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ABSTRACT:

For a number of computational purposes, including visualization, smooth surfaces are approxi-
mated by polyhedral surfaces. An inherent problem of these approximation algorithms is that the
resulting polyhedral surfaces appear faceted. A signal processing approach to smoothing polyhedral
surfaces was recently introduced [10, 11]. Within this framework surface smoothing corresponds to
low-pass filtering. In this paper we look at the filter design problem in more detail. We analyze the
stability properties of the low-pass filter described in [10, 11], and show how to minimize its running
time. Then we show that most classical techniques used to design finite impulse response (FIR)
digital filters can also be used to design significantly faster smoothing filters. Finally, we describe an
algorithm to estimate the power spectrum of a signal, and use it to evaluate the performance of the
different filter design techniques described in the paper.



1. Introduction

The signal processing framework introduced in [10, 11], extends Fourier analysis to discrete
surface signals, functions defined on the vertices of polyhedral surfaces. As in the method of
Fourier Descriptors [12], where a closed curve is smoothed by truncating the Fourier series of its
coordinate signals, a very large polyhedral surface of arbitrary topology is smoothed here by low-pass
filtering its three surface coordinate signals. And although the formulation was developed mainly
for signals defined on surfaces, it is in fact valid for discrete graph signals, functions defined on the
vertices of directed graphs. Since this general formulation provides a unified treatment of polygonal
curves, polyhedral surfaces, and even three-dimensional finite elements meshes, we start this paper
by reviewing this formulation in its full generality.

Then we look at the filter design problem in more detail, with the main goal of minimizing the
execution time of the low-pass filtering algorithm, given a desired frequency response specification.
But we also take into consideration numerical issues, such as stability. We first study the tradeoffs
that exists between minimizing execution time and maintaining the filter stable for the low-pass filter
design of [10, 11]. Then we show that most classical finite impulse response (FIR) digital filter design
techniques can be applied, with minor or no modifications in most cases, to the design of discrete
graph signal filters. FIR filters, which in this framework correspond to sparse matrix multiplication,
yield acceptable linear time and space complexity algorithms. Five to ten-fold speedups with respect
to the low-pass filter design of [10, 11] can easily be obtained.

Then, we compare the performance of the different filter design methodologies with an algorithm to
estimate the power spectrum of a discrete graph signal. This power spectrum estimator is implemented
as a bank of high order band-pass filters, designed with the same techniques as the surface low-pass
smoothing filters. However, the goal here is to design very sharp band-pass filters, not necessarily to
minimize the order of the filter. We also use the power spectrum estimator to determine the pass-band
frequency of the filter in such a way that shrinkage is prevented.

We end the paper with some experimental results and our conclusions.

2. Fourier Analysis of Discrete Graph Signals

In this section we describe the signal processing formulation of [10, 11] in its most general form,
i.e., for discrete graph signals, functions defined on directed graphs. We represent a directed graph
on the set f1; : : : ; ng of n nodes as a set of neighborhoods fi? : i = 1; : : : ; ng, where i? is a subset
of nodes that we call the neighborhood of node i. If j is an element of i? we say that j is a neighbor
of i, and we visualize it as an arrow from i to j. In principle, except for prohibiting a node from
being a neighbor of itself, we do not impose any other constraint on the neighborhoods. Note that j
is allowed to be a neighbor of i without requiring i to be a neighbor of j, and neighborhoods can also
be empty. We call a vector x = (x1; : : : ; xn)t, with one component per node of the graph, a discrete
graph signal.

We represent a polyhedral surface as a pair of arrays S = fV; Fg, an array of n vertices V , and an
array of faces F . A vertex is a three-dimensional vector of real coordinates, and a face is a sequence
of non-repeated indices of vertices representing a closed three-dimensional polygon. Triangulated
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surfaces are the most common, where all faces are triangles. We look at a polyhedral surface of n
vertices as a directed graph, by labeling the vertices with distinct node numbers ranging from 1 to n,
and defining a neighborhood for each node. We normally use first order neighborhoods, were node j
is a neighbor of node i if i and j share an edge (or face), but other neighborhood structures can be used
for other purposes, such as to impose certain types of constraints [11]. A discrete surface signal is a
discrete graph signal defined on the associated graph. We visualize a discrete surface signal defined
on a polyhedral surface as a piece-wise linear function defined on the surface. Discrete surface signals
defined on polygonal curves, and on simplicial complexes of higher dimension, can be interpreted in
a similar way.

The Fourier transform of a discrete graph signal cannot be defined in the traditional way because
there is no notion of convolution. However, there is an alternative definition that can be generalized.
Computing the Discrete Fourier Transform (DFT) of a signal defined on a closed polygon of n vertices
is equivalent to decomposing the signal as a linear combination of the eigenvectors of the Laplacian
operator

�xi =
1

2
(xi�1 � xi) +

1

2
(xi+1 � xi) ; (2.1)

were the Fourier transform is the vector of coefficients of the sum. To define the Fourier transform of
a signal defined on an arbitrary directed graph we only have to define a linear operator that we will call
the Laplacian operator. This is the same idea behind the method of eigenfunctions of Mathematical
Physics [1].

We define the Laplacian of a discrete graph signal x by the formula

�xi =
X
j2i?

wij (xj � xi) (2.2)

where the weights wij are positive numbers that add up to one for each vertexX
j2i?

wij = 1 :

These weights can be chosen in many different ways taking into consideration the neighborhoods,
but in this paper we will assume that they are not functions of the signal x. Otherwise, the resulting
operator is non-linear, and so, beyond the scope of this paper. One particularly simple choice that
produces good results is to set wij equal to the inverse of the number of neighbors 1=ji?j of node i, for
each element j of i?. Other choices of weights are discussed in [10, 11]. Note that the Laplacian of a
signal defined on a closed polygon, described in equation (2.1), is a particular case of these definitions,
with wij = 1=2, for j 2 i? = fi� 1; i+ 1g, for each node i.

If W = (wij) denotes the matrix of weights, with wij = 0 when j is not a neighbor of i, and
K = I �W , the Laplacian of a discrete signal can be written in matrix form as

�x = �Kx : (2.3)

Although the method applies to general neighborhood structures, in this paper we will restrict our
analysis to those cases where the matrixW can be factorized as a product of a symmetric matrix times
a diagonal matrix W = ED. In this case the matrix W is a normal matrix [4], because the matrix

D1=2WD�1=2 = D1=2ED1=2 (2.4)
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is symmetric. Note that such is the case for the first order neighborhoods of a surface with equal
weights wij = 1=ji?j in each neighborhood i?, where E is the incidence matrix of the neighborhood
structure (a symmetric matrix for first order neighborhoods), the matrix whose ij-th. element is equal
to 1 if the nodes i and j are neighbors, and 0 otherwise; and D is the diagonal positive definite matrix
whose i-th. diagonal element is 1=ji?j. When W is a normal matrix it has all real eigenvalues, and
sets of n left and right eigenvectors that form dual bases of n-dimensional space. Furthermore, by
construction, W is also a stochastic matrix, a matrix with nonnegative elements and rows that add up
to one [9]. The eigenvalues of a stochastic matrix are bounded above in magnitude by 1. It follows that
the eigenvalues of the matrix K are real, bounded below by 0, and above by 2. Seen as discrete graph
signals, the right eigenvectors of the matrixK can be considered as the natural vibration modes, and
the corresponding eigenvalues as the associated natural frequencies. In our case, a vibration mode of
high natural frequency corresponds to a rapid oscillation in the space domain. For example, for any
directed graph, the constant signal (1; : : : ; 1) is an eigenvector of K associated with the frequency
k = 0, and the values of a natural vibration mode associated with a low natural frequency varies
slowly when we move from a vertex to a neighbor vertex.

In the simple cases of signals defined on regular polygons, or more generally on graphs with group
structure [3], the eigenvectors and eigenvalues of K have analytic expressions. The Fast Fourier
Transform algorithm for signals defined on closed polygons is a good example of how this structure
can be exploited. However, for the typical large graphs that we are interested in processing here, there
are no analytic expressions for the eigenvalues and eigenvectors of K . And although a few extremal
eigenvalues and eigenvectors of K can be computed with the Lanczos method [4], it is numerically
impossible to reliably compute all of them. However, and this is the most significant observation, for
filtering operations it is not necessary to compute the eigenvectors explicitly.

If 0 � k1 � � � � � kn � 2 are the eigenvalues of K , e1; : : : ; en a set of corresponding right
eigenvectors, and �1; : : : ; �n the associated dual basis of e1; : : : ; en, the identity matrix I , and the
matrix K can be written as follows

I =
nX
i=1

ei�
t
i K =

nX
i=1

ki ei�
t
i ;

and every discrete graph signal x has a unique decomposition as a linear combination of e1; : : : ; en

x = I x =
nX
i=1

x̂i ei ; (2.5)

where x̂i = �tix. We call the vector x̂ = (x̂1; : : : ; x̂n)
t the Discrete Fourier Transform (DFT) of

x, generalizing the classical definition for signals defined on closed polygons. Note, however, that
this definition does not identify a unique object yet. If a different set of right eigenvectors of K is
chosen, a different DFT is obtained. To complete the definition, if W = ED with E symmetric,
and D diagonal, The formula hx; yiD = xtDy defines an inner product in our space of signals, and
normalizing the right eigenvectors ofK to unit length with respect to the associated norm is equivalent
to orthonormalizing them with respect to the inner product, and Parseval’s formula is satisfied

kxk2D = kx̂k2 ; (2.6)
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where the norm on the right hand side is the Euclidean norm. That is, the frequency components x̂iei
of the signal x are orthogonal with respect to the inner product defined by D. We will assume from
now on that the right eigenvectors of K are normalized in this fashion. These results will be used in
sections 7 and 8.

To filter the signal x is to change its frequency distribution according to a transfer function f(k)

x0 =
nX
i=1

f(ki) x̂iei =

 
nX
i=1

f(ki) ei�
t
i

!
x : (2.7)

The frequency component of x corresponding the the natural frequency ki is enhanced or attenuated
by a factor f(ki). For example, the transfer function of an ideal low-pass filter, illustrated in figure 1,
is

fLP =
�
1 for 0 � k � kPB

0 for kPB < k � 2
; (2.8)

where kPB is the pass-band frequency. In this case, all the frequencies above the pass-band frequencies

0 kPB 2

1:0

Figure 1: Graph of the ideal low-pass filter fLP.

are removed, leaving only the low frequency components. The method of Fourier Descriptors
[12] consists in filtering a discrete graph signal with an ideal low-pass filter transfer function. An
efficient algorithm (O(n log(n))) to ideal low-pass filter a signal defined on a closed polygon can be
implemented using the Fast Fourier Transform algorithm. But in the general case of discrete graph
signals, there is no efficient numerical method to compute its DFT, particularly when the number of
nodes of the graph is very large. The computation can only be performed approximately, which is
the main subject of this paper. To do this the ideal low-pass filter transfer function is replaced by an
analytic approximation, usually a polynomial or rational function, for which the computation can be
performed in an efficient manner. A wide range of analytic functions of one variable f(k) can be
evaluated in a matrix such as K [4]. The result is another matrix f(K) with the same left and right
eigenvectors, but with eigenvalues f(k1); : : : ; f(kn)

f(K) =
nX
i=1

f(ki) ei�
t
i :
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The main reason why the filtering operation x0=f(K)x of equation (2.7) can be performed efficiently
for a polynomial transfer function of low degree, is that when K is sparse, which is the case here,
the matrix f(K) is also sparse (but of wider bandwidth), and so, the filtering operation becomes the
multiplication of a vector by a sparse matrix.

In Gaussian smoothing the transfer function is the polynomial fN (k) = (1��k)N , with 0 < � < 1.
But this transfer function produces shrinkage

lim
N!1

(1� �k)N =
�
1 for k = 0
0 for 0 < k � 2 :

That is, as N grows, the shape asymptotically converges to its centroid.

k = 1

�

N = 2
1:0

k = 1

�

0 kPB 2 0 kPB 2

N > 21:0

A B

Figure 2: Graph of transfer function f(k) = ((1 � �k)(1 � �k))N=2. (A) N = 2. (B) N > 2. (out of
scale)

The algorithm introduced in [10, 11] is escentially Gaussian smoothing with the difference that
the scale factor � changes from iteration to iteration, alternating between a positive value � and a
negative value �. This simple modification still produces smoothing, but prevents shrinkage. The
transfer function is the polynomial fN (k) = ((1 � �k)(1 � �k))N=2, with 0 < � < �� and N even,
illustrated in figure 2-A forN = 2, and in 2-B forN > 2. This displays a typical low-pass filter shape
in the region of interest, from k = 0 to k = 2. The pass-band frequency of this filter is defined as the
unique value of k in the interval (0; 2) such that fN (k) = 1. Such a value exists when 0 < � < ��,
and turns out to be equal to kPB = 1=� + 1=�. This polynomial transfer function of degree N results
in a linear time and space complexity algorithm, which is very simple to implement, and produces
smoothing without shrinkage. From now on we will refer to this algorithm as the ��� algorithm.
However, as we will see below, faster algorithms can be achieved by choosing as transfer function a
beter polynomial approximation of the same degree of the ideal low-pass filter.

3. Fast Smoothing as Filter Design

We are faced with the classical problem of digital filter design in signal processing [8, 5], but
with some restrictions. Note that because of the linear complexity constraint discussed above, only
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polynomial transfer functions (FIR filters) are allowed. With rational transfer functions (IIR filters)
better approximations of the ideal low-pass filter could be achieved with lower degrees of polynomials,
but in our context a rational transfer function f(k) = g(k)=h(k) involves solving the sparse linear
system h(K)x0 = g(K)x, which is not a linear complexity operation. Because of this reason, we
leave the study of rational transfer functions for the future.

Because of space restrictions, of all the traditional FIR filter design methods available in the signal
processing literature, we only cover here in some detail the method of windows, which is the simplest
one. With this method we can design filters which are significantly faster, or sharper, than those obtain
with the � � � algorithm for the same degree.

4. Optimizing the ��� algorithm

The ��� algorithm can be described in a recursive fashion as follows

fN (k) =
�

1 N = 0
(1� �N k) fN�1(k) N > 0

where �N = �, for N odd, and �N = � for N even. Note that this algorithm requires minimum
storage, only one array of dimension n to store the Laplacian of a signal if computed in place, and two
arrays of dimension n in general. The algorithm is described in figure 3, where x is the input signal,
and x0 is the result of the filtering operation.

filter(N;�1; : : : ; �N ;K; x; x0)
x0 = x

for j = 1 to N step 1 do
x1 = Kx0

x0 = x0 � �jKx1

end
x0 = x0

return

Figure 3: The �� � filtering algorithm.

To maintain the minimum storage property and the same simple algorithmic structure, one could
try to generalize by changing the scale factors �N from iteration to iteration in a different way. But
if we start with a given pass-band frequency kPB = 1=� + 1=�, as it is usually the case when one
wants to design the filter, there are many values of � and � such that 0 < � < ��, that define a filter
with the same pass-band frequency. In order for the polynomial f(k) = (1 � �k)(1 � �k) to define
a low-pass filter in the interval [0; 2] it is necessary that jf(k)j < 1 in the stop-band region, so that
fN (k) = f(k)N ! 0 when N grows. Since f(kPB) = 1 and f(k) is strictly decreasing for k > kPB,
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this condition is equivalent to f(2) > �1, which translates into the following constraint on �

� <
�kPB +

q
(2�kPB)2 + 4

2(2�kPB)
: (4.1)

Figure 4 shows examples of transfer functions of filters designed for the same pass-band frequency,
but with different values of �. As � increases, the slope of the filter immediately after the pass-band
frequency increases, i.e., the filter becomes sharper, but at the same time instability starts to develop
at the other end of the spectrum, close to k = 2. If the maximum eigenvalue kn of the matrix K

is significantly less than 2 (which is not usually the case) we only need the filter to be stable in the
interval [0; kn] (i.e., 1 > f(kn) > �1), and larger values of � are acceptable. A good estimate of
the maximum eigenvalue of K can be obtained with the Lanczos method [4]. Even if the maximum
eigenvalue kn is not known, the signal x to be smoothed might be band-limited, i.e., the coefficients
x̂i in equation (2.5) associated with high frequencies are all zero, or very close to zero. This condition
might be difficult to determine in practice for a particular signal, but if we apply the algorithm with
small � for a certain number of iterations, the resulting signal becomes in effect band-limited. At
this point � can be increased keeping the pass-band frequency constant, maybe even making the filter
unstable, and the algorithm can be applied again with the new values of � and � for more iterations.
This process of increasing � keeping the pass-band frequency constant can now be repeated again and
again. A moderate speed-up is obtained in this way. Figure 5 show some examples of this process.
All the filters in this figure produce almost the same response, but filter (F) is five times faster than
filter (A).

5. Filter Design with Windows

The most straightforward approach to traditional digital filter design is to obtain a trigonometric
polynomial approximation of the ideal filter transfer function by truncating its Fourier series. The
resulting trigonometric polynomial minimizes the L2 distance to the ideal filter transfer function
among all the trigonometric polynomials of the same degree. Note that it is sufficient to know how
to construct low-pass filters. A band-pass filter can be constructed as the difference of two low pass
filters, and a high-pass filter can be constructed in a similar way. To obtain regular polynomials, not
trigonometric ones, we first apply the change of variable k = 2(1 � cos(�)). This change of variable
is a 1� 1 mapping [0; �=2] ! [0; 2]. Then we extend the resulting function to the interval [��; �] as
follows

hLP(�) =

8><
>:
0 �=2 � � � �

fLP(2(1 � cos(�))) 0 � � � �=2
h(��) �� � � � 0 :

Note that this function, periodic of period 2� and even, is also an ideal low-pass filter as a function of
�

hLP(�) =
�
1 if j�j < �PB

0 otherwise
;

7



1

0 kPB 2

�1

N=2

N=20

1

0 kPB 2

�1

N=2

N=20

A B

1

0 kPB 2

�1

N=2

N=20

1

0 kPB 2

�1

N=2

N=20

C D

Figure 4: Graphs of transfer function ((1 � �k)(1 � �k))N=2 for N = 2 and N = 20 and pass-band
frequency kPB = 1=� + 1=� = 0:09. (A) � = 0:5 : stable. (B) � = 0:6 : stable. (C) � = 0:7 : limit
case. (D) � = 0:8 : unstable.
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1

0 kPB 2

1

0 kPB 2

A B

1

0 kPB 2

1

0 kPB 2

C D

1

0 kPB 2

1

0 kPB 2

E F

Figure 5: Different combinations of parameters in ((1 � �k)(1 � �k))N=2 produce almost indistin-
guishable transfer functions. The pass-band frequency kPB = 1=�+ 1=� = 0:1 is the same in the four
cases. (A) � = 0:3, � = �0:3093, N = 120. (B) � = 0:5, � = �0:5263, N = 40. (C) � = 0:7,
� = �0:7527, N = 20. (D) � = 0:9, � = �0:9890, N = 12. (E) � = 0:3, � = �0:3093, N = 12,
followed by � = 0:5, � = �0:5263, N = 12, followed by � = 0:7, � = �0:7527, N = 12. (F)
� = 0:3, � = �0:3093, N = 6, followed by � = 0:5, � = �0:5263, N = 6, followed by � = 0:7,
� = �0:7527, N = 6, followed by � = 0:9, � = �0:9890, N = 6. Note that (C) and (D) are unstable
by themselves, but preceded by stable filters become stable. The degrees of the polynomials are (A)
120, (B) 40, (C) 20, (D) 12, (E) 36, and (F) 24.
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where �PB is the unique solution of kPB = 2(1 � cos(�PB)) in [0; �=2]. Since h(�) is an even function,
it has a Fourier series expansion in terms of cosines only

hLP(�) = h0 + 2
1X
n=0

hn cos(n�) ;

where hn is

hn =
1

2�

Z �

��
h(�) cos(n�) d� =

�
�PB=� n = 0

sin(n �PB)=n� n > 0
:

Now, it is well known that cos(n �) = Tn(cos(�)), where Tn is the n-th. Chebyshev polynomial [2],
defined by the three term recursion

Tn(w) =

8><
>:
1 n = 0
w n = 1
2w Tn�1(w) � Tn�2(w) n > 1

The N -th. polynomial approximation of fLP for k 2 [0; 2] is then

fN (k) =
�PB

�
T0(1 � k=2) +

NX
n=1

2 sin(n �PB)

n�
Tn(1� k=2) : (5.1)

Figure 6 shows some of these polynomials compared with the polynomials ((1��k)(1��k))N=2 for
the same pass-band frequency.

As can be easily observed in figure 6, direct truncation of the series leads to the well-known
Gibbs phenomenon, i.e., a fixed percentage overshoot and ripple before and after the discontinuity.
As it is shown in section 9, this is one of the problems that makes this technique unsatisfactory. The
other problem is that the resulting polynomial approximation does not necesarily satify the constraint
fN (0) = 1, which is required to preserve the average value of the signal (DC level in classical signal
processing, centroid in the case of surfaces). Our experiments show that a desirable surface smoothing
filter transfer function should be as close as possible to 1 within the pass-band as possible, and then
decrease to zero in the stop-band ([kPB; 2]).

Another classical technique to control the convergence of the Fourier series is to use a weighting
function to modify the Fourier coefficients. In our case the polynomial approximation of equation
(5.1) is modified as follows

fN (k) = w0

�PB

�
T0(1 � k=2) + wn

NX
n=1

2 sin(n �PB)

n�
Tn(1 � k=2) ; (5.2)

where w0; w1; : : : ; wN are the weights that constitute a so called window. Since the multiplication of
Fourier coefficients by a window corresponds to convolving the original frequency response with the
Fourier series defined by the window, a design criterion for windows is to find a finite window whose
Fourier transform has relatively small side lobes. The polynomial approximation of equation (5.1) is
a particular case of (5.2), where the weights are all equal to 1. This is called the Rectangular window.
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A B

N = 10

1

0 kPB 2

1

0 kPB 2

N = 20

1

0 kPB 2

1

0 kPB 2

N = 40

1

0 kPB 2

1

0 kPB 2

N = 80

1

0 kPB 2

1

0 kPB 2

Figure 6: (A) Polynomial transfer function f(k) = ((1 � �k)(1 � �k))N=2 with kPB = 0:1 and
� = 0:6307. (B) Truncated Fourier series approximation of the ideal low-pass filter (Rectangular
window).
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Other popular windows are, the Hanning window, the Hamming window, and the Blackman window.

wn =

8>>><
>>>:
1:0 Rectangular
0:5 + 0:5 cos(n�=(N + 1)) Hanning
0:54 + 0:46 cos(n�=(N + 1)) Hamming
0:42 + 0:5 cos(n�=(N + 1)) + 0:08 cos(2n�=(N + 1)) Blackman :

(5.3)

The Fourier series of the rectangular window has a narrow center lobe, but its side lobes contain a
large part of the total energy, and decay very slowly. The Hamming window has 99:96 percent of its
energy in its main lobe, but the width of the main lobe is twice the width of the rectangular window’s
main lobe. The Blackman window further reduces the peak side lobe ripple at the expense of a main
lobe whose width is about triple the width of the rectangular window’s main lobe. There are other
window designs that are optimal in one way or another [7, 6, 5], but the window coefficients are in
some cases difficult to compute, and as we will see below, we can design satisfactory filters with the
windows described above.

If the low-pass filter must have a very narrow pass-band region, which is usually the case in the
surface smoothing application, then a high degree polynomial is necessary to obtain a reasonable
approximation. This is in fact a consequence of the uncertainty principle. The phenomenon can be
observed even in the case of the rectangular window, illustrated in figure 6. The problem is even
worse for the other windows, because they have wider main lobes. To obtain a reasonably good
approximation of degree N , the pass-band must be significantly wider than the width of the main
lobe of the window. If � is the width of the main lobe of the window, the resulting filter will be
approximately equal to one for � 2 [0; �PB � �], approximately equal to zero for � 2 [�PB + �; �], and
approximately decreasing for � 2 [�PB � �; �PB + �]. Our solution in this case of narrow pass-band
frequency, is to design the filter for a small value of N , but with the pass-band frequency increased
by � (no longer the width of the main lobe of the window)

fN(k) = w0

(�PB + �)

�
T0(1 � k=2) + wn

NX
n=1

2 sin(n(�PB + �))

n�
Tn(1� k=2) ; (5.4)

and then, eventually iterate this filter (f(k) = fN(k)M ). The value of � can be determined numerically
by maximizing f(kPB) under the constraints jf(k)j < 1 for kPB < k � 2. In our implementation, we
compute the optimal�with a local root finding algorithm (a few Newton iterations) so that fN(kPB) = 1,
starting from an interactively chosen initial value. Figure 7 shows some examples of filters designed
in this way, compared with filters of the same degree and � = 0, and with � � � filters of the same
degree. Figure 8 shows several views of the filter design control panel of our interactive surface
editing system.

6. Implementation

Figure 9 describes our algorithmic implementation of the filtering operation x0 = fN(K)x, where
f(k) is the transfer function

f(k) =
NX
j=0

fj Tj(1 � k=2) :

12
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C D

Figure 7: Filters fN(k) for kPB = 0:1 and � > 0:0. (A) Rectangular window, N = 10, � = 0:1353.
(B) Rectangular window, N = 20, � = 0:0637. (C) Hamming window, N = 10, � = 0:5313. (D)
Hamming window, N = 20, � = 0:2327. In each of the four cases the thick black line corresponds
to the filter described above, the thin black line to the same filter with � = 0:0, and the gray line is a
� � � filter of the same degree and � = 0:5.
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Figure 8: Interactive filter design subsystem.
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This algorithm applies not only to low-pass filters, but to any polynomial transfer function expressed
as linear combination of Chebyshev polynomials (every polynomial can be written in this way). From
the numerical point of view, the Chebyshev polynomials constitute a better basis than the power basis
because they are orthogonal in the interval [�1; 1], Furthermore, the design techniques described
above produce polynomial coefficients with respect to this basis. In terms of storage, the algorithm
only requires four auxiliary arrays x0; x1; x2; x3 of dimension n. In terms of computation, the most
expensive operation is the multiplication of a vector by the matrix K , an operation that is executed
N times. This is the evaluation of the Laplacian, described in equation (2.2), which is also a linear
complexity operation, because K is sparse.

filter(N; f0; : : : ; fN ;K; x; x0)
x0 = x

x1 = Kx0

x1 = x0 � 1

2
x1

x3 = f0x
0 + f1x

1

for j = 2 to N step 1 do
x2 = Kx1

x2 = (x1 � x0) + (x1 � x2)
x3 = x3 + fix

2

x0 = x1

x1 = x2

end
x0 = x3

return

Figure 9: The filtering algorithm x0 = f(K)x.

7. How to Choose The Pass-Band Frequency

So far in our discussion of how to design low-pass filters, the pass-band frequency kPB was given.
In this section we are concerned with how to choose the pass-band frequency to prevent shrinkage. If
the signals are the coordinates of the vertices of a closed surface, preservation of the enclosed volume
is a natural criterion. But even in this case, normalizing the filtered signal to make it satisfy the
criterion is an expensive global operation that requires the evaluation of a surface integral. And since
the criterion does not have a natural generalization to arbitrary discrete graph signals, we will use a
different criterion, more related to the signal processing formulation. As in the classical case, since
the DFT x̂ of a signal x satisfies Parseval’s formula, the value of x̂2i can be interpreted as the energy
content of x in the frequency ki. Similarly, the sum

X
ki�kPB

x̂2i
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measures the energy content of x in the pass-band. Our criterion is to choose the minimum pass-band
frequency such that most of the energy of the signal falls in the pass-band, i.e., we choose kPB such
that X

ki�kPB

x̂2i � (1� �) kxk2D ;

where � is a very small number. Of course, since we cannot compute the DFT of x, we cannot minimize
this expression exactly. We can only get a rough estimate of the minimizer using the power spectral
estimator described in the next section. What value of � to use, and how accurate the estimation should
be is application dependent, but in general it should be determined experimentally for a set of typical
signals.

8. Power Spectrum Estimation

Ideally, to evaluate the performance of the different low-pass filter algorithms we should measure
the DFT of the filter outputs, and check that the high frequency energy content is very small. Since
we do not have any practical way of computing the DFT, we estimate the power spectrum, or energy
distribution, of a signal as follows. We partition the interval [0; 2] into a small number of non-
overlapping intervals I1; : : : ; IM , and for each one of this intervals we estimate the energy content
of the signal within the interval. We do so by designing a very sharp (high degree) pass-band filter
f j(k) for each interval Ij . The energy content of the signal x within the interval Ij can be estimated
by measuring the total energy of the output of corresponding filter applied to the signal

kf j(K)xk2D �
X
ki2Ij

x̂2i :

By designing all these FIR filters of the same degree, a filter-bank, we can evaluate all of them
simultaneously at a greatly reduced computational cost. The only disadvantage is that we need M

arrays of the same dimension as the input signal x to accumulate the filter outputs before their norms
are evaluated. If the pass-band filters were ideal, Parseval’s formula implies that the sum of the total
energies of the filter outputs must be equal to the total energy of the input signal. Since the transfer
functions of the filters overlap, this condition is only approximately satisfied. But the error can be
made arbitrarily small by increasing the degree of the polynomials.

Figure 8 shows several views of the spectrum estimation control panel of our interactive surface
editing system. In this figure N is the degree of the filters in the filter bank, M is the number of
bands, and K0 is the width of each band. We recommend using filters designed with the Hanning or
Hamming windows of a degree at lest ten times the number of spectrum bands.

9. Experimental Results

We have integrated all the methods described above within our surface editing and visualization
system, illustrated in figure 11. Figure 12 shows the result of applying the filters of figure 7 to the
same input surface. The spectrum estimate for the input surface yields the 99:88% of the energy in
the band [0; 0:1]. This is a typical result for relatively large surfaces, and we have found that a default
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Figure 10: Interactive power spectrum estimation subsystem.
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Figure 11: Interactive surface editing system.
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A B C D

E F G H

I J K L

Figure 12: Filters of Figure 7 applied to the same surface. In all these examples kPB = 0:1. (A) Input
surface (2565 vertices, 5138 triangles). (B) � � � filter � = 0:5 n = 10. (C) � � � filter � = 0:5
n = 20. (D) � � � filter � = 0:5 n = 60. (E) Rectangular window � = 0:0 n = 10. (F) Rectangular
window � = 0:0 n = 20. (G) Rectangular window � = 0:01353 n = 10. (H) Rectangular window
� = 0:06374 n = 20. (I) Hamming window � = 0:0 n = 10. (J) Hamming window � = 0:0 n = 20.
(K) Hamming window � = 0:5313 n = 10. (L) Hamming window � = 0:2327 n = 20.
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value kPB = 0:1 produces very good results. But as we pointed out before, the appropriate value for a
family of similar signals must be determined experimentally by estimating the spectrum of a typical
sample.

The � � � algorithm produces very good results, but to significantly reduce high frequencies, a
relatively large number of iterations might be necessary. The results obtained with rectangular filters
are unsatisfactory. They are somehow better when we increase the value of �, as described in section
5, but although they are faster, they change the low frequencies components too much, altering the
shape quite significantly.

The ideal transfer function should be as flat as possible in the pass-band region (f(k) � 1 for
k 2 [0; kPB]), and then decrease as fast as possible in the stop-band region (k 2 [kPB; 2]). The transfer
function of the ��� algorithm has this shape, but does not decrease fast enough in the stop-band. The
filters designed with the other three windows (Hanning, Hamming, and Blackman), and with increased
� produce transfer functions of similar shape. The Blackman window produces transfer functions that
are much flatter in the pass-band, but at the expense of a slower rate of decrease in the stop-band.
Hanning and Hamming windows produce similar results, but the Hamming window produces transfer
functions with less oscillations. As figure 12 shows, filters designed with the Hamming window
produce filters of similar quality as the �� � algorithm, but much faster.

10. Conclusions

Generalizing the signal processing formulation of [10, 11], in this paper we formulated the most
significant concepts of Fourier analysis for signals defined on oriented graphs, and showed that linear
filters with polynomial transfer function can be implemented in an efficient manner, and designed with
classical digital filter design methods. In particular, we have shown how to design surface smoothing
filters that produce almost the same effect as the filter described in [10, 11], but in a fraction of the
time. We have also described a method to estimate the power spectrum of a signal, and used this
power spectrum estimate to determine the pass-band frequency for a surface smoothing filter, and as
a tool to evaluate the performance of different filter designs. We have also given a formal definition
of the shrinkage problem, which is valid not only for closed surfaces, but for any signal.
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