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Figure 1: The idle CAMEL becomes a boxer with the help of MOCAP data and our mesh deformation system.

Abstract
In this paper, we present a multigrid technique for efficiently de-
forming large surface and volume meshes. We show that a previous
least-squares formulation for distortion minimization reduces to a
Laplacian system on a general graph structure for which we derive
an analytic expression. We then describe an efficient multigrid al-
gorithm for solving the relevant equations. Here we develop novel
prolongation and restriction operators used in the multigrid cycles.
Combined with a simple but effective graph coarsening strategy,
our algorithm can outperform other multigrid solvers and the fac-
torization stage of direct solvers in both time and memory costs
for large meshes. It is demonstrated that our solver can trade off
accuracy for speed to achieve greater interactivity, which is attrac-
tive for manipulating large meshes. Our multigrid solver is partic-
ularly well suited for a mesh editing environment which does not
permit extensive precomputation. Experimental evidence of these
advantages is provided on a number of meshes with a wide range
of size. With our mesh deformation solver, we also successfully
demonstrate that visually appealing mesh animations can be gen-
erated from both motion capture data and a single base mesh even
when they are inconsistent.
CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Boundary representations
Keywords: Mesh Editing, Laplacian, Constraints, Graph Hierar-
chy, Prolongation/Restriction Operators

1 Introduction
Surface-based mesh editing has received much attention recently
due to its capability to produce visually appealing results while at
the same time making the underlying numerical computation trans-
parent to the user. The user only needs to specify the goals, which

can be handle positions, key frames or silhouettes, and the editing
system automatically solves a sparse system of equations to satisfy
these constraints. Nevertheless, a serious problem that still hampers
the deployment of this type of techniques is their scalability. When
meshes become large and complex, the performance of the numer-
ical solver becomes the bottleneck of the entire system. While so-
lutions to cope with this problem exist – including small regions of
interest (ROI) and precomputed matrix factorizations – they restrict
the scope of editing operations.

The multigrid method on the other hand has the potential to solve
large-scale sparse systems efficiently without a significant setup
time. While the user most often only needs to pick up a handle to
manipulate a mesh, it is sometimes necessary to define and manip-
ulate new handles that have not been preprocessed. Furthermore, in
a general mesh editing environment, mesh deformation needs to be
mixed with other mesh editing operations, such as remeshing and
merging. This is evidenced by routine practice in game develop-
ment where large-scale meshes are edited first before simplified to
a size suitable for real-time rendering. Some of these editing oper-
ations result in an altered system of linear equations that need to be
solved on the fly. When the mesh is large, a fast multigrid algorithm
can solve the altered linear system in a less stressful way than the
factorization stage in direct solvers.

In this paper, we introduce a fast multigrid technique tailored
for mesh deformation to support the aforementioned scenario. Al-
though the multigrid method has become a popular choice for large-
scale mesh processing [Ray and Levy 2003; Aksoylu et al. 2005],
there are still a number of challenges we need to overcome to
achieve acceptable interactive performance. First, recent mesh de-
formation techniques often have two passes with the first pass solv-
ing for local frames and the second pass solving for vertex coor-
dinates. How can we effectively reformulate these passes so that
they become more compatible with multigrid solvers? Second,
the multigrid method requires a hierarchical structure and must ac-
commodate user-provided deformation constraints within this hier-
archy. How can we properly handle these aspects? Third, when
moving between grid levels the multigrid method applies a pair of
prolongation and restriction operators. How should we design such
operators to speed convergence?

We have developed effective techniques to overcome these chal-
lenges. First, we revise the formulations for mesh deformation so
that they can be adequately solved by local relaxations. In partic-
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ular, we analytically obtain a closed-form formulation for the opti-
mization of vertex coordinates, thereby avoiding expensive sparse
matrix multiplications. Second, we quickly create a hierarchy using
a simple graph coarsening technique that ignores the initial mesh
structure. Boundary conditions are not explicitly considered during
the construction of the hierarchy. Instead, they are incorporated al-
gebraically in the equations and in the prolongation/restriction op-
erators. Most importantly, we develop a novel technique that au-
tomatically obtains prolongation and restriction operators using a
weighted graph perspective. These operators better maintain the
consistency of equations among different levels, and thus signifi-
cantly improve the convergence rate. As a result, our algorithm can
outperform existing multigrid solvers and the factorization stage of
direct solvers. We demonstrate the advantages and utility of these
features in complex mesh editing examples.

1.1 Related Work
There have been many approaches for mesh modeling and editing.
In the following, we will focus on geometry-based mesh deforma-
tion techniques only. Physically based deformation based on elas-
ticity models is beyond the scope of this paper.

FFD techniques [Sederberg and Parry 1986] need to embed a sur-
face mesh inside a volume lattice. It is hard to precisely control the
surface deformation results using FFD because it is achieved indi-
rectly by manipulating the lattice points. Recent work [Botsch and
Kobbelt 2005] has replaced the lattice with volume-based radial ba-
sis functions (RBFs) which further induce deformation on the target
mesh surface. Impressive performance on large meshes has been
achieved for deformations with predefined handles. Flexible mesh
modeling and deformation can be achieved by employing a mul-
tiresolution decomposition of the original mesh [Zorin et al. 1997;
Kobbelt et al. 1998; Guskov et al. 1999]. By choosing to work at
an appropriate resolution, one can manipulate or edit the mesh at
a desired scale to reduce the amount of manual effort. Recently,
surface-based mesh editing techniques [Alexa 2003; Sorkine et al.
2004; Yu et al. 2004; Lipman et al. 2005; Zayer et al. 2005] demon-
strate that it is possible to achieve similar results without exposing
the multiresolution structure of the mesh. The user directly manip-
ulates the mesh surface at its finest level and the scale of manipu-
lation is controlled by a region of interest. High frequency mesh
details can be well preserved by locally or globally supported de-
formation fields which only modify the low frequency part of the
mesh geometry.

At the core of a surface-based mesh editing system lies a mesh
representation based on differential coordinates, such as Laplacian
or gradient coordinates. Such systems typically manipulate the dif-
ferential coordinates of the undeformed mesh first, followed by a
reconstruction of the deformed mesh from the modified differential
coordinates. Most techniques in this category have two passes with
the first pass addressing rotation and scaling, and the second pass
reconstructing vertex coordinates. While the second pass is com-
monly formulated as a least-squares minimization, various tech-
niques have been proposed for the first pass, including geodesic
distance based propagation [Yu et al. 2004], harmonic field based
interpolation [Zayer et al. 2005], and least-squares minimization
based on a rotation-invariant representation [Lipman et al. 2005].
In [Zhou et al. 2005], a volume graph is constructed at the interior
of a closed mesh to prevent volume loss during excessive bending
and twisting.

Mesh deformation is also closely related to shape interpolation
which involves more than one originally undeformed key shapes.
An effective shape interpolation technique for simplicial complexes
was introduced in [Alexa et al. 2000]. This technique has been
generalized to surface-based deformation transfer in [Sumner and
Popović 2004] and nonlinear interpolation among multiple key
shapes in [Sumner et al. 2005].

2 Basic Formulations
Here we describe the basic formulations we adopt for mesh defor-
mation. Note that these formulations can be applied to surface tri-
angle meshes with or without a volume graph [Zhou et al. 2005]. In
practice, we most often construct such a graph to have better vol-
ume preservation. Following [Lipman et al. 2005], an initial local
frame is defined at each vertex of the graph. The orientation of the
local frame can be arbitrary. Given a set of rotation, scaling and/or
translation constraints, we still formulate mesh deformation as a
two-pass process. During the first pass, we first compute harmonic
guidance fields over the mesh as in [Zayer et al. 2005], and then
obtain modified orientation and scale of the local frame at every
unconstrained vertex by interpolating relevant constraints using the
harmonic guidance fields. The modified orientation and scale are
then fixed at all vertices during the second pass and the coordinates
of every unconstrained vertex are solved as in [Lipman et al. 2005].
More details follow.

2.1 The First Pass
During the first pass, the goal is to smoothly ”interpolate” both ro-
tation and scaling constraints over the entire mesh surface. We per-
form interpolation for these two types of constraints separately be-
cause the orthogonality of local frames requires that rotation inter-
polation still produce valid rigid body rotations. The interpolation
of scaling constraints is performed by computing a single scalar
harmonic field, which is the solution of the Laplace equation,

∆ν � 0 � (1)

over the mesh surface with the scaling constraints as boundary con-
ditions. The discretization of this Laplace equation gives rise to a
sparse linear system.

As we know, a harmonic field is the equilibrium state of a diffu-
sion process. Ideally, one should generalize this observation from
scaling constraints to rotation constraints each of which can be rep-
resented as a unit quaternion. We define an orientation diffusion
process as follows,

∂q
∂ t

� ∆Oq � (2)

where ∆O represents a generalized Laplacian operator for orienta-
tions. Since a discrete Laplacian operator at a mesh vertex returns
a linear combination of the values of a quantity within the 1-ring
neighborhood of the vertex, such a Laplacian operator can be easily
generalized to orientations because any linear combination of unit
quaternions is well defined as long as the participating quaternions
follow a predefined order and the weights form a partition of unity.
Iteratively simulating such an orientation diffusion process as de-
fined in (2) with appropriate boundary conditions leads to a smooth
quaternion field over the mesh. Each iteration of the simulation is a
local relaxation. The resulting quaternion field can then be applied
to the local frame at every vertex to obtain the modified local frame.

However, orientation diffusion using quaternions is still more
expensive than scalar diffusion. In practice, we adopt one of the
schemes presented in [Zayer et al. 2005] which computes a dis-
tinct bounded scalar harmonic field for each and every rotation con-
straint. Each of the bounded harmonic fields is computed using
a unique set of boundary conditions which set one at the vertices
sharing the same rotation constraint being considered while zero
at the vertices with the rest of the rotation constraints. The value
of the resulting harmonic field at an unconstrained vertex serves as
the interpolation coefficient for the rotation constraint being con-
sidered. The final rotation at that vertex is interpolated from all
rotation constraints using the computed coefficients. Such an inter-
polated rotation is a good approximation of the rotation obtained
from orientation diffusion.
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2.2 The Second Pass
Our formulation for solving modified vertex coordinates in the de-
formed mesh is based on the method in [Lipman et al. 2005]. Sup-
pose vertex v j belongs to vertex vi’s 1-ring neighborhood. The co-
ordinates of vi and v j are denoted as xi and x j . The modified local
frame at v j has three axes, b j

1, b j
2 and N j. A linear equation that

specifies the desired relative position between vi and v j in the de-
formed mesh can be formulated as

xi
� x j

� c1
jib j

1
� c2

jib j
2
� c3

jiN j � (3)

where c1
ji, c2

ji and c3
ji are scalar coefficients encoding the relative

position of vi with respect to the local frame at v j in the original
undeformed mesh. If we switch the roles of xi and x j in (3), we can
obtain a second equation for the same vertices as follows,

x j
� xi

� c1
i jbi

1
� c2

i jbi
2
� c3

i jNi � (4)

Subtracting (4) from (3), we have

xi
� x j

� d ji � (5)

where

d ji
� 1

2

���
c1

jib j
1
� c2

jib j
2
� c3

jiN j � � �
c1

i jbi
1
� c2

i jbi
2
� c3

i jNi �����
(6)

Since there is such a linear equation for every pair of connected
vertices, a least-squares solution can be sought for all the vertex
coordinates in the deformed mesh. Using a matrix multiplication
to obtain the normal equations of this least-squares minimization is
actually a very costly step. Fortunately, in this particular case, it is
straightforward to obtain the normal equations analytically.

From a different perspective, (5) can be viewed as an equation
that provides a prediction of vi’s location using the coordinates and
local frame at v j . Suppose vi’s 1-ring neighbors are indexed by
N 	 i 
 . Obviously, there are �N 	 i 
�� potentially conflicting predictions
like this for vi. Suppose the edge between vi and v j is associated
with a weight wi j and wi j

� w ji. The (weighted) least-squares so-
lution of vi’s coordinates should be the (weighted) average of the�N 	 i 
� predictions. Therefore, the system of normal equations must
contain exactly one equation like the following for every vertex.

xi
� ∑ j � N � i � w jix j

∑ j � N � i � w ji

� ∑ j � N � i � w jid ji

∑ j � N � i � w ji

� (7)

We will solve these derived normal equations in our multigrid
solver. Actually, (7) has already been formulated as a type of lo-
cal relaxation that a multigrid solver can immediately use. Interest-
ingly, (7) can also be reformulated as

∑
j � N � i � w ji 	 x j

� xi 
 � � ∑
j � N � i � w jid ji � (8)

which reveals that it is actually a discretized Poisson equation with
the left hand side formulated as a discretized Laplacian operator for
the deformed mesh. The right hand side informs how to adapt the
original Laplacian that was obtained from the undeformed mesh. It
does not simply apply the local transformation at vi to the origi-
nal Laplacian. The coefficient matrix of the linear system in (8) is
symmetric and positive definite. A few weighting schemes for the
Laplacian operator have been discussed in [Zhou et al. 2005] and
can be adopted here. We have found experimentally that even uni-
form weighting can give rise to successful solutions of our system
without artifacts. Since this discretized Poisson equation is based

Figure 2: Orientation diffusion (left) and harmonic fields (center)
produce more natural deformations than the method in [Lipman
et al. 2005]. Two constrained handles are located at the two ends of
the mesh structure.

Figure 3: A SPRING is deformed using a spatial deformation tech-
nique (center) and our method (right). In the spatial case, points in
close proximity (Euclidean metric) move together even when their
geodesic distance is much larger. In contrast, our mesh-based ap-
proach contains this geodesic information implicitly.

on edges, it can be used for deforming any graph structures, not just
triangle meshes. Therefore, it is more general than the discretized
Poisson equation adopted in [Yu et al. 2004] which was tailored
for triangle meshes. Our formulation is also different from the one
used in Laplacian mesh editing [Sorkine et al. 2004] which solves
a bi-harmonic system.

2.3 Discussion
We have performed two simple tests to justify the choices we made
here. Fig. 2 shows a comparison of three deformation results. We
use the same linear system in (8) as the second pass in all three
tests. The first pass adopts three different techniques including ori-
entation diffusion, bounded harmonic fields [Zayer et al. 2005], and
the linear system in [Lipman et al. 2005]. The results from the first
two are extremely close and distribute both twisting and bending
more uniformly across the surface than the third approach which
tends to concentrate deformation halfway between the two handles.
This is because the method in [Lipman et al. 2005] does not enforce
the orthogonality of the modified local frames. In another simple
test shown in Fig. 3, we compare a space deformation technique
[Botsch and Kobbelt 2005] with the two-pass surface deformation
adopted in this paper. The result from the first technique produces
undesirable deformation on the SPRING model because it adopts
Euclidean distance which is not always a good estimate of geodesic
distance. Defining a local region of interest to avoid this problem is
not always feasible for models such as the one shown here.

3 The Multigrid Method
The multigrid method was originally introduced to solve linear sys-
tems that arise from discretizations of elliptic PDEs. As we know,
both linear and nonlinear equations can be solved by iterative re-
laxations. Unfortunately, these iterative solvers exhibit slow con-
vergence in large-scale problems. The multigrid method [Wessel-
ing 2004] can significantly improve the efficiency of these iterative
solvers by accelerating the global propagation of information. It
takes advantage of multiple discrete formulations of a numerical
problem over a range of resolution levels. The coarser levels trade
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Algorithm 1: The multigrid method.
Data: Given Ah, ũh, bh, ν1, ν2 and γ;
Result: Return uh that satisfies Ahuh

� bh.

Multigrid(Ah, ũh, bh, ν1, ν2, γ)
begin

if Coarsest Level then
return uh

� Solve(Ah, bh);
end
else

for i=1 to γ do
ũh

� Smooth(Ah, ũh, bh, ν1);
∆bh

� bh
� Ahũh;

∆b2h
� Restriction(∆bh);

Compute A2h;
∆u2h

� Multigrid(A2h, 0, ∆b2h, ν1, ν2, γ);
∆uh

� Prolongation(∆u2h);
ũh

� ũh
� ∆uh;

ũh
� Smooth(Ah, ũh, bh, ν2);

end
return uh

� ũh;
end

end

spatial resolution for direct communication paths over larger dis-
tances. Multigrid techniques have several important components:
i) a hierarchy of discrete formulations over a range of spatial reso-
lutions, ii) a local iterative smoothing operator, such as the Gauss-
Seidel or Jacobi relaxation, iii) a prolongation operator that inter-
polates solutions from coarse resolutions to finer ones, and iv) a
restriction operator that subsamples residual errors at finer resolu-
tions onto coarser ones.

To be more concrete, let us consider a sparse linear system of
equations, Ahuh

� bh, where uh represents the vector of unknowns
defined on the finest 2D rectangular grid and h represents the grid
spacing there. A pyramid of grids can be defined by reducing the
resolution of the finer grid by half every time. Suppose we have ob-
tained an initial guess of the solution at the finest level, ũh (which
could simply be 0). This initial solution is smoothed by one or more
iterations of the local smoothing operator. Then we need to solve
the defect equation, Ah∆uh

� ∆bh, where the residual errors are
∆bh

� bh
� Ahũh, and ∆uh represents the correction to the initial

guess. Suppose we have defined a pair of linear operators: a restric-
tion operator R and a prolongation operator P. Instead of solving
the defect equation on the finest level, we first subsample the cur-
rent residual errors onto the next coarser level using the restriction
operator, ∆b2h

� R∆bh, and then recursively solve the following
restricted equation on the coarser level,

A2h∆u2h
� ∆b2h � (9)

where A2h is an appropriate approximation of Ah on the coarser
level, and is typically defined as follows,

A2h
� RAhP � (10)

Once this recursive process has reached the coarsest level, a direct
solver is used to obtain an accurate solution there. These steps are
summarized in Algorithm 1. Further details on multigrid solvers
can be found in many excellent books and tutorials, including [Wes-
seling 2004; Trottenberg et al. 2000].

The above procedure only illustrates the steps to solve the defect
equation once an initial guess of the solution has been obtained.
How can we obtain a good initial guess? Simply using the zero

vector is actually not very efficient. Demonstrated in Figure 4, the
full multigrid algorithm (FMG) addresses this problem. FMG first
obtains a restricted equation at each level of the hierarchy by recur-
sively applying (10) to the original equation (instead of the defect
equation) at the finest level. It then starts from the coarsest level
and obtains an accurate solution of the restricted equation there.
Once an accurate solution is obtained at a coarse level, it is inter-
polated onto the next finer level using the prolongation operator.
This interpolated solution serves as the initial guess at that level,
which then calls the multigrid method in Algorithm 1 to construct a
defect equation specific to its own level and obtain an accurate so-
lution to its own restricted equation. This process terminates once
it reaches the finest level and obtains an accurate solution there.
Note that the full multigrid algorithm obtains an accurate solution
at each level, but does so very efficiently by invoking the recursive
multigrid method instead of running iterative relaxations until con-
vergence.

In some cases the discretization of a problem suggests a natural
geometric coarsening. For instance, the uniform 2D grid can be
coarsened by doubling the grid spacing at each level of the hierar-
chy. Unfortunately, irregular domains with complex discretizations
do not admit such simple rules. Algebraic multigrid (AMG) meth-
ods have been developed in response to this problem. In AMG, the
geometry of the problem is ignored and only the associated linear
system is used to determine the multigrid hierarchy.

Multigrid techniques have been applied to graphics related prob-
lems in many occasions. One of the earliest applications of multi-
grid techniques to geometric modeling was developed in [Kobbelt
et al. 1998] which applies cascadic multigrid to mesh fairing. Re-
lated cascadic multigrid techniques for computing conformal maps
and fair Morse functions on unstructured meshes can be found in
[Ray and Levy 2003; Ni et al. 2004]. Efficient multilevel solvers
for unstructured meshes has been introduced in [Aksoylu et al.
2005] which relies on two new mesh hierarchies to achieve fast
convergence. All these geometric multigrid or multilevel tech-
niques exploit mesh simplification steps for the construction of
mesh hierarchies. An effective geometric multigrid algorithm with
weighted prolongation/restriction operators has recently be devel-
oped in [Grady and Tasdizen 2005] for solving 2D inhomogeneous
Laplace equation on 2D regular grids. AMG techniques for sur-
face reconstruction or feature-based mesh decomposition can be
found in [Kimmel and Yavneh 2003; Clarenz et al. 2004]. Multigrid
solvers for regular grids have also been mapped onto GPUs [Bolz
et al. 2003; Goodnight et al. 2003].

4 Graph Coarsening
Multigrid techniques require a hierarchy of progressively coarser
grids. In our context, the grid at level l of the hierarchy is an un-
structured graph, Gl � 	 V l � E l 
 , with a set of vertices, V l , and edges,
E l . Note that our original input is a surface triangle mesh, poten-
tially enhanced with a volume graph, and a set of constraints. We
construct the finest grid in the hierarchy by only including the un-
constrained vertices from the input as well as the edges connecting
two unconstrained vertices. As a result, coarsened grids at higher
levels do not directly involve constrained vertices either. Neverthe-
less, constraints are still precisely represented and satisfied in the
equations. For example, once a subset of the original vertices are
constrained to fixed positions in (8), the coordinates of the con-
strained vertices are not unknowns any more. They become part of
the boundary condition, and should be moved to the right hand side
of the equation. Thus, (8) can be further reformulated as follows if
position constraints are taken into account,

∑
j � N � i ��� C � i � w ji 	 xi

� x j
� d ji 
 � αixi

� βi � (11)
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where C 	 i 
 indexes the constrained vertices in vi’s original 1-ring
neighborhood, xi’s are the unknowns, αi

� ∑ j � C � i � w ji, and βi
�

∑ j � C � i � w ji 	 x j
� d ji 
 . As we can see, position constraints have been

accumulated into the constants, αi and βi, in (11) and will be en-
forced when we solve the reformulated equation. Constraints dur-
ing the first pass can be incorporated in a similar way. If constraints
from the two passes share the same subset of original vertices, only
one hierarchy needs to be constructed; otherwise, a distinct hierar-
chy is constructed for each pass.

Once we have constructed the finest grid, which is actually a
graph with all the free vertices, we do not maintain the original
mesh structure during coarsening. In practice, this does not produce
inferior mesh deformation results. Our graph coarsening is based
on maximal δ -independent vertex set. A subset of vertices, Vl

ind , is
δ -independent if for any vl

i � vl
j � V l

ind , el
i j �� E l or � vl

i
� vl

j ��� δ l .
Our graph coarsening simply chooses a maximal δ -independent
vertex set to be the vertex set for the graph at the next coarser level.
Suppose the expected percentage of retained vertices after each
level of coarsening is r. The distance threshold, δl , at each level
is set to the average edge length at that level multiplied by r � 1 � 3.
Such thresholds improve the isotropy of the coarsening steps. The
extraction of a maximal δ -independent set is implemented using a
sweep algorithm. Once a δ -independent vertex set has been found,
they are elevated to the next coarser level and connectivity among
them is set up. There should be an edge between vl � 1

i and vl � 1
j

in this coarser graph if vl
j is within the 2-ring neighborhood of vl

i .
Here vl � 1

i and vl � 1
j are the corresponding vertices of vl

i and vl
j in

the coarser graph, respectively.
Unlike most previous multigrid techniques [Kobbelt et al. 1998;

Ray and Levy 2003; Aksoylu et al. 2005] for mesh processing
which construct a hierarchy using mesh simplification steps (such
as edge contraction) as well as elevating all constrained vertices to
the coarsest level, we completely avoid these steps. Consequently,
we avoid the overhead for maintaining valid meshes and our coars-
ened graphs have fewer vertices. In comparison to the fast MIS
hierarchy proposed in [Aksoylu et al. 2005], our hierarchy adopts
an additional distance threshold and a simplified edge construction
scheme for the coarsened graph. As a result, our graph-based hi-
erarchy can achieve aggressive coarsening with a fast decay rate to
facilitate fast convergence of the multigrid algorithm. Meanwhile,
constructing the hierarchy itself can be made very efficient due to
its simplicity.

5 Our Multigrid Algorithm
We adopt the full multigrid algorithm discussed in Section 1.1 to
solve the equations we adopt in Section 2 for the two passes dur-
ing mesh deformation. During the first pass, we adopt the Laplace
equation in (1) to compute harmonic fields over the mesh surface to
interpolate both rotation and scaling constraints. During the second
pass, we adopt the discrete Poisson equation in (8) to compute new
vertex coordinates. Since the Laplace equation is a special case of
the Poisson equation and the same discrete Laplacian operator in
(8) can be used for discretizing (1), in the following, we will focus
our discussion on the more general equation in (8).

5.1 Solver for the Coarsest Level
At the coarsest level of our graph hierarchy, we obtain an accurate
solution using a direct solver for sparse linear systems. Currently,
we use SuperLU [Demmel et al. 1999] which performs a sparse
LU factorization followed by back substitution. Note that a direct
solver based on the Cholesky factorization [Botsch et al. 2005] can

coarse

fine

iteration

restriction

defect restriction

prolongation

defect prolongation

Figure 4: This figure illustrates the sequence of restriction and pro-
longation operators in a three-level, full multigrid cycle. Beginning
at level 0 with a zero initial solution, the restriction operator is ap-
plied three times to produce a coarse approximation at level 3. Af-
ter this coarse-level system is solved, the results are interpolated to
level 2 with the prolongation operator. A defect equation is estab-
lished at level 2, and then restricted back to level 3. This processes
is repeated at finer and finer levels until level 0 is reached. After
returning to level 0, V-cycles are applied (as necessary) to further
reduce the residual. Prolongation and restriction operators for the
original equations are applied to the dashed steps while operators
for the defect equations are applied to the rest of the steps.

solve the sparse linear system in this paper more efficiently than
SuperLU. However, since we only apply SuperLU at the coars-
est level, it only marginally affects the overall performance. The
coarsest level in a hierarchy typically has between 2000 and 2500
vertices which correspond to three times as many unknowns. Al-
though SuperLU does not scale very well, it can solve this many
unknowns very quickly.

5.2 Smoothing Operator
As mentioned, we directly adopt (7) as the smoothing operator at
each level. This implies that we follow a sequential order to update
the coordinates of all vertices in the same level. When we use (7)
to update the coordinates of vi, some coordinates on the right hand
side of (7) might already have been updated.

5.3 Prolongation/Restriction Operators
Since the full multigrid algorithm needs to restrict both the original
equation and the defect equation to all intermediate levels of the
hierarchy, we derive two distinct pairs of prolongation and restric-
tion operators tailored for each of the equations to improve perfor-
mance. As shown in Fig. 4, operators for the original equation are
applied when there is no initial solution available; and operators for
the defect equation are applied otherwise.

Let us start with the original equation. As we have seen, at the
finest level, (8) becomes (11) once constraints are taken into ac-
count. It turns out that the restricted versions of (11) at coarser
levels of the hierarchy will take the same general form of (11), but
with different weights and constants. This will become clearer later
in this section. Let the coordinates of a vertex, vl

i , at level l of the
hierarchy be denoted as xl

i . If this vertex is elevated to the next
coarser level, we simply increment its superscript. Then (11) can
be rewritten in the new notation as follows,

∑
j � N l � i � wl

ji 	 xl
i � xl

j � dl
ji 
 � α l

i xl
i
� β l

i
� (12)
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At the finest level (l � 1), N1 	 i 
 � N 	 i 
�� C 	 i 
 , α1
i and β1

i are respec-
tively the same as αi and βi in (11).

We derive a distinct prolongation operator for (12) at each vertex.
If a vertex is elevated to level l � 1 during graph coarsening, its
prolongation operator is simply the identity operator. Otherwise,
suppose vertex vl

i is retained at level l. The 1-ring neighbors of vl
i

can be further divided into two non-overlapping subsets which are
indexed by Rl 	 i 
 and Kl 	 i 
 , respectively. Rl 	 i 
 indexes the subset of
neighbors that are elevated to level l � 1 while Kl 	 i 
 indexes those
that are retained at level l. Note that Rl 	 i 
 is not empty according
to the graph coarsening discussed in Section 4. Thus, (12) can be
rearranged as follows,

∑
j � Rl � i � wl

ji 	 xl
i � xl

j � dl
ji 
 � ∑

j � K l � i � wl
ji 	 xl

i � xl
j � dl

ji 
 � α l
i xl

i
� β l

i
�

(13)
A prolongation operator at vl

i should approximate its coordinates
only through a function of those neighbors that have been elevated
to level l � 1. To achieve this goal with minimal “damage”, we
simply remove the edges between vl

i and those neighbors indexed
by Kl 	 i 
 . Such pruning can be done by setting the weights of these
edges to zero. This gives rise to the following prolongation operator
at vl

i for the original equation,

xl
i
� ∑ j � Rl � i � wl

ji 	 xl � 1
j

� dl
ji 
 � β l

i

∑ j � Rl � i � wl
ji
� α l

i

� (14)

Suppose vl
j is one of vl

i ’s elevated neighbors, therefore, j � Rl 	 i 
 .
The original equation at vl

j involves xl
i . If we substitute the right

hand side of (14) into that equation, we can successfully eliminate
xl

i . Similarly, we can eliminate xl
i from all original equations. At an

even larger scale, we can use prolongation operators similar to (14)
to eliminate all vertices that have been retained at level l from all
equations corresponding to those vertices that have been elevated
to level l � 1. The resulting equations only involve the vertices at
level l � 1 of the graph hierarchy, and they become the so-called
restricted original equations at level l � 1. More concretely, by sub-
stituting those prolongation operators at vl

j’s retained 1-ring neigh-
bors into vl

j’s original equation at level l, we obtain the equation for
vl � 1

j in the coarser level,

∑
i � Rl � j � wl

i j � xl  1
j � xl  1

i � dl
i j �!�

∑
i � Kl � j � wl

i j "# xl  1
j � "# ∑k � Rl � i � wl

ki � xl  1
k � dl

ki �$� β l
i

∑k � Rl � i � wl
ki � α l

i

%& � dl
i j

%& �
α l

jxl  1
j ' β l

j ( (15)

where the inner sum iterates over the elevated neighbors of each
vl

i as illustrated in Figure 5. Note that δ -independent coarsening
allows for elevated 1-ring neighbors of an elevated vertex vl

j . In-
terestingly, these new equations at level l � 1 can still be arranged
to follow the general form given in (12). However, the weights
and constants have been updated. The formulations of the updated
weights and constants can be found in the Appendix.

Importantly, variable substitutions do not make the restricted
equations denser. The equation for every vertex at level l � 1 still
involves only the 1-ring neighbors of that vertex. This is because
both the prolongation operator and variable substitutions only in-
volve 1-ring neighborhoods. Therefore, two vertices appearing in
the same resulting equation would be in each other’s 2-ring neigh-
borhood at level l. According to our graph coarsening, such pairs

1

0

5

43

2

8
7

6

Figure 5: In this example, the black vertices will be raised
to level l � 1 while the white vertices are retained at the cur-
rent level l. Since Rl 	 1 
 �*) 0 � 6 � 8 + , the prolongation operator
(14) for vl

1 will involve the terms vl � 1
0 � vl � 1

6 and vl � 1
8 . The re-

striction operator (15) relates vl � 1
0 to the other raised vertices

within its two-ring. In this case, the following 	 j � i � k 
 paths con-
tribute to the sum, ) 	 0 � 1 � 0 
,��	 0 � 2 � 0 
,�-	 0 � 3 � 0 
,�-	 0 � 4 � 0 
$�-	 0 � 5 � 0 
�+ and) 	 0 � 1 � 6 
,�-	 0 � 1 � 8 
,�-	 0 � 2 � 8 
$�-	 0 � 5 � 6 
�+ .
of vertices would be in each other’s 1-ring neighborhood at level
l � 1.

Now let us proceed to the defect equation. To derive the defect
equation of (12), we need to replace every xl

i with xl
i
� ∆xl

i where xl
i

is fixed and ∆xl
i becomes the unknown. Thus, the defect equation

of (12) at vl
i is as follows.

∑
j � N l � i � wl

ji 	 ∆xl
i � ∆xl

j 
 � α l
i ∆xl

i
� ζ l

i � (16)

where ζ l
i
� β l

i
� α l

i xl
i
� ∑ j � N l � i � wl

ji 	 xl
i
� xl

j
� dl

ji 
 . Note that the
defect equation is similar to the original equation in (12) except
that there are no dl

ji’s on the left hand side and the constant on the
right hand side is different.

We derive a separate pair of prolongation and restriction opera-
tors tailored for the defect equation, especially for vertices retained
at level l. For a retained vertex vl

i , we expect the residual solu-
tion, ∆xl

j 	 j � K l 	 i 
�
 , in its neighborhood to be small once a good
initial solution has been obtained. Instead of pruning entire edges,
we would like to keep the initial solution but set the residual coor-
dinates of those neighbors indexed by Kl 	 i 
 to be zero. Thus, the
prolongation operator at vl

i for the defect equation is formulated as

∆xl
i
� ∑ j � Rl � i � wl

ji∆xl � 1
j

� ζ l
i

∑ j � N l � i � wl
ji
� α l

i

� (17)

A corresponding restriction operator similar to (15) can also be ob-
tained.

As shown above, at every level we have a distinct pair of prolon-
gation and restriction operators at every vertex. They are derived
using a weighted graph model and algebraic manipulations of the
equations. During such derivation, they are not restricted to be such
linear operators as the P and R matrices in (10). Intuitively, instead
of producing a smooth interpolation from coarser level vertices, our
prolongation operators actually use original equations, such as (5),
to generate more accurate estimations for a retained vertex from its
elevated 1-ring neighbors. Therefore, they can make the restricted
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equations at different levels more consistent with each other. As a
result, solutions at a coarser level only need to have minimal revi-
sion at a finer level after being interpolated using the prolongation
operators. The weights in the restricted equations at each level are
computed directly on the graph hierarchy instead of using sparse
matrix multiplications. This is because searching for neighbors uti-
lizing graph connectivity can be performed more efficiently on a
graph data structure.

6 Experimental Results
In our implementation of the multigrid solver presented in the previ-
ous sections, we always take zero as the initial guess, adopt the full
multigrid algorithm with V-cycles, and apply two pre-smoothing
and two post-smoothing steps. Our graph coarsening strategy main-
tains a healthy ratio of the number of vertices between adjacent
levels, which is around 5, and the sparsity structures of the linear
systems are similar at different levels. For example, the average
number of nonzero entries per row is respectively 12.4, 10.8, 9.8,
10.7 and 11.0 at the five levels of the hierarchy for the LUCY model.
When the desired relative residual is 1e-5 or lower, performance can
be further improved by 30% if every V-cycle is followed by two it-
erations of preconditioned conjugate gradient.

We have tested our implementation on meshes with increasing
complexity. Table 1 summarizes the performance and scalability of
different solvers applied to the equations described in Section 2.2.
All the meshes, except the last one, reported in Table 1 are em-
bedded in a volume graph. Therefore, the number of free vertices
include both mesh vertices and additional volume graph vertices.
The original surface meshes have respectively 7800, 14050, 21887,
49864, 132736, 262909, and 3609455 vertices. Here we measure
performance using the total time a solver needs to decrease the rela-
tive residual down to a given precision. This is a better performance
metric than the number of cycles or iterations because the computa-
tional cost of each cycle or iteration differs among different solvers.
In every test, our multigrid solver exhibits the best performance
and memory efficiency. Direct factorization methods are much less
scalable than multigrid algorithms in both computational and mem-
ory costs. Table 1 reveals a super-linear relationship in both factor-
ization time and memory cost (the size of the resultant factors) with
increasing mesh complexity. Even TAUCS and CHOLMOD, both
highly efficient sparse Cholesky codes, exceed available memory
in the largest test. In contrast, multilevel algorithms exhibit linear
scaling in both time and memory costs, making them a desired op-
tion for multi-million vertex meshes. Such comparisons indicate
that multilevel solvers are a better choice for mesh editing opera-
tions that result in a new coefficient matrix which otherwise needs
to be factorized using a direct solver.

In applications where the matrix remains constant, factorization
is a one-time cost and only back-substitutions are necessary to solve
new systems. For example, when one manipulates relatively small
regions of interest on a mesh, back-substitutions are fast and di-
rect solvers are clearly the favorable choice. However, are direct
solvers always advantageous here? Unfortunately not because the
cost of back-substitution is proportional to the size of the factors
which tend to be much denser than the original sparse matrix. For
a sufficiently large mesh, solving via multigrid can be faster than
even a single back-substitution. According to Tables 1 and 2, back-
substitution of three coordinates in TAUCS and UMFPACK for the
CAMEL model already exceeds the time required by our multigrid
solver to reach an intermediate approximate solution (relative resid-
ual 1e-3).

Meanwhile, we wish to minimize the cost of constructing the
multigrid hierarchy. As demonstrated in Table 1, our simple coars-
ening strategy can be implemented efficiently. Moreover, numer-
ical accuracy and visual quality are not always consistent, i.e. at

Figure 6: This figure illustrates how MOCAP data can be used to
establish mesh deformation constraints. In the first pass, rotation
constraints are applied to all volume graph vertices within the green
regions, thereby maintaining bone rigidity. Positions for all graph
vertices are then solved in the second pass, using vertices within the
orange regions as constraints.

the same residual, the visual acceptability of the output of different
solvers will vary. As shown in Table 2, our algorithm effectively
distributes errors and rapidly produces approximate solutions ( .
1e-3 relative residual) which may be sufficient for many applica-
tions. In fact, all of the visual results reported in this paper and
the accompanying video were generated at this level of numerical
accuracy.

We have made an effort to include factorization methods that are
both representative of those in common use (UMFPACK) and those
with the best performance (CHOLMOD,TAUCS). In the latter case,
we do not claim that our choices are optimal. Indeed, for a partic-
ular linear system, other solvers may surpass our selections in fac-
torization time, memory cost, or both. Nevertheless, more compre-
hensive comparisons [Gould et al. 2005] suggest that CHOLMOD
and TAUCS are among the best freely available sparse Cholesky
codes. Likewise, Trilinos ML, developed by Sandia National Lab-
oratories, is a competitive representative for algebraic multilevel
(AMG) methods. It is a fully optimized code with a very effective
multilevel preconditioner.

Lastly, we note that the number of free vertices cannot be our
only metric as the particular mesh structure may affect solver per-
formance. This point is evidenced by the relatively high figures
for all three factorization methods on the CAMEL model in Table 1.
The density of the underlying graph must also be considered. For
example, most volume graph vertices have valence / 14, while a
surface mesh has few, if any, such vertices.

7 Applications
Mesh deformation has a number of applications. We briefly discuss
two of them here. First, intuitive mesh deformation is a powerful
modeling tool. We have implemented a simple user interface for
this purpose. During an interactive session, the user only needs
to manipulate one handle at a time and the rotation field is ob-
tained using our multigrid solver on the fly every time the handle is
changed. To demonstrate that our fast multigrid algorithm can be
integrated into a general mesh editing environment, we have imple-
mented a few simple mesh editing tools, such as cutting, merging,
local remeshing, surface curve sketching and insertion, and tested
interleaving deformation with these operations. As an example, we
created a composite model (Figure 8) from four individual meshes
each of which is deformed multiple times. Between successive de-
formation operations, local remeshing was sometimes performed to
avoid triangles with extreme aspect ratios. The performance of our
multigrid solver made it possible to quickly construct the hierarchy
and obtain a solution every time we have performed remeshing or
merging. In previous work [Yu et al. 2004; Zhou et al. 2005], large
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SPRING DINO CAMEL FELINE FEMALE LUCY DRAGON
#Free Vertices 24,188 43,494 99,588 181,292 415,619 822,204 3,447,861
UMFPACK Factor 1.63 sec 2.72 sec 20.59 sec 37.29 sec 113.11 sec n/a n/a

Substitute 0.16 sec 0.26 sec 1.04 sec 1.95 sec 5.00 sec n/a n/a
Memory 52 MB 70 MB 398 MB 710 MB 1,838 MB � 2 GB � 2 GB

CHOLMOD Factor 0.43 sec 0.83 sec 5.48 sec 12.20 sec 31.9 sec 69.32 sec n/a
Substitute 0.03 sec 0.05 sec 0.15 sec 0.30 sec 0.78 sec 1.36 sec n/a

Memory 26 MB 35 MB 139 MB 292 MB 695 MB 1,311 MB � 2 GB
TAUCS Factor 0.60 sec 1.04 sec 4.70 sec 10.46 sec 25.90 sec 57.65 sec n/a

Substitute 0.09 sec 0.16 sec 0.57 sec 1.197 sec 2.63 sec 5.35 sec n/a
Memory 25 MB 41 MB 139 MB 277 MB 643 MB 1,190 MB � 2 GB

Trilinos ML Setup 0.15 sec 0.34 sec 0.57 sec 1.06 sec 2.63 sec 4.87 sec 12.60 sec
Solve 0.57 sec 2.19 sec 5.37 sec 9.15 sec 24.00 sec 47.22 sec 148.80 sec

Memory 15 MB 21 MB 52 MB 87 MB 200 MB 388 MB 1,080 MB
Our Multigrid Setup 0.06 sec 0.16 sec 0.13 sec 0.24 sec 0.58 sec 0.94 sec 2.64 sec

Solve 0.19 sec 0.39 sec 0.89 sec 1.99 sec 4.19 sec 8.47 sec 39.70 sec
#Levels / #V-cycles 3 / 3 4 / 4 4 / 4 5 / 6 5 / 6 6 / 7 9 / 8

Memory 10 MB 16 MB 31 MB 56 MB 119 MB 232 MB 740 MB

Table 1: UMFPACK [Davis 2005] produces LU factorizations for general sparse matrices and is faster than SuperLU. CHOLMOD [Davis
2006] and TAUCS [Toledo et al. 2003] factor sparse Cholesky matrices and are among the fastest direct solvers for this problem. Trilinos
ML [Heroux and Willenbring 2003] denotes the multilevel preconditioner ML used via the Trilinos AztecOO interface. Factorization and
back-substitution times are reported for the direct solvers while timing for hierarchy construction and iteration to 1e-5 relative residual are
recorded for the multilevel solvers. Peak memory consumption is recorded for Trilinos ML and our solver. For UMFPACK, CHOLMOD,
and TAUCS, the reported memory cost is for the factors alone. While the system is solved for each of the x,y, and z coordinates, only one
factorization and three back-substitutions are required of the direct solvers. Likewise, the multilevel hierarchy is created once and reused.
Data has been excluded in tests where memory use exceeded hardware limits. Timing data was collected on a pair of comparably equipped
high-end uniprocessors ( 0 Pentium IV 3.8GHz) with 2GB physical memory. In every test, our solver exhibits the best performance and
memory efficiency.

SPRING DINO CAMEL FELINE FEMALE LUCY DRAGON
PCG Residual . 1e-3 0.94 sec 2.20 sec 10.31 sec 19.52 sec 88.75 sec 167.50 sec n/a
Trilinos Residual . 1e-3 0.36 sec 0.90 sec 3.36 sec 5.94 sec 14.22 sec 27.63 sec 85.86 sec
Our Multigrid Residual . 1e-3 0.13 sec 0.23 sec 0.41 sec 0.66 sec 1.45 sec 2.41 sec 9.25 sec

Table 2: Timing data for three iterative solvers to reach 1e-3 relative residual. PCG denotes preconditioned conjugate gradient with incomplete
Cholesky decomposition. PCG did not converge to this precision within a reasonable amount of time on the largest mesh. Our multigrid solver
can reach such an intermediate level of precision almost one order of magnitude faster than Trilinos. It is also competitive with the back-
substitution times of direct solvers on large meshes (Table 1). The ability to quickly generate good approximate solutions is especially
important when interactivity is demanded.

meshes were first simplified before they were deformed. Such a
scheme would not be appropriate for extremely large deformations.
For instance, the DRAGON model in Figure 8 has been stretched
more than twice to form the spiral shape around the LUCY model.
Without applying mesh subdivision to increase the number of ver-
tices, it would not have been possible to perform such a large-scale
deformation.

Second, with a powerful mesh deformation technique, it has be-
come practical to create interesting mesh animations from only one
single base mesh. We have conducted experiments to use our solver
to animate a mesh with a given MOCAP animation (Figures 1 & 7).
We begin by constructing a volume graph for the base mesh in its
original pose. We then select volume graph vertices within a cylin-
drical region along each bone of the skeleton used for the MOCAP
data. Using the data from the animation, all vertices within each
of these regions follow a single rotation constraint during the first
pass. Likewise, volume graph vertices contained within a spherical
region centered at each joint provide position constraints during the
second pass. These regions are illustrated in Figure 6. Although
the rotation constraints are changing from frame to frame, they are
always applied to the same subset of vertices throughout an entire
animation. Therefore, the scalar harmonic fields for interpolating
the rotation constraints need to be computed only once in a pre-
processing step. Most often, the initial pose of the MOCAP data

differs significantly from the pose of the base mesh. An initial de-
formation that transforms the base mesh from its original pose to
the initial pose of the MOCAP data should be performed.

8 Conclusions
We have developed an efficient multigrid solver suited for fast mesh
deformation. Our solver maintains a significant advantage over
other multigrid techniques in both hierarchy construction and solu-
tion time. It can also trade off accuracy for speed to achieve greater
interactivity. These properties are desired in situations where the
existence of other operations preclude the use of extensive precom-
putation as such results will be frequently invalidated. We have
applied our solver to static mesh editing as well as mesh animation.
Because of the unstructured nature of the graphs we use, a GPU
implementation of the smoothing operator did not prove any faster
than on the CPU. Nevertheless, multigrid methods are paralleliz-
able. With the advent of multicore CPUs, our solver can be made
multiple times faster.

Although our multigrid solver can achieve a relative residual of
1e-7 on all examples given in this paper, we do not currently have
a convergence proof. However, our solver has a great potential for
further optimization. In fact, its performance has been much im-
proved by interleaving V-cycles and preconditioned conjugate gra-
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Figure 7: This figure shows the initial ARMADILLO mesh followed by a few frames from the ballet sequence. The entire volume graph has
525K free vertices and the running time is 2.88 seconds/frame. Combining the 20 rotation constraints at each vertex requires a non-negligible
portion of the per frame time. These results were generated by our solver at an accuracy of . 1e-3 relative residual.

dient. Our solver can be potentially extended to other mesh-related
problems, including surface parameterization, fairing and remesh-
ing. One limitation is that the topological Laplacian with symmet-
ric weights adopted in this paper prevents a straightforward exten-
sion to problems where the Laplacian has nonsymmetric weights.
Nonetheless, our weighted graph based methodology will still be
useful in deriving effective prolongation and restriction operators
for other linear systems defined on unstructured meshes.
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A Relationships between Weights and
Constants at Adjacent Levels

The restricted original equation of vl � 1
j at level l � 1 is formulated

as

∑
k � Nl  1 � j � wl � 1

k j 	 xl � 1
j

� xl � 1
k

� dl � 1
k j 
 � α l � 1

j xl � 1
j

� β l � 1
j

� (18)

Suppose k � Nl � 1 	 j 
 and vl � 1
k is a 1-ring neighbor of vl � 1

j at level
l � 1. We also assume that �Kl 	 j 
21 K l 	 k 
� � m, which means that
there are m indirect paths between vl

j and vl
k at level l (Fig. 5 de-

fines such paths). Then, we can obtain the following relationships
between weights and constants at the two levels:

wl  1
k j ' Ψ � k ( j � wl

k j � ∑
i � Kl � j � 3 Kl � k � wl

kiwl
i j

Zl
i
( (19)

dl  1
k j ' 1

wl  1
k j

"# Ψ � k ( j � wl
k jdl

k j � ∑
i � Kl � j � 3 Kl � k � wl

kiwl
i j � dl

ki � dl
i j �

Zl
i

%&
(20)

α l  1
j ' α l

j � ∑
i � Kl � j � wl

i jα l
i

Zl
i
( (21)

β l  1
j ' β l

j � ∑
i � Kl � j � wl

i j 4 β l
i � α l

i dl
i j 5

Zl
i

( (22)

where Zl
i
� ∑s � Rl � i � wl

si
� α l

i , and Ψ 	 k � j 
 is one when vl
k happens

to be a 1-ring neighbor of vl
j and zero otherwise.
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