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Abstract We have previously proposed a new technique
for the communication-free adaptive refinement of tet-
rahedral meshes that works for all configurations.
Implementations of the scheme must deal with all pos-
sible geometric configurations, which results in a large
number of cases that in turn result in practical pro-
gramming issues. In this article, we address this issue
with a Python script that generates C++ code using
the symmetric group S4 acting over canonical topolog-
ical and geometric configurations. We then analyze the
performance of the technique by characterizing (a) mesh
quality, (b) execution time and parallel speedup, and (c)
traits of the algorithm that could affect quality or exe-
cution time differently for different meshes and different
mesh refinement strategies. This article also details the
method used to debug the many subdivision templates
that the algorithm relies upon. Mesh quality is on par
with other similar refinement schemes, and we suggest a
more elaborate technique that may substantially im-
prove mesh quality. We show that throughput on
modern hardware can exceed 600,000 output tetrahedra
per second per processor, and that the method is
embarrassingly parallel—assuming the application has
partitioned the input properly.

Keywords Adaptive tetrahedral tessellation Æ
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Symmetric groups

1 Introduction: streaming mesh refinement

In [14], we presented the theory and algorithm for a
communication-free tetrahedral edge-subdivision refine-
ment scheme. In the present article, we focus on:

1. The practical implementation of the refinement
technique in a way that allows its application to
arbitrary subdivision schemes, and

2. The results obtained with the actual implementation
of the method, both in terms of mesh quality and of
execution speed.

In addition, we provide insight about the specifics of
the method that leave room for improvement. Prior to
that, we recall the context of streaming mesh refinement,
along with a summary of the algorithm we have pro-
posed.

1.1 Edge-based tetrahedral mesh refinement

The initial motivation for this work is the visualization
of higher order finite element numerical simulations.
Finite element techniques that use higher order (i.e.,
nonlinear) polynomial maps, U: R fi F and N: R fi X,
from some parametric space, R, into the model’s
geometric space, X, and solution space, F, of some set of
differential equations are becoming more common. Al-
though visualization techniques that use U and N di-
rectly are under development, being able to take
advantage of the huge number of techniques aimed at
linear maps is highly desirable. Our approach to do this
is through an adaptive simplicial tessellation of the
parameter space, R, into regions where U and/or N are
approximately linear. Specifically, this article describes a
subdivision scheme based on error metrics evaluated at
edge midpoints of some initial (crude) tessellation, as
shown in Fig. 1. Nevertheless, the method we propose is
not limited to visualization, since it takes the edge
refinement criterion as an input and is therefore appli-
cation independent; e.g., it may also be used as a mesh
refinement scheme for numerical simulations.

As with the previous work, we assume that the initial
tessellation is fine enough that no large changes in the
error metric occur interior to the simplices; the adaptive
tessellation is intended to improve detail, not capture
large changes.
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Tetrahedral mesh refinement is twofold: first, one
needs a criterion to decide which elements should be
refined; second, subdivision operators must be applied
to these elements while maintaining mesh conformity.
See [4] for a detailed survey of subdivision operators; for
this paper, the most important property of a subdivision
operator is locality. If a subdivision operator is only
allowed to insert points interior to a single element (so
that edges and faces remain unchanged), refinement is
clearly localized, but the quality of the resulting tetra-
hedra will be extremely poor. As the subdivision oper-
ator is allowed to make non-local changes (such as
moving nodes, splitting edges, or splitting faces shared
by other elements), some form of communication or
storage is required to produce a conforming mesh.
However, if both the subdivision criterion and the sub-
division operator must make the same decisions for each
edge and face across all tetrahedra that share it, no
communication or storage is required even though the
operation is non-local. This is the approach we will
pursue, even though it rules out any subdivision crite-
rion/operator pair that tessellates a boundary face or
edge using element information not on that face or edge.
For instance, a subdivision criterion based on the aspect
ratio of a tetrahedron, T, will not work because when
neighbors of T are processed, the aspect ratio of T will
not be available to them and any boundary they share
with T may not be compatible with the refinement of T.

In practice, numerous techniques for computing error
metrics or size specifications along edges have been
proposed (e.g., Lo [9] define a target edge length over all
of space and subdivide a sorted list of edges exceeding
the target length, while Labbé et al. [7] evaluate the
difference between a metric that transforms each element
to an equilateral triangle and a continuous ‘‘size speci-
fication’’ metric describing an ideal element shape, using
node relocation, edge swapping, and node insertion to
minimize the metric difference) while face-based error
metrics are much harder to devise and compute. It is
therefore natural to use an edge-based refinement ap-
proach; this means that there are two tasks to be per-
formed by the tessellation algorithm:

1. Making a decision about whether an edge should be
subdivided, and

2. Applying a template to produce new elements based on
which edges of an initial template require subdivision.

It is therefore natural to implement these tasks sep-
arately: they exist as separate C++ classes so that the
same templates for subdivision could be applied to many
different subdivision decision algorithms. Therefore, the
refinement task per se is application-independent, while
the criteria that decide whether edges require subdivision
(e.g., geometric distance, scalar field non-linearity, error
metrics, etc.) are to be specified by the user, and are not
discussed in this article.

This is not the first time adaptive tessellation using
edge-based subdivision has been considered; Velho [19]
and later Chung and Field [2] present a method for the
streaming refinement of triangular meshes using edge
subdivision, but do not extend the result to tetrahehedra.
Ruprecht and Müller [15] propose a tetrahedral edge-
subdivision algorithm but either do not enforce compat-
ibility or require neighborhood information and storage
space to hash shared output geometry. Oliker et al. [12]
use three templates for tetrahedral edge subdivisions and
propagate information across processor boundaries,
changing the templates until the mesh is compatible.

Since our applications are intrinsically 3-D (e.g.,
volume rendering and isosurfacing), refinement methods
that only address simplicial complexes in lower dimen-
sions are inadequate. In addition, collections of simpli-
ces that do not meet the requirements of a simplicial
complex (in particular, compatibility) are insufficient
since algorithms such as isosurfacing will produce
inconsistent output. Solutions to that problem that in-
volve hashing output geometry, so that simplices share
common vertices, edges, and faces, can require storage
on the order of the size of the output and, more
importantly, can require communication between pro-
cesses when tessellation is performed in parallel. In cases
where higher order finite elements are being rendered for
visualization and not analyzed, the subdivided simplices
are not ever stored—they are sent to a graphics card for
immediate rendering via OpenGL. Because OpenGL
does not require output geometry to share vertices, it is a
waste of resources to spend time insuring the subdivided
simplices are in a shared form. This is especially true for
view-dependent rendering techniques, where a tessella-
tion of the mesh is produced for each frame rendered. In
the case of mesh refinement combined with parallel
computing of numerical solutions, it is critical to limit
communication between processors, since network
bandwidth is the bottleneck and will so remain in the
foreseeable future. For these reasons, devising a refine-
ment scheme that produces compatible elements without
any communication is highly desirable. This would, in
particular, make it viable for streaming large datasets
and for parallel processing.

1.2 Streaming mesh refinement

Our approach consists of streaming the data set through
a refinement filter, as with [2] and [19]. However, contrary

Fig. 1 Given some initial tessellation of a finite element’s parameter
space, we subdivide edges until some application-dependent crite-
rion is met and we are left with a new, refined simplicial complex
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to these two techniques, we stream tetrahedra as well as
triangles. Our refinement filter is a direct extension of
[15], but insures compatibility in all conditions without
neighborhood information: [15] was left with face
ambiguities that could only be resolved via inter-element
communication.

Streaming refinement requires each tetrahedron to be
processed independently of its neighbors while remain-
ing compatible with them. In order to be compatible, the
edge subdivision algorithm must make the same decision
about whether subdivision should occur for a given edge
regardless of the tetrahedron it bounds—but as we ex-
plained earlier, this is application dependent. Addition-
ally, the subdivision of any face f of a tetrahedron must
be identical to the subdivision for the same face of any
neighboring tetrahedron. As illustrated, there is no
ambiguity regarding the subdivision of f when the
number ne(f) of its split edges is either 0, 1 or 3 (Fig. 2).
However, a topological ambiguity does arise when ex-
actly two edges are split, as two distinct face subdivisions
are possible (cf. Fig. 3). [15] used geometry—the longest
edge criterion—for deciding on a subdivision template
so that adjacent simplices produce compatibly-tessel-
lated boundaries, as shown in Fig. 3. This decision re-
moves the requirement of communication, because the
same criterion is applied to any tetrahedron that shares
the face, while producing the best possible triangle as-
pect ratio among the two possible solutions. Given a
tetrahedron, there are 26=64 possible choices for the set
E of edges to be split. [15] showed that these possibilities
reduce, via vertex permutations, to ten topological cases,
denoted—and we will use the same nomenclature—0, 1,
2a, 2b, 3a, 3b, 3c, 4a, 4b, 5 and 6: the number is the
cardinality n of E (i.e., the number of edges, n, of the
tetrahedron that must be subdivided), followed by a
letter when different topological configurations exist for
a same n. Different topological configurations exist when
one configuration of n edges to be split cannot be
transformed into another by a vertex permutation. For
example, compare the tetrahedra for case 3a and 3c
shown1 in Fig. 4. In case 3a, all three edges to be split
share a common vertex while in 3c, they do not. There is

no transformation between the two cases such that a
proper tessellation of one would be transformed into a
proper tessellation of the other. Ruprecht and Müller
showed that a valid tetrahedralization exists for every set
of boundary triangles produced by this scheme [15].
However, the longest-edge criterion does not always
specify how to subdivide faces with two split edges.

1.3 Geometric ambiguities

Indeed, geometrically ambiguous cases occur when a
face can be split into two different ways despite the

Fig. 2 Unambiguous face subdivision when 0, 1 or 3 edges are split

(a) (b)

Fig. 3 The topological ambiguity when ne (f) = 2 (a) is resolved by
deciding to connect the longest edge midpoint to the opposite
corner (b)

Fig. 4 Potentially ambiguous configurations

1In the online (color) version, all figures will display edges interior
to a displayed face in red, edges interior to a tetrahedron in green,
and others in black; black and red respectively turn into grey and
pink when the edge is not in the foreground. In the print version,
tetrahedra will be illustrated with unobscured bounding edges in
bold lines, obscured bounding edges in narrow lines, and interior
edges in dashed lines.
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longest edge criterion, i.e., whenever at least one face has
exactly two edges of equal length that must be split.
These are the cases that are not handled by [15] and
therefore, in all that follows, they will be simply referred
to as ambiguous cases. Such ambiguities may only arise
in cases 2a, 3a, 3c, 4a, 4b or 5, depicted in Fig. 4.
Ambiguous faces can be triangulated in two different
ways, and [15] do not propose a solution to resolve that
ambiguity, other than allowing either for incompatible
neighboring elements or communication between them.
Since none of these solutions are acceptable, we pre-
sented a scheme for refining tetrahedral meshes that does
not require neighborhood information in [14]. This
article focuses on the practical aspects of implementing
the technique and on measuring the performance of the
algorithm.

We now recall in Table 1 the summary of the tetra-
hedral subdivisions for canonical unambiguous config-
urations as we implemented them, based on [15]. For the
sake of brevity, in this table and for the rest of the
article, we index edges of a generic tetrahedron from 0 to
5, in the following order: 01, 12, 02, 03, 13 and 23, and to
denote by i the length of edge i.

1.4 A streaming solution to geometric ambiguities

By definition, any face f that remains ambiguous despite
the longest edge criterion is isosceles. The face f can

therefore be unequivocally subdivided into a smaller
isosceles triangle and an isosceles trapezoid with two
possible triangulations of the latter, as illustrated in
Fig. 5. We propose resolving this ambiguity by inserting
a new point, a, onto the orthogonal bisector B of the
unsplit edge (which is also the median, the angle bisector
and the altitude, because the face is isosceles), the angle
bisector of the vertex opposite the base of the trapezoid,
as shown in Fig. 5. This point insertion yields an
unambiguous subdivision of f with five triangles and,
moreover, this triangulation is symmetric about b;
therefore, if f is shared by two tetrahedra r1 and r2, this
strategy guarantees that the triangulations of r1 and r2

will be compatible across f. In other words, we have
resolved the geometric ambiguity while preserving both
element compatibility and our streaming requirement
(communication free). Applying this technique to each
geometrically ambiguous face that arises during the
refinement raises two questions: exactly where to put the
point, and, once the point has been placed, how to
decompose the tetrahedron.

In terms of topological compatibility, the point may
be placed anywhere along the part of the base edge
bisector that is interior to the isosceles trapezoid.
However, geometrically speaking, not all placements are
the same, since triangle quality will vary, which will in
turn have an effect on tetrahedral quality [4]. Rather
than relying on intuition, we assessed in [14] the quality
of the resulting face subdivision in terms of triangle
symmetrized aspect ratio [13]. The outcome is that the
optimal position varies with the initial face shape but
that, nonetheless, a good approximation is obtained by
inserting a at one-fourth of the altitude from the unsplit
edge. In general, note that this is not the intersection of
the two possible edges (dotted) in Fig. 5.

In [14], we categorized all ambiguous cases, by the
means of canonical configurations as had been done by
[15] for unambiguous cases. In fact, we showed that
there are exactly 19 such canonical cases, that we call
out with their topological case number, the exponent a,
and a Greek letter appended when several geometric
configurations exist. Note that a tetrahedron (cases 3a,
3c, 4a, 4b, and 5) may have from 0 to 3, 0 to 2, 0 to 2, 0
to 4, or 0 to 2 ambiguous triangular faces, respectively.
The exact number of subcases is determined by the
particular edges shared between ambiguous triangles on
the tetrahedron and their relative lengths. Where a face

Table 1 Subdivisions of canonical unambiguous cases (topological
classification Ruprecht and Müller [15], geometric implementation
Pébay and Thompson [14])

Case Geometry Tetrahedral subdivision

1 0423 4123
2aua 0 < 1 0453 0523 4153
2aub 0 > 1 0423 4523 4153
2b 0493 4193 0429 4129
3au 0 > 2 > 3 0467 4123 4263 4673
3b 0742 4782 4812 7382
3cua 1 < 0 > 3 4275 4207 4153 5743 5273
3cub 1 > 0 < 3 0527 0574 7145 7153 5273
3cuc 1 < 0 < 3 4275 4207 7145 7153 5273
3cud 1 > 0 > 3 0527 0574 4153 5743 5273
4aua 3 < 4 < 5 7893 6978 6018 6708

1269 1689
4aub 3 < 4 > 5 7893 6978 6018 6708

1268 2689
4auc 3 > 4 < 5 7893 6978 6718 6701

1269 1689
4bua 1 < 2 < 3 < 4 6815 6801 6708 8732

6852 6827
4bub 1 < 2 < 3 > 4 > 1 6815 6871 6701 8732

6852 6827
4buc 1 < 2 > 3 < 4 > 1 6815 6801 6708 8736

6852 6823
5ua 1 < 2,3 > 4 7893 6529 5718 5701

5760 5796 7859
5ub 1 < 2,3 < 4 7893 6529 0567 0578

0581 5796 5789
6 7893 6529 4158 0467

6458 6598 6978 6748

(a) (b)

Fig. 5 Ambiguous face refinement: a two different subdivisions are
possible, and b unambiguous subdivision thanks to a point
insertion
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needs an additional point, we use a letter to reference
that point. We use the letter a, b, c, or d for points on
faces 012, 031, 132, or 023, respectively. Note that the
position of a point inserted to resolve a geometric
ambiguity depends on which edges of that face are
subdivided, but this is always unequivocal as at most
one additional point per face is required. With these
conventions, the proposed tetrahedral subdivisions of
canonical ambiguous cases are recalled in Table 2, see
[14] for a detailed discussion.

2 Implementation

Consider a given input tetrahedron, r, along with a gi-
ven set of edges, E � {01, 12, 02, 03, 13, 23}, to be
subdivided. E may take on any of 64 possible edge-
patterns that partially specify how its faces must be
subdivided during refinement. For faces with exactly two
edges to be split, the relationships between edge lengths
is also required to fully specify the subdivision of any
face. Thus the number of cases is increased dramatically
from 64 to 634 when the edge length relationships are
considered. We will show how this is computed below,
but first consider the following.

Remark 2.1 Case 1 occurs when E is a singleton. No
edge length relationships are necessary to fully specify
the face subdivisions.

Example 2.1 Case 3a occurs when E = {01, 02, 03}
or E = {01, 12, 13} or E = {12, 02, 23} or E = {03, 13,
23}. But for each choice of E, edge length comparisons
yield 13 possible face subdivisions. For instance, if
E={01, 02, 03}, the lengths of edges 01 and 02, 01 and
03, and 02 and 03 must be compared. Each comparison
yields three possible results: <, >, or =. The possible

combinations are 0 > 2 > 3, 2 > 3 > 0, 3 > 0 > 2,
0 > 3 > 2, 2 > 0 > 3, 3 > 2 > 0, 0 = 2 > 3, 3 >
0 = 2, 0 > 2 = 3, 2 = 3 > 0, 0 = 3 > 2, 2 > 0 = 3,
and 0 = 2 = 3.

Note that each of the ten Ruprecht–Müller cases is
associated with one or more values of E. Example 2.1
shows that there are four values of E for case 3a. For
any case x, the corresponding values of E may be
grouped into a set that we will call ~Ex; the edge splits of
x. Every entry of ~Ex may have any set of relevant edge
length relationships, so the total number of configura-
tions that must be handled for case x is the product of
the cardinality of ~Ex and the number Nx of relevant edge
length relationships for case x. The number of relevant
edge length relationships, Nx, may be divided into geo-
metrically unambiguous relationships, Nx

u, and geomet-
rically ambiguous relationships, Nx

a. For the example
above, N3a= 13 = N3a

u +N3a
a = 6 + 7. Table 3 shows

the total number of edge subdivision and relative edge
length relationship combinations for all cases.

In this section, we discuss how we practically dealt
with this combinatorial complexity, and how we imple-
mented the method. We then illustrate the efficiency of
our approach by considering how it performs in terms of
speed and mesh quality with three different meshes and
their subdivisions governed by two different refinement
criteria. After having acknowledged how experimental
results confirm that handling unambiguous cases was
indeed a necessity, and not only a topic for academic
contemplation, we discuss how the method might be
made even better.

In Table 3, note that j~Exj is always some divisor of 24.
This is because the edge splits of any case x form a
subgroup of S4: The subdivisions indicated in Table 2
being for canonical cases only, this implies that the ini-

Table 2 Subdivisions of
canonical ambiguous cases [14] Case Geometry Tetrahedral subdivision

2aa 0 = 1 04a3 0a23 4153 45a3 a523
3aaa 0 = 2 > 3 0467 4367 a123 a263 a643 a413
3aab 0 = 2 < 3 0467 1327 a127 a267 a647 a417
3aac 0 = 2 = 3 0467 26ad 37db 41ab b6a4 b6da b67d

b647 2abd 1ab2 2b3d 321b
3caa 0 = 1 > 3 4153 a047 a207 a743 a273 a523 a453
3cab 0 = 1 < 3 7153 7523 a047 a207 a527 a457 1547
3cac 0 = 1 = 3 415b b153 a047 a207 a523 a273 a74b a7b3 a45b ab53
4aaa 3 = 4 > 5 7893 670b 601b 6978 67b8 6b18 1268 2689
4aab 3 = 4 < 5 7893 670b 601b 6978 67b8 6b18 1269 1689
4aac 3 = 4 = 5 7893 670b 601b 6978 67b8 6b18 612c 629c 698c 681c
4baa 1 = 2 < 4 < 3 7823 a607 a158 a017 a718 67a8 6a58 6278 6528
4bab 1 = 2 > 4 > 3 6523 a607 a158 a018 a708 67a8 6a58 6378 6538
4bac 3 < 1 = 2 < 4 6238 a607 a158 a018 a708 67a8 6a58 6378 6528
4bad 1 = 2 < 3 = 4 7823 a607 a158 a01b ab18 a0b7 a7b8 67a8 6a58 6278 6528
4bae 1 = 2 = 3 < 4 a607 a158 a018 a708 d625 d378 d238 d285 67a8 6a58 6d78 65d8
4baf 1 = 2 = 3 > 4 a607 a158 a018 a708 d625 d378 d235 d385 67a8 6a58 6d78 65d8
4bag 1 = 2 = 3 = 4 a607 a158 a01b ab18 a0b7 a7b8 d625 d378 d23c d2c5 dc38

d5c8 67a8 6a58 65d8 6d78
5aa 1 = 2, 3 > 4 6529 7893 a607 a158 a017 a718 a859 a679
5ab 1 = 2, 3 = 4 6529 7893 a607 a158 a01b ab18 a0b7 a7b8 a859 a679
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tial tetrahedron r must be permuted into one of the
canonical configurations, prior to subdivision. Then,
after the proper subdivision template has been applied,
the inverse of this permutation must be performed to
transform the canonical tetrahedral subdivision into a
subdivision of the given r. Formally, (r, E) belongs to
the set of all possible tetrahedra and edge splits, T � ~E;
and it is transformed into an element of T0 � ~E0; the set
of all canonical configurations, as illustrated by the
following diagram:

D maps an input tetrahedron and list of edge splits to
a set of output tetrahedra fr1; . . . ; rng 2 TN: As detailed
in Table 3, D must handle 634 configurations, each of
which has multiple output tetrahedra. Assuming that
each configuration has five to six tetrahedra2, this table
requires 15 to 17 kB of storage—23 to 27% of an Op-
teron’s 64 kB L1 cache. Given the number of floating
point values interpolated at each vertex (a minimum of
six when no scalar fields are present), it is unrealistic to
expect the table to stay in the L1 cache while the tests
required to identify a configuration are performed. On
the other hand, [15] and Table 2 provide the hash tables
of a restriction of D to a subset of canonical cases T0, as
illustrated in Sect. 2.1. This restricted map DjT0 � ~E0

re-
quires much less memory. However, this will require the
use of permutations in order to close the commutative
diagram.

In Sect. 2.1, we explain how decomposing s into two
permutations (both from the same 1.3 kB lookup table)
reduces the table containing output tetrahedra to 50
entries (about 1.3 kB) for a total of 2.6 kB. That means
we can free up approximately 20% of the L1 cache by
using a smaller table and permutations. So, we are

taking the longer path in Sect. 2.1 that we may obtain
shorter code and execution times.

2.1 Take the long cut

The longer path in 2.1 requires a bijective map s, such
that s�1 transforms any arbitrary (r,E) into the canon-
ical configuration to which it pertains. In fact, s is a re-
indexing (i.e., a permutation) of the tetrahedron vertices
and edges and, as such, it is bijective. Therefore, an
intuitive way to understand the process is to use a graph
of (r,E) that is dual of the usual topological represen-
tation, where the nodes of the graph are tetrahedral
vertices and the edges of the graph correspond to the
split edges of the tetrahedron, as illustrated for a
(r,{(01),(02),(03)}) configuration in Fig. 6 for case 3a.
Omitting nonsplit edges does not create any ambiguity,
as each vertex of a tetrahedron is connected to each of
the three other vertices by either a split (graph edge) or
nonsplit (not shown on the graph) edge.

By renumbering the nodes of the graph, we get a class
of entries that are congruent—they may be interchanged
with one another without altering the structure of the
edge colorings. This is illustrated in Fig. 7 for case 3a;
the maps denoted s0, s1, s2 and s3 are indeed index per-
mutations, and we examine later how we can take
advantage of a particular group of permutations,
namely S4: In the general case, we denote H the per-
mutation that maps a canonical topological case into the
desired topological configuration. By definition, H relies
solely on the edge splits E independent of the geometry
of r: the edge length criterion is not invoked at this
stage.

Once a canonical topological configuration H�1(E)
has been identified, the longest edge criterion must then
be applied to (s�1(r), H�1(E)) in order to decide the
triangulation of faces that have exactly two split edges3.
After edge length comparisons, each topological con-
figuration results in several geometric configurations;
more precisely the number of such geometric configu-
rations for each canonical topological case is given in the
Nx column of Table 3, with a total of 108 of them.
Fortunately, some case regrouping can be done thanks
to index permutation, resulting in a much smaller
number of canonical geometric configurations, 39, that
is the sum of all cases listed in Tables 1 and 2, along with
case 0.

Example 2.2 As explained in Example 2.1, case 3a has
six unambiguous configurations and given seven
ambiguous configurations. However, all unambiguous
configurations can be obtained by re-indexing the ver-
tices of a single canonical geometric configuration 3au,
as illustrated with the weighted graph representation in
Fig. 8, thus resulting in a geometric equivalence class.
On the contrary, the ambiguous configurations of case

Table 3 The total number of edge subdivision and relative edge
length relationship combinations

Case j~Exj Nx
u + Nx

a = Nx Total

0 1 1 + 0 = 1 1
1 6 1 + 0 = 1 6
2a 12 2 + 1 = 3 36
2b 3 1 + 0 = 1 3
3a 4 6 + 7 = 13 52
3b 4 1 + 0 = 1 4
3c 12 8 + 10 = 18 216
4a 12 4 + 5 = 9 108
4b 3 14 + 37 = 51 153
5 6 4 + 5 = 9 54
6 1 1 + 0 = 1 1
Sum 64 108 634

2The average in our implementation is 5.6 tetrahedra per configu-
ration.

3Cases 0, 1, 2b, 3b and 6 are exempt from the longest-edge criterion
because they have no ambiguous faces.
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3a cannot be retrieved from configuration 3au, nor can
they all be retrieved from a unique ambiguous configu-
ration, but pertain to three distinct geometric equiva-
lence classes, 3aaa, 3aab, and 3aac (cf. [14]).

As with our previous map, H, that created topolog-
ical equivalence classes, we now define the permutation
C that maps a canonical geometrical case (i.e., that is
contained in either Tables 1 or 2) into the considered
geometric configuration. Combining these two maps, we
can then rewrite the subdivision map D using the long
cut, as follows:

D ¼ H � C � DjT0 � ~E0
� C�1 �H�1: ð2Þ

A summary of this process—the basic flow of the adap-
tive tessellation algorithm—is provided in Algorithm 1.

Even with this decomposition of D, Tables 1 and 2 still
yield 273 tetrahedra distributed across 38 cases4 to be
handled by DjT0 � ~E0

: Rather than hand-write the C++
code that selects the proper set of tetrahedra and per-
mutations to apply, we have created a Python (cf. [18])
script that assembles an array of tetrahedra and permu-
tations and then writes C++ code to apply the proper
maps as table lookups. 2.2 A reminder on symmetric groups

For each geometric equivalence class, we must choose a
canonical representation (i.e., a class representative) and

Fig. 7 These edge configurations are topologically equivalent: they
form the 3a class—canonically represented by the upper left
configuration

Fig. 6 A tetrahedron (left) may be thought of as a graph with four
nodes (right). Graph edges correspond to split edges of the
tetrahedron; the nonsplit tetrahedron edges do not appear on the
graph. The example shown here is case 3a

Fig. 8 When considering edge length relationships as needed (here
shorter tetrahedral edges are represented with thicker graph edges),
a unique topological configuration can have several geometric
configurations. All possible unambiguous geometric configurations
of case 3a are shown, and they are all identical, up to a
permutation, to our chosen canonical graph 0 > 2 > 3

4our slightly different implementation, as will be explained further,
actually regroups the tetrahedra in 50 sets.
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define how to map an arbitrary entry to that represen-
tation. In fact, these maps can be viewed as elements of
the symmetric group S4 which we now briefly recall. The
interested reader will find an extensive introduction to
symmetric groups for example in [6].

Definition 2.1 Let S be a set. A bijection from S onto
itself is called a permutation of S. Equipped with the
composition operation (also called product in this con-
text), the set of all permutations of S forms a group,
called the symmetric group of S, and denoted as SðSÞ:
For all n 2 N

�; the symmetric group of {1,...,n} is
denoted Sn:

Remark 2.2 It is clear that the symmetric group of any
ordered finite set S with n 2 N

� elements is isomorphic to
Sn; thanks to the canonical increasing bijection between
E and {1,...,n}. Therefore, we will make use of S4 to
denote the symmetric group of the four vertices of a
tetrahedron, indexed from 0 to 3.

Henceforth, S will denote a finite set with cardinality
n 2 N

�:
Definition 2.2 Let s 2 SðSÞ: For any arbitrary x2E,

the s-orbit of x is a subset of S obtained by applying
permutation s to element x any number of times, more
formally denoted:

s � x ¼ spðxÞ; p 2 Nf g:

An s-orbit is a part of S that is the s-orbit of at least one x
2S. s is said to be a cycle if there is a unique s-orbit sÆx
with nonzero cardinality; in this case, denoting p the
cardinal number of the orbit, s is said to be a p-cycle with
support sÆx. A transposition is a two-cycle. A p-cycle s
with support {a1,...,ap}, where ai=si-1 (a1) will be denoted
(a1 ... ap). Finally, the S4 � orbit of x is defined as fol-
lows:

S4 � x ¼ [s2S4
s � x: ð3Þ

Remark 2.3 The p-cycle notation is not unique: for
example, a transposition (a1 a2) can also be written (a2
a1).

The following example introduces the most impor-
tant symmetric group for us, since we are going to make
an extensive use of S4 to generate the code that handles
all 634 cases outlined in Table 3.

Example 2.3 S4 contains
4
2

� �
¼ 6 transpositions. In

the case where the permuted set is {0,1,2,3}, these are (01),
(02), (03), (12), (13) and (23). The composition of any two
of them with non-disjoint support is a three-cycle, and
there are 4·2=8 three-cycles. In addition, S4 contains
three permutations formed of two transpositions with
disjoint support, namely (01)(23), (02)(13) and (03)(12);
those, along with the identity ( ) form the KLEIN Vier-
gruppe, the smallest finite group with element orders all
smaller than the group’s cardinal. The remaining
4!�18=6 elements are the four-cycles, such as (0312).

Another useful feature of symmetric groups is the
signature of a map, which we will employ to preserve the
orientation of tetrahedra as they are processed:

Definition 2.3 Let s 2 SðSÞ and m(s) the number of
distinct s-orbits. The signature of s is then defined as e
(s)=(�1)n - m(s).

Example 2.4 There are three distinct (01)-orbits in
{0,1,2,3}: {0,1}, {2} and {3}, while there is a single
(0312)-orbit: {0,1,2,3} itself. Therefore, e ((01))=(�1)4-3
=�1, and e ((0312))=(�1)4-1 =�1. This implies that
neither (01) nor (0312) are orientation-preserving. More
generally, the only orientation-preserving permutations
in S4 are either three-cycles or members of the Vier-
gruppe (i.e., 12 permutations among 24).

We can then reformulate the ideas introduced intui-
tively in Sect. 2.1 within this rigorous and powerful
framework.

2.3 Application to tetrahedron subdivision

The idea developed hereafter is to retrieve directly from
the canonical configuration the decomposition of any
particular configuration pertaining to a given subcase,
by the means of vertex permutations. More precisely,
given a particular configuration, vertices will be per-
muted while leaving the underlying topology unchanged,
so that the canonical configuration is retrieved. In other
words, vertex indices might be changed, but the con-
nectivity is not transported throughout the process. In
order that the relative vertex locations remain constant,
midpoints and face points must be transported consis-
tently. Therefore, we must extend vertex permutations to
midpoints and faces, as illustrated in the following
example:

Example 2.5 The transposition (01) switches 0 and 1,
leaving the other corner vertices unchanged: for in-
stance, the doubles (1,2) and (0,2) are switched. In order
to preserve midpoint consistency, vertices 5 and 6 must
therefore be switched, too. In fact, the generalized (01) is
the following map:

ð0; 1; 2; 3; 4; 5; 6; 7; 8; 9; a; b; c; dÞ#
ð1; 0; 2; 3; 4; 6; 5; 8; 7; 9; a; b; d; cÞ:

In particular, edge 01 is left globally unchanged, but if,
e.g., the canonical configuration has edge c8, then the
configuration obtained thanks to the generalized (01)
permutation has edge d7 instead.

One can accordingly generalize all the elements of S4;
in fact, these generalized permutations are elements of
S14; but the converse is not true as the image of any
element in {4,5,6,7,8,9,a,b,c,d} has to be consistent with
the images of the corresponding edge or face vertices.
Indeed, these generalized permutations are obtained by
unambiguous injection of S4 into S14; and as this is
unambiguous, we will use the same notation for a per-
mutation in S4 and its counterpart in S14: Fully
describing each of these 24 generalized permutations is
both easy and lengthy, and is therefore left to the reader
as an exercise. In everything that follows, all permuta-
tions will be implicitly meant in the ‘‘generalized sense’’
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unless otherwise mentioned. We now examine in details
how Algorithm 2.1 can be nicely formulated using this
framework, that will then provide an excellent basis for
implementation.

H: topology-based permutations. The first step consists
in expressing the map H introduced in Sect. 2.1 in terms
of permutations. For instance, one can easily check that
the maps s0, s1, s2 and s3 in Fig. 7 are elements of S4 that
can be freely chosen as indicated in Table 4.

Remark 2.4 One shall notice that, primo, as indicated
in Table 3 there are four elements in the (topological)
equivalence class 3a; secundo, as shown in Table 4, there
are six possible choices for s0, i.e., six permutations that
leave the class representative (topologically) unchanged;
tertio, the cardinality of S4 is 24 and we have 6·4=24.
In fact, this is not a coincidence, but directly results from
a well-known property about symmetric groups5,
according to which

ð8E 2 ~EÞ jS4 � Ej � jS4Ej ¼ jS4j; ð4Þ

where S4E denotes the stabilizer of E in S4; i.e., the set
(indeed, a subgroup of S4) of all permutations in S4

that leave E unchanged. Therefore, counting the per-
mutations for which a given canonical configuration is
left topologically unchanged immediately yields the
number of subcases that pertain to it. This property
permits us to easily devise Table 5 and then verify it.

This choice of a permutation for each element of ~E
has to be made as well, and thanks to the relatively small
cardinality—64—of ~E; this problem can be exhausted by
enumeration. A convenient notation to represent any
arbitrary split edge configuration E in to use the corre-
sponding bitcode, where the bit of a split (resp. nonsplit)
is 1 (resp. 0). This notation is indeed consistent (bijec-
tive); e.g., the bitcode of canonical case 3a, as shown in
Fig. 6, is 101100. With these conventions, the map H
can be fully specified, by arbitrarily picking one per-
mutation that performs the desired topological trans-
formation. The particular choices we made are indicated
in Table 5. The implementation of H is simply a 64-entry
lookup table that also provides direct access to H�1. It is
important to note that all permutations indicated in
Table 5 have positive signature, and are therefore ori-
entation-preserving, with the exception of four trans-
positions ((01), (12), (02) and (13)) and two 4-cycles
((0132) and (0213)) used to retrieve six particular con-
figurations in the 3c equivalence class. In fact, it is easy

to check that none of these six cases can be obtained
from the canonical case with an even permutation.
Therefore, we have modified Ruprecht and Müller’s
classification by introducing the case 3d, with class
representative bitcode 101010, to avoid using any ori-
entation-changing permutation in H; with this new case,
we retrieve the five other configurations as indicated in
Table 6.

C: geometry-based permutations The same method is
now applied to specify the map C in the permutation
framework; e.g., the maps s¢0, s¢1, s¢2, s¢3, s¢4 and s¢5 in
Fig. 8 are, respectively, ( ), (12), (13), (23), (123) and
(132), and they are the only possible choices.

Remark 2.5 At this point, the attentive reader will
likely have noticed that these s¢0, s¢1, s¢2, s¢3, s¢4 and s¢5
are exactly the possible choices for s0 in Fig. 7, as indi-
cated in Table 7. This is not a matter of coincidence:
indeed, (12), (13), (23), (123) and (132) leave canonical
configuration 3a topologically unchanged, but geometri-
cally changed. More generally, C is topology-preserving

Table 4 Case 3a: permutations from the canonical representation
to all possible configurations

Fig. 7 map Possible choices in S4

s0 () (12) (13) (23) (123) (132)
s1 (01) (012) (013) (0123) (0132) (01)(23)
s2 (02) (021) (023) (0213) (0231) (02)(13)
s3 (03) (031) (032) (0312) (0321) (03)(12)

Table 5 The map H

Table 6 The map H for case 3d

5and, more generally, about groups acting over sets.
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but modifies geometry (except for ( ) instances, when the
target geometry is that of the canonical case itself).

For the sake of brevity, we do not specify C for all
cases here, as this can be readily done by simple imita-
tion, ab uno disce omnes, of the C specification for case
3a. In addition, this is very similar to what has been
extensively described for H. The interested reader can
find the full specification of C in our C++ code gen-
erator written in Python called vtkStreamingTes-
sellator.py that is available as part of ParaView
(cf. [5]). Just note that, generally, not all geometric
configurations can be retrieved from a single configu-
ration: unambiguous case 3a is an exception, as one can
see in Tables 1 and 2.

2.4 Wrap-up example

We finally illustrate the somewhat abstract description
of the whole streaming refinement process as summa-
rized in Sect. 2.2 by applying it to a particular case. In
order to make it as explanatory as possible, we choose
one of the most complex configurations: 4baa. For this
case, all geometrical configurations that can be deduced
from the canonical representation of case 4baa are de-
tailed in Table 7.

Example 2.6 Consider two tetrahedra r1 and r2, with
the same set of split edges E, written 011110 in bitcode
notation. In addition, suppose that the geometries of r1

and r2 are such that 2 = 1 < 3 < 4 and 2 = 3 <
1 < 4, respectively. We now examine how r1 and r2 are
streamed through Algorithm 2.1.

1. As indicated in Table 5, E is the class representative
for case 4b, and therefore H=H�1=( ).

2. According to Tables 1 and 2, neither r1 nor r2 are in
canonical geometrical configuration. Nonetheless,
they both pertain to the ambiguous 4b case that arises
when exactly two edges among the images of 12, 02,
13 and 03 by H have equal lengths while being shorter
than the two other ones. The geometric equivalence
class for all such configurations is represented by
canonical case 4baa, with 2 = 1 < 4 < 3. As indi-
cated in Table7 and illustrated in Fig. 9, the respec-
tive values of C are (01) and (0312).

3. Having found H and C, and thus H�1 and C�1, from
the lookup tables, one knows that in both cases
(without having to actually compute it), the image of
C�1 s H�1 is a tetrahedron in canonical configuration
4baa. Therefore, this tetrahedron belongs to T0 � ~E0

and its image by DjT0 � ~E0
is known explicitly from

Table 2:

7823; a607; a158; a017; a718; 67a8; 6a58; 6278; 6528:

ð5Þ

4. Applying H s C to (5) in the case of r1 (thus with
C=(01)) yields the following subdivision:

8723; a518; a067; a108; a807; 58a7; 5a67; 5287; 5627;

ð6Þ

when for r2 (with C=(0312)), one obtains

8501; d738; d265; d328; d825; 78d5; 7d65; 7085; 7605:

ð7Þ

As expected, obtaining the subdivision of the partic-
ular configuration is immediate, as soon as the s 2 S4

necessary to transform the canonical into the particu-
lar configuration is known. Actually, in our imple-
mentation of the scheme, an additional function is
embedded in the process. In the example above, the
two particular values of C are not orientation-pre-
serving, as e ((01)) = e ((0312)) = �1. More generally,
If the permutation s 2 S4 used to obtain the desired
configuration has a negative signature, then the sub-
division is composed of negatively oriented tetrahedra.
This can be a problem, depending on the application
using the refined mesh. As a general rule, it is good
practice for mesh refinement software to be orienta-
tion-preserving. Therefore, whenever e (s) = �1, a fi-
nal reorientation step must be performed. This
reorientation operator R can be interpreted as the
application of any transposition s 2 S4 to the whole
configuration, including the topological features, so
that connectivities are left unchanged. A more geo-
metric point of view is to regard R as a symmetry
across any arbitrary plane, followed by a rotation and
a transposition to retrieve the initial vertex coordi-
nates. Accordingly, this slightly refined version of the
subdivision process can be summarized as:

D ¼ R �H � C � DjT0 � ~E0
� C�1 �H�1: ð8Þ

Example 2.7 As shown in Fig. 9, after the reorienta-
tion operator R has been applied to (6) and (7), the
positively-oriented configurations respectively read

7823; 5a18; 0a67; 1a08; 8a07; 85a7; a567; 2587; 6527 ð9Þ

and

5801; 7d38; 2d65; 3d28; 8d25; 87d5; d765; 0785; 6705:

ð10Þ

Table 7 Case 4baa: permutations from the canonical representa-
tion to all possible geometric configurations

s 2 S4 Configuration e (s)

() 2 = 1 < 4 < 3 1
(01) 2 = 1 < 3 < 4 �1
(23) 3 = 4 < 1 < 2 �1
(01)(23) 3 = 4 < 2 < 1 1
(02)(13) 2 = 3 < 4 < 1 1
(03)(12) 1 = 4 < 2 < 3 1
(0213) 1 = 4 < 3 < 2 �1
(0312) 2 = 3 < 1 < 4 �1
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Remark 2.6 One can observe that the permutations
listed in Table 7, combined with the composition oper-
ation, form a group, and hence a subgroup of S4: This is
indeed not surprising, since the permutations do not
change the topology of the tetrahedron (including edges
imprinted onto it), and thus all configurations pertaining
to a given canonical case can be deduced from each other.
In particular, the configuration chosen to be canonical
does not matter. The same argument applies to all cases,
and thus each set of permutations (including the identity)
associated with a canonical configuration is a subgroup of
S4; whose cardinality thus divides 24. Therefore, there
can be only (including the canonical case itself) 1, 2, 3, 4,
6, 8, 12, or 24 particular configurations associated with a
given case (e.g., 8 with 4baa). This property is used to
verify the code.

3 Results

The results are presented as follows: first, we present
two different refinement strategies, that rely on ana-
lytical edge size specifications. Then, successive steps of

streaming mesh refinement governed by these subdivi-
sion criteria are performed over a set of sample tetra-
hedral meshes. The intrinsically 4D objects that result
from this process are then illustrated by the means of
the 2D format; quantitative information such as the
number and quality of output tetrahedra is also pre-
sented. Furthermore, we analyze the effects of the
scheme on mesh quality, by examining how the statis-
tics of two widely accepted tetrahedral quality measures
evolve throughout the process. Finally, we assess the
execution speed of our implementation: first, single
processor, and then on multiple processors, for both
ideally balanced and naively balanced computational
loads.

The edge subdivision criterion that will be used to
refine that mesh relies on the principle of an edge size
map specification [4]. Since the goal is to demonstrate
the efficiency and versatility of our technique, we use
arbitrary analytical functions; for practical applications,
other criteria would obviously be used, in particular
based on error metrics. The edge refinement criterion
used here can be simply stated as follows: given a tri-
variate real function f and a given constant k 2 R

þ; an
edge with length e and midpoint with coordinates (xm,
ym, zm) is refined if and only if

f ðxm; ym; zmÞ½ �2\ ke2: ð11Þ

Remark 3.1 The constant k is to be set, depending on
the desired level of refinement progressivity. Note that
(11) is expressed in a squared form, because it is com-
putationally easier to compute e2 than e.

3.1 Distance-to-a-plane-based refinement

We start with f in (11) being the distance to the plane

with unit normal 1ffiffi
3
p ð1; 1; 1Þ passing through the center

of the mesh bounding box with coordinates (x0,y0,z0).
Setting k=2, (11) thus becomes:

xm þ ym þ zm � x0 � y0 � z0ð Þ2 \ 6e2: ð12Þ

This edge refinement criterion is to be applied to two
meshes: primo, to a cuboid: the initial mesh T 0

box has 553
points and 1,627 tetrahedra, and is displayed in Fig. 10;

Fig. 9 Above: canonical configuration of ambiguous case 4baa;
center: images by (01) (left) and (0312) (right); below: re-
orientations to obtain configurations 2 = 1 < 3 < 4 (left) and
2 = 3 <1 < 4 (right)

Fig. 10 Initial mesh T 0
box of a cuboid: boundary (left) and clip

across the mesh to show interior detail (right)

85



secundo, to a more organic mesh T 0
tri with 4,209 points

and 16,910 tetrahedra, shown in Fig. 12, left.
Four successive refinement steps are performed

from the initial meshes T 0
x ; leading to the refined

meshes T 1
x ; T 2

x ; T 3
x ; and T 4

x : Columns nv and nt in
Table 8, left, indicate the numbers of points and tet-
rahedra of these meshes, and cut snapshots are shown
in Figs. 11 and 12.

3.2 It gets curvy

We now refine in a somehow more aesthetic way the
mesh of a mechanical part (cf. Fig. 13, left), with 28,694
points and 150,779 tetrahedra. An interesting family of
smooth planar curves is that of Lissajous curves, see e.g.
[8]. One of the simplest such curves in the xy plane can
be parametrized as follows:

xðtÞ ¼ A cos t
yðtÞ ¼ B sinð2tÞ;

�
ð13Þ

where A and B are two real positive constants, and
t 2 [0, 2 p[. An agreeable generalized cylinder can then

be obtained by using this curve as directrix, and the lines
perpendicular to the xy plane as director curves. In all
that follows, this generalized cylinder will be denoted
LA;B; a section of L1;1; for 0 £ z £ 2, is displayed by
Fig. 14. An implicit equation of LA;B is (cf. [17] for de-
tails):

f ðx; y; zÞ ¼ 4x4

A4
� 4x2

A2
þ y2

B2
¼ 0

and thus this definition of f in R
3 is substituted in (11).

By definition, LA;B is the 0-level set of f, which means
that the edge size target on this surface is 0. On the other
hand, the further an edge midpoint from LA;B; the looser
the size specification implied by (11). Therefore, the
mesh refinement process should ‘‘track’’ LA;B; and the
tracking should become tighter as the recursive refine-
ment level increases. Finally, we set A and B so that a
truncation of LA;B complete is contained in T 0

part (in
practice, A=1/30 and B=1/50 are used).

After three subdivision steps governed by that crite-
rion, the expected refinement pattern appears clearly, as

Fig. 12 Overviews of the boundaries of the initial mesh of a
triceratops (left), and of the beauty queen (right) obtained after
four steps of refinement governed by a distance-to-a-plane metric

Table 8 Numbers of points (np) and tetrahedra (nt) of meshes

T 0
box; T

1
box; T

2
box; T

3
box and T 4

box (left), and T 0
tri; T

1
tri; T

2
tri; T

3
tri and

T 4
tri (right)

np nt np nt

T 0
box 553 1,627 T 0

tri 4,209 16,910

T 1
box 1,742 7,351 T 1

tri 6,675 29,561

T 2
box 6,517 32,887 T 2

tri 16,249 82,186

T 3
box 25,691 140,588 T 3

tri 55,253 304,412

T 4
box 103,253 587,283 T 4

tri 215,723 1,235,745

Fig. 11 Streaming refinement of T 0
box governed by a distance-to-a-

plane metric: 1 T 1
box

� �
; 2 T 2

box

� �
; 3 T 3

box

� �
; and 4 T 4

box

� �
levels of

refinement; some elements have been removed to show interior
detail

Fig. 13 Boundary overviews of the initial mesh ðT 0
partÞ of a

mechanical part, and of the mesh ðT 3
partÞ obtained after three

refinement steps
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shown in the overview (Fig. 13, right) and the close-up
(Fig. 14, right) of the boundary of T 3

part: The mesh
topologies of the four levels of refinement governed
by that edge subdivision strategy are summarized in
Table 9, and Fig. 15 displays cuts across the corre-
sponding meshes.

3.3 Mesh quality

It is well known (cf. [3, 4]) that mesh quality is crucial to
the accuracy of finite element computations; this is al-
most as equally important in the context of visualiza-
tion. In particular:

1. Rendering that uses PHONG shading on triangles with
significant changes in their vertex normals incorrectly
models the physics of lighting and will appear blem-
ished; this is because the normal vectors at each
vertex are linearly interpolated (which does not
maintain unit length) over the interior. The approx-
imation results in abrupt changes in lighting along
triangle edges and inconsistent lighting on the trian-
gle interiors

2. Isosurfacing even decent cells can generate bad tri-
angles when the isosurface intersects cell edges near
vertices, in which case one gets many very small
triangles right next to large ones (and that is a
problem, as explained in Item 1). In fact, when this
situation occurs, the resulting triangles may also
have extremely poor normals, as Bloomenthal and
Ferguson [1] note. They then propose a technique to
eliminate such triangles while Moore and Warren

[10] alter the mesh vertices in the neighborhood of
such triangles to produce better results. Cells that
are slivers are much more likely to generate triangles
with these problems.

3. Unstructured volume rendering of poorly shaped
elements can also cause trouble, especially depending
on how the elements are oriented relative to the
screen; many volume rendering techniques approxi-
mate the lighting integral [11], for which there is no
analytical solution, with an integral that does have
an analytical solution. Or, they use lookup tables.
Usually, the approximations assume that the power
of an exponential function is relatively constant over
the limits of integration. This can be bad in general
and worse for degenerate tetrahedra.

Therefore, an important aspect of mesh modifica-
tion is the effect of the considered scheme over mesh
quality. Indeed, mesh quality degradation is a typical
weak point of mesh subdivision without subsequent
mesh smoothing; this issue is discussed, e.g., in [4] for
mid-edge based tetrahedral subdivisions, where sub-
stantial mesh quality reduction is reported. We there-
fore discuss the qualitative impact of our method by
the means of two tetrahedral quality measures: aspect
ratio and radius ratio; more precisely, we examine
how the range, average and standard deviations
thereof evolve throughout several steps of streaming
refinement.

Aspect ratio: denoted i, it appears the most accepted
estimate in the context of tetrahedral finite element
analysis, in particular because it explicitly appears in a
priori error estimates (see, e.g., [3]). This measure is
defined for each tetrahedron r by

(a) (b)

Fig. 14 a The generalized cylinder with directrix the Lissajous
curve (cos t, sin (2t), 0), and b close-up of the final refined mesh
T 3

part

Table 9 Numbers of points (np) and tetrahedra (nt) of meshes
T 0

part;T
1
part; T

2
part and T

3
part

np nt

T 0
part 28,694 150,779

T 1
part 62,854 345,529

T 2
part 211,480 1,207,377

T 3
part 865,695 5,034,682

Fig. 15 Streaming refinement of T 0
part governed by an analytical

size map: 0 T 0
part

� 	
; 1 T 1

part

� 	
; 2 T 2

part

� 	
; and 3 T 3

part

� 	
levels of

refinement; some elements have been removed to show interior
detail
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ir ¼ a
hmax

r
; ð14Þ

where hmax, r and a respectively denote the longest edge
length and the inradius of r, and a normalization coef-
ficient such that ir ¼ 1 when r is a regular tetrahedron.
An elementary geometric calculation shows that a ¼
1=12

ffiffiffi
6
p

: Indeed, 1 is the absolute minimum of i and is
reached only by regular tetrahedra. We have in partic-
ular written a Visualization ToolKit (VTK, cf. [16])
class6 that computes this quality measure.

Radius ratio: denoted q, we also use it, mostly be-
cause there is an existing VTK class that computes it and
because some in the meshing community seem to prefer
it. This measure is defined for each tetrahedron r as
follows:

qr ¼ b
R
r
; ð15Þ

where R is the circumradius of r, and b is a normali-
zation coefficient, such that qr = 1 when r is regular.
Since R = 3r for any regular tetrahedron, it follows
immediately that b = 1/3.

Remark 3.2 In the case of triangular meshes, it is
shown in [13] that i and q have essentially similar
behaviors, except for the fact that the latter has a critical
point at its minimum, which might make it less suitable
for iterative optimization procedures than the former,
which has a salient point instead. In the case of 3D
simplicial (tetrahedral) meshes, this result has not been
proven but it is reasonable to expect similar behaviors.

The results of quality assessments throughout the
mesh refinement processes outlined above are provided
in Tables 10, 11 and 12. Similar trends in quality are
observed in the three cases. Neither averages nor
standard deviations are dramatically degraded, in the
sense of aspect ratio as well as of radius ratio. Radius
ratios (q) exhibit far greater dispersion than aspect
ratios (i), but that was expected, due to the nature of
the estimates themselves. Indeed, in the case of triangle
elements, this property has been established theoreti-
cally in [13]. Overall, the reduction in average quality is
comparable to what is described in [4] for mid-edge
based tetrahedral refinement. The fact that we are
treating some of the isosceles faces as ambiguous cases
might reduce the number of elements with bad aspect
ratios (or radius ratio), because the four subfaces cre-
ated when a point is inserted to remove an ambiguity
have better aspect ratios than the two subfaces of either
possible decompositions that use existing mid-edge and
corner vertices.

3.4 Speed

The speed of execution of the algorithm is an important
performance measure second only to adequate mesh

quality. We provide speedups in Figs. 16 and 17 to
illustrate that the algorithm scales as expected. The
former figure represents a small, contrived example that
places identical elements on all processes and subdivides
them identically so that the load is perfectly balanced.
The mesh contains a total of only 160 tetrahedra ini-
tially, arranged into a 48 · 3 · 3 unit brick and refined
wherever edges are near a plane with base point (0,0,1)
and normal (0,0,1) using the same scheme as the cuboid
and triceratops examples. The bottom lines of the
speedup graph are far-removed from the theoretical
linear speedup because the time required to pass the test

Table 10 Best, average, worst, and standard deviation of i (aspect
ratio) and q (radius ratio) qualities of meshes
T 1

box; T 2
box; T 3

box; and T 4
box

Table 11 Best, average, worst, and standard deviation of i (aspect
ratio) and q (radius ratio) qualities of meshes
T 1

tri; T 2
tri; T 3

tri; and T 4
tri

Table 12 Best, average, worst, and standard deviation of i (aspect
ratio) and q (radius ratio) qualities of meshes
T 0

part; T 1
part; T 2

part; and T 3
part

6http://www.vtk.org/doc/nightly/html/classvtkMeshQuality.html
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mesh through the refinement algorithm was small rela-
tive to the noise in the timing measurements. The other
lines show that with a well-balanced scheme, linear
speedups are possible (because there is no communica-
tion).

The latter figure depicts the performance of the
Lissajous refinement algorithm applied to the mechanical
part with a naive z-slab-based decomposition. Although
the speedup is not linear, it is still acceptable and it
illustrates the importance of load balancing. Since load

balancing is very application-dependent and since the
refinement algorithm is typically not used as the sole
criterion for load balancing, this example has been
chosen with a deliberately imbalanced partition of
elements. When used in real-life applications where such
an imbalance exists, a repartitioning of the mesh will
most probably be required after refinement.

In addition to the speedups, some characterization of
the absolute speed of the algorithm is in order. We
measure the absolute speed by measuring the CPU time
required to execute the algorithm on a single-CPU AMD
Opteron 246 running Linux (Fedora Core 2) with 4 GB
of memory. We compiled our code with gcc 3.3.3 and
-02 optimizations. Mesh read and write times are not
included, but the memory allocations required to store
the output tetrahedra are included (as opposed to a true
stream in which the results would be discarded after
computation); this is why CPU time without refinement
is nonzero. The times required to perform the refine-
ments and the throughput (in Mtets7 per second) are

Fig. 16 Speedup for refining a perfectly load-balanced synthetic
mesh with 2, 4, or 8 processes

Fig. 17 Speedup for refining a naively load-balanced version of
T part with 2, 4, or 8 processes

Table 13 Throughput for varying levels of refinement of the cuboid
mesh with the distance-to-a-plane subdivision criterion

Number of
refinements

Number of
tetrahedra

Throughput
[Mtets/s]

0 1,627 0.737
1 7,351 0.726
2 32,887 0.654
3 140,588 0.657
4 587,283 0.662
5 2,447,890 0.652

Table 14 Throughput for varying levels of refinement of the tri-
ceratops mesh with the distance-to-a-plane subdivision criterion

Number of
refinements

Number of
tetrahedra

Throughput
[Mtets/s]

0 16,910 0.666
1 29,561 0.624
2 82,186 0.637
3 304,412 0.628
4 1,235,745 0.627
5 5,135,168 0.620

Table 15 Throughput for varying levels of refinement of the
mechanical part mesh with the Lissajous-based subdivision crite-
rion

Number of
refinements

Number of
tetrahedra

Throughput
[Mtets/s]

0 150,779 0.662
1 345,529 0.633
2 1,207,377 0.653
3 5,034,682 0.663
4 21,984,967 0.667

7millions of tetrahedra
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shown in Tables 13, 14 and 15 for the three sample me-
shes from the previous sections. The same machines and
technique were used to create the speedup tables above.

The speed results in the case of the cuboid should
probably be given less weight than those of the mechan-
ical part, since T 0

box is a synthetic mesh and the corre-
sponding input is relatively small. Overall, we observe a
nearly linear increase in time with output mesh size.

The following sections summarize characteristics of
the algorithm discovered during our evaluation.

3.5 Algorithm characteristics

One property of our proposed technique is that, of the
four triangles produced by tessellating the isosceles
trapezoid, two of them will be isosceles triangles. This
means that if further subdivisions are required on the
two equal-length edges of either isosceles triangle, we
will again have an ambiguous case. This is undesirable
since detecting the ambiguity and placing point a is
slightly more work than handling an unambiguous case.

3.6 A final note on ambiguous cases

One of the things that affect the size and quality of the
output meshes, as well as the speed to compute them, is
the probability that each subdivision case is encoun-
tered. Therefore, we have instrumented a version of the
tessellator to count cases, and it was used to examine the
refinement of several meshes. The distribution histo-
grams corresponding to four levels of the previously
described refinements for the cuboid, triceratops, and
mechanical part meshes are shown respectively in
Figs. 18, 19, and 20. Global trends observed in Figs. 18,
19 and 20 are similar for the three meshes, although

those exhibit substantially different topologies (e.g.,
number of elements, genus) and geometric (e.g.,
boundary curvature, quality) features. The fact that
every case is encountered in these meshes and their
refinements is yet another global validation of the tes-
sellator. However, this does not mean that all subcases,
and in particular ambiguous subcases, have been tested.
We therefore refined the diagnostic by examining the
case counts for ambiguous cases at the end of the
refinement process. Surprisingly enough, not a single
ambiguous tetrahedron is hit during the four levels of
refinement of the mechanical part, and thus only the
statistics for the cuboid and the triceratops are shown in
Fig. 21. Case 3d, derived from 3c for practical imple-
mentation reasons (orientation-preserving H), is
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Fig. 18 Total counts of the cases encountered at each of the four
steps of refinement of the cuboid mesh
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Fig. 19 Total counts of the cases encountered at each of the four
steps of refinement of the triceratops mesh
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Fig. 20 Total counts of the cases encountered at each of the four
steps of refinement of the mechanical part mesh
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decomposed as 3c, in subcases 3da, 3db and 3dc; each of
them is therefore only one odd permutation (in fact, a
transposition) away from its canonical counterpart. It
appears that the similarity previously observed for the
distribution among the general cases no longer holds
when considering ambiguous sub-configurations: the
diversity of the original meshes is reflected by large
variations among ambiguous cases, since the cuboid,
mechanical part, and triceratops refinements respectively
result in 164, 0, and 2 ambiguous cases. Regardless of
the distribution of ambiguous cases, the fact that they
are encountered means that handling them is not only an
academic goal, but that is necessary to a robust com-
municationless mesh refinement code.

3.7 Future work: improving mesh quality

Due to the importance of preserving mesh quality for
visualization, and even more so for computation appli-
cations, we are considering different options for including
that requirement within the streaming approach. In par-
ticular, we are considering taking advantage of the fact
that some canonical cases (both ambiguous and unam-
biguous) allow for several subdivision templates. There-
fore, possible future work includes allowing the algorithm
to choose between several subdivision templates when-
ever possible, in order to optimize quality depending on
the geometry of the tetrahedron to be refined. Here is an
example of how one particular case might be handled.

Example 3.1 Consider the tetrahedron r with type 4b,
whose vertices 0, 1, 2, and 3 have the following coordi-
nates, respectively: (3,0,0), (0,0,0), (1,1,1), and (1,2,0).
Edges 01, 12, 02 and 03 then have respective lengths 3,ffiffiffi
3
p

;
ffiffiffi
6
p

and 2
ffiffiffi
2
p

; and thus r pertains to case 4bub. The
canonical decomposition we use is (1): 6815, 6871, 6701,
8732, 6852, 6827. However, there is an alternate decom-
position (2): 7815, 6571, 6701, 8732, 7852, 6527. In fact,

the two subdivisions templates differ, depending on how
they split the quadrangle 5678: using either edge 57, or 68.
Now, regarding the aspect ratio i, one gets the results
summarized in Table 16. It appears that the canonical
subdivision template is not the best one. We might hope
to find a heuristic less costly than computing all possible
output tessellation qualities. For example, consider
comparing |57| and |68| for the case 4bub example
above. Unfortunately, the diagonal lengths are equal

j57j ¼ j68j ¼
ffiffiffiffi
11
p

2 giving us no way to select one template
over the other. This has proven true in general, so we
simply compute the quality of all tetrahedra for each
template and use statistics to choose the best template.

Preliminary results indicate that implementing only a
few alternative templates can even improve mesh quality
as it is refined, as shown in Tables 17 and 18. In any
case, these results show a dramatic quality improvement
versus what has been obtained in Tables 11 and 12. The
performance penalty for this partial implementation is
approximately 15% but needs to be more thoroughly
characterized.

4 Conclusions

We have presented a new scheme for refining tetrahedral
meshes that does not require neighborhood information.
Rather than coordinate face and edge subdivision
information across elements of the mesh, subdivision
templates and criteria are chosen so that they always
yield identical results on shared faces and edges.
Although this requires more computation (twice for

Fig. 21 Total counts of the ambiguous cases encountered during
the four steps of refinement governed by a distance-from-a-plane
metric of the cuboid and triceratops meshes

Table 16 Best, average, and worst i (aspect ratio) quality for the
two possible subdivisions of a 4bub tetrahedron

Table 17 Best, average, and worst i (aspect ratio) and rho (radius
ratio) qualities of meshes T 0

tri; T
1
tri; T

2
tri; T

3
tri; and T

4
tri when using

average quality driven adaptive templates (partial implementation)
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each face and as many times per edge as there are tet-
rahedra that reference it), it bypasses any communica-
tion that might otherwise be required. This makes it
viable for streaming large datasets and for parallel
processing, where communication would be required to
process elements on boundaries between processes.

Although we cannot make any conclusions about
how well the algorithm will work with all possible
applications—because balancing the load is dependent
on application specifics such as the initial distribution of
elements and the subdivision metric—we can say that
the algorithm scales linearly with the number of pro-
cesses in the load-balanced case. We have also presented
evidence that the quality of the mesh is not significantly
degraded during refinement. In addition, our initial goal
of improving visualization of higher order elements has
been attained, as illustrated in Figs. 22 and 23.

We have implemented the proposed approach, and
the code is available as the vtkStreamingTessel-
lator class8 in ParaView. We have also added mesh

quality tools in VTK. This has allowed us to test the
method, and assess mesh quality and algorithm speed.
Three meshes were evaluated: a synthetic geometric
mesh of a cuboid, a mesh of an extinct reptile, and a
mesh of a mechanical part. The qualities of the refined
meshes are comparable to other refinement schemes that
use communication to resolve ambiguities.

In addition to mesh quality, the time performance of
the algorithm is characterized. The algorithm can gen-
erate approximately 600,000 tetrahedra per second per
processor on modern hardware. More importantly, the
algorithm scales roughly linearly with the size of the
output. To be precise, we expect the algorithm to scale
linearly with the number of function calls to the sub-
routine that subdivides a tetrahedron. When the maxi-
mum number of recursive calls is limited, this number
and the number of output tetrahedra are roughly pro-
portional. As recursion depth is increased, the number
of function calls will grow faster than the number of
output tetrahedra. However, for a mesh of significant
size, recursing more than four or five times will quickly
fill memory with output tetrahedra, as the mechanical
part example reveals.

Finally, we have presented an approach for improv-
ing the quality of refinements produced with the algo-
rithm in this paper and hope to generate alternative
decompositions of all the cases that will admit them.
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14. Pébay PP, Thompson DC (2005) Communication-free
streaming mesh refinement. ASME Trans J Comput Inf Sci
Eng, Special Issue on Mesh-Based Geometry 5(4):309–316

15. Ruprecht D, Müller H (1998) A scheme for edge-based adap-
tive tetrahedron subdivision. In: Hege H-C, Polthier K (eds)
Mathematical visualization. Springer, Berlin Heidelberg New
york, pp 61–70

16. Schroeder W, Martin K, Lorensen B (1995) The visualization
toolkit: an object-oriented approach to 3D graphics. Prentice
Hall, Englewood Cliffs
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