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Abstract

A computer graphics object reconstructed from real-world
data often contains undesirable noise and small-scale oscil-
lations. An important problem is how to remove the noise
and oscillations while preserving desirable geometric fea-
tures of the object.

This paper develops methods for polyhedral surface
smoothing and denoising with simultaneous increasing
mesh regularity.

We also propose an adaptive smoothing method allowing
to reduce possible oversmoothing.

Roughly speaking, our smoothing schemes consist of
moving every vertex in the direction defined by the Lapla-
cian flow with speed equal to a properly chosen function of
the mean curvature at the vertex.

Keywords: mesh smoothing and denoising, mesh regu-
larity, Laplacian smoothing, mean curvature flow

1 Introduction

Recent advances in 3D data-acquisition hardware call
for development of methods to rapidly remove undesirable
noise and small scale oscillations from an irregularly trian-
gulated data.

Two the most popular approaches for smoothing and de-
noising of polyhedral surfaces are minimizing energy func-
tionals associated with differential-geometric surface char-
acteristics and Laplacian smoothing. Minimizing an en-
ergy functional is usually a computationally expensive task.
Moreover, it lacks a local shape control. Laplacian smooth-
ing is simple, fast, and so far the most common technique
for mesh smoothing. The Laplacian smoothing flow, in its
simplest form, moves recursively each vertex of the mesh
by a displacement equal to a positive scale factor times the
average of the neighboring vertices. Actually, the Laplacian

smoothing flow can be considered as the gradient descent
flow for a simple quadratic energy functional. However,
due to its simplicity, the Laplacian flow opens many ways
for modifications and improvements.

Taubin in [8] proposed to alternate two scale factors of
opposite signs with the negative factor of larger magnitude
in a weighted Laplacian smoothing flow. Such smoothing
does not produces shrinkage and suppresses high frequen-
cies of a discrete Laplacian operator defined on the mesh,
while enhancing low frequencies.

When the scale factors are equal in magnitude, the
Taubin smoothing scheme turns to the bilaplacian smooth-
ing flow [4] which can be considered as a discrete approxi-
mation of the gradient descent flow for the thin-plate energy
functional.

Another non-shrinking modification of the Laplacian
smoothing flow was very recently proposed in [9].

A significant development of the Laplacian smoothing
method, mesh smoothing by the mean curvature flow [3, 6]
(see also references therein), came from mathematics and
material science. The discrete mean curvature flow moves
every vertex in the normal direction with speed equal to a
discrete approximation of the mean curvature at the vertex.
Smoothing by the mean curvature flow and its various mod-
ifications have became extremely popular in geometric im-
age processing (see, for instance, [6] for references).

Laplacian smoothing, Taubin smoothing, and the dis-
crete mean curvature flow contain a number of drawbacks.
The Laplacian smoothing flow increases the mesh regular-
ity but develops unnatural deformations while being ap-
plied to a highly irregular mesh. Smoothing by the discrete
mean curvature flow is relatively independent of the mesh
sampling rate but increases the mesh irregularity. Both
the Laplacian and mean curvature flows do not decelerate
the smoothing process and may lead to oversmoothing and
loosing desirable geometric features. The Taubin smooth-
ing scheme lacks a local shape control and enhances low
frequency surface features.

In this paper we propose simple and effective polyhedral

1



(a) (b) (c) (d) (e) (f)

Figure 1. The top row: (a) a polyhedral sphere; (b) the sphere with a uniform noise added; (c) Laplacian
smoothing develops unnatural deformations; (d) smoothing by the Taubin method converts high-frequency
surface oscillations into low-frequency waves; (e) smoothing by the mean curvature 
ow increases the mesh
irregularity; (f) smoothing according to a method proposed in this paper, see Section 3. The bottom row:
(a) the Stanford bunny; (b) the bunny with a uniform noise added; (c) Laplacian smoothing with a number
of iterations chosen to achieve `a good looking' result: extra iterations will lead to oversmoothing; (d)
Taubin smoothing reduces high-frequency surface oscillations but enhances low-frequency oscillations: extra
iterations will lead to enhancing of surface wrinkles; (e) smoothing by the mean curvature 
ow with a
number of iterations chosen to achieve `a good looking' result: extra iterations will lead to oversmoothing; (f)
smoothing according to a method proposed in this paper: the smoothing process slows down automatically
and extra iterations will produce almost the same appearance, see Section 4.

surface smoothing schemes which combine the best prop-
erties of the Laplacian smoothing flow and discrete mean
curvature flow, often outperform best existing smoothing
methods, and, in addition, reduce possible oversmoothing.

Fig. 1 demonstrates some of our results.
The paper is organized as follows. In Section 2, we in-

troduce the Laplacian flow, the Taubin smoothing method,
and the discrete mean curvature flow. In Section 3, our new
technique which combines the best properties of the Lapla-
cian and discrete mean curvature flow is explained. In Sec-
tion 4, we describe our technique to reduce possible over-
smoothing. We discuss application of smoothing methods
for stable detection of ridges and ravines on a polyhedral
surfaces in Section 5. We conclude and sketch directions
for future research in Section 6.

2 Laplacian Flow, Taubin Method, Bilapla-
cian Flow, Mean Curvature Flow

In this section we will introduce and analyze four meth-
ods for polyhedral surface smoothing: Laplacian smooth-
ing, Taubin smoothing [8], the bilaplacian flow [4], and the

mean curvature flow [3].

Laplacian Smoothing. Let us consider a triangulated sur-
face and, for any vertexP , let us define the so-called
umbrella-operator [4]

U(P ) =
1P
i
wi

X
i

wiQi � P (1)

where summation is taken over all neighbors ofP , wi are
positive weights. See Fig. 2.
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The local update rule

P
new
 � P

old
+ �U(P

old
) (2)

applied typically to every inner point of the triangulated sur-
face is called Laplacian smoothing of the surface. Here�
is a small positive number and the process (2) is executed
repeatedly.

The Laplacian smoothing algorithm reduces the high fre-
quency surface information and tends to flatten the surface.

The weights can be chosen in many different ways. The
simplest choice is to set the weights equal to each other:
wi = 1,

U0(P ) =
1

n

X
i

Qi � P; (3)

wheren is the number of neighbors. Another choice that
produces good results [8] is set the weights as the inverse
distances betweenP and its neighbors:

U1(P ) =
1P
i
wi

X
i

wiQi � P; wi = kP �Qik
�1: (4)

Note that smoothing withU0 improves the mesh sam-
pling rate, whereas smoothing withU1 worsens the rate. To
demonstrate this, let us consider a plane curver(s) param-
eterized by arclength parameters. Consider three points on
the curve

A = r(s� �); O = r(s); B = r(s+ �)

with distancesa = jOAj andb = jOBj between them. Let
dr=ds = t andn = t

? compose the Frenet frame atO, see
Fig. 3. Simple manipulations with Taylor series expansions
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and Frenet formulas show that
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�
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a2 + b2
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OB

i
=

= n
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k +

b3 � a3

3(a2 + b2)
k0 +O(a; b)2

�
+

+ t

�
2(b� a)

a2 + b2
+

a3 � b3

4(a2 + b2)
k2 +O(a; b)2

�
:

If, for example, pointO is located closer toA than toB,
a < b, then, due to the tangent components in the above
expansions, one step of Laplacian smoothing withU0 shifts
O closer toB and one step of the Laplacian smoothing with
U1 shiftsO closer toA.

However Laplacian smoothing withU0 develops unnat-
ural deformations, see Fig. 1c (the top row).

Taubin Smoothing. Taubin in [8] proposed to alternate
two scale factors of opposite signs with the negative factor
of larger magnitude in the Laplacian smoothing flow. Such
smoothing suppresses high frequencies of the umbrella op-
erator (1), while preserving and enhancing its low frequen-
cies [8]. Combining the two successive steps of the Taubin
method in one local update rule we arrive at

P
new
 � (1� �U)(1 + �U)P

old
= (6)

= P
old
� (�� �)U(P

old
)� ��U2(P

old
);

where� > � > 0, U2 is the squared umbrella operator

U2(P ) =
1P
i
wi

X
i

wi U(Qi)� U(P ):

According to [8], the best smoothing with (6) is obtained
when U = U0 or U = U1. In our experiments, Taubin
smoothing withU = U0 works much better than withU =
U1. However, even the first Taubin smoothing scheme often
produces poor results, see for example Fig. 1d (the top row)
where we used� = 0:3 and1=� � 1=� = 0:1. In Fig. 1d
(the bottom row) the Taubin filtering scheme demonstrates
a good performance. Nevertheless, one can note enhancing
of low-frequency surface wrinkles.

Bilaplacian flow. The bilaplacian flow

P
new
 � P

old
+ �U2(P

old
)

is a discrete analog of the steepest descent flow for the the
thin-plate energy functional [4]. It can be obtained from the
Taubin smoothing scheme if the positive and negative scale
factors are equal in magnitude. The bilaplacian flow does
not enhance low-frequency surface features.

In our implementation of the bilaplacian flow we use the
plain umbrella operator (3).
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(e) (f) (g) (h)

Figure 4. (a) A torus with consisting of two parts with di�erent sampling rates; (b) a magni�ed view of a part
of the torus; (c) the torus with a uniform noise added; (d) Laplacian smoothing deforms the initial shape;
(e) smoothing by the Taubin method reduces high-frequency surface oscillations but develops low-frequency
surface waves; (f) the bilaplacian 
ow smoothes well but slightly deforms the initial shape; (g) the mean
curvature 
ow smoothes well but produces irregular mesh; (h) smoothing according to (11).

Mean curvature flow. Recently it was reported [3] that
the smoothing procedure

P
new
 � P

old
+ �H(P

old
)n(P

old
); (7)

whereH is a discrete version of the mean curvature andn

is the unit normal vector, produces better results than Lapla-
cian smoothing (2).

According to [3], a good estimation of the mean curva-
ture vector at a vertexP is given by

Hn = �
rA

2A
;

whereA =
P

Ai is the sum of the areas of the triangles
surroundingP . Calculations [3] show that

Hn(P ) =
1

4A

X
i

(cot�i + cot�i)(Qi � P ); (8)

where�i and�i are the two angles opposite to the edge
QiP , see Fig. 5.

The two dimensional analog of this approximation is
given by the left hand-side of (5), since

r(a+ b) = ra+rb = �
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Figure 5.

Thus, similar toU1, smoothing by discrete curvature flow
(7), (8) worsens the mesh sampling rate. See Fig. 1e (the top
row) where the mean curvature flow demonstrates a good
performance in smoothing a noisy sphere but produces un-
even distribution of vertices.

3 Modified Mean Curvature Flow

Let us consider a family of smooth surfacesS(u; v; t),
where(u; v) parameterize the surface andt parameterizes
the family. We suppose(u; v) to be independent oft. Let us
assume that this family evolves according to the evolution
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(a) (b) (c)
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Figure 6. (a) A polyhedral two-holed torus given as a mesh having irregular connectivity and consisting of
parts with di�erent sampling rates, a small noise is also added; (b) Laplacian smoothing improves the mesh
sampling rate but deforms the initial shape; (c) smoothing by the Taubin method substantially deforms the
initial shape in unnatural way; (d) the bilaplacian 
ow also deforms the initial shape in an irregular manner.
(e) the mean curvature 
ow produces irregular mesh; (f) smoothing according to (12), (13) produces a regular
meshing surface which shape is close to the shape produced by the mean curvature 
ow.

equation

@S(u; v; t)

@t
= F n; S(u; v; 0) = S(0)(u; v); (9)

wheren(u; v; t) is the unit normal vector forS(u; v; t), F is
a speed function,S(0)(u; v) is an initial surface. The family
parametert can be considered as the time duration of the
evolution. Equation (9) means that the surfaceS(u; v; t)
moves along its normals with speed equal toF . Consider
now the flow

@S(u; v; t)

@t
= F n+G t; S(u; v; 0) = S(0)(u; v); (10)

wheret is a vector tangent to the surface andG is a given
function. Note that the tangent speed component does not
affect the geometry of the evolving surface and changes
only surface parameterization.

Solving (9) for a polyhedral surface by an explicit Euler
scheme is more stable for polyhedral surfaces with uniform

mesh sampling rates and, therefore, allows to use larger
time steps to achieve faster smoothing. Note that a back-
ward scheme (it was proposed and used for smoothing in
[3]) is no better than Euler’s scheme. For larger time steps
where Euler’s scheme is unstable the backward scheme is
inaccurate [5].

Roughly speaking,our main idea of simultaneous mesh
smoothing and regularization consists of using the normal
speed componentF n for polyhedral surface smoothing
and the tangent speed component to improve the mesh sam-
pling rate. For polygonal curve evolutions this idea was
proposed and used in [1].

Let us use the discrete mean curvature flow (7), (8) for
smoothing and the Laplacian flow (2), (3) for improving the
mesh sampling rate. One possible implementation is to take

F n = H n and G t = C [U0 � (U0 � n)U0] ;

whereU0 is the umbrella vector (3),C is a positive constant,
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(a)
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(e) (f) (g)

(h) (i) (j)

Figure 7. (a) A polyhedral surface consisting of two parts with di�erent sampling rates. (b){(d) Deformation
of (a) into a 
at patch by the Laplacian 
ow. (e){(g) Deformation of (a) into a 
at patch by the mean
curvature 
ow. (h){(j) Deformation of (a) into a 
at patch by our method (12), (13).

and the dot stands for the scalar product. One can see that
U0�(U0 �n)U0 is the projection of the umbrella vector onto
the tangent plane. It leads to the local update rule

P
new
 � P

old
+ �

n
H(P

old
)n(P

old
) + (11)

+ C
�
U0(Pold

)� (U0(Pold
) � n(P

old
)) U0(Pold

)
�o

Smoothing by (11) produces shapes of the same quality
as the mean curvature flow but with uniform distribution of
vertices. See Fig. 4.

One can also define the parameterC as a function of
surface curvatures to achieve a higher mesh sampling rate
in the curved surface regions.

However, according to our experiments, a similar
smoothing scheme produces better results.

Letm = U0=kU0k and� is the angle between the mean
curvature vectorHn andm : cos � =m �Hn=jH j. Vector
m defines a 3D analog of 2D median direction.Our ba-

sic idea is to move the vertices in the median direction such
that the normal speed component is equal to the mean cur-
vature. However, since for saddle vertices the median direc-
tion vectorm and the mean curvature vectorH n may have
opposite normal components (i.e.,� > �=2), see Fig. 8b,
we use the following flow

P
new
 � P

old
+ �F(P

old
); (12)

where

F =

8>>><>>>:
jH jm

cos �
if cos � > "

2H n�
jH jm

cos �
if cos � < �"

0 if j cos �j � "

(13)

Here" is a small positive parameter. Geometric ideas be-
hind (12) are explained in Fig. 8.

If the normal and median vectors are almost orthogonal
to each other at a vertex (j cos �j � "), we do not move the
vertex at all.
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Figure 8. (a) The case when the median and nor-
mal vectors lie on the same side from the tangent
plane: moving in the median direction with nor-
mal speed component equal to the mean curva-
ture. (b) The case the median and normal vectors
lie on the opposite sides from the tangent plane
may happen for saddle vertices. (c) Computation
of the speed vector in (b).

According to our experiments, choosing" = 0:1 pro-
duces good results independently of the mesh sampling rate.

Our smoothing scheme (12) demonstrates better results
than the Laplacian flow, the mean curvature flow, and the
Taubin smoothing scheme, see Fig. 1. See also Fig. 7 where
a polyhedral surface consisting of two parts with different
sampling rates is smoothed by the Laplacian flow, the mean
curvature flow, and our scheme (12) and (13).

4 How to Avoid Oversmoothing

Laplacian smoothing, the mean curvature flow, and our
new technique presented in the previous section smooth
polyhedral surfaces by suppressing high frequency surface
oscillations. Lacking a local surface control, they may lead
to oversmoothing and, therefore, destroying desirable sur-
face features. To incorporate a local control for smoothing
and to reduce possible oversmoothing due to too large num-
ber of iterations, let us consider a simple but very useful
modification allowing to slow down the smoothing process

(a) (b)

(c) (d)

Figure 9. (a) The original Stanford bunny; (b) the
bunny with a uniform noise added; (c) smooth-
ing by (12) (Laplacian and mean curvature 
ows
produce almost the same results); (d) smoothing
by (14) with the same number of iterations as in
(c).

adaptively:

P
new
 � P

old
+ � eF(P

old
) (14)

with

eF(P ) =

8<:
�
kF(P )k � T

� F(P )

jjF(P )jj
if kF(P )k > T

0 if kF(P )k � T

whereT is a positive threshold selected by a user. Accord-
ing to this modification, the smoothing is performed only
on those mesh verticesP wherekF(P )k > T . See Fig. 9
to compare performance of smoothing schemes (12), (13)
and (14) withF(P ) defined in (13).

Of course the above simple modification can be applied
to the any smoothing flow considered before.

In our experiments exposed in Fig. 9 the parameterT in
(14) is the same for all vertices. It is natural to allowT
be dependent on shape characteristics at the vertices:T =
T (P ). In our experiments we define the thresholdT (P ) at
the vertexP as the arithmetic mean of the mean curvatures
computed at the first ring of neighbors ofP or at the first
and second rings of neighbors ofP . Fig. 10 demonstrates
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(a) (b) (c) (d) (e) (f)

Figure 11. (a) A Godzilla model. (b) - (f) The ridges (black) and ravines (white) detected on the Godzilla
model smoothed by various smoothing schemes. (b) Smoothing by the Laplacian 
ow. (c) Smoothing by
the Taubin method. (d) Smoothing by the bilaplacian 
ow. (e) Smoothing by the mean curvature 
ow. (f)
Smoothing by our method (12), (13).

(a)

(b)

(c)

Figure 10. (a) A triangulated Noh mask model
reconstructed from a scattered data generated by
a laser scanner system; (b) smoothing accord-
ing to (14) with constant T chosen manually; (c)
smoothing according to (14) with T (P ) equal to
the arithmetic mean of the mean curvatures of at
the �rst and second rings of neighbors of P .

our experiments with smoothing a Noh mask triangulated
model reconstructed from a cloud of points.

According to our experiments, the best smoothing strat-
egy consists of recomputing periodically the threshold
T (P ) for each vertexP after a fixed number of smooth-
ing iterations. Fig. 1f (the bottom row) shows advantages of
such threshold recomputing scheme.

5 Applications

We apply our smoothing technique (12), (13) to detect
ridges and ravines on a smooth surface approximated by a
triangular mesh.

Let us define theridges as the locus of points where
the maximal principal curvature attains a positive maximum
along its curvature line and theravinesas the locus of points
where the minimal principal curvature attains a negative
minimum along its curvature line [2].

Practical detection of the ridges and ravines on a surface
involves estimation of high-order surface derivatives and,
therefore, requires a careful surface smoothing before de-
tection. It seems natural to choose a smoothing procedure
minimizing vertices drift over the surface. On the other
hand, a smoothing scheme increasing the mesh regularity
improves curvature estimation.

For practical detection of the ridge and ravine vertices
on the mesh, we first smooth the mesh and then estimate
the normal, the principal curvatures, and the principal di-
rections at the mesh vertices. We use the method proposed
in [7]. To check whether a given vertexP is a ridge vertex,
we find the intersection between the polygon composed the
ring of the first neighbors ofP and the normal plane gener-
ated by the normal vector and maximal principal direction
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at P . We estimate the maximal principal curvature at the
intersection points by linear interpolation. Finally we com-
pare the the values of the maximal principal curvature atP
and the intersection points.

Some results of our experiments with various smoothing
schemes are shown in Fig. 11 where the ridges are colored
in black and ravines are colored in white. We think that our
smoothing scheme produces one of the best results.

6 Conclusion

In this paper we propose simple and effective polyhedral
surface smoothing schemes which combine the best prop-
erties of the Laplacian smoothing flow and discrete mean
curvature flow, are good for highly irregular meshes, outper-
form existing methods, and reduce possible oversmoothing.

In future we are planning to extend ideas presented in
the paper to various discrete implementations of the Lapla-
cian and mean curvature flows. Also we want to examine
how the developed methods can be enhanced by bilapla-
cian flows and surface diffusion processes. We also hope to
make our smoothing methods faster and more accurate by
using the implicit Crank-Nicolson method.

Another interesting direction for future research is shape
enhancement, the opposite operation to smoothing. Simple
inverting of a smoothing flow is usually unstable. However,
stability can be achieved by incorporating a curvature-based
local control similar to that we developed in Section 4. Our
preliminary results are encouraging.
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