2005; Lipman et al. 2005].

The aforementioned methods require explicit representation of

the solid/volume of the manipulated object. The approach that we

introduce in this article is different, since the volume is merely rep-

resented implicitly, and therefore, runtime computation uses surface

information only, hence, remains proportional to the size of the sur-

face representation, rather than its volume.

Botsch and Kobblet [2003] introduce a method for volumetric

detail-preservation based on the multiresolution paradigm by us-

ing volume elements (prisms) between the surface and its smooth

version. They employ hierarchical relaxation to solve a nonlinear

system, which corrects the position of surface vertices to optimize

the local volume.

Angelidis et al. [2004] introduce a unique editing tool that pre-

serves volume. It is based on an operator, called swirling-sweepers,

which is applied along a path where in each incremental step, the

swirl locally twists the space around while preserving the volume.

This tool gives the artist the illusion that he is interacting with real

material, like, for example, clay. Recently, von Funck et al. [2006]

used a divergence-free vector field to define a shape-preserving edit-

ing operator.

3. ISOMETRIC SHAPE-PRESERVING
DEFORMATIONS

In this section we formulate the theoretical background to the con-

struction of a surface deformation technique (which best preserves

geometric properties) aiming at minimizing distortion of the shape.

We define a rigid motion-invariant geometric distance between two

isometric surfaces. Then, given a surface and a set of rotational

constraints, we look for an isometric deformation minimizing the

geometric distance to the original surface under the constraints. We

show that this minimization problem can be reduced, using notions

from Cartan’s moving frames theory, to a Dirichlet energy func-

tional in SO(3) (the rotation group in IR3) . The application of this

theory to meshes employs the finite element approach to minimizing

the energy functional.

A well-known result in differential geometry is that the first and

second fundamental forms uniquely define a surface up to rigid

transformation. We can thus regard the first and second fundamen-

tal forms as complete local descriptors of a surface. Since we deal

with isometries, and the first fundamental form (which defines the

metric on the surface) is invariant under isometric deformations,

we consider only the second fundamental form. The second funda-

mental form, defined from the normal map differential, describes

the local sectional curvature of the surface (curvature tensor). In

others words, it describes the local change of the normal, or in for-

mal terms, it is the quadratic form defined by the normal differential,

namely, the shape operator. Thus, minimizing the change in the sec-

ond fundamental form yields an overall minimal shape distortion of

an isometry. As we shall see, the change in the normal differential

can be measured by the differential of rotations applied to moving

frames. Hence, minimizing the integral norm of the differential of

the rotations field over the surface yields a least-distorting isometry.

3.1 Least-Distorting Isometric Deformations—The
Smooth Case

Let M and M̃ be two differentiable isometric surfaces embedded

in IR3 with the induced metric from the Euclidian ambient space

IR3, which we denote by 〈·, ·〉p , p ∈ M . Let Tp M denote that

tangent plane to M at point p. Denote by f : M → M̃ the isom-

etry map between the surfaces. Let (e1, e2, e3) : V ⊂ M → IR3

be a moving frame on a patch of the surface V ⊂ M . In other

words, (e1(p), e2(p), e3(p)) is a smooth orthonormal frame such that

e1(p), e2(p) spans the tangent plane Tp M at each point p ∈ V ⊂ M ,

and e3(p) is normal to the surface.

The isometry f induces a moving frames field on M̃ : ẽ1 = dfp(e1)

and ẽ2 = dfp(e2), where df is the differential of f , that is, dfp(ξ )

stands for the derivative of f , at the point p ∈ M , in the direction

of ξ ∈ Tp M . The vector ẽ3 is defined uniquely so that (̃e1, ẽ2, ẽ3)

has a positive orientation (see Figure 3).

At each point p ∈ V ⊂ M , we denote by H = Hp = (hi, j )i, j=1,2

the matrix representation of the differential of e3 at p. Phrased dif-

ferently, (de3)p in the basis e1(p), e2(p) of Tp M . The normal map

e3(p), p ∈ V is also known as the Gauss map and the differential

of this map is known as the shape operator. H̃ is similarly defined

in the basis ẽ1( f (p)), ẽ2( f (p)) of T f (p) M̃ . Since e1(p), e2(p) is an

orthonormal basis of Tp M , the matrix H is also the matrix of the

second fundamental form in this basis, where the second fundamen-

tal form is defined as 〈Hξ, ξ〉p , where ξ ∈ Tp M is represented in

the basis (e1, e2).

The local geometric distance between isometric surfaces is de-

fined by the distance between the corresponding normal maps’

differential matrices H and H̃ . Let us use the Frobenius norm
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Fig. 3. The setup for shape-preserving isometric deformation of surfaces.

‖A‖2 =
√∑

i, j |ai, j |2 = trace(A · At ) to define a local geomet-

ric distance as

distE
M, f (p) = ‖H − H̃‖2

F , (1)

where E = (e1, e2, e3) denotes the moving frame E used. As proved

in Lemma C.1 (in Appendix C), the function distE
M, f is invariant to

the choice of the moving frame, that is, depends only on M and the

isometry f . Hence, this function is well-defined, and hereafter we

denote this function by distM, f .

Integrating distM, f over the surface M yields a rotation-invariant

geometric distance,

Dist(M, f (M)) = DistM, f =
∫

M
distM, f dσ, (2)

where dσ is the area element. Since a surface is determined up to

rigid motion by its fundamental forms, DistM, f = 0 if and only if

M and f (M) = M̃ are rigid motion of each other. Therefore, we

claim that this distance measures to what extent the surface M and

deformed surface M̃ are rigid motion of each other. It is important

to note that this latter property of geometric measure cannot be

achieved by using only the Gauss and mean curvatures. As a simple

example, the well-known Catenoid and Helicoid shapes have an

isometric correspondence between them such that at corresponding

points, the Gauss and mean curvatures are the same, but the surfaces

are clearly not a rigid motion of each other [Ivey and Landsberg

2003]. It turns out that (DistM, f )1/2 can be used to define a metric

between isometric surfaces. However, in this work we are simply

using DistM, f as a distance measure.

Now we are ready to define our geometric deformation problem:

Given a surface M , the goal is to deform it into a surface M̃ , sub-

ject to some prescribed constraints such that the geometric distance

between M and M̃ is minimal.

Usually, minimizing the geometric distance integral may be ex-

tremely difficult. Fortunately, the problem can be reduced to a known

problem of minimizing a Dirichlet-type integral. Consider a rotation

field R : M → SO(3), where SO(3) is the rotation matrix group on

IR3 embedded in IR9 with the induced metric from ambient Euclid-

ian space IR9 (see Figure 3). Here, R ∈ SO(3) is defined at any

point p ∈ M such that Rei = ẽi , i = 1, 2, 3. In Appendix A, we

show that ‖H − H̃‖2
F = 1/2‖∇ R‖2

F , hence we obtain the following

representation for the geometric distance:

DistM, f = 1

2

∫
M

‖∇ R‖2
F dσ. (3)

Fig. 4. A general deformation is applied to a bumpy sphere. In (a), the han-

dle set is drawn (yellow) over the original model; (b) is the result of applying

the deformation, and (c) is the result of applying two such deformations.

Therefore, the distance function is reduced to an energy functional

on the rotation’s field R. In other words, the amount of shape dis-

tortion by the isometry f is low iff the energy of the rotation field

is low. The minimizer of the integral on the right-hand side, sub-

ject to constraints, is a generalization of the classical harmonic map

functions to maps into Lie groups (SO(3) in our case). The type of

constraints we consider are rotational constraints, that is, the rota-

tions are prescribed on a subset C ⊂ M .

Based on the preceding, the geometric deformation problem is

realized by the following two steps:

—Compute a rotation field R : M → SO(3) such that
∫

M ‖∇ R‖2
F dσ

is minimized subject to constraints R|C = R0.

—Apply rotations over the moving frames, and reconstruct the isom-

etry f .

3.2 Parametrization of SO(3)

Since the images of R are rotations, we need to use a parametrization

of SO(3). There is no canonical parametrization of this group, hence

we suggest two parametrizations, each of which is advantageous in

different cases.

In the case where rotational constraints in the geometric defor-

mation problem share the same axes of rotation, the solution to our

variational problem can be further reduced. Using an orthogonal

parametrization of SO(3) (as described in Appendix D) with coor-

dinates (θ 1, θ2, θ3), where θ1 describes the angle of rotation around

the axis of rotation, the integral in Eq. (3) takes the form:

2

∫
M

‖∇θ1‖2 + 4 sin2

(
θ 1

2

)
(‖∇θ2‖2 + sin2(θ2)‖∇θ3‖2)dσ. (4)

When all the constrained rotations R0(p), p ∈ C have the same

rotation axis, they can be represented by θ 2 = 0 = θ3. Hence,

an immediate consequence of this representation is that there is a

minimizer such that θ 2 ≡ 0 and θ3 ≡ 0. Therefore, we are left

with the problem of minimizing
∫

M ‖∇θ1‖2dσ , which leads to the

linear (sparse) Laplace-Beltrami operator. For example, bending

deformations such as those shown in Figures 1, 5, 6, and 15 are of

this type. Thus, we note that in such deformations, the minimizer

is obtained when the rotation angle θ 1 is harmonic. Specifically, it

enables applying a rotation of more than 2π in a single step. At this

point, we note that in the case of a single rotation axis, applying the

technique of Zayer et al. [2005], that is, using harmonic scalar field

to interpolate the quaternions, results in the same rotation field as

in our method.

In the general setting, where the rotational constraints consist of

different rotation axes, the minimization leads to nonlinear Euler-

Lagrange equations. However, with conformal parametrizations of
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Fig. 5. A bar with bunnies (a) (110K polygons) is deformed in (b) by two rotations of 3π/2 each. In (c), a single large rotation of 3π is applied.

Fig. 6. A plane is deformed into a wavy shape using the (yellow) handle set in the middle, and identity boundary conditions are set at the (green) boundary

of the plane.

Fig. 7. A demonstration of the effect of different boundary conditions; (a) the initial plane with the square handle (in yellow) placed around its center . The

axis of rotations around the handle are tangents to the handle curve; (b) a series of rotations of 0, π/6, π/3, π/2, 2π/3 radians around the axis of rotation, where

the (identity) boundary conditions are weakened by a factor of 0.01; (c) a series of the same rotations, but with (identity) boundary rotations now factored by

1.0, and hence, keeping the boundary of the planar shape with the original orientation.

SO(3) (Appendix D), the integral in Eq. (3) takes the form:

64

∫
M

1

(4 + ‖η‖2)2
‖∇η‖2dσ, (5)

where η = (η1, η2, η3) are the conformal coordinates. As shown

next, this representation is advantageous in applications, that is, we

derive an iterative scheme where the first (linear) solution is already

a good approximation of the minimizing rotation field. Note that in

this case, it is impossible to represent rotations with rotation angle

of over 2π , without introducing ambiguity, therefore in this case,

the deformation should consist of angles smaller than 2π .

To find the deformed surface M̃ , we need to integrate the com-

puted rotation field R using the relation df = R. However, such an

integration is well-defined only if R satisfies certain compatibility

conditions. Rotation fields which minimize the energy functional

(3), under some constraints, do not necessarily satisfy the compati-

bility conditions. Therefore, we adopt the approach used in Lipman

et al. [2005] to find the transformation f such that ‖df− R‖ is min-

imized. The actual application of this step to meshes is described in

Section 5.

3.3 Piecewise-Linear Case

In practice, we want to apply geometric deformation to piecewise-

linear surfaces. Given a two-manifold mesh, denoted by M , we

would like to deform it into a mesh M̃ subject to constraints

R(p) = R0(p), p ∈ C ⊂ M . We shall minimize the geomet-

ric distance given by Eq. (3), (R : M → SO(3)) subject to the

given constraints. We adopt the piecewise-linear finite element ap-

proach and approximate R by a linear function on every triangle

Ti ∈ T , where T are the triangles of the mesh M , and minimize

this with respect to values at the vertices. In particular, we minimize

the geometric distance (Eq. (3)) with the approach used to mini-

mize the Dirichlet energy functional in Euclidian spaces [Polthier

2005; Pinkall and Polthier 1993]. Here, it is extended to minimize

the Dirichlet energy functional in the more general setting of maps

into SO(3).
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Fig. 8. A comparison with the method of Lipman et al. [2005]. The bar model is rotated by just less than π radians (a). On (b-1), a bar with bunnies is deformed

by the technique of Lipman et al. [2005] and by our technique (c-1). Note how the error is evenly distributed by our technique. The colored close-up views

(b-2),(c-2) of the bunny head show the differences in mean curvature with respect to the original shape. Another example is shown in (d),(e),(f) with a bumpy

plane model.

Fig. 9. A comparison with the method of Sorkine et al. [2004]. The bumpy plane is rotated by π/2 radians (a). In (b), the method of Sorkine is applied, and

in (c) our method is applied.

In the case of constraints sharing one rotation axis, the problem is

reduced to minimizing
∫

M ‖∇θ1‖2dσ . Hence, the minimizing solu-

tion satisfies �Mθ1 = 0 on M , where �M is the Laplace-Beltrami

operator. Following Polthier [2005] and Pinkall and Polthier [1993],

the piecewise-linear approximation to
∫

M ‖∇θ1‖2dσ is given by

Q = ∑
Ti ∈T QTi , where QTi = ∑3

j=1 cot γi j |θ1
i j+1

− θ 1
i j−1

|2, where

i1, i2, and i3 are indices of the vertices of triangle Ti , and γik are the

respective angles. We minimize Q, subject to the given constraints,

by solving the corresponding sparse linear system:∑
r∈N j

(
cot

(
αr

j

) + cot
(
βr

j

)) (
θ1

j − θ 1
r

) = 0, j ∈ V, (6)

where N j are the neighbors of vertex j , and αr
j , β

r
j are the angles

opposite the edge ( j, r ).

After solving for the rotations, we apply them to the moving

frames and follow the paradigm in Lipman et al. [2005] to con-

struct the deformed mesh M̃ defined by these frames in the least-

squares sense. The implementation details and results are described

in Section 5.

In the general case of general rotational constraints, we use the

conformal parametrization of SO(3) and the form (5) of DistM, f .

Integrating over the mesh, following Polthier [2005] and Pinkall

and Polthier [1993] again, we get:∫
M

1

(4 + ‖η‖2)2
‖∇η‖2dσ = 1

6

∑
Ti ∈T

W(i1,i2,i3) QTi , (7)

where W(i1,i2,i3) = (
w

(
ηi1

) + w
(
ηi2

) + w
(
ηi3

))
and w(η) =

1/(4 + ‖η‖2)2. Differentiating with respect to each unknown ηl
j

of vertex j , and equating zero, yields the following system:∑
r∈N j

(
cot

(
αr

j

)
W( j,r,r+1) + cot

(
βr

j

)
W( j,r,r−1)

) (
ηl

j − ηl
r

) =
2ηl

j

(4+‖η j ‖2)
3

∑
Ti ∈NT j

QTi ,

(8)

where NT j are neighboring triangles to vertex j , respectively.

The system is solved by an iterative scheme where the nonlinear

part is calculated using the previous iteration. The initial guess is

chosen to be identically zero. In practice, the convergence of the

system is fast (few iterations are enough), where typically a single

iteration already yields close enough results, as shown in Figure 10.

Note that a single iteration is equivalent to solving Eq. (6) for each

of the conformal coordinates (η1, η2, η3).
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Fig. 10. A demonstration of the difference between the convergent solution of the iterative process and the first (linear) approximation of the general geometric

deformation problem; (a) the initial plane with the circle handle drawn around its center (in yellow) and the static set colored in green. The axis of rotations

around the handle are tangents to the handle curve and the angle of rotation is approximately 2π/3; (b) the result after the first (linear) iteration; and (c) the

convergent result achieved after ten iterations. Note how well the linear solution approximates the convergent solution. In (d)–(f), another example where (e)

is the linear first solution and (f) is the convergent solution.

4. VOLUME PRESERVATION

It is well known that isometric deformation of closed surfaces may

cause undesired volume distortions. In this section we deal with

volume correction and focus on local volume preservation, which

is visually more important than global volume preservation. The

local volume is defined as an estimate of the volume below a sur-

face element, in the direction of the inward normal. Preserving the

local volume yields plausible shapes at the expense of a rather small

distortion of the local surface area. Furthermore, our local volume

preservation yields a good approximation to a global volume preser-

vation, as we demonstrate in Section 5.

The isometries defined in the previous section dictate the desired

rotations of the local frames. Here we introduce a means to control

the local volume by scaling the moving frames, while retaining the

local rotations intact.

The main idea is to derive an expression for the local volume

in terms of surface curvature and local thickness, and to use this

expression to modify the surface M̃ accordingly. The emphasis is

on achieving volume preservation by surface operations alone.

4.1 The General Idea

Stokes’ theorem states that given a two-form μ in a domain D ⊂ IR3

with smooth boundary ∂ D ,

∫
D

dμ =
∫

∂ D
μ,

where d denotes the exterior derivative [Stoker 1989; do Carmo

1994; Ivey and Landsberg 2003] of μ.

Stokes’ theorem is general enough and enables the use of any con-

venient form μ. Since we are interested in a local volume preserva-

tion, we carefully design a form μ defined over a volumetric domain

D such that dμ is a volumetric form for which Volume(D) = ∫
D dμ.

Furthermore, μ|M reflects the local volume underlying the point p
on surface M .

Let us construct a volumetric domain D over which μ is defined

(see Figure 11). The volume D approximates the original volume.

We aim at preserving the volume of D, and in particular, its local

volume. In the following, we define the meaning of local volume

and its construction.

Denote by V the volume enclosed by surface M , that is, M = ∂V .

Let ψ : M × IR → IR3 map a point p on the surface M to a

parametric line emanating from p: ψ(p, t) = p − te3(p), where

e3 is the normal pointing outward to the surface at p, and t is the

parameter along this line.

Let φ : M → IR be a smooth function such that M ′ :=
{ψ(p, φ(p)), p ∈ M} = {p − φ(p)e3(p), p ∈ M} is a smooth

surface. Here, φ represents the local depth of the volume element

estimated at p.

Denote by V ′ the volume enclosed by M ′ (the green region in

Figure 11), and let D = V \ V ′ be the volume enclosed between M
and M ′. Next, let (e1, e2, e3) be an orthonormal frame such that its

restriction to M = ∂V is a moving frame in the sense we defined in

Section 3.

Denote by wi the coframes of ei in the volume D, i = 1, 2, 3, that

is, the linear functional satisfying wi (e j ) = δi, j , where δi, j equals

one if i = j , and otherwise equals zero. We construct μ such that:

dμ = w1 ∧ w2 ∧ w3 = dx1 ∧ dx2 ∧ dx3,
μ = h · w1 ∧ w2,

(9)

where ∧ denotes the wedge product [Stoker 1989; do Carmo 1994;

Ivey and Landsberg 2003].

The first requirement implies that
∫

D dμ = Volume(D), and the

second requirement means that μ|M depends only on the trajectory

in the direction of the inward normal (−e3), as explained to follow.

In order to calculate μ, it is enough to find out h (given that the

moving frames are known). Given these requirements, as shown in

Appendix B, h satisfies the following first-order linear ODE,

∂

∂e3

h = 1 − h(∇ · e3). (10)
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Fig. 11. The volume preservation setting.

Note that the operator ∇ · e3 restricted to the surface is the mean

curvature. The characteristic curves of this ODE are the trajectories

in the direction of the normal vector field (e3) in D. Hence, the previ-

ous equation establishes an interesting connection between the mean

curvature and the volume. This connection is the key observation to

our volume correction method.

Thus, given a solution h to the ODE, μ is of the form μ =
h · w1 ∧ w2, and we have

Volume(D) =
∫

∂ D
h dσ =

∫
∂V =M

h dσ −
∫

∂V ′=M ′
h dσ, (11)

where dσ = w1 ∧ w2 is the area element. Since we can choose any

initial values to h, we set it to zero on M ′, and are left with

Volume(D) =
∫

∂V =M
h dσ.

Let us now consider the two surfaces M and deformed isometric

surface M̃ . Similar to the preceding, we define a depth function φ̃,

and a corresponding surface M̃ ′ = { p̃ − φ̃( p̃) ẽ3 |̃p ∈ M̃}. Also we

denote by Ṽ and Ṽ ′ the volume enclosed by M̃ and M̃ ′, respectively,

and D̃ := Ṽ \ Ṽ ′ (see Figure 11).

Using Eq. (11) for M̃ with h̃|∂ Ṽ ′ = 0, we get: Volume(D̃) =∫
∂ Ṽ h̃ dσ̃ . Since the two surfaces M, M̃ are isometric, dσ̃ = dσ .

By scaling the area element dσ̃ , that is, scaling the moving frames

on the surface by κ = (h/̃h)1/2, we get that the local volume of

M is preserved in M̃ . This assumes that h̃ is not affected much by

scale.

4.2 The Realization

As discussed earlier, the problem of volume correction is reduced to

the problem of estimating h, h̃ on the meshes M, M̃ , respectively.

Phrased differently, we should solve the ODE (Eq. (10)) with the

initial condition h|∂V ′ = 0 in D, and h̃|∂ Ṽ ′ = 0 in D̃. In the following,

we describe the process for the mesh M (and similarly for M̃).

Defining the volume D is equivalent to defining the function φ.

To each vertex p ∈ M , we attach a moving frame (e1, e2, e3), and

we extend this into the volume D simply by translating the frame

in the inward normal (−e3) direction. Ideally, ψ should be an injec-

tive map: ψ(·, φ(·)) : M → M ′. In practice, we use the following

considerations. We define the local depth, denoted by L(p) at a

vertex p ∈ M , as the distance between p and the intersection of

the line emanating from p in the inward normal (−e3) direction

with the surface. In practice, we take the average of distances ob-

tained by a narrow cone of straight lines from p (in a preprocess

calculation). Denote by r1 = 1/k1, r2 = 1/k2 the signed osculating

radii, where k1 and k2 are the corresponding discrete principle cur-

vature at a point p. We choose φ(p) = min{αL(p), β(r1)+, β(r2)+},
where (x)+ = ∞ for x ≤ 0 and (x)+ = x for x > 0. Futhermore,

α ∈ (0, 1/2], β ∈ (0, 1) are constants which control the thickness

of the volume D to be preserved. We mainly use α = β = 1/2

to approximate the whole volume. The reason for this definition

of φ lies in the fact that if one of the osculating radii is small and

positive, then for (local) injectivity of ψ(p, φ(p)), the local depth

cannot exceed this value.

Note that the aforementioned are local computations which do

not take into consideration global self-intersections. Also, to enable

interactive time response, the values L(p) for the mesh M̃ are taken

to be as in M . This is equivalent to using the same local depth of the

volumes D and D̃. During the interaction, the volume correction

requires only local curvatures’ estimation across the mesh.

Using the parametrizations of D, ψ(p, t) ∈ D, where p ∈ M is

fixed and t ∈ [0, φ(p)], we estimate the term ∇ · e3 in the ODE (Eq.

(10)) by

∇ · e3(t) =

⎧⎪⎨
⎪⎩

0 k1=0=k2

1
a j +t

k j �=0, ki =0, {i, j}={1,2}
1

a1+t + 1
a2+t

k1 �=0, k2 �=0

⎫⎪⎬
⎪⎭ , (12)

which corresponds to the position ψ(p, t) and ai = ri − φ(p),

i = 1, 2.

The rationale of this estimation is that it is enough to consider

locally the surface by it’s osculating paraboloid and extending the

local frame {ei }3
i=1 in a natural way into the volume by translation

along the inward normal direction. In this case, ∇ · e3, which is the

trace of the differential of the normal map, is the mean curvature of

the level surface ψ(p, t = const). Note that this value appears in

our ODE for h (see Eq. (10)).

With the previous approximation, we can explicitly solve Eq. (10)

on the characteristic curves. Characteristic curves are the trajectories

in the direction of the normals, X p(t) = p+(t −φ(p))e3(p), starting

from the surface M ′ and ending at the surface M (see Figure 11).

Setting the the initial conditions h(0) = 0 (0 on the surface M ′), we

obtain the solution

h(t) =

⎧⎪⎪⎨
⎪⎪⎩

t k1=0=k2

t2/2+a j t
a j +t

k j �=0, ki =0, {i, j}={1,2}

t3/3+(a1+a2)t2/2+a1a2 t
(a1+t)(a2+t)

k1 �=0, k2 �=0

⎫⎪⎪⎬
⎪⎪⎭ . (13)

For each vertex p ∈ M and its corresponding vertex p̃ ∈ M̃ , we

approximate the scalar fields h and h̃ on the two surfaces by evaluat-

ing Eq. (13) at t = φ(p) and t = φ̃( p̃), that is, h(p) = h(φ(p)) and

h̃( p̃) = h̃ (̃φ( p̃)). Finally, we compute the scaling factor for vertex

p̃ ∈ M̃ as (h(p)/̃h j ( p̃))1/2, and use this to scale the rotated frames.

Then we use these moving frames to reconstruct the mesh [Lipman

et al. 2005], as elaborated in Section 5.

5. IMPLEMENTATION AND RESULTS

We have integrated our shape- and volume-preserving technique

into an interactive system. The system accepts a mesh M and a

set of constraints C ⊂ M which defines the geometric deformation.

There are two types of constraints S ∪ H = C : The set S is the static
set of vertices, with rotations set to identity, and H is the handle set,

over which the user defines the rotations. In Figures 6, 8, and 10,

the handle set is colored yellow and the static set is colored green.
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Fig. 12. The volume correction algorithm is applied to a twisted bar. A rotation of approximately 4π in one step is obtained by applying our technique, without

volume correction in (a) top, and with volume correction in (a) bottom. Applying a rotation of 4π and then another rotation of 3π/4 around another rotation

axis yields (b). Moreover, (c) shows the result of applying one big rotation of 3π , together with position constraints, to form a helical shape.

Fig. 13. The volume correction algorithm is applied to a Lego piece model (a). In (b),(d) without volume correction and in (c),(e) with volume correction.

In the preprocess stage, we: (i) create and factorize the Laplace-

Beltrami matrix of the region of interest of the mesh, and (ii) calcu-

late the local depth field L of the mesh.

During interaction:

—the rotation field R : M → SO(3) is calculated:

—In the case of bending with a single rotation axis, the Laplace-

Beltrami factorization is used to solve for the rotation angle θ1

(see Eq. (6)).

—Otherwise, the Laplace-Beltrami factorization is used to solve

for conformal parameters (η1, η2, η3) (see Eqs. (6) and (8)).

For example, see Figure 4, where at each vertex in the han-

dle (yellow), the rotation is around the tangent to the curve.

Optional: Further iterate using Eq. (8).

—The rotations are applied to the moving frames at each vertex,
and the new mesh M̃ is reconstructed by the difference equations

[Lipman et al. 2005]:

p̃ j − p̃i = Ai, j ẽ
i
1 + Bi, j ẽ

i
2 + Ci, j ẽ

i
3, (14)

where (i, j) is an edge of the mesh, p̃i are the new unknown

position of vertex i , and (̃ei
1, ẽi

2, ẽi
3) denotes the rotated moving

frame at vertex i . Moreover, Ai, j , Bi, j , Ci, j are the coefficients

of p j − pi in the moving frame (ei
1, ei

2, ei
3) at pi in M . As in

Lipman et al. [2005], the solution of the system (14) is done in

the least-squares sense.

—The scaling factor for volume correction is calculated:
—Calculate the h-fields by Eq. (13): h and h̃, of M and M̃ ,

respectively. The evaluation of Eq. (13) uses the precomputed

local depth L, and the local discrete curvature are computed

over the deformed mesh.

—The scale factor is set to be (h/̃h)1/2.

—The (rotated) moving frames of M are scaled by the scaling factor
and the mesh is reconstructed.
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Fig. 14. Rotation of over 2π is applied to a bar. In (a), the technique of Lipman et al. [2005] is applied three times with 2π/3 in each step. In (b), the

shape-preserving isometric deformation is applied in one single step; (c) a volume correction is applied to (b).

There are some important implementation issues. First, for irreg-

ular meshes, it is useful to use other discrete Laplacian operators.

We have also integrated the discrete Laplacian operator as presented

in Taubin [1995] into our system and got better results on highly-

irregular meshes (e.g., see Figure 17). Second, we note that the

deformation which is defined by the field of rotations on moving

frames is invariant to the actual choice of moving frames. Hence,

any choice of local frames as moving frames will do. Third, posi-

tional constraints are forced, as in Lipman et al. [2005], by adding

them to the positional reconstruction system (14).

The isometric shape-preserving technique requires solving sparse

linear systems. Similarly to the technique of Lipman et al. [2005],

we use a sparse Cholesky decomposition [Toledo 2003] once per

definition of a region of interest (ROI). During interaction, only

back-substitution is needed. The volume correction is slower where

the bottleneck is the computation of the discrete curvature, which is

directly related to the number of vertices of the surface mesh. For

example, meshes of sizes 2.2K, 8.5K, and 86.5K vertices require

0.14, 1.03, and 11.66 seconds for factorization, 0.016, 0.047, and

0.66 seconds for back-substitution, and 0.05, 0.17, and 1.9 seconds

for volume correction, respectively, on an Intel P4/3.0 GHz.

To demonstrate the performance of our technique, we show ex-

tremely large deformations in Figures 5, 15, and 17. To visualize the

quality of the deformation, we color coded the difference between

the mean curvature across the surface before and after the defor-

mation. Figure 8 demonstrates the shape preservation under a large

deformation. In Figure 9, we compare our method to that of Sorkine

et al. [2004]. Note that Sorkine’s method doesn’t distribute the ro-

tations uniformly. However, it should be noted that their method

incorporates positional constraints.

Figure 14 shows a bar rotated by over 2π radians. In (a), the

bar is rotated by integrating three steps (of approximately 2π/3

degree, each), using the technique of Lipman et al. [2005]. The

result in (b) is achieved by a single step using our technique. In

(c), a volume correction is applied to the bent bar. In Figure 12, a

bar is twisted by an extreme rotation of approximately 4π at one

step (a); in (b) the volume correction is applied; and in (c) and (d)

one more deformation is applied. Figure 16 shows a volume loss

(a), and correction (b), of a twisted Armadillo model. Since local

volume-preservation implies global volume-preservation, we also

achieve global volume-preservation, to some extent. Particularly in

Table I, we have measured the relative change of volume, that is,

|volumenew − volumeold|/volumeold, of two meshes under various

deformations. As can be seen, for medium-scale deformations, the

volume correction algorithm reduced the volume change by an order

of magnitude. Another example of the volume correction algorithm

is presented in Figure 13, where it can be seen that the method is

correcting the detail’s volume as well as the global volume.

Interesting editing operators can be obtained by nontrivial static

and handle sets. Figure 7 illustrates the effect of the rectangular

Fig. 15. The body of the Armadillo model is bent by π radians and the

hands are further bent to create a bridge-like pose. Note the preservation of

details and volume under the deformation.

curve handle with different boundary conditions over a simple plane,

resulting in shape-preserving (planar) isometric deformations.

Figure 6 shows a smooth wavy shape created by bending a plane,

and Figure 4 shows a bumpy ball with a pinched-like deformation.

6. CONCLUSIONS

We have presented a method for shape-preserving deformation. The

approach we have taken in this article reformulates the preservation

of shape by means of a complete representation of local rigid-

invariant descriptors. In essence, our method aims at the preservation

of the two fundamental forms. Isometries preserve the first funda-

mental form, that is, the area and angle, and among the isometries,

we look further for the one that minimizes changes of the second

fundamental form. The minimization is practically linear, thanks

to the reduction of the problem to a Dirichlet-type functional on a

rotation field over the mesh.

Since isometric deformations can cause volume changes of closed

surfaces, we have established a relation between the local volume

and the surface curvature, from which we derived a local scaling

field that can be applied to surface elements to correct local volume

changes. An interesting consequence is that changes in the curvature

data of the surface can provide a good means to control volume

changes.

Note that we cannot preserve simultaneously the surface area

and volume of an object. An exciting avenue for future research

is to investigate other complete local surface descriptors, whose

preservation yields a shape preservation of both surface and volume.
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Fig. 16. The Armadillo model is twisted by 8π/9 radians. Shape-preserving deformations, without volume correction (a) and with volume correction (b).

Fig. 17. The tip of the tentacle of the octopus is rotated by 3π radians.

Note the preservation of details, despite highly-irregular triangulation of the

mesh.

APPENDIXES

APPENDIX A

In this appendix we prove the relation ‖H − H̃‖2
F = 1/2‖∇ R‖2

F . In

order to do so, we will use standard exterior calculus of differential

forms [Stoker 1989; do Carmo 1994; Ivey and Landsberg 2003]. We

build upon the notation introduced in Section 3. The general setting

is illustrated in Figure 3.

Let g : U ⊂ IR2 → V ⊂ M be a coordinate map. Note that

f ◦ g : U ⊂ IR2 → f (V ) ⊂ IR3 is a coordinate map of M̃ . Next,

define the differential one-forms on U ⊂ IR2, wi , wi, j , i, j = 1, 2, 3

by the two relations

dg(·) =
3∑

i=1

wi (·)ei , dei (·) =
3∑

j=1

wi, j (·)e j . (15)

Note that these relations describe the change of frame and its po-

sition, coded in the frame itself. Also note that wi, j = −w j,i , as

Table I. The Relative Change in Volume

No Volume With Volume

Model Rotation Correction Correction

π/2 0.0473 0.00267

π 0.143 0.00333

2π 0.37 0.00173

3π 0.53 0.0533

π/4 0.0164 0.00663

π/2 0.0412 0.00971

π 0.143 0.0316

3π/2 0.260 0.0704

π/6 0.023 0.0025

π/3 0.083 0.0057

2π/3 0.267 0.1

π 0.435 0.24

These volume changes result from the shape-preserving isometric deformation, with and

without volume correction: The Armadillo and bar models, which consist of 170K and

4K polygons, respectively, are deformed by bending operators with several prescribed

angles. The handle and static sets are in yellow and green, respectively.

can be proved by differentiating 〈ei , e j 〉 = δi, j and using Eq. (15).

Define the differential one-forms w̃i , w̃i, j , i = 1, 2, 3 by

d( f ◦ g)(·) =
3∑

i=1

w̃i (·)̃ei dẽi (·) =
3∑

j=1

w̃i, j (·)̃e j .

It follows from the preceding that wi = w̃i . To prove this, note

that
∑3

i=1 w̃i (dg−1
(e j ))̃ei = d( f ◦ g)(dg−1

(e j )) = df(e j ) = ẽ j , and

use the linear independence of ẽ j to get w̃i (dg−1
(e j )) = δi, j =

wi (dg−1
(e j )).

Since we have chosen the moving frame such that e3 is normal

to the surface, the one-form w3 = 0. To see this, note that due to

the first equation in Eq. (15), Tp M � dg(ξ ) = ∑3

i=1 wi (ξ )ei , ξ ∈
Tg−1(p) IR

2 = IR2, so necessarily w3(ξ ) = 0 for all ξ . From the

structure equations in Lemma C.2, we then have 0 = w1 ∧ w1,3 +
w2 ∧ w2,3, and using the Lemma of Cartan C.3, we get

w1,3 = h1,1w1 + h1,2w2, w2,3 = h2,1w1 + h2,2w2. (16)

Here, hi, j , i, j = 1, 2 are the coefficients of the differential of the

normal map, that is, de3 : Tp M → Tp M , in the basis e1, e2 (as

introduced in Section 3). The second fundamental form can then be

written by
∑

i, j hi, j wi w j , i, j = 1, 2. Also note that h1,2 = h2,1.

From the fact that w̃i = wi , we also have 0 = w1 ∧ w̃1,3 +w2 ∧ w̃2,3,

and using the Cartan Lemma C.3 again, we get

w̃1,3 = h̃1,1w1 + h̃1,2w2, w̃2,3 = h̃2,1w1 + h̃2,2w2 , (17)
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where now h̃i, j , i, j = 1, 2 are the coefficients of dẽ3 in ẽ j , j =
1, 2. Next, we use the local distance function distM, f , as defined in

Eq. (1).

As mentioned before, we consider a rotation field R : M →
SO(3), where SO(3) is the rotation matrix group on IR3 embedded

in IR9 with the induced metric. Moreover, R ∈ SO(3) is defined by

the relations Rei = ẽi , i = 1, 2, 3. Using these relations we have

R
∑

j

w̃i, j e j = dẽ j = dRei + Rdei = dRei + R
∑

j

wi, j e j .

Rearranging the previous leftmost and rightmost terms, we get

R−1dRei =
∑

j

�wi, j e j , (18)

where �wi, j = w̃i, j − wi, j . In matrix notation we can rewrite Eq.

(18) as

dR = RESEt , (19)

where E = (e1, e2, e3) (ei is a column vector), and S = (�wi, j ) j,i .

Since wi,i = 0 and w1,2 = w̃1,2, we have

S =
⎛
⎝ 0 0 −�w1,3

0 0 −�w2,3

�w1,3 �w2,3 0

⎞
⎠ .

The fact that w1,2 = w̃1,2 can be understood from the Lemma of

Levi-Civitta C.4 and the structure equations in Lemma C.2. From

Eqs. (16) and (17) we have

�w1,3 = �h1,1w1 + �h1,2w2,

�w2,3 = �h2,1w1 + �h2,2w2. (20)

Therefore

S(e1) =
⎛
⎝ 0 0 −�h1,1

0 0 −�h2,1

�h1,1 �h2,1 0

⎞
⎠ , S(e2) =

⎛
⎝ 0 0 −�h1,2

0 0 −�h2,2

�h1,2 �h2,2 0

⎞
⎠ .

Note that the induced IR9 norm on the rotation matrix group is

the Frobenius norm. Next, let us calculate ‖∇ R‖2
F = ‖dR‖2

F =∑3

i, j=1〈dRi, j , dRi, j 〉, where R = (Ri, j ) are the entries in the rota-

tion matrix R. Writing dRi, j in the basis w1, w2, we have dRi, j =
R1

i, j w1 + R2
i, j w2 so 〈dRi, j , dRi, j 〉 = (R1

i, j )
2 + (R2

i, j )
2. Putting it all

together, we have ‖dR‖2
F = ∑

i, j (R1
i, j )

2 + (R2
i, j )

2 = ‖dR(e1)‖2
F +

‖dR(e2)‖2
F . Next, ‖dR(ei )‖2

F = trace(RES(ei )Et ES(ei )
t (RE)t ) =

‖S(ei )‖2
F by the invariance of the trace operator under similarity

transformation. Finally,

2∑
i, j=1

(�hi, j )
2 = 1

2
‖∇ R‖2

F .

APPENDIX B

Using the notation of Section 4, we now derive the two-form μ in the

volume D such that the requirement (9) is satisfied. Let (b1, b2, b3)

denote the standard basis in IR3, and denote by M = (mij)
3
i, j=1 ∈

IR3,3 the matrix such that

(e1, e2, e3) = (b1, b2, b3)M (21)

(w1, w2, w3) = (dx1, dx2, dx3)M, (22)

where dxi is the coframe of the (constant) frame bi , i = 1, 2, 3.

Next, we span μ in the basis of two-forms: μ = χdx1 ∧ dx2 +

λdx1 ∧ dx3 + ξdx2 ∧ dx3. From the first requirement on μ:

dx1 ∧ dx2 ∧ dx3 = dμ = (χx3
− λx2

+ ξx1
)dx1 ∧ dx2 ∧ dx3,

implying

1 = (χx3
− λx2

+ ξx1
), (23)

where the subscripts xi denote differentiation with respect to xi .

For the second requirement, μ = h · w1 ∧ w2,

χdx1 ∧ dx2 + λdx1 ∧ dx3 + ξdx2 ∧ dx3 = μ =

h(m11dx1 + m21dx2 + m31dx3) ∧ (m12dx1 + m22dx2 + m32dx3),

and if we denote Mi j = det

(
mi1 mi2

m j1 m j2

)
, then the righthand side of

the last equation becomes

h {M12dx1 ∧ dx2 + M13dx1 ∧ dx3 + M23dx2 ∧ dx3} ,

and therefore, by equating coefficients of the representation,

χ = hM12 λ = hM13 ξ = hM23. (24)

Using (24) in (23) and noting that in the basis bi , e3 = e1 × e2 =
(M23, −M13, M12), we get

∇h · e3 = 1 − h(∇ · e3),

which is the desired result.

APPENDIX C

LEMMA C.1. Definition (1) is independent of the choice of moving
frame.

PROOF. We use the notation presented in Section 3. Denote

by E = (e1, e2, e3) and Eo = (eo
1, eo

2, e3) two local choices of

moving frames, and denote by H (H̃ ) the matrix which represents

the shape operator de3 (dẽ3) in the basis e1, e2 of Tp M (̃e1, ẽ2 of

T f (p) M̃).

Then, H o = Mt HM is the matrix of de3 in the basis Eo, where

Eo = EM. We defined Ẽ = (df)E , therefore, Ẽo = (df)Eo =
(df)EM = Ẽ M , that is, the basis Eo, defines by the isomorphism df
a new basis of T f (p) M̃ which (as E and Eo) satisfies Ẽo = Ẽ M , so

the matrix representing H̃ in the basis Ẽo is Mt H̃ M . Therefore,

distE
M, f (p) = ‖H − H̃‖2

F = ‖Mt (H − H̃ )M‖2
F = distEo

M, f (p),

so the function distM, f is invariant to the choice of the mov-

ing frames and is only dependent on the surface M and

isometry f .

LEMMA C.2 (THE STRUCTURE EQUATIONS). Let V ⊂ M be an
open set of M, and assume (e1, e2, e3) to be a smooth orthonormal
moving frame defined on M. Then the one-forms defined by Eq. (15)

satisfy

dwi =
∑

k

wk ∧ wk,i ,

dwi, j =
∑

k

wi,k ∧ wk, j , i, j, k = 1, 2, 3.

LEMMA C.3 (CARTAN’S LEMMA). Let V n be a vector space
of dimension n, and let w1, . . . , wr : V n → IR, r ≤ n, be one-
forms in V that are linearly independent. Assume there exist forms
θ1, . . . , θr : V → IR such that

∑r
i=1 wi ∧ θi = 0. Then

θi =
∑

j

ai, j w j , ai, j = a j,i .
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LEMMA C.4 (LEMMA OF LEVI-CIVITTA). Let M be a Rieman-
nian two-dimensional manifold. Let V ⊂ M be an open set where
a moving orthonormal frame {e1, e2} is defined, and let {w1, w2}
be the associated coframe. Then, there exists a unique one-form
w1,2 = −w2,1 such that

dw1 = w1,2 ∧ w2 dw2 = w2,1 ∧ w1.

APPENDIX D

In this appendix we describe the two parametrizations we use for the

Euclidian rotation group SO(3). First, the orthogonal parametriza-
tion

θorth : (θ1, θ2, θ3) ⊂ [0, 2π ) × [0, π ) × [0, 2π ) �→ SO(3) ⊂ IR9

(25)

is defined as the composition of the two maps:

(θ 1, θ2, θ3) �→

⎛
⎜⎝

sin(θ1/2)sin(θ2)sin(θ3)

sin(θ1/2)sin(θ2)cos(θ3)

sin(θ1/2)cos(θ2)

cos(θ1/2)

⎞
⎟⎠ ,

and ⎛
⎜⎝

x

y

z

w

⎞
⎟⎠ �→

⎛
⎝ 1−2y2−2z2 2xy+2wz 2xz−2wy

2xy−2wz 1−2x2−2z2 2yz+2wx

2xz+2wy 2yz−2wx 1−2x2−2y2

⎞
⎠ , (26)

where (x y z w)t is a quaternion. Using this parametrization, we get

the induced metric

G = 2Diag(1 4 sin2(θ1/2) 4 sin2(θ 1/2) sin2(θ2)),

where Diag(d0, . . . , dn) denotes the diagonal matrix with diagonal

entries d0, . . . , dn .

Second, we describe the conformal parametrization

ηconf : (η1, η2, η3) ⊂ IR3 �→ SO(3) ⊂ IR9, (27)

defined by composition of the map (η1, η2, η3) �→
(

4η1

‖η‖2+4
,

4η2

‖η‖2+4
,

4η3

‖η‖2+4
,

4−‖η‖2

‖η‖2+4
) with map (26). The first map

is known as the stereographic map. This parametrization gives us

the induced metric G = 128w(η)I, where w(η) = 1/(‖η‖2 + 4)2

and I denotes the 3 × 3 identity matrix.

APPENDIX E

In this section we’ll show that under the conformal parameter (27),

Eq. (3) boils down to Eq. (5).

As detailed in Appendix D, the induced metric in the conformal

coordinate system is G = w(η)I, where w(η) = 128/(‖η‖2 +
4)2 and I denotes the 3 × 3 dentity matrix. Denote by Rη =
(η1, η2, η3) := η−1

conf R : M �→ IR3, then

‖dR‖2
F = ‖d(Rη)‖2

G .

Next, since (e1, e2) is an orthonormal basis of the tangent plane

Tp M ,

‖d(Rη)‖2
G = trace(∇ Rη)t G(∇ Rη) = w(η)(|∇η1|2 + |∇η2|2

+|∇η3|2) = w(η)‖∇η‖2.

Next, let us show that using the piecewise-linear finite element ap-

proach to discretize Eq. (5), we obtain Eq. (7). In the notation of

Section 3.3, we integrate Eq. (5) on each triangle Tj as a linear

transformation, for example,∫
Ti

1

w(η)
‖∇ηl‖2dσ = 1

2area(Ti )

3∑
j=1

cot γi j |ηl
i j
−ηl

i j
|2

∫
Ti

1

w(η)
dσ.

Using linear approximation to the integrand, we get:∫
Ti

1

w(η)
dσ = area(Ti )

3
(w

(
ηi1

) + w(ηi2 ) + w
(
ηi3

)
).

Combining the aforementioned, we get Eq. (7).
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