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Abstract. In this paper, we present a dynamic adaptive mesh library which
maintains a conforming triangulation of time-varying surfaces. The user supplies
an initial mesh, a surface sampling procedure, and a set of adaptation criteria. The
mesh is automatically modified in order to conform to user-defined characteristics,
while the surface changes over time. The mesh representation is based on a half-edge
data structure without any extra storage requirements. The mesh has an underly-
ing semiregular multiresolution structure. Furthermore, the specification of desired
mesh characteristics can be based on very general adaptation rules. This scheme
facilitates the development of graphics applications that manipulate triangulated
surfaces. The library source code is available online.

1. Introduction

Polygonal meshes are arguably the most common representation for surfaces
in geometric modeling and computer graphics.

In many applications, the surface is dynamic and changes its shape over
time. This encompasses a wide range of problems, from the animation of
deformable bodies to progressive multiscale for transmission and visualiza-
tion. There are other applications where the surface shape itself is fixed,
but the surface discretization has to change for computational reasons. This
occurs, for example, in the case of Finite Element Simulations (FEM) with
rigid bodies.
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In the two situations described above, the application ideally should be con-
cerned with the solution of the problem at hand, using a mesh representation
only as a means to perform computations.

In practice, however, it is very common that a significant part of the ef-
fort in developing such applications goes into the task of maintaining the
mesh representation. Worse yet, sometimes it is difficult to separate parts
of the implementation related to the main problem domain from the mesh
infrastructure, making the code less portable and error-prone.

In order to overcome these drawbacks, it would be desirable to have a mesh
library that could encapsulate all the functionality for supporting a dynamic
mesh representation. The implementation should be robust, computationally
efficient, and economical in terms of memory space. Moreover, the Application
Program Interface (API), should be simple and provide the right level of
abstraction.

In this paper, we present a simple scheme for creating and maintaining
a mesh representation of time-varying surfaces that addresses all the above
mentioned requirements. As an additional benefit, our mesh representation
has an underlying semiregular multiresolution structure which can be further
exploited in various ways.

More specifically, the relevant features of this software are:

e a simple dynamic adaptive mesh library based on the half-edge, a stan-
dard topological data structure. The implementation of this new adap-
tive multiresolution functionality does not require any extra storage in
the representation. Also, because the half-edge is widely adopted, it
should be easy to incorporate the library in many applications.

e a minimal API for mesh creation and adaptation. This interface com-
plements the traditional topological query operators and consists of only
a few functions.

e a conformal mesh structure that dynamically changes its resolution
based on user-defined criteria. This makes the associated adaptation
capabilities very general and powerful.

e an effective mechanism for refinement and simplification of semiregular
meshes that maintains a restricted multiresolution structure. This mech-
anism is based on the concept of a restricted binary multitriangulation
and stellar theory.

Our scheme is based on edge operators. Edge operators are commonly used
because of their good adaptation properties. For example, Bowden et al.
[Bowden et al. 97] employ an inflating balloon model to reconstruct a surface
from volumetric data. In this model the dynamic mesh is based on refinement
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by edge bisection. Kobbelt et al. [Kobbelt et al. 00] propose a multiresolution
shape representation based on geometry smoothing and dynamic meshes that
are modified by edge collapses, edge splits and edge flips.

Existing schemes for dynamic meshes are usually developed in the context of
specific applications. Unlike most previous work, our scheme is application-
independent. Moreover, it relies on stellar moves on edges which have the
expressive power to implement arbitrary transformations on combinatorial
manifolds [Lickorish 99].

Our dynamic mesh representation has an underlying multiresolution struc-
ture. Multiresolution representations can be defined through global or lo-
cal operations on a mesh [Garland 99]. In order to support adaptation, the
multiresolution data structure has to be constructed using local operations.
Progressive meshes [Hoppe 98] constitute one example of such data struc-
ture. Another example is the hierarchical 4-K mesh [Velho and Gomes 00].
In this kind of representation, different meshes can be dynamically extracted
from the data structure. However, the local operations need to be explic-
itly stored. In our scheme, only the current mesh is stored in the repre-
sentation. The legal moves that change the mesh resolution are implicitly
defined.

To the best of our knowledge, there is no other proposal for a dynamic
mesh representation that has an implicit underlying multiresolution structure
and is application-independent. Nonetheless, there is a growing interest in
the development of general mesh libraries [Fabri et al. 00].

The adaptation scheme proposed in this paper is orthogonal to the in-
frastructure existent in a general mesh library. In that sense, it complements
such libraries with additional functionality that could be implemented on top
of edge-based mesh representations, such as the OpenMesh [Botsch et al. 02].

The library C++ implementation with source code is available online at
the address listed at the end of this paper.

2. Overview

Our library is intended for applications in which shape information is known
independently of the mesh. This is particularly true when the surface shape is
not static and changes dynamically over time, or has an external continuous
definition. Some examples are variational modeling, multiresolution editing,
surface remeshing, and visualization of parametric or implicit surfaces.
Typically in such applications, the following requirements are satisfied:

e there is a base domain where the surface geometry is defined;

e it is possible to compute samples of points on the surface.
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Our library takes care of maintaining an adaptive variable resolution mesh,
but storing only the current mesh and providing a simple interface. The key
to achieving this goal is to impose a semiregular structure to the mesh, as will
be seen in the next sections.

The user must provide the topology and geometry of an initial base poly-
hedron, together with a means to sample and adapt the underlying surface.

In this section, we describe the adaptive mesh library’s API and give an
example of using the library.

The library API, related to mesh construction and adaptation, is composed
of only two functions:

e Mesh(Surface* surf) — This function is the mesh constructor. It takes
as a parameter an object that represents the surface.

e Mesh: :adapt () — This function adapts the mesh according to the user-
defined criteria provided by surf.

The function adapt performs both refinement and simplifications of the
current mesh. Two additional functions, adapt_refine and adapt_simplify,
are also exposed by the library API, in case the application needs to do only
refinement or simplification.

The above API requires that the application supplies four functions through
the surface object: a procedure to construct the base polyhedron; a sampling
function to evaluate the geometry of the surface at the vertex of the mesh;
a refinement test; and a simplification test to determine if the mesh needs
further subdivision or coarsening, respectively.

Therefore, the Surface object class has to implement the following mini-
mum functionality:

class Surface {
void base_mesh(int nv, Point pts[][], int nt, int tris[][]);
void sample(Edge e, Vertex &v);
float refine_test(Hedge e);
float simplif_test(Vertex v);

}

In addition to the API above, the library also provides the standard oper-
ators for querying and navigating topological data structures.

The library data structure does not include any a priori geometric data.
This is supplied by the application through attribute classes. The library
deals only with topological issues. Therefore, the application has full control
of geometry aspects through the face, edge, and vertex attribute classes and
the sampling function. This mechanism makes the library more general, with
the flexibility to accommodate different types of surface descriptions, such as
parametric, implicit, etc.
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It is worthwhile to note that the mesh has an underlying semiregular mul-
tiresolution structure. This implies that every vertex V' can be labeled with
a unique index (b, 1, j, k), where b indicates the base triangle from which that
vertex was generated nd (4,7, k) are dyadic barycentric coordinates. Other
labeling schemes are possible when the surface has a particular form of para-
metrization. In such cases, the application incorporates this knowledge into
the vertex attribute class. Parametrization is important for computing the
sampling function.

3. Multiresolution and Stellar Theory

The key to our adaptive mesh representation is its underlying multireso-
lution structure. In this section, we review the basic multiresolution con-
cepts and their relationship with stellar subdivision theory. For more details,
see [Velho 04].

We are going to work with a mesh representation for triangulated mani-
fold surfaces. This is not a serious restriction because every smooth surface
is triangulable [Munkres 66]. Indeed, triangle meshes are a widely adopted
discrete representation for surfaces.

A triangle mesh is a simplicial cell complex M = (V, E, F'), formed by sets of
simplices of dimension 0, 1, and 2. That is, vertices v; € V, edges (v;,v;) € E,
and triangles (v;,v;,v) € F, respectively.

A multiresolution mesh is a monotonic sequence of simplicial complexes
H = (My, My, ..., M), with increasing resolution. That is, |M;| < |M;| for
i < j, where |M| denotes the number of triangles of M. Furthermore, the
meshes M; € H are assumed to be equivalent triangulations of a surface S.

It is desirable that any two subsequent meshes M;, M; in the sequence H
should be related by a transformation that takes one into the other. In this
way, the multiresolution structure can be constructed from an initial coarse
mesh by successively applying refinement transformations. If the refinement
transformation has an inverse, it is also possible to build the multiresolution
structure starting from a dense mesh and repeatedly making simplification
transformations.

Usually, it is desirable that these mesh transformations consist of local mod-
ifications which affect only a part of the mesh. In this case, the dependency
relations between any two meshes in H will be local. Based on this fact, it is
possible to derive from H a dependency graph that allows the extraction of
new meshes that are not present in the original sequence by piecing together
independent local modifications.

From the above discussion on multiresolution structures we conclude that
we need local operators to transform triangle meshes. The theory of stellar
subdivision provides such operators.
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Figure 1. Stellar subdivision operators.

The basic stellar subdivision operators for two dimensional meshes are: the
face split and its inverse face weld; and edge split and its inverse edge weld.
These operations are illustrated in Figure 1.

Stellar theory studies equivalences between simplicial complexes [Lickor-
ish 99]. The main theorem of stellar theory states that stellar operators on
edges can transform between equivalent combinatorial manifolds.

Stellar subdivision is relevant in the context of multiresolution because it
provides the basic operators to refine and simplify a triangle mesh.

In our mesh library, face splits and welds will be used to impose a semireg-
ular structure on the base mesh, while edge splits and welds will be used to
transform the current mesh according to the underlying semiregular multires-
olution structure.

4. Binary Multitriangulations
As we have seen in the previous section, there are good reasons to use stellar

operations on edges. Whenever a stellar subdivision happens in an edge ¢, the
triangles incident in ¢ are split into two. Accordingly, a sequence of stellar
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Figure 2. Binary tree hierarchies: two binary trees resulting from an edge split
operation.

subdivisions on edges induces binary tree hierarchies in the simplices (see
Figure 2). Binary trees are simple and often lead to efficient algorithms.

In order to construct a multiresolution structure based on edge splits we
exploit the fact that stellar subdivision on edges introduce local modifications
in a mesh. In fact, this operation affects only the triangles that are incident on
that edge (i.e., two triangles for interior edges and one triangle for boundary
edges). The submesh formed by these incident triangles is the star of the
edge. We will also call this submesh a basic block. Therefore, two edge splits
are independent if one edge is not contained in the star of the other (and
vice-versa). It is easy to see that independent edge splits can be applied in an
arbitrary order. Conversely, note that there is a dependency between a split
edge and the edges on the boundary of its basic block. These dependencies
induce an interleaving relationship between the binary tree hierarchies. Note
that, in general, a basic block is a pair of triangles with a common internal
edge, but on the border of an open mesh a basic block can be just a single
triangle where the border edge is the split edge. Figure 3 illustrates the
dependencies between basic blocks.

To globally change the resolution of a mesh, we can apply any set of in-
dependent local modifications. This creates a new resolution layer over the

io 3
i1

3/ 4
i r >

Figure 3. Dependencies and basic blocks: two different basic blocks split and their
elements are grouped to form new basic blocks (split edges are indicated by dashed
lines).
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Figure 4. BMT viewed as a DAG: the dependency graph is formed by interleaved
binary tree hierarchies. Each interior basic block has two incoming and four outgoing
arrows, indicating respectively the triangles belonging to the block and the triangles
resulting from splitting the internal edge of the block. Basic blocks on the boundary
have only one incoming and two outgoing arrows.

mesh. Two subsequent resolution layers are constrained by the dependency
relations of local modifications.

The above concepts allow us to define a Binary Multitriangulation (BMT).
A BMT is a multiresolution structure formed by applying edge splits to an ini-
tial mesh M, called base mesh. The final mesh resulting from this subdivision
process is called full mesh.

The BMT can be thought as a Direct Acyclic Graph (DAG) describing all
possible ways to make local changes to a mesh. In this DAG, the arrows are
labeled with stellar subdivision on edges and the nodes are submeshes. From
an algorithmic perspective, the key idea is to use the above mentioned binary
tree hierarchies in the simplices to encode the DAG. Figure 4 illustrates this
concept.

Any cut in the DAG that separates the base mesh from the full mesh rep-
resents a valid mesh, as can be seen in Figure 5; such a cut is called front.
Note that this mechanism allows the generation of a large number of meshes,



Velho: A Dynamic Adaptive Mesh Library Based on Stellar Operators 9

Current Mesh

(b)

Figure 5. Extracting a mesh from a BMT: (a) current mesh resulting from applying
edge splits to the base mesh; (b) cut in the DAG of Figure 4 representing the front.

distinct from the ones defined in the multiresolution sequence. It is the flexi-
bility in choosing how to make those cuts that warrants the expression power
of a BMT.

The BMT is, in fact, a particular case of a more general variable resolution
structure, called Multitriangulation [Floriani et al. 98]. Binary multitriangu-
lations have been introduced by Velho and Gomes [Velho and Gomes 00]. We
define now a more specialized version of the BMT, the regular BMT.

A Regular Binary Multitriangulation (RBM) is a binary multitriangulation
that satisfies the following conditions:

1. the base triangulation is a tri-quad mesh.

2. refinement operations are only applied to interior edges of basic blocks.

The requirements of a regular binary multitriangulation are based on the
concepts of basic-block and tri-quad mesh.

A basic block is a pair of triangles with a common edge, called the internal
edge of the block. The other edges are called external edges. A tri-quad mesh is
a triangulated-quadrangulation, e.g., a mesh that is the union of basic blocks.
Figure 6 shows a tri-quad mesh, where the interior edges of basic blocks are
rendered as dashed lines.
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Figure 6. Example of a tri-quad mesh with four basic blocks.

Note that, when the internal edge of a basic block is subdivided by an edge
split operation, it is necessary to form new basic blocks in order to regularize
the mesh. This is done by subdividing adjacent blocks. In that way, the
external edges of previous blocks become internal edges of new blocks. This
process is called interleaved refinement (see Figure 7).

It is the interleaved refinement process that gives an underlying regular
structure to the meshes extracted from a RBM. In addition, this process
guarantees that any two adjacent triangles in a mesh will differ at most by
one level of refinement. This produces what is called a restricted structure [Von
Herzen and Barr 87].

Thus, the RBM can be viewed as a forest of interleaved quad-trees formed
by basic blocks. The concept of regular binary multitriangulations was intro-
duced by Velho and Zorin [Velho and Zorin 01], in connection with the v/2
subdivision scheme.

The restricted binary multitriangulation has very special properties. It is
optimal in relation to the main criteria used to measure the effectiveness of
a variable resolution structure [Puppo 98]. More precisely, it achieves the
highest expressive power, it has logarithm depth, and also has linear growth
rate.

(a) (b) (c)

Figure 7. Interleaved refinement: (a) the mesh has two basic blocks; (b) the top
basic block splits; (c) the bottom basic block has to split in order to regularize the
mesh. The final mesh has seven basic blocks—one in the interior and six on the
boundary.
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5. Adaptive Meshes

Regular binary multitriangulations possess a very rich adaptation structure.
The key element for this property is the ability to make local changes in the
current mesh by moving the front around a node in the DAG.

As we mentioned before, the regularity of the RBM allows us to store only
the current mesh (e.g., the front), while being able to operate as if we had the
complete multiresolution structure.

The stellar operators edge split and edge weld implement just “local”
transitions in the DAG, that is, if 7 and 7' are the triangulations before and
after an edge split is called, respectively, then 7" is a successor of 7.

However, in order to keep the current mesh consistent it is necessary to
propagate the dependencies between submeshes that are encoded in the DAG.
This propagation mechanism is based on the following observation.

In a binary multitriangulation, every triangle, ¢ & M UM, not in either the
base mesh M or the full mesh M, has a refining element and an unrefining
element.

The refining element will be a split edge ez, while the unrefining element
will be a welding vertex v,,.

This means that, before applying a stellar subdivision operation on some
element of the mesh (e.g., an edge split or an edge weld), all triangles that
are incident on the element (e.g., the edge to be refined or the vertex to be
simplified) must have that element as the subdivision element (e.g., refining
or unrefining).

This observation leads automatically to a restricted hierarchical structure.
Moreover, it can be implemented using a simple recursive algorithm. It is also
remarkable that this algorithm is basically the same for both refinement and
simplification.

We present the pseudo C++ code of the algorithms for RBM refinement
and simplification. In Algorithm 1, we describe the restricted edge refinement

Algorithm 1. (Recursive restricted edge refinement.)

Vertex* Mesh::refine(Edge* e)

for (Iterator f = incident_faces(e))
if (f—>split_edge() != e)
refine(f—>split_edge());
update_front_on_refine(e);
Vertex* v = split(e);
update_front_on_refine(v);
return v,
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Figure 8. Recursive dependency propagation in edge refinement: the two triangles
don’t share a split edge because they are at different levels (a); therefore the left
triangle has to be subdivided (b) before splitting the edge (c).

and in Algorithm 2 we describe the restricted vertex simplification. These
two algorithms use functions for updating the fronts that are described in
Algorithms 3 and 4.

Figure 8 gives an example of dependency propagation in restricted edge
refinement.

In Algorithm 2, the function max_level neighbor (w), returns the vertex
in the link of w with highest subdivision level. Note that the order of welding
incident simplices to the welded vertex is relevant: they must be welded from
the highest to the lowest level.

The method weld_degree returns the degree that a vertex should have for
a weld to be applied. This value is operator-dependent (4 for a weld of an
internal edge and 3 for a weld of a boundary edge).

Figure 9 gives an example of dependency propagation in restricted vertex
simplification.

The refining and unrefining elements of the current mesh constitute valid
transitions to change the front. We keep these split edges and welding vertices
in two heaps corresponding to the candidate refinement and simplification
operations, respectively. These heaps are ordered according to a user-defined

Algorithm 2. (Recursive restricted vertex simplification.)

Edge* Mesh::simplify(Vertex* w)

do {

Vertex* v = max-_level_neighbor(w);

if (v—>level() > w—>level())

simplify(v);

} while (w—>degree() != w—>weld_degree());
update_front_on_simplif (w);
Edge* e = weld(w);
update_front_on_simplif(e);
return e;
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Figure 9. Recursive dependency propagation in vertex simplification: the welding
vertex is not the same for all triangles in (a); therefore the four top-left triangles
are simplified (b) before performing the edge weld(c).

priority, such that operations with higher priority are performed first by the
global adaptation routines. The priority of local change operations is set
by the functions ref_test and simpl_test that are declared in the class
Surface. Usually, the user will define these functions based on a measure of
the approximation error between the current mesh and the true surface.

The candidate transition elements of the front are maintained in refine-
ment and simplification heaps by the routines update_front_on_refine and
update_front_on_simplif. These routines are called by refine (Algorithm 1)
and simplify (Algorithm 2). For each operation (refine or simplify), they are
called before and after the operation to update the corresponding heap. Before
the operation they remove from the heap elements that cease to be transition
elements once the operation is performed. After the operation they insert
in the heap elements that become transition elements when the operation is

Z I H
Remove Split Insert

(a) refinement update

A Z
Remove Weld Insert

(b) simplification update

Figure 10. Updating the front—grey elements are removed or inserted in the heap.
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Algorithm 3. (Heap update on refinement.)

void Mesh::update_front_on_refine(Edge* )

refine_heap().remove(e);
for (Vertex* w = link(e))
simplif_heap().remove(w);

void Mesh::update_front_on_refine(Vertex* v)
simplif_heap().insert(v, surf.simpl_test(v));

for (Edge *h = link(v))
refine_heap().insert(h, surf.ref_test(h));

done. These elements belong to the 1-neighborhood of the split edge and
the welding vertex. Figure 10 shows the scheme for removing and inserting
transition elements in order to update the heaps.

Algorithm 3 shows the code for updating the front during the edge split
operation. Note that function overloading is used to select the method for
each phase of the update process.

Algorithm 4 shows the code for updating the front during the edge weld
operation. As expected, the code for updating the front for a weld operation
is completely symmetric and complementary to the split operation. Here,
function overloading is used as well.

The algorithms refine and simplify make nonlocal transitions in the
DAG, propagating dependencies to maintain the mesh consistency. In or-
der to perform global adaptation on a mesh, it is necessary to apply these two

Algorithm 4. (Heap update on simplification.)

void Mesh::update_front_on_simplif(Vertex *v)

simplif_heap().remove(v);
for (Edge *e = link(v))
refine_heap().remove(e);

void Mesh::update_front_on_simplif (Edge *e)
refine_heap().insert(e, surf.ref_test(e));

for (Vertex *v = link(e))
simplif_heap().insert(h, surf.simpl_test(v));
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Algorithm 5. (Adaptive mesh refinement.)

void Mesh::adapt_refine(float thresh)

while ((e = refine_heap().extract()) != NULL) {
if (e.priority() < thresh) {
refine_heap().insert(e, surf.ref_test(e));
return;

refine(e);

algorithms over the whole mesh and refine or simplify it where desired.

We remark that, as in the restricted simplification methods, the adapta-
tion algorithm is essentially the same for refinement and simplification. The
algorithm keeps scanning through the candidate transition elements for the
operation (e.g., edges for refinement and vertices for simplification). For each
transition element (split or weld), it asks if the transition should be made (e.g.,
the element priority greater than the threshold value thresh) and performs
the operation when this condition is true.

The code for global adaptive refinement and simplification is shown in Al-
gorithms 5 and 6, respectively.

There are a couple of observations regarding the above algorithms. First,
observe that stellar operations are independent of each other because they
change only the 1-neighborhood of the element. Each operation automatically
maintains the restricted structure.

The user supplies the adaptation criteria through a function that is called
with the transition element as its argument. This function can be very
general and can be based either on local information from the mesh (e.g.,
queried through the element), or any other global information (e.g., can de-

Algorithm 6. (Adaptive mesh simplification.)

void Mesh::adapt_simplify(float thresh)

while ((v = simplif_heap().extract()) != NULL) {
if (v.priority() < t) {
simplif_heap().insert(v, surf.simpl_test(v));
return;

simplify(v);
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pend on other factors besides the mesh itself, such as camera position in
a view-dependent adaptation). Also, the function is responsible for mak-
ing sure that the criterium will eventually be satisfied so that the process
terminates.

In order to have a complete adaptation, parts of the mesh might need to be
refined, while other parts may have to be simplified. Consequently, the two
functions should be called every time the conditions change, as illustrated in
the code below.

void Mesh::adapt(float t)

adapt_refine(t);
adapt_simplify(t);

}

In this full adaptation case, it is mandatory that the tests for refinement
and simplification are based on the same adaptation criteria and complement
each other. This guarantees that the final result will be correct.

A simple example is as follows. Suppose that the criteria is to keep the mesh
resolution at level J. Then, the test in ref_test(e) should be (e.level()
< J) 7 1 : -1, while the test in simpl_test(w) should be (w.level() >
J+ 1) 7 1 : -1, and the threshold for the adaptation functions should be
t=0.

6. Data Structures

The algorithms described in the previous section are applicable to general
BMTs, and also to regular BMTs.

However, in the case of general BMTs, it is necessary to explicitly store the
dependency graph. This DAG essentially encodes the transition elements for
refinement and simplification, as well as the geometric information associated
with changes of mesh resolution. A hierarchical data structure suitable for
this purposed has been introduced by Velho and Gomes [Velho and Gomes 00].

In this section, we exploit the properties of the regular BMT, in order
to provide all the functionality discussed in Section 5, without the need for
storing a hierarchical data structure.

The library uses a standard representation based on the half-edge data
structure.

In this representation, a mesh is a collection of sets of vertices, edges, and
faces. The geometric data for and the adaptation criteria is obtained through
a user-supplied surface object. The front is stored in two heaps.

struct Mesh {
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Container<Face*> faces;
Container<Edge*> edges;
Container< Vertex*> vertices;

Heap refine_heap;
Heap simplif_heap;
Surface surf;

}

A triangular face is a loop of three oriented half-edges.

struct Face {
Half_Edge* he_ref;

}

An edge stores two half-edges, one for each orientation.

struct Edge {
Half_Edge he[2];

}

The half-edge contains pointers to its origin vertex, the next half-edge in
the loop, the face corresponding to that loop, and its parent edge.

struct Half_Edge {

Vertex* org_ref;
Half_Edge* nxt_ref;
Face* f_ref;
Edge* e_ref;

}

The vertex stores its subdivision level, and a pointer to one of the incident
edges in its star.

struct Vertex {
Half_Edge* star_ref;
int level;

}

In order to refine and simplify the current mesh, it is necessary to know the
split edge and weld vertex of a triangle. We want to obtain this information
without having to store the data explicitly. This is possible because of the
regular structure of the RBM. Note that in an RBM, the split edge is always
opposite to the weld vertex, as shown in Figure 11. Therefore, we establish
a convention that the split edge and the weld vertex are numbered as the
first simplices of dimension 1 and 0 of a triangle, e.g., ey € (eg,e1,e2) and
vo € (vg,v1,v2). This numbering is consistent with the face operator definition
for abstract simplicial complexes [May 67].

The scheme is automatically maintained by our library’s implementation
of the stellar operators split and weld. Figure 11 shows the zero-placement
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Figure 11. Zero-placement scheme for subdivision elements.

scheme for subdivision elements.

With the zero-placement scheme above we have all the information neces-
sary to implement the split operator. However, the weld operator requires one
more piece of information. It is given a weld vertex w and must transform the
star of w into two triangles. Thus, it needs to know which vertices from the
link of w should be connected to create the new internal edge of the block.
We encode this information, using the convention that the origin vertex of the
welded edge is the same as the origin of the half-edge indicating the star of
w. This scheme is shown in Figure 12.

The data structure encodes the relevant information for the implementation
of stellar operators as follows:

e cach element has sufficient information to recover its incident elements
and its star;

e the split edge of a triangular face is given by the Oth half-edge of the
loop.

o the welded vertex of a triangular face is given by the Oth vertex of the
loop. Note that this is a consequence of the previous item.

e the star of a vertex is indicated by a pointer to one of its incident half-
edges. This half-edge also indicates the origin of the welded edge.

e an edge is on the boundary if its mate half-edge points to a null face.
Analogously for a boundary vertex, we have that the first incident half-
edge is a boundary edge.

The mesh representation also allows all the standard topological queries
for navigating a combinatorial manifold structure. Most operators are easily

—

Figure 12. Scheme for encoding the weld of an edge.
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inferred by inspection of the data structures. Below we list the methods
associated with each data item.
The face methods are:

e Hedge* Face::hedge(int i) — returns the ith half-edge;

e Vertex* Face::vertex(int i) — returns the ith vertex;

Hedge* Face::split_hedge() — returns the split half-edge;
e Vertex* Face::weld_vertex() — returns the welding vertex;

e boolean Face::is_inbase() — returns true if the face is part of the
base mesh.

The edge methods are:
e Hedge Edge::hedge(int i) — returns the ith half-edge;
e boolean Edge::is_boundary() — returns true if on boundary;
e boolean Edge::is_split() — returns true if it is a split edge.
The half-edge methods are:
e Vertex* Hedge::org() — returns the origin vertex;

e Vertex* Hedge::dst() — returns the destination vertex;

Face* Hedge::face() — returns the incident face;

Edge* Hedge::edge() — returns the parent edge;

Hedge* Hedge::sym() — returns the mate half-edge;

Hedge* Hedge: :prev() — returns the previous half-edge;
e Hedge* Hedge::next() — returns the next half-edge.
The vertex methods are:
e Hedge* Vertex::star_first() — first incident half-edge;

e Hedge* Vertex::star next(Hedge *e) — iterates to get the next half-
edge incident on the vertex;

e Point* Vertex::level() — returns the level of the vertex.

In addition to the mesh adaptation functions,the library also provides iter-
ators for accessing the mesh elements:
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e Iterator Mesh::face_iter() — returns face container iterator;
e Tterator Mesh::edge_iter() — returns edge container iterator;

e Iterator Mesh::vertex_iter() — returns vertex container iterator.

The data structure described above contains only topological information.
In our C + + implementation, the classes for topological elements (vertex,
edge, face) are the bases for classes of geometrical elements. This mechanism
enables new attributes to be added to any element. One can, for instance,
add a geometric position to each vertex, or a surface normal to each face, or
a scalar value to each edge. A similar technique based on attribute classes is
used in Botsch et al. [Botsch et al. 02].

In summary, our mesh representation uses a standard topological data
structure, and is able to implicitly encode all information necessary for main-

taining a dynamic variable-resolution mesh with the underlying structure of
a RBM.

7. Building the Base Mesh

The mesh constructor takes as a parameter an object of the class Surface. As
mentioned before, the surface object encapsulates the global geometric and
topological information used by the mesh library, including the definition of
the base domain and sampling the surface. Algorithm 7 shows the pseudocode
for the mesh constructor.

When a new mesh is instantiated, the constructor calls Surface: :base_mesh
to initialize the data structures. This function must specify the geometry and
topology of the base domain through arrays of points and indexed triangles,
respectively.

Algorithm 7. (Mesh constructor.)

Mesh(Surface s)
{
surf = s;
s.base_mesh(nv, verts, nf, faces);
set_mesh(nv, verts, nf, faces);
if (lis_triquad_mesh())
make_triquad();
init_heaps();

}
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Algorithm 8. (Generation of a tri-quad mesh.)

void Mesh::make_triquad(void)
{
priority_queue<node,vector<node> less<node>> q;
for (e = edges_begin(); e != edges_end(); e++) {
e—>set_mark(false);
q.push(node(e));

while ( !q.empty() ) {
node n = q.top(); q.pop();
if ( In.edge—>is_marked() ) {
mark_link(n.edge);
split(n.edge);

for (f = faces_begin(); f != faces_end(); f++)
if (f—>level() == 0)
split(f);

From this description, an initial mesh structure is generated. Since the base
mesh must be a triangulated quadrangulation, the mesh constructor tests if
the user-supplied description has this property. If this is not the case, then the
constructor calls a procedure to transform the base mesh into a triangulated
quadrangulation. After that, the heaps are initialized with the transition
elements.

We note that it is always possible to transform an arbitrary triangular mesh
into a triangulated quadrangulation. An algorithm to create tri-quad meshes
is given in [Velho and Zorin 01]. We include it here for completeness.

The tri-quad mesh generation algorithm shown in Algorithm 8 works as
follows: the mesh is decomposed into clusters of triangle pairs and isolated
single triangles. The boundaries of these clusters will form the internal edges
of basic blocks in the tri-quad mesh. This is done by subdividing triangle pairs
with the edge split operator and single triangles with the face split operator.
Note that, in this algorithm, triangle pairs are created based on longest edge
clustering [Rivara 84].

Obviously, when the input mesh already possesses a quadrilateral structure,
it is not necessary to apply the tri-quad mesh algorithm. This is automatically
detected by the mesh constructor.

8. Examples of Applications

We have implemented the dynamic adaptive mesh library on several platforms
using the C language and the C++ language for both Linux and Windows
operating systems. We also implemented the library in Java.
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Algorithm 9. (Application main loop.)

Mesh m = mesh(mysurf);

while ( do_processing() ) {
update_mesh(m);
m.adapt();

In this section, we give examples of different applications developed with
the library on these platforms. All applications have a similar structure.
They create a mesh and go into a loop where the surface is modified and the
mesh changes its resolution adaptively, as shown in Algorithm 9. The main
difference between the applications is how the surface is specified and which
adaptation criteria is employed.

8.1. Basic Surface Subdivision

In this example the surface is a parametrically defined sphere. The adapta-
tion criteria is region-based. The user interactively controls the height of a
horizontal plane that divides the sphere in two regions. Above the plane the
mesh resolution is set to N + 1 and below to N — 1, where IV is a reference
resolution level. This program was implemented in the C language as a mod-
ule of Geomview [Levy et al. 92]. Figure 13(a)—(c) shows three snapshots of
an interactive session.

(a) (b) (©)

Figure 13. Geomview module: region-based adaptation. The user controls a
horizontal plane dividing the mesh in two regions with resolution N —1 and N + 1.



Velho: A Dynamic Adaptive Mesh Library Based on Stellar Operators 23

8.2. Image Iso-Contour Processing

In this application we are interested in the extraction and transmission of iso-
valued contours of an image for analysis of medical data. The image domain
is decomposed using an adaptive mesh. The mesh is subdivided around the
tubular neighborhood of the iso-curve and the submesh that intersects the
curve is used for processing. The application was developed in C++ with the
wxWindows toolkit [Smart 97].

Figure 14 describes several stages of the process. Figure 14(a) shows the
input image: CT scan of a human head. Figure 14(b) shows the contour cor-
responding to a user-selected iso-value. Figure 14(c) shows the mesh adapted
to the iso-curve. The mesh is refined up to the maximum resolution of the
image data at the iso-contour. Note that the resolution increases only near the
curve. Figure 14(d) shows the intersecting submesh that is used for processing
and transmission of the iso-curve.

(©) (d)

Figure 14. Image processing application: the adaptive mesh is used for extraction
and transmission of iso-valued contours in medical data.
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8.3. Mesh Generation for Finite Element Analysis (FEM)

Geological models often contain multiregions, complex borders, faults, holes,
and other aggravating characteristics that make the life of the mesh tessella-
tors very hard. These models often run through numerical simulations that
are sensitive to small angles and negative areas. The goal of the application is
to create a mesh that captures well the boundaries between different regions
of a geological model and contains triangles with a good aspect ratio that are
suitable for FEM analysis. For this purpose we use a combination of adap-
tive subdivision and physically based deformations. Subdivision refines the
domain around boundaries, while deformation moves vertices to the bound-
aries and, at the same time, maintains the aspect ratios of triangles [Marro-
quim et al. 04]. The application was developed using C++ and the GLUI
toolkit [Rademacher 98|.
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(c)

Figure 15. Triangulation of Lake Superior in Canada.
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Figures 15 and 16 give some results of this application. Figure 15(a) shows
Lake Superior in Canada, a classic model in the meshing area. Figure 15(b)
shows the adaptive mesh without deformation. Figure 15(c) shows the final
triangulation of the interior region. The mesh has 1360 triangles and all
angles are between [6.070, 164.6]. Figure 16 shows an enlarged view of the
undeformed and deformed meshes.

(b)

Figure 16. Detail of the undeformed and deformed meshes.
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8.4. Terrain Visualization

This application was developed in C++ using OpenGL. Here, the mesh adap-
tation criteria is view-dependent. Figures 17(a) and (b) show, respectively,
a flat-shaded and a texture-mapped rendering of the terrain. Figure 17(c)
shows a top view of the mesh in wire-frame. Note that the mesh is only
refined inside the view-frustrum.

View Window View Windaw

Mesh Windowr

(c)

Figure 17. View-dependent terrain visualization.
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8.5. Deformation-Based Modeling and Animation

This application was developed in Java based on Ken Perlin’s Clay Mod-
eler [Perlin 03]. Local warpings are applied to the three-dimensional ambient
space in which the surface is contained. As the surface is deformed under
the action of these operations, the mesh is adapted based on the surface
curvature. Figure 18 shows an animated face model constructed using this
technique. The initial surface is a single sphere, procedurally modified by mul-
tiple space-varying displacements. About 30 such displacements are applied
to define all the bones and muscles. Expressions and emotions are animated
by modifying displacements via time-varying noise functions.

(©) (d)

Figure 18. Animated face model using space-based deformations.
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