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ABSTRACT

Computer graphics applications routinely generate geometric
models consisting of large numbers of triangles. We present an
algorithm that significantly reduces the number of triangles
required to model a physical or abatract object. The algorithm
makes multiple passea over an existing triangle mesh, using local
geometry and topology to remove vertices that pas a distance or
angle criterion. The holes left by the vertex removal are patched
using a local triangulation proeeas. The decimation algorithm has
been implemented in a general scientific visualization system as a
general network filter. Examples from volume modeling and
terrain modeling illustrate the results of the decimation
algorithm.
Keywords: computer graphics, geometric modeling, medical
imaging, terrain modeling, volume modeling

1 INTRODUCTION

The polygon remains a popular graphica primitive for computer
graphica application. Besides having a simple representation,
computer rendering of polygons is widely supported by
commercial graphics hardware and sotlware. However, because
the polygon is linear, often thousands or millions of primitives
are required to capture the details of complex geomet~. Models
of this size are generally not practical since rendering speeds and
memory requirements are proportional to the number of
polygons. Consequently applications that generate large
polygonal meshes often use domain-speeific knowledge to
reduce model size. There remain algorithms, howwwer, where
domain-specific reduction teehniquea are not generally available
or appropriate.

One algorithm that generates many polygons is Mamhing Cuber
[10]. Mamhing Cubes is a brute force surfa~ construction
algorithm that extraets isodensity surfaces from volume data,
producing from one to five triangles within voxels that contain
the surface. AIthough originally developed for medical
applications, Mamhing Cuber has found more frequent use in
scientific visualization where the size of the volume data sets are
much smaller than those found in medieal applications. A large
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computational fluid dynamics volume could have a finite
difference grid size of order 100 by ltXI by 100, while a typical
medical computed tomography or magnetic resonamx scanner
produeea over 100slices at a resolution of 256 by 256 or 512 by 512
pixels each. Industrial computed tomography, used for
inspection and analysis, has even greater resolution, varying from
512 by 512 to 1024 by 1024 pixels. For thexe sampled data sets,
isoaurface extraction using Mamhing Cubes can produce from
500k to 2,000k triangles. Ewn today’s graphics workstations have
trouble storing and rendering models of this size.

Other sampling devices can produce large polygonal model.%
range cameras, digital elevation data, and satellite data. The
sampling resolution of these deviees is also improving, resulting
in model sizes that rival those obtained from medical scanners.

This paper describes an application independent algorithm that
uses local operations on geometry and topology to reduu the
number of triangles in a triangle mesh. Although our
implementation is for the triangle mesh, it can be directly applied
to the more general polygon mesh. After describing other work
related to model creation from sampled data, we describe the
triangle decimation process and its implementation. Results
from two different geometric modeling applications illustrate the
strengths of the algorithm.

2 RELATED WORK

The decimation algorithm applies to discrete modeling the
synthesis, analysis and manipulation of objects contained within
sampled data. Approaches to synthesizing these objects can be
either adaptive or filter-based.

Adaptive techniques produce more primitives in selected areas.
For example, Fowler [71creates triangulated irregular networks
(TIN) of terrain by finding ridges and channels, performing a
Delaunay triangulation of these features and then adaptively
adding points from the dense elevation grids. In implicit
modeling, Bloomenthal [2] produces isosurfaees from implicit
models by adaptively evaluating the implicit equations as long as
the surface intersects his sampling cubes. In finite element mesh
generation, the CATFEM system [6] uses oetree techniques to
create 3D finite elements directly from volume samples,
generating more elements in areas of fine detail. Deformable
mcxlels [1:, 15] use an initial surface model that is repeatedly
deformed to fit the implicit surface that exists within a sampled
volume. The original model resolution controls the number of
primitives in the final, deformed model. Fitting techniques
approximate a surface with one or more primitives using error
criteria to measure the goodness of fit. Schmitt [13] starts with
rough hi-cubic patch approximations to sample data, then
subdivides those patches that are not sufficiently close to the
underlying samples. Recent work by DeHaemer [4] extends this
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work to reduce the number of polygons in a polygonal mesh. lhrk
[16]uses are-triangulation technique that introduces new points
onto a polygonal mesh, and then discards the old points to create
a new mesh.

Filter-based techniqu= start with a large number of samplea or
primitiva and remove or replace samples to reduce model size.
Two naive approachca are sub-sampling and averaging.
Sub-sampling uses every n’hpoint in the data to reduce the size of
the data, while averaging resamples the data using neighboring
points.

The bulk of published work on reducing the number ofpnmitivea
for modeling addresses the two-dimensional approximation of
curves with line segments. Dunham [5] compares nine
techniques for the piecewise linear approximation of 2D planar
curves. These algorithms seek approximations that satisfy a
uniform error criterion. The points produced by each algorithm
all lie on the digitized curves. Recent wrk [8] uses dynamic
programming to approximate 3D space curves. Kalvin et. al. [9]
deseribe a technique called Adapfive Face Metgr”ngthat removes
co-planar polygons. They report substantial polygon reduction
for binary voxel data sets.

3 THE DECIMATION ALGORITHM

The fundamental goal of the decimation algorithm is to reduce
the total number of triangles in a triangle mesh, while preserving
as accurately as possible important featurea. Here we define a
triangle mesh to be a collection of triangles in three-space, joined
along common edges and vertices. ~ically the topology of the
mesh is 2-manifold [17J but non-manifold forms are possible
and must be treated by the algorithm.

Any reduced mesh must meet two requirements [14]. First, the
reduced mesh must preserve the original topology of the mesh,
including non-manifold forms. Second, the decimated mesh
must form a good geometric approximation to the original mesh.
Optionally, the vertiees of the decimated mssh can be a subset of
the original vertices. Hence new vertices are never created,
instead relatively unimportant vertices (and associated triangles)
are removed from the mesh, forming new approximations to the
original. This optional requirement, although not essential to
forming an effective approximation to the original mesh, isuseful
in practice because it provides a way to use the auxiliary vertex
data such as normals or texture coordinates.

3.1 OVERVIEW

The decimation algorithm is simple. Multiple passes are made
over all vertices in the mesh. During a pass, each vertex is a
candidate for removal and, if it meets the specified decimation
criteria the vertex and all triangles that use the vertex are
deleted. The resulting hole in the mesh is patched by forming a
local triangulation. The vwtex removal process repeats, with
psible adjustment of the decimation criteria, until some
termination condition is met. Usually the termination criterion is
specified as a percent reduction of the original mesh (or
equivalent), or as some maximum decimation value. The three
steps of the algorithm are

1. characterize the Icxxdvertex geometry and topology,
2 evaluate the decimation criteria, and
3. triangulate the resulting hole.

3.2 CHARACTERIZING LOCAL GEOMETRY / TOPOLOGY

The fimt step of the decimation algorithm characterizes the local
geometV and topology for a given vertex. The outcome of this
process determines whether the vertex is a potential candidate
for deletion, and if it is, which criteria to use.

Simple Complex Boundary Int&ior Comer
Edge

Figure 1. Vertex classifications.

V2zNep’a
Figure 2 Distance to plane.

Figure 3. Distance to edge.

Each vertex may be assigned one of five possible cksificatimw
simple, complex, boundary, interior edge, or comer vertex.
Examples of eaeh type are shown in F@ure 1.

A simple wrtex is surnmnded by a complete cycle of tnangls,
and each edge that uses the vertex is used by exactly tw triangles.
If the edge is not used by two triangles, or if the vertex is used by a
triangle not in the eyele of triangles, then the vertex is complex
T&se are non-manifold cases.

A vertex that is on the boundary of a mesh, i.e., within a
semi-cycle of triangles, is a boundary vertex.

A simple vertex can be further classified as an interior edge or
comer vertex. These chmsifications are based on the local mesh
geometry. If the dihedral angle between tvm adjacent triangles is
greater than a spedied @ture un~e, then a @rum ed~ exists.
When a vertex is used by two feature edges, the vertex is an
interior edge vertex. If one or three or more feature edges use the
W- the wxtex is classified a comer vertex.

Complex wwticea are not deleted t%om the mesh. All other
vertices become candidatm for deletion.

3.3 EVALUATING THE DECIMATION CRITERIA

The characterization step produces an ordered loop of vertices
and triangles that use the candidate vertex. The evaluation step
determines whether the triangk% forming the loop can be
deleted and replaced by another triangulation exclusive of the
original vertex Although the fundamental decimation criterion
we use is based on wrtex distance to plane or vertex distan~ to
edge, others can be applied.

Simple vertices use the distance to plane criterion (Figure 2). An

average plane is constructed using the triangle normals, ;i ,

centers, % , and areas Aj,
— —

(1)

where the summation is over all triangles in the loop. The
distanm of the vertex 7 to the plane is then d = Iii”@-Y)l . If

the vertex is within the specified distance to the average plane it
may be deleted. Othemvise it is retained.

Boundary and interior edge vertices use the distance to edge
criterion (Figure 3). In this case, the algorithm determines the
distance to the line defined by the two vertices creating the
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boundary or feature edge. If the distance to the line is less than d,
the vertex can be deleted.

It is not always desirable to retain feature edges For example,
meshes may contain areas of relatively small triangles with large
feature angles, mntnbuting relatively little to the gEometric
approximation. Or, the small triangles may be the result of
“noise” in the original mesh. In these situations, comer vertices,
which are usually not deleted, and interior edge vertices, which
are evaluated using the distance to edge criterion, may be
evaluated using the distance to plane criterion. We call this edge
preservation, a user specifiable parameter.

If a vertex can be eliminated, the loop created by removing the
triangles using the vertex must be triangulated. For interior edge
vertices, the original loop must be split into two halves, with the
split line connecting the vertices forming the feature edge. If the
loop can be split in this way, i.e., so that resulting two loops do not
overlap, then the loop is split and each piece is triangulated
separately.

3.4 TRIANGULATION

Deleting a vertex and its associated triangles creates one (simple
or boundary vertex) or two loops (interior edge vertex). Within
each loop a triangulation must be created whose triangles are
non-intersecting and non-degenerate. In addition, it is desirable
to create triangles with good aspect ratio and that approximate
the original loop as clmely as possible.

In general it is not possible to use a two-dimensional algorithm to
construct the triangulation, since the loop is usually non-planar.
In addition, there are N important characteristics of the loop
that can be used to advantage. First, if a loop cannot be
triangulated, the vertex generating the Imp need not be
removed. Second, since every Icwp is star-shaped [12],
triangulation schemes based on recursive loop splitting are
effective. The next section describes one such scheme.

Once the triangulation is complete, the original vertex and its
cycle of triangles are deleted. From the Euler relation [12] it
follow that removal of a simple, comer, or interior edge vertex
reduces the mesh by precisely two triangles If a boundary vertex
is deleted then the mesh is reduced by precisely one triangle.

4 IMPLEMENTATION

The decimation algorithm has been implemented as a filter in
our object-oriented LYMB/VISAGE visualization environment.
Usually we apply the algorithm repeatedly to eliminate vertices
and triangles from a mesh until a specified reduction threshold is
achieved. The decimation is controlled by slowly adjusting the
distance and feature angle criterion. It is also possible to limit the
total number of iterations, as well as modify other parameters
such as the triangulation aspect ratio. We often specify an initial
distance of zero to first remove triangles within strictly planar
regions.

TW major challenges were addressed to create a successful
implementation of the decimation algorithm. First, the data
structures had to be carefully crafted since the size of the data
(i.e., millions of triangles) demands both efficient access to and
storage of data. Second, the triangulation algorithm was designed
to be simple and efficient, and to take advantage of the particular
characteristics of the triangulation process.

It should be noted that this algorithm, while expressly described
with triangle meshes in mind, is directly applicable to polygon
m~hes. Only minor modifications need be made in the
implementation of the data structures and loop evaluation.

4.1 DATA STRU(7WRES

The data structure must contain at least two pieces of
information: the geometry, or coordinates, of each vertex, and

*

split line ~ ,,:,split plane

‘%
b:.:

average plane

I Figure 4. Spfltting. I
the definition of each triangle in terms of its three vertices. In
addition, because ordered lists of triangles surrounding a vertex
are frequently required, it is desirable to maintain a list of the
triangles that use each vertex.

Although data stmctures such as Weiler’s radial edge [1~ or
Baumgart’s winged+dge data structure [1] can represent this
information, our implementation uses a space+ fficient
vertex-triangle hierarchical ring structure. This data structure
contains hierarchical pointers from the triangles down to the
vertices, and pointers from the vertices back up to the triangles
using the vertex. Taken together these potnters form a ring
relationship. Our implementation uses three lis& a list of vertex
coordinates, a list of triangle definitions, and another list of lists
of triangles using each vertex. Edge definitions are not explicit,
instead edges are implicitly defined as ordered vertex pairs in the
triangle definition.

4.2 TRIANGUtATION

Although other triangulation schemes can be used, w chose a
recursive loop splitting prcrcedure. Each loop to be triangulated is
divided into tw halves. The division is along a line (i.e., the split
line) defined from two non-neighboring wrtices in the loop.
Each new loop is divided again, until only three vertices remain in
each loop. A loop of three vertices forms a triangle, that maybe
added to the mesh, and terminates the recursion process.

Because the loop is non-planar and star-shaped, the loop split is
evaluated using a split plane. The split plane, as shown in Figure
4, is the plane orthogonal to the average plane (Eqn. 1) that
contains the split line. In order to determine whether the split
forms two non-overlapping loops, the split plane is used for a
half-space comparison. That is, if every point in a candidate loop
is on one side of the split plane, then the tuw Icmp do not overlap
and the split plane is aweptable. Of course, it is easy to create
examples where this algorithm will fail to produce a successful
split. In such cases we simply indicate a failure of the
triangulation process, and do not remove the vertex or
surrounding triangle from the mesh.

TWically, however, each loop maybe split in more than one way.
In this case, the best splitting plane must be selected. Although
many possible measures are available, we have been suuxs.sful
using a criterion based on aspect ratio. The aspect ratio is defined
as the minimum distance of the loop vertices to the split plane,
divided by the length of the split line. The best splitting plane is
the one that yields the maximum aspect ratio. Constraining this
ratio to be greater than a specified value, e.g., 0.1, produces
ameptable meshes.

Certain special cases may occur during the triangulation prmxss.
Repeated decimation may produce a simple closed surface such
as a tetrahedron. Eliminating a vertex in this case would modify
the topology of the mesh. Another special case occurs when
“tunnels” or topological holes are present in the mesh. The
tunnel may eventually be reduced to a triangle in cross section.
Eliminating a vertex from the tunnel boundary then eliminates
the tunnel and creates a non-manifold situation.

These cases are treated during the triangulation process. As new
triangles are created, checks are made to insure that duplicate
triangles and triangle edges are not created. This preserves the
topology of the original mesh, since new connections to other
parts of the mesh cannot occur.
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5 RESULTS

TW different applications illustrate the triangle decimation
algorithm. Although eaeh application uses a different scheme to
create an initial mesh, all results were produced with the same
decimation algorithm.

5.1 VOLUME MODELING

The first application applies the decimation algorithm to
ismurfaces created from medieal and industrial computed
tomography scanners. Maxhing Cuber was run on a 256 by 2S6
pixel by 93 slice study. Over 560,0Ml triangles were required to
model the bone surface. Earlier work [3] reported a triangle
reduction strategy that used averaging to reduee the number of
triangles on this same data set. Unfortunately, averaging applies
uniformly to the entire data set, blurring high frequency features.
Figure 5 shows the resulting bone isosurfaces for O%, 75Y0,and
90% decimation, using a decimation threshold of US the voxel
dimension. Figure 6 shows decimation results for an industrial
CT data set eompriaing3(Ml slices, 512 by 51Z the largest we have
processed to date. The isosurfaee created from the original blade
data contains 1.7 million triangles. In fact, w could not render
the original mdel because w exceeded the swap space on our
graphica hardware. Even tier decimating 90% of the triangles,
the serial number on the blade dovetail is still evident.

5.2 TERRAIN MODELING

We applied the decimation algorithm to two digital elevation
data sets Honolulu, Hawaii and the Mariner Valley on Mars. In
both examples we generated an initial mesh by creating two
triangles for each uniform quadrilateral element in the sampled
data. The Honolulu example illustrates the polygon savings for
models that have huge flat areas. First w applied a decimation
threshold of zero, eliminating over 30% of the co-planar
triangles. Increasing the threshold removed 9CW0 of the triangles.
Figure 7 shows the resulting M“%o and 90% triangulations. Notice
the transitions from large flat areas to fine detail around the
shore line.

The Mars example is an appropriate test because we had aaess to
sub-sampled resolution data that could be compared with the
decimated models. The data represents the western end of the
Mariner Valley and is about 1000km by 500km on a side. Figure 8
compares the shaded and wireframe modets obtained via
sub-sampling and decimation. The original model was 480 by288
samples The sub-sampled data was 240 by 144. After a 77%
reduction, the decimated model contains fewer triangles, yet
shows more fine detail around the ridges.

6 CONCLUSIONS

The decimation algorithm significantly reduees the number of
triangles required to model an object to a given level of detail.
Using local topological and geometric operations, the algorithm
makes multiple passes over a triangle mesh, removing vertices
and triangulating the resulting holes until user-specified
decimation criteria are satisfied. The three step algorithm affords
the opportunity to experiment with other data structures, surface
appratimation metrics, and triangulation schemes. For example,
the tit step of the decimation could be modified to allow the
user to tag some wrtices as not-removable. Also, other
non-geometric vertex data such as scalar quantities could be used
to control the decimation.

We have successfully applied the algorithm to tw visualization
areas: volume and terrain modeling. We expect that some
surface-based analysis techniques, such as boundary element
methods or radiosity, will also benefit from the model reductions
w have achieved. Here, the computational reduction will be
even more significant, since the complexity of analysis is often
more than linear with the number of primitives.
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