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We present a new and much simpler formulation for the problem
of reconstructing an implicit surface from an oriented point cloud
acquired by a range scanner or a stereo vision system. Data vectors
are first extended to a continuous vector field on a bounding vol-
ume, which is then integrated in the least squares sense yielding an
implicit function whose zero level set approximates the data points.
Function discretizations associated with regular grids automatically
produce Iso-surface polygon meshes. Extrapolating missing and
noisy data, integrating multiple scans, developing data structures
and algorithms optimized for fast visualization and geometry pro-
cessing, are challenging problems and active areas of research ad-
dressed by this work. We plan to use multi-resolution data struc-
tures to integrate streams of point clouds in real time.

Implicit representations have the advantage of dealing with arbi-
trary topology. [Ohtake et al. 2003] introduces an adaptive hierar-
chal implicit representation composed of local quadric patches and
weights associated with nodes in a oct-tree. Given that for render-
ing or post-processing we extract an isosurface over a regular grid
(e.g., via Marching Cubes), it is worth exploring reconstruction al-
gorithms that use implicit functions defined as a regular scalar field.

In the area of geometry processing, the notion of decoupling the
filtering of normal fields and geometry has emerged as a power-
ful method for denoising [Tasdizen et al. 2003]. We argue that a
similar decoupling for the surface reconstruction problem is worth
exploring. This preliminary work presents a volumetric method for
surface reconstruction that directly incorporates both point and nor-
mal information. Instead of imposing constraints and regularization
directly on the values of the potential (scalar) field, we impose con-
straints and regularization on the gradient field. We implement this
using a combination of least-squares fitting and solving a Poisson
problem over a uniform grid.

The general problem of implicit surface reconstruction is as fol-
lows. Given an oriented point cloud i.e.,m points and their normals,
D = {(pi,ni)} sampled from a surfaceM, compute an implicit sur-
faceM′ = {p| f (p) = 0} where f : R

3 → R and

∀(pi,ni) ∈ D ∇ f (pi) = ni and f (pi) = 0. (1)

The least squares solutionf using interpolatory constraints (1) will
not, in general, produce satisfactory results without some regular-
ization.

We represent the scalar fieldf as a linear combination of ba-
sis functions(e.g.,trilinear) defined on a uniform Cartesian grid,
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f (p) = ∑α fα φα (p). Let pα denote position of a grid nodeα . We
minimize:

E = ∑‖v(pi)−ni‖
2 +λ ∑

(α,β )

‖v(pα )− v(pβ )‖2 (2)

wherev : R
3 → R

3 is a vector field,(α ,β ) are edges of the lattice.
The second term forces the field to be smoother asλ increases.
There are two approaches to solve (2). The first is to directly solve
for the implicit function f set v = ∇ f . After solving the sparse
least squares problem forf , we solve the 1D least squares problem
for the isolevels by minimizing∑( f (pi)− s)2, the solutions is the
mean of f evaluated for allpi ∈ D . The second approach is to (i)
construct an extension ¯n to R

3 of the sampled normal field ofM, (ii)
let v = n̄ and solve (2), and (iii) compute the potential functionf
that minimizes

∫
R3 ‖∇ f − n̄‖2. The solutionf is the solution of the

Poisson problem∆ f = ∇ · n̄. We represent ¯n using basis functions
over a grid , asf above. We have experimented with the following
: wavefront propagation, diffusion, and least squares fitting to the
data and penalizing the curl of ¯n (ideally n̄ is integrable). We use
conjugate gradient descent to solve the Poisson problem.

For both of the reconstructions shown we used a 1103 grid with
λ = 0.5 and v = ∇ f in (2). The angel range image with 24K
oriented points (Top Middle) took 12m17s, the sparse linear least
squares solver (LSQR) converged in 246 iterations. The extracted
mesh has 50K faces. Notice that sparse areas of the range image are
filled in smoothly. The second set of images shows Stanford bunny
with 35K oriented points, (Top Right) and reconstructed mesh with
40K faces. This took 8m04s. Notice that holes in the feet are filled.
Larger point sets (e.g., Ram’s head, 678K) at the same resolution
grid required 11–15 minutes. Reported times don’t include execu-
tion of marching cubes over the volume. The reconstructions were
performed on a PC with 2.8Ghz P4 and 2GB ram.

In the future, we plan to varyλ in (2) based on sampling den-
sity. We will optimize sparse linear solver using multi-grid meth-
ods, experiment with decimation techniques, and develop more effi-
cient storage and manipulation methods for the volumetric datasets.
Then we’ll apply the described methods to the problem of integrat-
ing multiple oriented point datasets on-line for partial surface re-
construction.
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