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ABSTRACT:

For a number of computational purposes, including visualization, smooth surfaces are approxi-
mated by polyhedral surfaces. An inherent problem of these approximation algorithmsis that the
resulting polyhedral surfaces appear faceted. A signal processing approach to smoothing polyhedral
surfaces was recently introduced [10, 11]. Within this framework surface smoothing corresponds to
low-pass filtering. In this paper we look at the filter design problem in more detail. We analyze the
stability properties of the low-pass filter described in [10, 11], and show how to minimize its running
time. Then we show that most classical techniques used to design finite impulse response (FIR)
digital filters can also be used to design significantly faster smoothing filters. Finally, we describe an
algorithm to estimate the power spectrum of a signal, and use it to evaluate the performance of the
different filter design techniques described in the paper.



1. Introduction

The signal processing framework introduced in [10, 11], extends Fourier analysis to discrete
surface signals, functions defined on the vertices of polyhedral surfaces. As in the method of
Fourier Descriptors [12], where a closed curve is smoothed by truncating the Fourier series of its
coordinate signals, avery large polyhedral surface of arbitrary topology is smoothed here by low-pass
filtering its three surface coordinate signals. And although the formulation was developed mainly
for signals defined on surfaces, it isin fact valid for discrete graph signals, functions defined on the
vertices of directed graphs. Since this general formulation provides a unified treatment of polygonal
curves, polyhedral surfaces, and even three-dimensional finite elements meshes, we start this paper
by reviewing thisformulationinits full generality.

Then we look at the filter design problem in more detail, with the main goal of minimizing the
execution time of the low-pass filtering algorithm, given a desired frequency response specification.
But we also take into consideration numerical issues, such as stability. We first study the tradeoffs
that exists between minimizing execution time and maintaining the filter stable for the low-pass filter
design of [10, 11]. Then we show that most classical finiteimpul se response (FIR) digital filter design
techniques can be applied, with minor or no modifications in most cases, to the design of discrete
graph signal filters. FIR filters, which in this framework correspond to sparse matrix multiplication,
yield acceptable linear time and space complexity algorithms. Five to ten-fold speedups with respect
to the low-passfilter design of [10, 11] can easily be obtained.

Then, we comparethe performanceof the different filter design methodol ogieswith an algorithmto
estimate the power spectrum of adiscrete graph signal. Thispower spectrum estimator isimplemented
as a bank of high order band-pass filters, designed with the same techniques as the surface low-pass
smoothing filters. However, the goal hereisto design very sharp band-pass filters, not necessarily to
minimizethe order of thefilter. We also use the power spectrum estimator to determine the pass-band
frequency of thefilter in such away that shrinkage is prevented.

We end the paper with some experimental results and our conclusions.

2. Fourier Analysisof Discrete Graph Signals

In this section we describe the signal processing formulation of [10, 11] in its most general form,
i.e., for discrete graph signals, functions defined on directed graphs. We represent a directed graph
ontheset {1,...,n} of n nodesas a set of neighborhoods {z* : : = 1,...,n}, where :* is a subset
of nodes that we call the neighborhood of node:. If 7 isan element of :* we say that ;5 is aneighbor
of 7, and we visualize it as an arrow from : to 5. In principle, except for prohibiting a node from
being a neighbor of itself, we do not impose any other constraint on the neighborhoods. Note that ;
isalowed to be a neighbor of : without requiring to be aneighbor of ;, and neighborhoods can also
be empty. We call avector z = (z1, ..., z,)t, with one component per node of the graph, a discrete
graph signal.

We represent a polyhedral surface asapair of arrays .S = {V, F'}, an array of n verticesV, and an
array of faces F'. A vertex isathree-dimensional vector of real coordinates, and afaceis a sequence
of non-repeated indices of vertices representing a closed three-dimensional polygon. Triangulated



surfaces are the most common, where all faces are triangles. We look at a polyhedral surface of »
vertices as a directed graph, by labeling the vertices with distinct node numbersranging from 1 to n,
and defining a neighborhood for each node. We normally use first order neighborhoods, were node ;
isaneighbor of node: if < and 7 share an edge (or face), but other neighborhood structures can be used
for other purposes, such as to impose certain types of constraints[11]. A discrete surface signal isa
discrete graph signal defined on the associated graph. We visualize a discrete surface signal defined
on apolyhedral surface asa piece-wise linear function defined on the surface. Discrete surface signals
defined on polygonal curves, and on simplicial complexes of higher dimension, can be interpreted in
asimilar way.

The Fourier transform of a discrete graph signal cannot be defined in the traditional way because
there is no notion of convolution. However, there is an alternative definition that can be generalized.
Computing the Discrete Fourier Transform (DFT) of asignal defined on aclosed polygon of » vertices
is equivalent to decomposing the signal as alinear combination of the eigenvectors of the Laplacian

operator
1 1
Ami = §($i—1 — mz) + §($i+1 — mz) y (21)
were the Fourier transform is the vector of coefficients of the sum. To define the Fourier transform of
asignal defined on an arbitrary directed graph we only have to define alinear operator that we will call
the Laplacian operator. This is the same idea behind the method of eigenfunctions of Mathematical
Physics[1].

We define the Laplacian of adiscrete graph signal z by the formula
Ami = Z W5 (mj — mz) (22)
je*

where the weights w,; are positive numbers that add up to one for each vertex

Z Wq5 = 1.

je*
These weights can be chosen in many different ways taking into consideration the neighborhoods,
but in this paper we will assume that they are not functions of the signal z. Otherwise, the resulting
operator is non-linear, and so, beyond the scope of this paper. One particularly smple choice that
produces good resultsisto set w;; equal to theinverse of the number of neighbors1/|*| of node<, for
each element j of :*. Other choices of weights are discussed in [10, 11]. Note that the Laplacian of a

signal defined on aclosed polygon, described in equation (2.1), isa particul ar case of these definitions,
withw,; = 1/2,forj € «* = {2 — 1,7 + 1}, for each node.

If W = (w;;) denotes the matrix of weights, with w;; = 0 when ; is not a neighbor of ¢, and
K =1 — W, theLaplacian of adiscrete signal can be written in matrix form as

Az =—Kz . (2.3)

Although the method applies to general neighborhood structures, in this paper we will restrict our
analysisto those cases where the matrix W can be factorized as a product of asymmetric matrix times
adiagona matrix W = ED. Inthis case the matrix W isanormal matrix [4], because the matrix

DY?*wD~V? = pV/2Epl/? (2.4)
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is symmetric. Note that such is the case for the first order neighborhoods of a surface with equal
weights w,;; = 1/|¢*| in each neighborhood :*, where E is the incidence matrix of the neighborhood
structure (asymmetric matrix for first order neighborhoods), the matrix whosez5-th. element is equal
to 1 if the nodes: and 5 are neighbors, and 0 otherwise; and D isthe diagonal positive definite matrix
whose :-th. diagonal element is 1/|:*|. When W is anorma matrix it has all real eigenvalues, and
sets of n left and right eigenvectors that form dual bases of n-dimensional space. Furthermore, by
construction, W is also a stochastic matrix, a matrix with nonnegative elements and rows that add up
toone[9]. Theegenvaluesof astochastic matrix are bounded abovein magnitudeby 1. It followsthat
the eigenvalues of the matrix K are real, bounded below by 0, and above by 2. Seen as discrete graph
signals, the right eigenvectors of the matrix K can be considered as the natural vibration modes, and
the corresponding eigenval ues as the associated natural frequencies. In our case, a vibration mode of
high natural frequency corresponds to a rapid oscillation in the space domain. For example, for any
directed graph, the constant signal (1,...,1) is an eigenvector of K associated with the frequency
k = 0, and the values of a natural vibration mode associated with a low natural frequency varies
slowly when we move from a vertex to a neighbor vertex.

In the ssimple cases of signals defined on regular polygons, or more generally on graphswith group
structure [3], the eigenvectors and eigenvalues of K have analytic expressions. The Fast Fourier
Transform agorithm for signals defined on closed polygons is a good example of how this structure
can be exploited. However, for the typical large graphsthat we areinterested in processing here, there
are no analytic expressions for the eigenvalues and eigenvectors of K. And although afew extremal
eigenvalues and eigenvectors of K can be computed with the Lanczos method [4], it is numerically
impossible to reliably compute all of them. However, and thisis the most significant observation, for
filtering operations it is not necessary to compute the eigenvectors explicitly.

If0 <k <--- <k, <2 aretheeigenvalues of K, eq,...,e, aset of corresponding right
eigenvectors, and ¢y, ..., 6, the associated dual basis of e, ..., e,, the identity matrix 7, and the
matrix K can be written as follows

I:Zezﬁf K:Zkzeﬁf,
=1 =1

and every discrete graph signal = has a unique decomposition as alinear combination of eq, .. ., e,
z=Iz=> ie, (2.5)
=1
where £; = &fz. We call the vector £ = (24,...,%,)" the Discrete Fourier Transform (DFT) of

z, generalizing the classical definition for signals defined on closed polygons. Note, however, that
this definition does not identify a unique object yet. If a different set of right eigenvectors of K is
chosen, a different DFT is obtained. To complete the definition, if W = ED with E symmetric,
and D diagonal, The formula (z,y)p = z*Dy defines an inner product in our space of signals, and
normalizing theright eigenvectorsof K to unit length with respect to the associated normisequivalent
to orthonormalizing them with respect to the inner product, and Parseval’s formulais satisfied

2 (2.6)

z

Izl =

3



where the norm on the right hand side is the Euclidean norm. That is, the frequency components z;e,
of the signal = are orthogonal with respect to the inner product defined by D. We will assume from
now on that the right eigenvectors of K are normalized in this fashion. These results will be used in
sections 7 and 8.

Tofilter thesignal = isto change its frequency distribution according to atransfer function f(%)

n

=1 =1
The frequency component of = corresponding the the natural frequency k; is enhanced or attenuated
by afactor f(k;). For example, the transfer function of an ideal low-passfilter, illustrated in figure 1,
is
1 for0 <k <k
f“’_{o for kee < k<2 (28)

where &y iSthe pass-band frequency. Inthiscase, al the frequencies above the pass-band frequencies

1.0

Figure 1: Graph of theideal low-passfilter f,..

are removed, leaving only the low frequency components. The method of Fourier Descriptors
[12] consists in filtering a discrete graph signal with an ideal low-pass filter transfer function. An
efficient algorithm (O(nlog(n))) to ideal low-passfilter a signal defined on a closed polygon can be
implemented using the Fast Fourier Transform algorithm. But in the general case of discrete graph
signals, there is no efficient numerical method to compute its DFT, particularly when the number of
nodes of the graph is very large. The computation can only be performed approximately, which is
the main subject of this paper. To do this the ideal low-pass filter transfer function is replaced by an
analytic approximation, usually a polynomial or rational function, for which the computation can be
performed in an efficient manner. A wide range of analytic functions of one variable f(%) can be
evaluated in a matrix such as K [4]. Theresult is another matrix f( K) with the same left and right
eigenvectors, but with eigenvalues f(k;), ..., f(k,)

n

FK) =3 f(k:)eid;

=1
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The main reason why thefiltering operation z’' = f( K') = of equation (2.7) can be performed efficiently
for a polynomial transfer function of low degree, is that when K is sparse, which is the case here,
the matrix f(K) is also sparse (but of wider bandwidth), and so, the filtering operation becomes the
multiplication of a vector by a sparse matrix.

In Gaussian smoothing thetransfer functionisthepolynomial fy (k) = (1—Xk)N, with0 < X < 1.
But this transfer function produces shrinkage

1 fork=0
0 for0<k<2.

That is, as N grows, the shape asymptotically converges to its centroid.

mna—A@N:{

N—oo

N =2
\/\ 1.0 1.0 N >2
Y k=3
“
R f/ }
/ 0 ke 2 \ (U 2
A B

Figure 2: Graph of transfer function f(k) = ((1 — pk)(1 — Xk))¥/2. (A) N = 2. (B) N > 2. (out of
scale)

The algorithm introduced in [10, 11] is escentially Gaussian smoothing with the difference that
the scale factor A changes from iteration to iteration, alternating between a positive value A and a
negative value . This smple modification still produces smoothing, but prevents shrinkage. The
transfer function is the polynomial fx(k) = ((1 — Mk)(1 — pk))N/2, with0 < A < —p and N even,
illustrated infigure 2-A for N = 2, andin2-B for N > 2. Thisdisplaysatypical low-passfilter shape
in the region of interest, from & = 0 to £ = 2. The pass-band frequency of thisfilter is defined as the
unique value of & in theinterval (0,2) such that fx(k) = 1. Such avalue exissswhen0 < A < —g,
and turns out to be equal to ks = 1/X + 1/p. This polynomial transfer function of degree N results
in alinear time and space complexity algorithm, which is very smple to implement, and produces
smoothing without shrinkage. From now on we will refer to this algorithm as the A — i agorithm.
However, as we will see below, faster algorithms can be achieved by choosing as transfer function a
beter polynomial approximation of the same degree of the ideal low-passfilter.

3. Fast Smoothing as Filter Design

We are faced with the classical problem of digital filter design in signal processing [8, 5], but
with some restrictions. Note that because of the linear complexity constraint discussed above, only
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polynomial transfer functions (FIR filters) are allowed. With rational transfer functions (1R filters)
better approximationsof theideal |ow-passfilter could be achieved with lower degrees of polynomials,
but in our context a rational transfer function f(k) = g(k)/h(k) involves solving the sparse linear
system h(K)z' = g(K )z, which is not a linear complexity operation. Because of this reason, we
leave the study of rational transfer functionsfor the future.

Because of space restrictions, of all the traditional FIR filter design methods availablein the signal
processing literature, we only cover herein some detail the method of windows, which isthe smplest
one. With thismethod we can design filterswhich are significantly faster, or sharper, than those obtain
with the A — x agorithm for the same degree.

4. Optimizing the A\— g algorithm
The )\ — x algorithm can be described in arecursive fashion as follows

1 N=0
fu(k) = {(1 — v k) fv_1(k) N >0

where Ay = A, for N odd, and Ay = p for N even. Note that this algorithm requires minimum
storage, only one array of dimension . to store the Laplacian of asignal if computed in place, and two
arrays of dimension » in general. The agorithmis described in figure 3, where z is the input signal,
and z’ isthe result of the filtering operation.

filter(N, A\1,..., An, K, z,2)
20 =z
for j=1to N step 1 do
zt = Kz°
20 =20 — \;Kz!
end
m/:3:0
return

Figure3: The A — y filtering algorithm.

To maintain the minimum storage property and the same simple algorithmic structure, one could
try to generalize by changing the scale factors Ay from iteration to iteration in a different way. But
if we start with a given pass-band frequency k- = 1/) + 1/u, asit is usualy the case when one
wants to design the filter, there are many values of X and x such that 0 < A < —y, that define afilter
with the same pass-band frequency. In order for the polynomia f(k) = (1 — Ak)(1 — pk) to define
a low-pass filter in the interval [0, 2] it is necessary that |f(k)| < 1 in the stop-band region, so that
fn(k) = f(k)Y — 0 when N grows. Since f(kes) = 1 and f(k) is strictly decreasing for & > ke,



this condition is equivalent to f(2) > —1, which trandates into the following constraint on A

_kPB + (Q_kps)z + 4
A< . 4.1
2(2—kes) (4.1)

Figure 4 shows examples of transfer functions of filters designed for the same pass-band frequency,
but with different values of A. As ) increases, the dope of the filter immediately after the pass-band
frequency increases, i.e., the filter becomes sharper, but at the same time instability starts to develop
at the other end of the spectrum, close to £ = 2. If the maximum eigenvalue k,, of the matrix K
is significantly less than 2 (which is not usually the case) we only need the filter to be stable in the
interval [0, k,] (i.e, 1 > f(k,) > —1), and larger values of ) are acceptable. A good estimate of
the maximum eigenvalue of K can be obtained with the Lanczos method [4]. Even if the maximum
eigenvalue &, is not known, the signal z to be smoothed might be band-limited, i.e., the coefficients
z; In equation (2.5) associated with high frequencies are all zero, or very closeto zero. Thiscondition
might be difficult to determine in practice for a particular signal, but if we apply the algorithm with
small A for a certain number of iterations, the resulting signal becomes in effect band-limited. At
thispoint A can be increased keeping the pass-band frequency constant, maybe even making thefilter
unstable, and the algorithm can be applied again with the new values of A and y for more iterations.
Thisprocess of increasing A keeping the pass-band frequency constant can now be repeated again and
again. A moderate speed-up is obtained in thisway. Figure 5 show some examples of this process.
All the filtersin this figure produce amost the same response, but filter (F) is five times faster than
filter (A).

5. Filter Design with Windows

The most straightforward approach to traditional digital filter design is to obtain a trigonometric
polynomial approximation of the ideal filter transfer function by truncating its Fourier series. The
resulting trigonometric polynomial minimizes the L, distance to the ideal filter transfer function
among all the trigonometric polynomials of the same degree. Note that it is sufficient to know how
to construct low-passfilters. A band-pass filter can be constructed as the difference of two low pass
filters, and a high-pass filter can be constructed in a similar way. To obtain regular polynomials, not
trigonometric ones, we first apply the change of variable & = 2(1 — cos(#)). This change of variable
isal — 1 mapping [0, 7 /2] — [0,2]. Then we extend the resulting function to theinterval [—=, 7] as
follows

0 7/2<6<m
hip(8) =< fie(2(1 —cos())) 0<6<x/2
h(—8) —71<6<0.
Note that this function, periodic of period 27 and even, isalso an ideal low-passfilter as afunction of

¢ .
1 if 0] < g

hue(0) = {0 otherwise ’
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Figure 4: Graphs of transfer function ((1 — Ak)(1 — uk))N/2 for N = 2 and N = 20 and pass-band
frequency ks = 1/A + 1/ = 0.09. (A) A = 0.5: stable. (B) A = 0.6 : stable. (C) A = 0.7 : limit
case. (D) A = 0.8 : unstable.
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Figure 5: Different combinations of parametersin ((1 — Ak)(1 — uk))™/2 produce amost indistin-
guishable transfer functions. The pass-band frequency k. = 1/)A + 1/p = 0.1 isthe samein the four
cases. (A) A = 0.3, p = —0.3093, N = 120. (B) A = 0.5, o = —0.5263, N = 40. (C) A = 0.7,
p=—0.7527, N =20. (D) A = 0.9, x = —0.9890, N = 12. (E) A = 0.3, o = —0.3093, N = 12,
followed by A = 0.5, p = —0.5263, N = 12, followed by A = 0.7, x = —0.7527, N = 12. (F)
A =023, =—-0.3093, N =6, followedby X = 0.5, » = —0.5263, N = 6, followed by X = 0.7,
w=—0.7527, N = 6, followed by A = 0.9, x = —0.9890, N = 6. Notethat (C) and (D) are unstable
by themselves, but preceded by stable filters become stable. The degrees of the polynomialsare (A)
120, (B) 40, (C) 20, (D) 12, (E) 36, and (F) 24.



where g is the unique solution of ke, = 2(1 — cos(feg)) in [0, 7/2]. Since A(#) isan even function,
it has a Fourier series expansion in terms of cosines only

hip(8) = ho + 2 Z hy cos(nf) ,

n=0
where h,, IS

= L " _ ‘9PB/7T n=>0
fin = 27 /_ﬂ P(6) cos(nf) df = {sin(n Og)/mm n>0

Now, it iswell known that cos(n 8) = T,(cos(8)), where T,, isthe n-th. Chebyshev polynomial [2],
defined by the three term recursion

1 n=>0
To(w) =< w n=1
2wl 1(w) —Tha(w) n>1

The N-th. polynomial approximation of £, for k& € [0, 2] isthen

N .
Fa(k) = 97 To(1—k/2) + 3 %Tn(l — k/2). (5.1)

Figure 6 shows some of these polynomials compared with the polynomials ((1 — Ak)(1 — uk))N/2 for
the same pass-band frequency.

As can be easily observed in figure 6, direct truncation of the series leads to the well-known
Gibbs phenomenon, i.e., afixed percentage overshoot and ripple before and after the discontinuity.
Asitisshown in section 9, thisis one of the problems that makes this technique unsatisfactory. The
other problem is that the resulting polynomial approximation does not necesarily satify the constraint
fn(0) =1, whichisreguired to preserve the average value of the signal (DC level in classical signal
processing, centroid in the case of surfaces). Our experiments show that adesirable surface smoothing
filter transfer function should be as close as possible to 1 within the pass-band as possible, and then
decrease to zero in the stop-band ([%¢s, 2]).

Another classical technique to control the convergence of the Fourier series isto use a weighting
function to modify the Fourier coefficients. In our case the polynomial approximation of equation
(5.1) ismodified as follows

.
(k) = o 2 Ty — ky2) 3 2P g gy 52)

where wy, wy, . . ., wy arethe weights that constitute a so called window. Since the multiplication of
Fourier coefficients by awindow corresponds to convolving the original frequency response with the
Fourier series defined by the window, adesign criterion for windowsisto find afinite window whose
Fourier transform has relatively small side lobes. The polynomia approximation of equation (5.1) is
aparticular case of (5.2), wheretheweightsareal equal to 1. Thisis called the Rectangular window.

10



1 1
N =10
| ™
0 ko Ty 0 ks 9
1 B
N =20
0! ko 9 0¥, 2
1 14%
N = 40
| A |
0 ko 9 0 Ve 19
1 1
N = 80
| e )
0 ko 9 0' "k, 9

Figure 6: (A) Polynomia transfer function f(k) = ((1 — Mk)(1 — pk))¥/? with ks = 0.1 and
A = 0.6307. (B) Truncated Fourier series approximation of the ideal low-pass filter (Rectangular
window).
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Other popular windows are, the Hanning window, the Hamming window, and the Blackman window.

1.0 Rectangular
~}J0.540.5 cos(nw /(N + 1)) Hanning (5.3)
Y= 0.54 4 0.46 cos(n/(N + 1)) Hamming '

0.42 4+ 0.5 cos(nm /(N + 1)) + 0.08 cos(2n7/(N + 1)) Blackman .

The Fourier series of the rectangular window has a narrow center lobe, but its side lobes contain a
large part of the total energy, and decay very dowly. The Hamming window has 99.96 percent of its
energy in itsmain lobe, but the width of the main lobe is twice the width of the rectangular window’s
main lobe. The Blackman window further reduces the peak side lobe ripple at the expense of amain
lobe whose width is about triple the width of the rectangular window’s main lobe. There are other
window designs that are optimal in one way or another [7, 6, 5], but the window coefficients are in
some cases difficult to compute, and as we will see below, we can design satisfactory filters with the
windows described above.

If the low-pass filter must have a very narrow pass-band region, which is usually the case in the
surface smoothing application, then a high degree polynomial is necessary to obtain a reasonable
approximation. Thisisin fact a consequence of the uncertainty principle. The phenomenon can be
observed even in the case of the rectangular window, illustrated in figure 6. The problem is even
worse for the other windows, because they have wider main lobes. To obtain a reasonably good
approximation of degree N, the pass-band must be significantly wider than the width of the main
lobe of the window. If o isthe width of the main lobe of the window, the resulting filter will be
approximately equal to onefor 6 € [0, 8 — o], approximately equal to zero for 8 € [f + o, 7], and
approximately decreasing for § € [0 — 0,0 + o]. Our solution in this case of narrow pass-band
frequency, is to design the filter for a small value of IV, but with the pass-band frequency increased
by o (no longer the width of the main lobe of the window)

fulh) = o = gy, 3 2 D gy s

and then, eventually iteratethisfilter (f(k) = fn(k)™). Thevalueof o can be determined numerically
by maximizing f(ke) under the constraints | (k)| < 1 for ks < k& < 2. In our implementation, we
computetheoptimal o with alocal root finding algorithm (afew Newton iterations) sothat fy(kes) = 1,
starting from an interactively chosen initial value. Figure 7 shows some examples of filters designed
in this way, compared with filters of the same degree and ¢ = 0, and with A — y filters of the same
degree. Figure 8 shows several views of the filter design control panel of our interactive surface
editing system.

6. Implementation

Figure 9 describes our algorithmic implementation of thefiltering operation ' = fx(K ) z, where
f(k) isthetransfer function

f(k) = ijTj(l —k/2).

12



C D

Figure 7: Filters fx (k) for ke = 0.1 and o > 0.0. (A) Rectangular window, N = 10, o = 0.1353.
(B) Rectangular window, N = 20, ¢ = 0.0637. (C) Hamming window, N = 10, o = 0.5313. (D)
Hamming window, N = 20, o = 0.2327. In each of the four cases the thick black line corresponds
to the filter described above, the thin black line to the same filter with o = 0.0, and the gray lineisa
A — p filter of the same degree and A = 0.5.
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Figure 8: Interactive filter design subsystem.
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This algorithm applies not only to low-pass filters, but to any polynomial transfer function expressed
aslinear combination of Chebyshev polynomials (every polynomial can bewritteninthisway). From
the numerical point of view, the Chebyshev polynomials congtitute a better basis than the power basis
because they are orthogonal in the interval [—1,1], Furthermore, the design techniques described
above produce polynomial coefficients with respect to this basis. In terms of storage, the algorithm
only requires four auxiliary arrays z°, z!, z%, 3 of dimension ». In terms of computation, the most
expensive operation is the multiplication of a vector by the matrix K, an operation that is executed
N times. Thisisthe evaluation of the Laplacian, described in equation (2.2), which is also alinear
complexity operation, because K is sparse.

filter(N, fo,..., fn, K, z,2")

0 =z
zl = K20
3:1:3:0—%3:1

3 = for + frzt
forj =2to N step 1 do

2 _ Kml

z? = (:cl — :BO) + (:cl — :c2)
$3 — $3 + fi$2
z0 = 2!
z! = z?

end

o = $3

return

Figure 9: Thefiltering algorithm z’ = f(K)z.

7. How to Choose The Pass-Band Frequency

So far in our discussion of how to design low-pass filters, the pass-band frequency k. was given.
In this section we are concerned with how to choose the pass-band frequency to prevent shrinkage. 1f
the signals are the coordinates of the vertices of a closed surface, preservation of the enclosed volume
is a natural criterion. But even in this case, normalizing the filtered signal to make it satisfy the
criterionis an expensive global operation that requires the evaluation of asurfaceintegral. And since
the criterion does not have a natural generalization to arbitrary discrete graph signals, we will use a
different criterion, more related to the signal processing formulation. Asin the classical case, since
the DFT 2 of asignal = satisfies Parseval’s formula, the value of #? can be interpreted as the energy
content of z in the frequency k;. Similarly, the sum



measures the energy content of z in the pass-band. Our criterion isto choose the minimum pass-band
frequency such that most of the energy of the signal falls in the pass-band, i.e., we choose k. such

that
> &= (1=¢lzlp,
k;<kpp

whereeisavery small number. Of course, since we cannot computethe DFT of z, we cannot minimize
this expression exactly. We can only get a rough estimate of the minimizer using the power spectral
estimator described in the next section. What value of ¢ to use, and how accurate the estimation should
be is application dependent, but in general it should be determined experimentally for a set of typical
signals.

8. Power Spectrum Estimation

|deally, to evaluate the performance of the different low-passfilter algorithmswe should measure
the DFT of the filter outputs, and check that the high frequency energy content is very small. Since
we do not have any practical way of computing the DFT, we estimate the power spectrum, or energy
distribution, of a signa as follows. We partition the interval [0,2] into a small nhumber of non-
overlapping intervals I, ..., I, and for each one of this intervals we estimate the energy content
of the signal within the interval. We do so by designing a very sharp (high degree) pass-band filter
f7(k) for each interval I?. The energy content of the signal = within the interval 17 can be estimated
by measuring the total energy of the output of corresponding filter applied to the signal

IF(E)zlp ~ > &

k,eli

By designing all these FIR filters of the same degree, a filter-bank, we can evaluate all of them
simultaneoudly at a greatly reduced computational cost. The only disadvantage is that we need M
arrays of the same dimension as the input signal = to accumulate the filter outputs before their norms
are evaluated. If the pass-band filters were ideal, Parseval’s formulaimplies that the sum of the total
energies of the filter outputs must be equal to the total energy of the input signal. Since the transfer
functions of the filters overlap, this condition is only approximately satisfied. But the error can be
made arbitrarily small by increasing the degree of the polynomials.

Figure 8 shows several views of the spectrum estimation control panel of our interactive surface
editing system. In thisfigure NV is the degree of the filters in the filter bank, M is the number of
bands, and K0 is the width of each band. We recommend using filters designed with the Hanning or
Hamming windows of a degree at lest ten times the number of spectrum bands.

9. Experimental Results

We have integrated all the methods described above within our surface editing and visualization
system, illustrated in figure 11. Figure 12 shows the result of applying the filters of figure 7 to the
same input surface. The spectrum estimate for the input surface yields the 99.88% of the energy in
theband [0, 0.1]. Thisisatypical result for relatively large surfaces, and we have found that a default

16



Figure 10: Interactive power spectrum estimation subsystem.
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Figure 11: Interactive surface editing system.
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Figure 12: Filtersof Figure 7 applied to the same surface. In all these examples ke, = 0.1. (A) Input
surface (2565 vertices, 5138 triangles). (B) A — u filter A = 0.5 n = 10. (C) A — p filter A = 0.5
n = 20. (D) A — p filter A = 0.5 n = 60. (E) Rectangular window o = 0.0 » = 10. (F) Rectangular
window ¢ = 0.0 n = 20. (G) Rectangular window ¢ = 0.01353 n = 10. (H) Rectangular window
o =0.06374 n = 20. (I) Hamming window ¢ = 0.0 n» = 10. (J) Hamming window ¢ = 0.0 n = 20.
(K) Hamming window ¢ = 0.5313 n = 10. (L) Hamming window ¢ = 0.2327 n = 20.
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value ks = 0.1 produces very good results. But as we pointed out before, the appropriate value for a
family of similar signals must be determined experimentally by estimating the spectrum of a typical
sample.

The A — p algorithm produces very good results, but to significantly reduce high frequencies, a
relatively large number of iterations might be necessary. The results obtained with rectangular filters
are unsatisfactory. They are somehow better when we increase the value of o, as described in section
5, but although they are faster, they change the low frequencies components too much, altering the
shape quite significantly.

The idedl transfer function should be as flat as possible in the pass-band region (f(k) ~ 1 for
k € [0, kes]), and then decrease as fast as possible in the stop-band region (k € [k, 2]). The transfer
function of the A\ — . algorithm hasthis shape, but does not decrease fast enough in the stop-band. The
filtersdesigned with the other three windows (Hanning, Hamming, and Blackman), and with increased
o producetransfer functions of similar shape. The Blackman window produces transfer functionsthat
are much flatter in the pass-band, but at the expense of a dower rate of decrease in the stop-band.
Hanning and Hamming windows produce similar results, but the Hamming window produces transfer
functions with less oscillations. As figure 12 shows, filters designed with the Hamming window
produce filters of similar quality asthe A — x algorithm, but much faster.

10. Conclusions

Generalizing the signal processing formulation of [10, 11], in this paper we formulated the most
significant concepts of Fourier analysis for signals defined on oriented graphs, and showed that linear
filterswith polynomial transfer function can be implemented in an efficient manner, and designed with
classical digital filter design methods. In particular, we have shown how to design surface smoothing
filters that produce almost the same effect as the filter described in [10, 11], but in a fraction of the
time. We have also described a method to estimate the power spectrum of a signal, and used this
power spectrum estimate to determine the pass-band frequency for a surface smoothing filter, and as
atool to evaluate the performance of different filter designs. We have also given aformal definition
of the shrinkage problem, which isvalid not only for closed surfaces, but for any signal.
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