
Geometric Surface Processing via Normal Maps

TOLGA TASDIZEN and ROSS WHITAKER
University of Utah
and
PAUL BURCHARD and STANLEY OSHER
UCLA

We propose that the generalization of signal and image processing to surfaces entails filtering the normals of the surface, rather
than filtering the positions of points on a mesh. Using a variational strategy, penalty functions on the surface geometry can be
formulated as penalty functions on the surface normals, which are computed using geometry-based shape metrics and minimized
using fourth-order gradient descent partial differential equations (PDEs). In this paper, we introduce a two-step approach to
implementing geometric processing tools for surfaces: (i) operating on the normal map of a surface, and (ii) manipulating the
surface to fit the processed normals. Iterating this two-step process, we efficiently can implement geometric fourth-order flows by
solving a set of coupled second-order PDEs. The computational approach uses level set surface models; therefore, the processing
does not depend on any underlying parameterization. This paper will demonstrate that the proposed strategy provides for a
wide range of surface processing operations, including edge-preserving smoothing and high-boost filtering. Furthermore, the
generality of the implementation makes it appropriate for very complex surface models, for example, those constructed directly
from measured data.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Curve, surface,
solid and object representations

General Terms: Algorithms, Theory
Additional Key Words and Phrases: Surface fairing, geometric surface processing, anisotropic diffusion, high-boost filtering, level
sets

1. INTRODUCTION

The fundamental principles of signal processing give rise to a wide range of useful tools for manipulating
and transforming signals and images. The generalization of these principles to the processing of three-
dimensional (3D) surfaces has become an important problem in computer graphics, visualization, and
vision. For instance, 3D range-sensing technologies produce high-resolution descriptions of objects, but
they often suffer from noise. Medical imaging modalities such as magnetic resonance imaging (MRI) and
computed tomography (CT) scans produce large volumes of scalar or tensor measurements, but surfaces
of interest must be extracted through some segmentation process or fitted directly to the measurements.
These surfaces typically contain topological artifacts such as holes and unconnected pieces.

This work is supported by the Office of Naval Research under grants #N00014-01-10033 and N00014-03-1-0071 and by the
National Science Foundation under grants #CCR-009-2065 and DMS-0074735.
Authors’ addresses: T. Tasdizen and R. Whitaker, School of Computing, University of Utah, 50 S. Central Campus Drive, Salt
Lake City, UT 84112-9205; email: tolga@sci.utah.edu,whitaker@cs.utah.edu; P. Burchard and S. Osher, UCLA Mathematics
Department, Box 951555, Los Angeles, CA 90095-1555; email: burchard@pobox.com,sjo@math.ucla.edu.
Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted without fee provided
that the copies are not made or distributed for profit or commercial advantage, the copyright notice, the title of the publication,
and its date appear, and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on
servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2003 ACM 0730-0301/03/1000-1012 $5.00

ACM Transactions on Graphics, Vol. 22, No. 4, October 2003, Pages 1012–1033.

Geometric Surface Processing via Normal Maps • 1013

The goal of this paper is to introduce a new surface processing strategy that is flexible, general,
and geometric. By f lexible we mean that the framework should provide a basis for a broad variety of
capabilities, including surface processing tools that resemble the state-of-the-art in image processing
algorithms. The proposed methods should apply to a general class of surfaces. Users should be able to
process complex surfaces of arbitrary and changing topology, and obtain meaningful results with very
little a priori knowledge about the shapes. By geometric we mean that output of surface processing
algorithms should depend on surface shape and resolution, but should be independent of arbitrary
decisions about the representation or parameterization.

The work presented in this paper is based on the proposition that the natural generalization of image
processing to surfaces is via the surface normal vectors. Thus, a smooth surface is one that has smoothly
varying normals. Penalty functions on the surface normals typically give rise to fourth-order partial
differential equations (PDEs). Our strategy is to use a two-step approach: (i) operating on the normal
map of a surface, and (ii) manipulating the surface to fit the processed normals. Iterating this two-step
process, we can efficiently implement fourth-order flows by solving a set of coupled second-order PDEs.
In this light, the differences between surface processing and image processing are threefold:

(1) Normals are vector valued and constrained to be unit length; the processing techniques must
accommodate this.

(2) Normals live on a manifold (the surface) and cannot be processed using a flat metric, as is typically
done with images.

(3) Normals are coupled with the surface shape; thus the normals should drag the surface along as
their values are modified during processing.

This paper presents an implementation that represents surfaces as the level sets of volumes and
computes the processing of the normals and the deformation of the surfaces as solutions to a set of
PDEs. In some applications, such as animation, models are manually generated by a designer, and the
parameterization is not arbitrary but is an important aspect of the geometric model. In these cases,
mesh-based processing methods offer a powerful set of tools, such as hierarchical editing [Guskov et al.
1999], which are not yet possible with the proposed representation. However, in other applications, such
as 3D segmentation and surface reconstruction [Malladi et al. 1995; Whitaker 1998], the processing is
data driven, and surfaces can deform quite far from their initial shapes and change topology; hence, user
intervention is not practical. Furthermore, when considering processes other than isotropic smoothing,
such as nonlinear smoothing, the creation or sharpening of small features can exhibit noticeable effects
of the mesh topology—the creation of new features requires changes in the mesh parameterization.
In contrast, the underlying grid for level sets is independent of the surface shape; therefore, the only
limitation for the creation of new features is the resolution of the grid. Hence, the use of a level set
formulation enables us to achieve a “black box” behavior and build surface processing techniques that
are especially useful when processing measured data.

We have introduced an anisotropic diffusion for surfaces based on processing the normal map in
Tasdizen et al. [2002]. This paper discusses the mathematical foundations of the normal map processing
strategy in detail and provides details of the numerical implementation as well as introducing high-
boost filtering of normals as a new surface processing tool. The specific contributions are as follows:

(1) a novel approach based on surface normals for geometric processing of surfaces;

(2) a numerical method for solving geometric fourth-order level set equations for surfaces in two simpler
steps, thereby avoiding the explicit computation of unstable high-order derivatives; and

(3) examples of three geometric surface processing algorithms with applications to complex data sets.
ACM Transactions on Graphics, Vol. 22, No. 4, October 2003.

1014 • T. Tasdizen et al.

The rest of this paper is organized as follows. We will discuss related surface processing work in
Section 2. In Section 3, we formulate our splitting approach for solving geometric fourth-order level
set equations for surfaces. In the limit, this approach is equivalent to solving the full, fourth-order
flow (Appendix A), but it generalizes to a wide range of processes and makes no assumptions about
the shapes of the solutions. In Section 4, we show results for isotropic and anisotropic diffusion. To
demonstrate the flexibility of the proposed framework, we will also show results of high-boost surface
filtering implemented with our framework in Section 5. The numerical implementations of our approach
is covered in Appendix B. Conclusions and directions for future work will be discussed in Section 6.

2. RELATED WORK

The majority of surface processing research has been in the context of surface fairing with the motivation
of smoothing surfaces to create aesthetically pleasing models. Surface fairing can be accomplished
either by minimizing an energy function that favors smooth surfaces [Moreton and Séquin 1992; Welch
and Witkin 1992, 1994; Halstead et al. 1993] or by applying smoothing filters [Taubin 1995; Desbrun
et al. 1999; Guskov et al. 1999]. Energy minimization is a global method whereas filtering uses local
neighborhoods. In the rest of this section, we review related work in these two categories. An approach
that falls between these two extremes is based on Wiener filtering which utilizes arbitrary local spectral
properties of the mesh [Alexa 2002].

Energy functions can depend on the geometry of the surface or the parameterization. Geometric func-
tions make use of invariants such as principal curvatures, which are parameterization-independent,
intrinsic properties of the surface. Therefore, geometric approaches produce results that are not af-
fected by arbitrary decisions about the parameterization; however, geometric invariants are nonlinear
functions of surface derivatives that are computationally expensive to evaluate. Parameterization-
dependent functions are linear substitutes for geometric invariants.

One way to smooth a surface is to incrementally reduce its surface area. This can be accomplished
by mean curvature flow (MCF), a second-order PDE,

∂x
∂t

= −HN = −
(

κ1 + κ2

2

)
N, (1)

where κ1, κ2 are the principal curvatures and H is the mean curvature at a point x on the surface,
N is the surface normal, and the parameter t tracks the deforming surface shape. For parameterized
surfaces, the membrane energy function, a linear substitute for surface area, is∫

�

X 2
u + X 2

v du dv, (2)

where X (u, v) and � are surface parameterization and its domain, respectively. The variational deriva-
tive of (2) is the Laplacian

�X = X uu + X vv, (3)

which is a linear substitute for mean curvature; however, they are equivalent only if the parame-
terization is orthonormal everywhere. These methods generally produce unsatisfactory results due to
inherent limitations such as inability to preserve features, a systematic shrinking, and the introduction
of high-curvature singularities.

A second-order energy function is the integral of total curvature over the surface S∫
S

κ2
1 + κ2

2 dS, (4)

ACM Transactions on Graphics, Vol. 22, No. 4, October 2003.

Geometric Surface Processing via Normal Maps • 1015

which has been shown to deform surfaces into spheres when minimized [Polden 1997]. We will refer
to Equation (4) as the total curvature penalty, which should not be confused with the local quantity
total curvature. The total curvature penalty is a geometric (invariant) property of the surface that
can be minimized by a fourth-order PDE which is very difficult to solve. The mesh fairing approach
of Welch and Witkin [1994], which minimizes Equation (4), fits local polynomial basis functions to
local neighborhoods for the computation of total curvature. These polynomial basis functions range
from full quadratic polynomials to constrained quadratics and planar approximations. Depending on
the complexity of the local neighborhood, the algorithm must choose, at each location, which basis to
employ. Ambiguities result at locations where multiple bases provide equally good representations.

If we penalize the parameterization (i.e., nongeometric), Equation (4) becomes the thin plate energy
function ∫

�

X 2
uu + 2X 2

uv + X 2
vv du dv, (5)

where X and � are as defined for Equation (2). The variational derivative of Equation (5) is the linear
biharmonic operator

�2 X = X uuuu + 2X uuvv + X vvvv, (6)

which is a fourth-order operator used for surface fairing [Welch and Witkin 1992].
Moreton and Séquin [1992] propose a geometric energy function that penalizes the variation of princi-

ple curvatures. This function has a sixth-order variational derivative which requires very large compu-
tation times. The analysis and implementation of general energy functions above second order remains
an open problem, which is beyond the scope of this paper. Evidence in this paper and elsewhere [Desbrun
et al. 1999; Schneider and Kobbelt 2000] suggests that fourth-order geometric flows form a sufficient
foundation for a general, geometric surface processing system.

G. Taubin pioneered the linear-filter-based approaches to surface fairing. He observed that simple
Gaussian filtering associated with the membrane energy causes shrinkage [Taubin 1995]. He eliminated
this problem by designing a low-pass filter using a weighted average of the Laplacian Equation (3) and
the biharmonic operator Equation (6). The weights must be fine-tuned to obtain the nonshrinking
property. Analyzed in the frequency domain, this low-pass filter can be seen as a Gaussian smoothing
shrinking step followed by an unshrinking step. Taubin et al. [1996] showed that any polynomial
transfer function in the frequency domain can be implemented with this method. A related approach
in which surfaces are smoothed by simultaneously solving the membrane Equation (2) and thin-plate
Equation (5) energy functions was proposed in Kobbelt et al. [1998]. Desbrun et al. [1999] used implicit
integration to build a computationally efficient method for mesh fairing. Guskov et al. [1999] defined
down- and up-sampling tools and smoothing filters for irregular meshes to build a multiresolution mesh
processing framework. Their work was based on a generalized low-pass filter which uses a nonuniform
relaxation operator that minimizes a locally weighted quadratic energy of second-order differences on
the mesh.

The techniques proposed in this paper are also related to that of Chopp and Sethian [1999], who
derived the intrinsic Laplacian of curvature for an implicit curve, and solved the resulting fourth-
order nonlinear PDE. However, their method does not generalize to implicit surfaces. Moreover, they
argued that the numerical methods used to solve second-order flows are not practical because they
lack long-term stability. They proposed several new numerical schemes, but none have been found
to be completely satisfactory due to their slow computation and inability to handle singularities. As
a generalization of this PDE for surfaces, Schneider and Kobbelt [2000] proposed using the intrinsic
Laplacian of mean curvature, �B H, for meshes, where �B is the Laplace-Beltrami operator, that is,
the Laplacian for parameterized surfaces. However, that approach works only for meshes, and relies on

ACM Transactions on Graphics, Vol. 22, No. 4, October 2003.

1016 • T. Tasdizen et al.

Fig. 1. Second- vs. fourth-order surface smoothing. From left to right: Original model, mean curvature flow, and isotropic fourth-
order surface flow.

analytic properties of the steady-state solutions, �B H = 0, by fitting surface primitives that have those
properties. Thus, the formalism does not generalize well to applications, such as surface reconstruction,
where the solution is a combination of measured data and a fourth-order smoothing term. Also, it does
not apply to other types of smoothing processes, such as anisotropic diffusion that minimizes nonlinear
feature-preserving penalties. We solve a more general class of surface flows with a variational basis in
an effective, stable splitting method.

An example of a splitting strategy can be found in Ballester et al. [2001], where the authors penalized
the smoothness of a vector field while simultaneously forcing the gradient directions of a gray scale
image to closely match the vector field. The penalty function on the normal field is proportional to
the divergence of the normal vectors. It forms a high-order interpolation function, which is shown
to be useful for image inpainting—recovering missing patches of data in 2D images. The strategy of
simultaneously penalizing the divergence of a normal field and the mismatch of this field with the
image gradient is closely related to the total curvature penalty function used in this paper. However,
our formulation emphasizes the processing of normals on an arbitrary surface manifold (rather than
the flat geometry of an image), with an explicit relationship to fourth-order surface flows. Furthermore,
this paper establishes new directions for surface flows— toward edge-preserving surface smoothing and
feature enhancement. Our proposed PDE splitting approach is related to the methods in Schneider and
Kobbelt [2000], which we discuss in detail in Section 3. Taubin [2001] proposed a mesh fairing strategy
that is based on fitting a mesh to separately processed normals.

Our splitting method requires diffusing unit-length vectors on a nonflat manifold. Perona [1998]
proposed a method for diffusing orientation-like quantities on flat manifolds. This method solves the
problem of diffusing 2D unit vectors as a 1D problem of angle diffusion; however, it is not rotationally
invariant and it does not generalize to the diffusion of unit vectors in higher dimensions. Several authors
have used harmonic maps theory to solve the diffusion of unit vectors defined on higher-dimensional
nonflat manifolds, for example surfaces [Bertalmio et al. 2001; Tang et al. 2000]. Hence, their methods
are closely related to some of the problems we solve in this, but they do not provide a solution to the
coupling between surface shape and the unit vectors because their goal is not surface processing.

3. MINIMIZING TOTAL CURVATURE

One of the underlying strategies of our approach is to use geometric surface processing, where the output
of the process depends only on the shape of the input surface, and does not contain artifacts from the
underlying parameterization. The motivation for this strategy is discussed in detail in Schneider and
Kobbelt [2001], where the influence of the parameterization on surface fairing results is clearly shown,
and higher-order nonlinear geometric flows are proposed as the solution.

As an illustration of the importance of higher-order geometric processing, consider the results in
Figure 1, which demonstrates the differences between processing surfaces with mean curvature flow
ACM Transactions on Graphics, Vol. 22, No. 4, October 2003.

Geometric Surface Processing via Normal Maps • 1017

Fig. 2. Shown here in 2D, the process begins with a shape and constructs a normal map from the distance transform (left),
modifies the normal map according to a PDE derived from a penalty function (center), and refits the shape to the normal map
(right).

(MCF) and the isotropic fourth-order PDE that minimizes the total curvature penalty Equation (4).
The amounts of smoothing for both processes in this example were chosen to be qualitatively similar,
and yet important differences can be observed on the smaller features of this model. MCF has shortened
the horns of the original model, and yet they remain sharp—not a desirable behavior for a “smoothing”
process. This behavior for MCF is well documented as a pinching off of cylindrical objects and is expected
from the variational point of view: MCF minimizes surface area and therefore will quickly eliminate
smaller parts of a model. Sapiro [2001] discussed volume preserving forms of second-order flows, but
these processes compensate by enlarging the object as a whole, which exhibits, qualitatively, the same
behavior on small features. The isotropic fourth-order PDE, on the other hand, preserves the structure
of these features much better while smoothing them, as can be seen in Figure 1. Note that all of the
surfaces in this paper are represented and processed volumetrically. To display the results, we render
a mesh obtained with the Marching Cubes algorithm [Lorenson and Cline 1987].

We propose a two-step solution based on letting the surface shape to lag the normals as they are
filtered and then refitting the surface to the normals by a separate process. For general fourth-order
surface flows such as isotropic and anisotropic diffusion, both of these steps involve solving second-order
PDEs. The first second-order PDE is used for minimizing a penalty function on the normals. The other
second-order PDE minimizes the discrepancy between the modified normals and the surface; in other
words, it refits the surface to the normals. Figure 2 shows this three-step process graphically in 2D—
shapes give rise to normal maps, which, when filtered give rise to new normal maps, which finally give
rise to new shapes. The rest of this section is organized as follows. Level set methods are introduced in
Section 3.1. We formulate total curvature as a function of the normal map and derive gradient descent
minimizations for general functions of total curvature in Section 3.2; this gives rise to the first PDE
mentioned above. The surface refitting process is discussed in Section 3.3; this gives rise to the other
second-order PDE.

3.1 Level Set Methods

In this section, we briefly introduce the notation of level set methods. We can describe the deformation
of a regular surface using the 3D velocity of each of its constituent points, that is, ∂x(t)/∂t for all x ∈ S.
We represent the deforming surfaces implicitly as a function of the parameter t:

S = {x(t) | φ(x(t), t) = 0}, (7)

where φ is the embedding function. Surfaces defined in this way divide a volume into two parts: inside
(φ > 0) and outside (φ < 0). It is common to choose φ to be the signed distance transform of S, or
an approximation thereof. The surface remains a level set of φ over time, and thus taking the total

ACM Transactions on Graphics, Vol. 22, No. 4, October 2003.

1018 • T. Tasdizen et al.

derivative with respect to time (using the chain rule) gives

∂φ/∂t = −∇φ · ∂x/∂t. (8)

Because ∇φ is proportional to the surface normal, ∂x/∂t affects φ only in the direction of the normal—
motion in any other direction is merely a change in the parameterization. This family of PDEs and
the upwind scheme for solving them on a discrete grid is the methods of level sets [Osher and Sethian
1988]. For instance, using this framework and ∂x/∂t from Equation (1), the PDE on φ that describes
the motion of a surface by mean curvature is

∂φ/∂t = −∇φ · HN = −‖∇φ‖H. (9)

Surface integrals of penalty functions have corresponding volume integrals which quantify the asso-
ciated properties for the embedded surfaces of φ. A general surface penalty function based on the total
curvature penalty Equation (4) can be written for level set surfaces as

G φ =
∫

U
G

(
κ2

1 + κ2
2

)‖∇φ‖ dx, (10)

where U ⊂ �3 is the volumetric domain of φ. When G is the identity function, Equation (10) reduces
to the total curvature penalty. The rest of this paper discusses methods for minimizing this penalty
function in a stable and computationally efficient manner.

3.2 Total Curvature of Normal Maps

In this section, we formulate total curvature of a surface from its normal map. Then, we derive the
variational PDEs on the normal map that minimize functions of total curvature. When using implicit
representations, one must account for the fact that derivatives of functions defined on the surface are
computed by projecting their 3D derivatives onto the surface tangent plane. The 3×3 projection matrix
for the implicit surface normal is

P = ∇φ ⊗ ∇φ/‖∇φ‖2, (11)

where ⊗ is the tensor product defined as a ⊗ a = aaT . Consequently, the projection matrix onto the
surface tangent plane is I − P, where I is the identity matrix.

The local geometry of a surface can be described with the first and second fundamental forms, (I)
and (II), respectively [DoCarmo 1976]. The eigenvalues of the matrix (I)−1(II), which we refer to as
the shape matrix, are the principal curvatures of the surface independent of the parameterization. For
an implicit surface, the shape matrix is obtained by differentiating the normal map and projecting the
derivative onto the surface tangent plane. We define the differential of the normal map

∇N = (∇N(1) ∇N(2) ∇N(3)
) T , (12)

as the matrix whose rows are the gradient vectors of the components of N which we have denoted by
N(i) for i = 1, 2, and 3. Then the shape matrix is the projection ∇N(I − P), which measures the intrinsic
change in the normals by mapping the differentials of N on to the tangent planes of φ. The Euclidean
norm of the shape matrix is the sum of squared principal curvatures, that is, total curvature,

κ2 = κ2
1 + κ2

2 = ‖(∇N)(I − P)‖2. (13)

We can use Equation (13) to define an energy of the normal map that is analogous to the general
energy function of φ defined in Equation (10)

G N =
∫

U
G(‖(∇N)(I − P)‖2) dx. (14)

ACM Transactions on Graphics, Vol. 22, No. 4, October 2003.

Geometric Surface Processing via Normal Maps • 1019

The first variation of this energy with respect to the normals is a second-order PDE. It is crucial to
observe that, even though the projection operator P is a function of φ, it is independent of N because
we fix φ as we process N. Hence, P does not increase the order of the first variation of Equation (14).
In contrast, taking the first variation of Equation (10) with respect to φ directly would have yielded a
much harder to solve fourth-order PDE on φ.

As we process the normal map to minimize Equation (14), letting φ lag, we must ensure that the
normal vectors maintain the unit length constraint. Solutions to constrained optimization problems
defined on nonflat manifolds are discussed in Bertalmio et al. [2001] and Tang et al. [2000]. Using the
method of Lagrange multipliers, we obtained the first variation of the constrained energy as

dG

dN
= −(I − N ⊗ N) ∇ · [g (‖(∇N)(I − P)‖2) ∇N(I − P)], (15)

where g is the derivative of G with respect to its argument, κ2. We will discuss several choices for
G in Section 4. The projection operator, I − N ⊗ N, forces the changes to N to be perpendicular to
itself in accordance with the unit length constraint. This operator is different from the other projection
operator I − P due to the decoupling of N and φ. Finally, the gradient descent PDE for the normals is
∂N/∂t = −dG /dN.

3.3 Surface Evolution via Normal Maps

We have shown how to evolve the normals to minimize functions of total curvature; however, the final
goal is to process the surface, which requires deforming φ. Therefore, the next step is to relate the
deformation of the level sets of φ to the evolution of N. Suppose that we are given the normal map N to
some set of surfaces, but not necessarily level sets of φ—as is the case if we filter N and let φ lag. We
can manipulate φ so that it fits the normal field N by minimizing a penalty function that quantifies the
discrepancy between the gradient vectors of φ and the target normal map. That penalty function is

D φ =
∫

U
D(φ) dx, where D(φ) =

√
∇φ · ∇φ − ∇φ · N. (16)

The integrand, which is always a positive scalar, is proportional to the sine of the angle between the
gradient vectors of φ and the target normal vectors.

The first variation of this penalty function with respect to φ is

dD

dφ
= −∇ ·

[∇φ

‖∇φ‖ − N
]

= −[Hφ − HN], (17)

where Hφ is the mean curvature of the level set surface and HN is half the divergence of the normal
map. Then, the gradient descent PDE that minimizes Equation (16) is dφ/dt = −‖∇φ‖dD /dφ. The
factor of ‖∇φ‖, which is typical with level set formulations [Sethian 1999], comes from the fact that
we are manipulating the shape of the level set, which is embedded in φ, as in Equation (8). According
to Equation (17), the surface moves as the difference between its own mean curvature and that of the
normal field.

The proposed splitting strategy for solving fourth-order level-set flows entails processing the normals
and allowing φ to lag and then be refitted later, in a separate process. We have derived a gradient descent
for the normal map based on a certain class of penalty functions that use the total curvature defined in
Section 3.2. This process is denoted in Figure 3 as the dG /N loop. The surface refitting to the normal
map is formulated as a gradient descent in Equation (17). This process is the dD /dφ loop in Figure 3.
The overall algorithm shown in Figure 3 repeats these two-steps to minimize the penalty functions in
terms of the surface. We refer to both of these processes, back-to-back, as one iteration of our algorithm.

ACM Transactions on Graphics, Vol. 22, No. 4, October 2003.

1020 • T. Tasdizen et al.

Fig. 3. Flow chart.

In Appendix A we will show that the overall process of concatenating these two second-order PDEs is
equivalent to the fourth-order flow on the original surface. An alternative splitting approach for solving
the same fourth-order level-set flows would be to simultaneously solve both second-order PDEs dG /dN
and dD /dφ using a Lagrange multiplier instead of concatenating them as we have done. This approach
was taken by Ballester et al. [2001] to solve the image inpainting problem. However, this approach uses
a weighted sum of the two second-order PDEs; therefore, it is not clear whether it solves the original
fourth-order flow. Moreover, in our case, due to the significant computational overhead of setting up
the diffusion of normal vectors, it is more efficient to concatenate the two second-order PDEs and to do
multiple consecutive iterations of dG /dN.

4. ISOTROPIC AND ANISOTROPIC DIFFUSION

The flexible normal map energy minimization and surface refitting methodology introduced in Section 3
allows us to experiment with various forms of G in Equation (14) that give rise to different classes of
penalty functions. The choice of G(κ2) = κ2 leads to an isotropic diffusion. This choice works well for
smoothing surfaces and eliminating noise, but it also deforms or removes important features. This
type of smoothing is called isotropic because it corresponds to solving the heat equation on the normal
map with a constant, scalar conduction coefficient, which is the same as Gaussian smoothing, for
images. Isotropic diffusion is not particularly effective if the goal is to denoise a surface that has
an underlying structure with fine features. This scenario is common when extracting surfaces from
3D imaging modalities, such as magnetic resonance imaging (MRI), in which the measurements are
inherently noisy.

The problem of preserving features while smoothing away noise has been studied extensively in
computer vision. Anisotropic diffusion introduced in Perona and Malik [1990] has been very successful
in dealing with this problem in a wide range of images. Perona and Malik (P&M) proposed to replace
Laplacian smoothing, which is equivalent to the heat equation ∂ I/∂t = ∇ · ∇ I , with a nonlinear PDE

∂ I/∂t = ∇ · [g (‖∇ I‖2)∇ I], (18)

where I is generally the grey-level image. This PDE is the first variation of∫
U

G(‖∇ I‖2) dx dy, (19)

ACM Transactions on Graphics, Vol. 22, No. 4, October 2003.

Geometric Surface Processing via Normal Maps • 1021

where g in Equation (18), the derivative of G with respect to ‖∇ I‖2, is the edge stopping function, and
U is the image domain. P&M suggested using g (x) = e−‖∇ I‖2/2µ, where µ is a positive, free parameter
that controls the level of contrast of edges that can affect the smoothing process. Notice that g (‖∇ I‖)
approaches 1 for ‖∇ I‖ � µ and 0 for ‖∇ I‖ � µ. Edges are generally associated with large image
gradients, and thus diffusion across edges is stopped while regions that are relatively flat undergo
smoothing. Solutions to Equation (18) can actually exhibit an inverse diffusion near edges, and can
enhance or sharpen smooth edges that have gradients greater than µ [Perona and Malik 1990].

A great deal of research has focused on modified second-order flows that produce better results
than MCF. Using level set models, several authors have proposed smoothing surfaces by weighted
combinations of principle curvatures. For instance, Whitaker [1994] has proposed a nonlinear
reweighting scheme that favors the smaller curvature and preserves cylindrical structures. Lorigo
et al. [2000] proposed a smoothing by the minimum curvature. A variety of other combinations have
been proposed [Sapiro 2001]. A similar set of curvature-based algorithms have been developed for sur-
face meshes. For instance, Clarenz et al. [2000] proposed a modified MCF as an anisotropic diffusion
of the surface. They threshold a weighted sum of the principle curvatures to determine the surface
locations where edge sharpening is needed. Tangential displacement is added to the standard MCF
at these locations for sharpening the edges. Although this flow produces results that tend to preserve
sharp features, it is not a strict generalization of Perona and Malik [1990] anisotropic diffusion from
images to surfaces. Another mesh-based modified MCF was proposed in Ohtake et al. [2000], where a
threshold on the mean curvature was used to stop oversmoothing. In a different context, anisotropic
diffusion as a modified surface area minimization for height functions was proposed in Desbrun et al.
[2000].

These level set and mesh-based methods are all modifications of curvature flows, and are therefore
all second-order processes. Because they are based on reweightings of curvature, these methods always
smooth the surface in one direction or another. They do not exhibit a sharpening of details, which is
achieved by the P&M equation (for images) through an inverse diffusion process. Hence, these methods
are not satisfactory generalizations of the P&M anisotropic diffusion equation. The generalization of
P&M diffusion to surfaces requires a higher-order geometric flow which is achieved from variational
principles by choosing the appropriate function of total curvature in Equation (14). For instance,

G(κ2) = 2µ2
(

1 − e− κ2

2µ2

)
and g (κ2) = e− κ2

2µ2 , (20)

where g is the derivative of G with respect to κ2. The first variation with respect to the surface normals
gives a vector-valued anisotropic diffusion on the level set surface—a straightforward generalization
of Equation (18). This flow preserves or enhances areas of high curvature, which we will call creases.
Creases are the generalization of edges in images to surfaces [Eberly 1996].

4.1 Results

Figure 4a illustrates an example of the skin surface, which was extracted, via isosurfacing, from an MRI
data set. Notice that the roughness of the skin is noise, an artifact of the measurement process. This
model is also quite complex because, despite our best efforts to avoid it, the isosurfaces include many
convoluted passages up in the sinuses and around the neck. Isotropic diffusion, shown in Figure 4b,
is marginally effective for denoising the head surface. Notice that the sharp edges around the eyes,
nose, lips, and ears are lost in this process. The differences between anisotropic diffusion and isotropic
diffusion can clearly be observed in Figure 4c. There is no noticeable difference in the results of the
two processes around the smooth areas of the original model such as the forehead and the cheeks;
however, very significant differences exist around the lips and the eyes. The creases in these areas,

ACM Transactions on Graphics, Vol. 22, No. 4, October 2003.

1022 • T. Tasdizen et al.

Fig. 4. Processing results on the MRI head model: (a) original isosurface, (b) isotropic diffusion, and (c) anisotropic diffusion.
The small protrusion under the nose is a physical marker used for registration.

Fig. 5. (a) Noisy venus head model, and (b) smoothed version after three iterations of anisotropic diffusion.

which have been eliminated by isotropic diffusion, are preserved by the anisotropic process. Note that
the free parameter µ in Equation (20) was fixed at 0.1 for all of the results shown in this paper.
Unlike in P&M image diffusion, this parameter does not need to be changed for different surface
models. In the context of P&M image diffusion, the units of µ are in gray levels; consequently, the
optimal choice of µ is image dependent. However, for surfaces, the units are in curvature, which is data
independent. This makes it possible to choose a µ value that gives consistent results over a broad range of
surfaces.

The computation time required for one iteration of the main processing loop operating on this model
is approximately 15 min on a 1.7-Ghz Intel processor for both isotropic and anisotropic diffusion. The
results shown in Figure 4b and c are both after three iterations, which translates to around 45 min of
processing time. The generality of the proposed approach comes at the cost of significant computation
time. However, the method is practical with state-of-the-art computers and is well-poised to benefit
from parallel computing architectures, due to its reliance on local, iterative computations.

Another example of denoising by anisotropic diffusion is shown in Figure 5. Noise was added to the
original model, which in this case is a 221 × 221 × 161 volume. After three iterations of the main
processing loop the noise was successfully removed while preserving the features of the original model.
The quality of these results compares favorably with results from the same model shown in Clarenz
et al. [2000]. Our results demonstrate better preservation of fine, sharp details, such as those around
the eyes and in the hair. The computation times per iteration for this example are approximately 5 min
compared to 15 min per iteration for the example in Figure 4. This is indicative of the relatively high
degree of complexity of the MRI-based model in the previous example.
ACM Transactions on Graphics, Vol. 22, No. 4, October 2003.

Geometric Surface Processing via Normal Maps • 1023

Fig. 6. (a) Original brain isosurface from MRI data set, (b) result of MCF, and (c) after 5 iterations of anisotropic diffusion.

Fig. 7. (a) Original model. Isotropic diffusion: (b) after 10 iterations, and (c) after 20 iterations. Anisotropic diffusion: (a) after
10 iterations, and (b) after 20 iterations.

Figure 6a shows a different isosurface (the cortex) extracted from the same MRI scan as the model
in Figure 4. The complexity of this model, that is, the many tightly nested folds, make it ill-suited
for mesh-based deformations. Also, the main cortical surface has many detached pieces, an artifact
of the segmentation process. As an indication of this complexity, we note that object enclosed by the
cortical surface has more than 700 connected components. The approach proposed in this paper can
automatically simplify topologically noisy features due to the level set implementation—an important
aspect of denoising measured surfaces.

The examples in Figure 7 demonstrate another aspect of the proposed method. Although the original
model in Figure 7a was constructed as a volume directly from 3D range data [Curless and Levoy 1996],
it does not exhibit significant noise. Hence, smoothing is done with the purpose of simplification of the
original model rather than denoising in these examples. Running isotropic diffusion for many steps
creates a linear scale space where details in the model are progressively eliminated in accordance to
their scale; the scales on the skin and the horns have been eliminated in Figure 7b and c, respectively.

ACM Transactions on Graphics, Vol. 22, No. 4, October 2003.

1024 • T. Tasdizen et al.

Fig. 8. (a) Original model, (b) after 1, and (c) 2 iterations of high-boost filtering.

When running the proposed method for anisotropic diffusion, however, surfaces tend toward solutions
that have piecewise smooth normals with sharp discontinuities in the normal map—analogous to the
behavior of the P&M equation for intensity images. Such properties in the normal map correspond
to surfaces consisting of planar patches and smooth patches bounded by sharp creases. Thus, the
proposed method generates a feature preserving scale space, very much like that of P&M for images.
These results, which are shown in Figure 7d and e, support our proposition that processing the normals
of a surface is the natural generalization of image processing. The nonlinear progression of elimination
of details from the smallest scale to the largest also suggests applications of this method to surface
compression and multiresolution modeling.

5. HIGH-BOOST FILTERING

The surface processing framework introduced in Section 3 is flexible and allows for the implementation
of even more general image processing methods. We demonstrate this by describing how to generalize
image enhancement by high-boost filtering of surfaces.

A high-boost filter has a frequency transform that amplifies high frequency components. In image
processing, this can be achieved by unsharp masking [Gonzalez and Woods 1992]. Let the low-pass
filtered version of an image I be Ĩ . The high-frequency components are Ihf = I − Ĩ . The high-boost
output is the sum of the input image and some fraction of its high-frequency components:

Iout = I + αIhf = (1 + α)I − α Ĩ , (21)

where α is a positive constant that controls the amount of high-boost filtering.
This same algorithm applies to surface normals by a simple modification to the flow chart in Figure 3.

Recall that the dG /dN loop produces Nn+1. Define a new set of normal vectors by

N′ = (1 + α)Nn − αNn+1

‖(1 + α)Nn − αNn+1‖ . (22)

This new normal map is then input to the dD /dφ refitting loop. The effect of Equation (22) is to
extrapolate from the previous set of normals in the direction opposite to the set of normals obtained
by isotropic diffusion. Recall that isotropic diffusion will smooth areas with high curvature and not
significantly affect already smooth areas. Processing the loop with the modification of Equation (22)
will have the effect of increasing the curvature in areas of high curvature, while leaving smooth areas
relatively unchanged. Thus, we are able to obtain high-quality surface enhancement on fairly complex
surfaces of arbitrary topology, as can be observed in Figures 8 and 9. The scales on the skin and the ridge
back are enhanced. Also, note that different amounts of enhancement can be achieved by controlling the
ACM Transactions on Graphics, Vol. 22, No. 4, October 2003.

Geometric Surface Processing via Normal Maps • 1025

Fig. 9. High-boost filtering: (a) original model, (b) after filtering, (c) close-up of original, and (d) filtered model.

number of iterations of the main loop. The degree of low-pass filtering used to obtain Nn+1 controls the
size of the features that are enhanced. Figure 9 shows another example of high-boost filtering; notice
the enhancement of features particularly on the wings.

6. DISCUSSION

The natural generalization of image processing to surfaces is via the normals. The lowest-order dif-
ferential invariant of images is the gradient magnitude, and minimizing a quadratic penalty of this
quantity produces the diffusion equation, which gives rise to Gaussian blurring. The lowest-order differ-
ential invariants of surface shape are the principal curvatures. Likewise, the curvature of a 3D surface
is a function of the gradient of the surface normal as shown in Section 3.2. In this light, total curva-
ture, which is the Euclidean norm of the Jacobian of the vector field of surface normals, is the natural
generalization of the squared-gradient-magnitude smoothness penalty for images. Thus, for surfaces,
first variation of the isotropic total curvature penalty, rather than MCF, is the equivalent of Gaussian
blurring.

Variational processes on the surface curvature have corresponding variational formulations on the
surface normals. The generalization of image-processing to surface normals, however, requires that
we process the normals using a metric on the surface manifold, rather than a simple, flat metric, as
we do with images. By processing the normals separately, we can solve a pair of coupled second-order
equations instead of a fourth-order equation. Typically, we allow one equation (the surface) to lag the
other, but as the lag gets very small, it should not matter. In this framework, the diffusion of the surface

ACM Transactions on Graphics, Vol. 22, No. 4, October 2003.

1026 • T. Tasdizen et al.

normals (and corresponding motions of the surface) is equivalent to the particular fourth-order flow
that minimizes the surface total curvature penalty function.

The method generalizes because we can do virtually anything we wish with the normal map. A
generalization of anisotropic diffusion to a constrained, vector-valued function, defined on a manifold,
gives us a smoothing process that preserves creases. If we want to enhance the surface, we can enhance
the normals and refit the surface.

We solve these equations using implicit surfaces, representing the implicit function on a discrete
grid, modeling the deformation with the method of level sets. This level set implementation allows us
to separate the shape of the model from the processing mechanism. Because of the implementation,
the method applies equally well to any surface that can be represented in a volume. Consequently, our
results show a level of surface complexity that goes beyond that of previous methods.

Future work will study the usefulness of other interesting image processing techniques such as
total variation [Rudin et al. 1992; Burchard 2002] and local contrast enhancement. To date, we have
dealt with post processing surfaces, but future work will combine this method with segmentation and
reconstruction techniques. The current shortcoming of this method is the computation time, which
is significant. However, the process lends itself to parallelism, and the advent of cheap, specialized,
vector-processing hardware promises significantly faster implementations.

APPENDIX

A. MATHEMATICAL FOUNDATION

In this section, we will derive the equivalence of the proposed algorithm, in the limit, to minimizing the
original energy function G φ defined in Equation (10). Let us rewrite this energy function by observing
that the principal curvatures are functions of the derivatives of φ:

G φ =
∫

U
G (φ) ‖∇φ‖ dx. (23)

Let dφ : �3 → � be a volume of incremental changes applied to φ : �3 → �. The change to G induced by
dφ can be expressed as the volume integral of the total derivative of the penalty function, dG (φ) ‖∇φ‖,
which is the product of dφ and the variation of the penalty function with respect to φ:

dG φ =
∫

U

d (G‖∇φ‖)
dφ

dφ dx. (24)

Applying the product rule to d (G‖∇φ‖)
dφ

, we obtain

dG φ =
∫

U

dG
dφ

‖∇φ‖ dφ dx︸ ︷︷ ︸
dG φ,1

+
∫

U
G

d‖∇φ‖
dφ

dφ dx︸ ︷︷ ︸
dG φ,2

. (25)

The total derivative dG (φ) ‖∇φ‖ can be written in terms of the surface normals by using the equality

dG
dφ

dφ = dG
dN

· dN, (26)

given that the normal map is a function of φ. Then, the first term in Equation (25) can be written as

dG φ,1 =
∫

U

dG
dN

· dN‖∇φ‖ dx. (27)

ACM Transactions on Graphics, Vol. 22, No. 4, October 2003.

Geometric Surface Processing via Normal Maps • 1027

To simplify Equation (27), we derive dN as a function of N and d∇φ:

dN = d
∇φ

‖∇φ‖ = d
∇φ

(∇φ · ∇φ)1/2
(28)

= d∇φ

‖∇φ‖ − (d∇φ · N)N
‖∇φ‖ . (29)

Equation (29) follows from (28) by using the chain rule for the differentiation, and substituting N back
for ∇φ/‖∇φ‖. Substituting Equation (29) for dN in Equation (27), we get

dG φ,1 =
∫

U

(
dG
dN

· d∇φ − (d∇φ · N)
dG
dN

· N
)

dx. (30)

We are only interested in processes that maintain the unit length constraint of the normal map; there-
fore, dG/dN · N = 0, and Equation (30) is reduced to

dG φ,1 =
∫

U

dG
dN

· ∇ dφ dx, (31)

where we also use the linearity of differentiation to make the substitution d∇φ = ∇dφ. We treat this
energy minimization as an adiabatic problem, which means that energy flow across the boundary of U
is zero. Hence, using Neumann boundary conditions for U and integration by parts, we obtain

dG φ,1 =
∫

U
∇ · dG

dN
dφ dx. (32)

We now examine the second term in Equation (25), dG φ,2. As in Section 3.2, we treat G as a function
of N; therefore, due to the decoupling between N and φ, G can be considered independent of φ. Using
this assumption, we can rewrite dG φ,2 as

dG φ,2 =
∫

U

dGN‖∇φ‖
dφ

dφ dx, (33)

where the superscript on GN is to mean that G is fixed with respect to φ. Taking the first variation of
dGN‖∇φ‖ yields

dG φ,2 =
∫

U
∇ ·

(
GN ∇φ

‖∇φ‖
)

dφ dx, (34)

where we use the fact that d‖∇φ‖/d∇φ = ∇φ/‖∇φ‖. Finally, combining Equations (24), (32), and (34),
we can derive the desired relationship between the variations with respect to φ and N:

d (G‖∇φ‖)
dφ

= ∇ ·
(

dG
dN

+ GN ∇φ

‖∇φ‖
)

. (35)

Let us now consider the flow achieved by processing Equations (15) and (17) back to back in one
iteration of the main loop in Figure 3 again. At the beginning of iteration n, the normals are computed
from φn. If we evolve the normals for one step according to Equation (15), instead of processing them
multiple iterations, the new normals are

Nn+1 = Nn − dG
dN

, (36)

ACM Transactions on Graphics, Vol. 22, No. 4, October 2003.

1028 • T. Tasdizen et al.

where we write dG
dN instead of dG

dN because we are referring to the update for N at a specific point in
space. If we immediately apply Equation (17) to fit φ to this new normal map, we get

dD
dφ

= Hφn − ∇ ·
(

Nn − dG
dN

)
, (37)

where D is the local function defined in Equation (16). Because Nn is derived directly from φn, we have
∇ · N = Hφn

, which gives the rule in our algorithm to make up this infinitesimal lag:

dD
dφ

= ∇ · dG
dN

. (38)

Comparing with Equation (35), we find the rule to descend on the energy as a function of φ:

d (G‖∇φ‖)
dφ

= dD
dφ

+ ∇ ·
(

GN ∇φ

‖∇φ‖
)

. (39)

This establishes the mathematical foundation of our method. However, in our experiments, we have
found that the contribution of the second term is very small and it does not change the results qualita-
tively. Therefore, we drop it for the sake of computational efficiency, and implement only dD

dφ
as described

in Section 3.

APPENDIX B. NUMERICAL IMPLEMENTATION

By embedding surface models in volumes, we have converted equations that describe the movement
of surface points to nonlinear PDEs defined on a volume. The next step is to discretize these PDEs in
space and time. In this paper, the embedding function φ is defined on the volume domain U and time.
The PDEs are solved using a discrete sampling with forward differences along the time axis.

For brevity, we will discuss the numerical implementation in 2D—the extension to 3D is straight-
forward. The function φ : U �→ � has a discrete sampling φ[p, q], where [p, q] is a grid location and
φ[p, q] = φ(xp, yq). We will refer to a specific time instance of this function with superscripts, that
is, φn[p, q] = φ(xp, yq , tn) . In our calculations, we need three different approximations to first-order
derivatives: forward, backward, and central differences. We denote the type of discrete difference using
superscripts on a difference operator, that is, δ(+) for forward differences, δ(−) for backward differences,
and δ for central differences. For instance, the differences in the x direction on a discrete grid with unit
spacing are

δ(+)
x φ[p, q]

�= φ[p + 1, q] − φ[p, q],

δ(−)
x φ[p, q]

�= φ[p, q] − φ[p − 1, q], and (40)

δxφ[p, q]
�= φ[p + 1, q] − φ[p − 1, q]

2
.

The application of these difference operators to vector-valued functions denotes componentwise differ-
entiation.

In describing the numerical implementation, we will refer to the flow chart in Figure 3 for one iteration
of the main loop. Hence, the first step in our numerical implementation is the calculation of the surface
normal vectors from φn. Recall that the surface is a level set of φn as defined in Equation (7). Hence,
the surface normal vectors can be computed as the unit vector in the direction of the gradient of φn.
The gradient of φn is computed with central differences as

∇φn ≈
(

δxφ
n

δ yφn

)
; (41)

ACM Transactions on Graphics, Vol. 22, No. 4, October 2003.

Geometric Surface Processing via Normal Maps • 1029

Fig. 10. Computational grid.

and the normal vectors are initialized as

Nu=0 = ∇φn/‖∇φn‖. (42)

Because φn is fixed and allowed to lag behind the evolution of N, the time steps in the evolution of N
are denoted with a different superscript, u. For this evolution, ∂N/∂t = −dG /dN , which is derived in
Equation (15).

We now describe how to numerically compute dG /dN. This computation is implemented with smallest
support area operators, which use the smallest possible neighborhood of voxels to compute the required
output. The Laplacian of a function can be computed in two-steps by first applying the gradient operator
and then the divergence operator. In 2D, the gradient of the normals produces a 2 × 2 matrix, which
we call the flux matrix. Next, the divergence operator collapses the flux matrix to a 2 × 1 vector. The
“columns” of the flux matrix are computed independently as

x+
Mu ≈ δ(+)

x Nu − (
δ(+)

x φn) x+
Cu, (43)

y+
Mu ≈ δ(+)

y Nu − (
δ(+)

y φn) y+
Cu, (44)

where the time index n remains fixed as we increment u. The positions of Mu, which is computed with
forward differences, are staggered off the grid by half a pixel; see Figure 10. For instance,

x+
Mu uses

information from positions [p + 1, q] and [p, q]; hence, it exists at [p + 1/2, q]. We use the following
notation: for some function α,

x+
α and

y+
α will denote the function computed at [p+1/2, q] and [p, q +1/2],

respectively.
To compute the intrinsic derivatives of Nu on the level sets of φn, (δ(+)

x φn)
x+

Cu and (δ(+)
y φn)

y+
Cu are subtracted from the regular derivatives of Nu. The variables

x+
Cu and

y+
Cu are computed as follows:

x+
Cu =

x+
∇Nu ·

x+
∇φn /‖

x+
∇φn‖2, (45)

y+
Cu =

y+
∇Nu ·

y+
∇φn /‖

y+
∇φn‖2, (46)

ACM Transactions on Graphics, Vol. 22, No. 4, October 2003.

1030 • T. Tasdizen et al.

where the matrix ∇N is as defined in Equation (12). In Equation (45), the dot product between the
matrix

x+
∇Nu and the vector

x+
∇φn /‖

x+
∇φn ‖2 denotes the vector whose components are the dot products

of the rows of
x+

∇Nu and the vector
x+

∇φn /‖
x+

∇φn ‖2. The same applies to Equation (46). The variables
Equation (45) and (46) must be computed at the same locations as

x+
Mu and

y+
Mu, respectively. These

computations are done with the smallest support area operators, using the symmetric 2 × 3 grid of
samples around each staggered point. For instance, the staggered gradients of φ, which are needed for
the evaluating Equations (45) and (46), are computed as

x+
∇φn= ∇φn

[
p + 1

2
, q

]
≈

(
δ(+)

x φ[p, q]
1
2 (δ yφ[p, q] + δ yφ[p + 1, q])

)
,

(47)
y+

∇φn= ∇φn
[

p, q + 1
2

]
≈

(1
2 (δxφ[p, q] + δxφ[p, q + 1])

δ(+)
y φ[p, q]

)
.

The staggered gradient matrices of the normals,
x+

∇Nu and
y+

∇Nu, which are also needed for evaluating
Equations (45) and (46), are computed with the same stencil.

After the computation of the flux, backward differences are used to compute the divergence operation
in Equation (15). For isotropic diffusion,

�u = δ(−)
x

x+
Mu +δ(−)

y

y+
Mu, (48)

and from Equation (15)

−
[

dG

dN

]u

≈ (I − Nu ⊗ Nu) �u = �u − (�u · Nu) Nu. (49)

The results of the backward differencing are defined at the original φ grid location [p, q] because they
undo the forward staggering in the flux locations. Therefore, both components of � and thus dG /dN
are located on the original grid for φ.

To evaluate Equation (15) for anisotropic diffusion, we also need to compute g (κ2) at the precise
locations where the flux (43) and (44) are located. Hence, we compute the total intrinsic curvature of
the normals

x+

κ2 = ‖
x+

∇Nu‖2−
x+

Cu ·
x+

Cu, (50)y+

κ2 = ‖
y+

∇Nu‖2−
y+

Cu ·
y+

Cu,

where ‖·‖2 is the Euclidean norm, the sum of the squares of all elements of the matrix. Then, the
divergence for anisotropic diffusion is computed as

�u = δ(−)
x

[
g (

x+

κ2)
x+

Mu
]

+ δ(−)
y

[
g (

y+

κ2)
y+

Mu
]

, (51)

and the tangential projection is applied to this vector as in Equation (49).
Starting with the initialization in Equation (42) for u = 0, we iterate

Nu+1 = Nu −
[

dG

dN

]u

(52)

for a fixed number of steps, 25 iterations for the examples in this paper. In other words, we do not
aim at minimizing the energy given in Equation (14) in the dG /dN loop of Figure 3; we only reduce it.
ACM Transactions on Graphics, Vol. 22, No. 4, October 2003.

Geometric Surface Processing via Normal Maps • 1031

The minimization of total mean curvature as a function of φ is achieved by iterating the main loop in
Figure 3.

Once the evolution of N is concluded, φ is refitted to the new normal vectors according to Equation (17).
We denote the evolved normals by Nn+1. To solve Equation (17) we must calculate Hφ and HNn+1

, which
is the induced mean curvature of the normal map; in other words, it is the curvature of the hypothetical
target surface that fits the normal map. Curvature from a field of normals is given by

HNn+1 ≈ δxNn+1
(x) + δ yNn+1

(y) , (53)

where we have used central differences on the components of the normal vectors that are denoted by
the subscripts (x) and (y). The quantity HNn+1

needs to be computed once at initialization as the normal
vectors remain fixed during the refitting phase. Let v be the time step index in the dD /dφ loop. Hφv

is the mean curvature of the moving level set surface at time step v and is calculated from φ with the
smallest area of support:

Hφv ≈ δ(−)
x

δ(+)
x φv

‖
x+

∇φv‖
+ δ(−)

y

δ(+)
y φv

‖
y+

∇φv‖
, (54)

where the gradients in the denominators are staggered to match the locations of the forward differ-
ences in the numerator. The staggered gradients of φ in the denominator are calculated using the 2×3
neighborhood as in Equation (47).

The PDE in Equation (17) is solved with a finite forward differences, but with the upwind scheme for
the gradient magnitude [Osher and Sethian 1988], to avoid overshooting and maintain stability. The
up-wind method computes a one-sided derivative that looks in the up-wind direction of the moving wave
front, and thereby avoids overshooting. Moreover, because we are interested in only a single level set of
φ, solving Equation (17) over all of U is not necessary. Different level sets evolve independently, and we
can compute the evolution of φ only in a narrow band around the level set of interest and reinitialize
this band as necessary [Adalsteinson and Sethian 1995; Peng et al. 1999]. See Sethian [1999] for more
details on numerical schemes and efficient solutions for level set methods.

Using the upwind scheme and narrow band methods, φv+1 is computed from φv according to
Equation (17) using the curvatures computed in Equations (53) and (54). This loop is iterated until
the energy in Equation (16) ceases to decrease; let vfinal denote the final iteration of this loop. Then
we set φ for the next iteration of the main loop (see Figure 3) as φn+1 = φ

vfinal and repeat the entire
procedure. The number of iterations of the main loop is a free parameter that generally determines the
extent of processing.

REFERENCES

ADALSTEINSON, D. AND SETHIAN, J. A. 1995. A fast level set method for propogating interfaces. J. Computat. Phys. 118, 269–277.
ALEXA, M. 2002. Wiener filtering of meshes. In Proceedings of the Shape Modeling International. 51–57.
BALLESTER, C., BERTALMIO, M., CASELLES, V., SAPIRO, G., AND VERDERA, J. 2001. Filling-in by joint interpolation of vector fields

and gray levels. IEEE Trans. Image Process. 10, 8 (Aug.), 1200–1211.
BERTALMIO, M., CHENG, L.-T., OSHER, S., AND SAPIRO, G. 2001. Variational problems and partial differential equations on implicit

surfaces. J. Computat. Phys. 174, 759–780.
BURCHARD, P. 2002. Total variation geometry 1: Concepts and motivation. Tech. rep. UCLA CAM-02-01. University of California,

Los Angeles, Los Angeles, CA.
CHOPP, D. L. AND SETHIAN, J. A. 1999. Motion by intrinsic laplacian of curvature. Interfaces Free Bound. 1, 1–18.
CLARENZ, U., DIEWALD, U., AND RUMPF, M. 2000. Anisotropic geometric diffusion in surface processing. In Proceedings of IEEE

Visualization. 397–405.

ACM Transactions on Graphics, Vol. 22, No. 4, October 2003.

1032 • T. Tasdizen et al.

CURLESS, B. AND LEVOY, M. 1996. A volumetric method for building complex models from range images. In Proceedings of
SIGGRAPH’96. 303–312.

DESBRUN, M., MEYER, M., SCHRÖDER, M., AND BARR, A. 1999. Implicit fairing of irregular meshes using diffusion and curvature
flow. In Proceedings of SIGGRAPH’99. 317–324.

DESBRUN, M., MEYER, M., SCHRÖDER, P., AND BARR, A. H. 2000. Anisotropic feature-preserving denoising of height fields and
bivariate data. In Proceedings of Graphics Interface. 145–152.

DOCARMO, M. P. 1976. Differential Geometry of Curves and Surfaces. Prentice Hall, Englewood Cliffs, NJ.
EBERLY, D. 1996. Ridges in Image and Data Analysis. Kluwer Academic Publishers, Norwell, MA.
GONZALEZ, R. C. AND WOODS, R. E. 1992. Digital Image Processing. Addison-Wesley Publishing Company, Reading, MA.
GUSKOV, I., SWELDENS, W., AND SCHRÖDER, P. 1999. Multiresolution signal processing for meshes. In Proceedings of SIGGRAPH’99.

325–334.
HALSTEAD, M., KASS, M., AND DEROSE, T. 1993. Efficient, fair interpolation using catmull-clark surface. In Proceedings of

SIGGRAPH’93. 35–44.
KOBBELT, L., CAMPAGNA, S., VORSATZ, J., AND SEIDEL, H.-P. 1998. Interactive multi-resolution modeling on arbitrary meshes. In

Proceedings of SIGGRAPH’98. 105–114.
LORENSON, W. AND CLINE, H. 1987. Marching cubes: A high resolution 3d surface reconstruction algorithm. In Proceedings of

SIGGRAPH’87. 163–169.
LORIGO, L., FAUGERAS, O., GRIMSON, E., KERIVEN, R., KIKINIS, R., NABAVI, A., AND WESTIN, C.-F. 2000. Co-dimension 2 geodesic

active contours for the segmentation of tubular strucures. In Proceedings of Computer Vision and Pattern Recognition. 1441–
1451.

MALLADI, R., SETHIAN, J. A., AND VEMURI, B. C. 1995. Shape modeling with front propagation: A level set approach. IEEE Trans.
Patt. Analy. Machine Intell. 17, 2, 158–175.

MORETON, H. P. AND SÉQUIN, C. H. 1992. Functional optimization for fair surface design. In Proceedings of SIGGRAPH’92.
167–176.

OHTAKE, Y., BELYAEV, A. G., AND BOGAEVSKI, I. A. 2000. Polyhedral surface smoothing with simultaneous mesh regularization.
In Proceedings of Geometric Modeling and Processing. 229–137.

OSHER, S. AND SETHIAN, J. A. 1988. Fronts propagating with curvature dependent speed: Algorithms based on hamilton-jacobi
formulation. J. Computat. Phys. 79, 12–49.

PENG, D., MERRIMAN, B., OSHER, S., ZHAO, H.-K., AND KANG, M. 1999. A PDE based fast local level set method. J. Computat.
Phys. 155, 410–438.

PERONA, P. 1998. Orientation diffusion. IEEE Trans. Image Processing 7, 3, 457–467.
PERONA, P. AND MALIK, J. 1990. Scale space and edge detection using anisotropic diffusion. IEEE Trans. Patt. Analy. Machine

Intell. 12, 7 (July), 629–639.
POLDEN, A. 1997. Compact surfaces of least total curvature. Tech. rep., University of Tubingen, Tubingen, Germany.
RUDIN, L., OSHER, S., AND FATEMI, C. 1992. Nonlinear total variation based noise removal algorithms. Physica D 60, 259–

268.
SAPIRO, G. 2001. Geometric Partial Differential Equations and Image Analysis. Cambridge University Press, Cambridge, U.K.

See Chapter on “Geometric Curve and Surface Evolution.”
SCHNEIDER, R. AND KOBBELT, L. 2000. Generating fair meshes with g1 boundary conditions. In Geometric Modeling and

Processing Proceedings. 251–261.
SCHNEIDER, R. AND KOBBELT, L. 2001. Geometric fairing of irregular meshes for free-form surface design. Comput. Aid. Geom.

Des. 18, 359–379.
SETHIAN, J. A. 1999. Level Set Methods and Fast Marching Methods Evolving Interfaces in Computational Geometry, Fluid

Mechanics, Computer Vision, and Materials Science. Cambridge University Press, Cambridge, U.K.
TANG, B., SAPIRO, G., AND CASELLES, V. 2000. Diffusion of general data on non-flat manifolds via harmonic maps theory: The

direction diffusion case. Int. J. Comput. Vis. 36, 2, 149–161.
TASDIZEN, T., WHITAKER, R., BURCHARD, P., AND OSHER, S. 2002. Geometric surface smoothing via anisotropic diffusion of normals.

In Proceedings of IEEE Visualization. 125–132.
TAUBIN, G. 1995. A signal processing approach to fair surface design. In Proceedings of SIGGRAPH’95. 351–358.
TAUBIN, G. 2001. Linear anisotropic mesh filtering. Tech. rep. RC22213. IBM Research Division, Yorktown Heights, NY.
TAUBIN, G., ZHANG, T., AND GOLUB, G. 1996. Optimal surface smoothing as filter design. In Proceedings of the European Conference

on Computer Vision. Vol. 1. 283–292.

ACM Transactions on Graphics, Vol. 22, No. 4, October 2003.

Geometric Surface Processing via Normal Maps • 1033

WELCH, W. AND WITKIN, A. 1992. Variational surface modeling. In Proceedings of SIGGRAPH’92. 157–166.
WELCH, W. AND WITKIN, A. 1994. Free-form shape design using triangulated surfaces. In Proceedings of SIGGRAPH’94.

247–256.
WHITAKER, R. T. 1994. Volumetric deformable models: Active blobs. In Visualization in Biomedical Computing, R. A. Robb,

Ed. SPIE Press, Bellingham, WA. 122–134.
WHITAKER, R. T. 1998. A level-set approach to 3D reconstruction from range data. Int. J. Comput. Vis. 29, 3, 203–231.

Received May 2002; revised December 2002; accepted January 2003

ACM Transactions on Graphics, Vol. 22, No. 4, October 2003.

