
Dynamic Remeshing and Applications

J. Vorsatz, Ch. Rössl, and H.-P. Seidel

Max-Planck-Institut für Informatik
Saarbrücken, Germany

ABSTRACT
Triangle meshes are a flexible and generally accepted boundary
representation for complex geometric shapes. In addition to their
geometric qualities or topological simplicity, intrinsic qualities such
as the shape of the triangles, their distribution on the surface and the
connectivity are essential for many algorithms working on them. In
this paper we present a flexible and efficient remeshing framework
that improves these intrinsic properties while keeping the mesh ge-
ometrically close to the original surface. We use a particle sys-
tem approach and combine it with an incremental connectivity op-
timization process to trim the mesh towards the requirements im-
posed by the user. The particle system uniformly distributes the
vertices on the mesh, whereas the connectivity optimization is done
by means of Dynamic Connectivity Meshes, a combination of local
topological operators that lead to a fairly regular connectivity. A
dynamic skeleton ensures that our approach is able to preserve sur-
face features, which are particularly important for the visual quality
of the mesh. None of the algorithms requires a global parameter-
ization or patch layouting in a preprocessing step but uses local
parameterizations only. In particular we will sketch several appli-
cation scenarios of our general framework and we will show how
the users can adapt the involved algorithms in a way that the result-
ing remesh meets their personal requirements.

Categories and Subject Descriptors
I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Curve, surface, solid, and object representations

General Terms
Algorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SM’03, June 16–20, 2003, Seattle, Washington, USA.
Copyright 2003 ACM 1-58113-706-0/03/0006 ...$5.00.

Keywords
Remeshing,Dynamic Meshes,Multiresolution Modeling

1. INTRODUCTION
Nowadays the literature on triangle meshes comprises a huge

amount of excellent work and is still growing rapidly. The virtual
mesh-processing pipeline starting from acquisition down to render-
ing is well covered, thus triangle meshes have become an appealing
surface representation.

Opposed to meshes that, e.g., represent characters in the animation-
/game industry which are often hand-made and highly optimized
with respect to triangle count, visual quality and kinematics, we
turn our attention to densely sampled triangle meshes often stem-
ming from 3D scanning devices or volume extraction [12, 18].

Even though a mesh might be 2-manifold without any unwanted
holes or handles, in practice, the given tessellation often does not
satisfy the requirements imposed by an application in a later step
of the pipeline. Obviously, even for a prescribed approximation
tolerance, there exist a multitude of tessellations. The requirements
can be as diverse as a regular connectivity, bounded minimal angles
of the triangles or the alignment of edges along surface features. In
order to prepare a given mesh for a specific application, a variety
of remeshing algorithms have been proposed. Among those are
mesh decimation algorithms [10, 8, 21], semi–regular remeshing
schemes [6, 19, 9, 15] and irregular remeshing [12, 3, 25].

The dynamic remeshing framework we present is in spirit similar
to Feature Sensitive Remeshing (FSR) [25]. We link our remesh M
to a domain mesh D and use a particle system on M for an equal
vertex distribution. Moreover, M is a Dynamic Connectivity Mesh
(DCM) [13] that provides incremental changes of the connectivity.

Our approach differs from [25] in that we are not building our
particle system upon a (precomputed) global parameterization, in-
stead we are using a set of local parameterizations of small, bounded
parts of D. This is done for the following reason. In order to
be as flexible as possible, we make sure that we have a consis-
tent mapping for each 1–ring and that we are not limited by the
base-domain/chart-boundaries of some underlying global parame-
terization.

167

In the next section we describe a particle-system approach which
lets vertices of M float on D in order to redistribute them equally.
This way we achieve an isotropic remeshing of the original ge-
ometry. In this context we will show that different (local) param-
eterization methods influence the relaxation process and we will
discuss how to construct parameterizations based on a minimal lo-
cal domain. Section 3 briefly recapitulates the notion of DCM, a
technique for integrated connectivity optimization. After that we
explain how the vertex-relaxation in the particle-system and Dy-
namic Connectivity Meshes are combined. Section 4 introduces the
notion of a skeleton that enables us to preserve important surface
features. Finally, section 5 sketches some application scenarios for
our dynamic remeshing approach. In particular we will go into
interactive multiresolution modeling, semi-regular- and interactive
remeshing.

2. RELAXATION ON THE DOMAIN
We optimize the vertex distribution of M by relaxing its ver-

tices while restricting their positions to the domain D. We define a
particle-system that allows the vertices to float on the original sur-
face represented by D. A relaxation operator locally repositions
a vertex with respect to its direct neighbors (1-ring). This opti-
mization process iteratively applies the local relaxation, in a phys-
ical interpretation this minimizes the energy of a global system of
spring-edges connecting the vertices.

The relaxation is done in a 2D parameter domain. So we need
to be able to parameterize regions of M over the plane. For this
purpose we first parameterize M over the domain mesh D by as-
signing to every vertex vi ∈ M the domain triangle ∆̃j ∈ D that
includes vi and barycentric coordinates w.r.t. ∆̃j . We call the
mapping

vi �→
�
∆̃j , (αi1, αi2, αi3)

�
,

3X
j=1

αij = 1 ∧ αij ≥ 0

of all vertices vi ∈ M the link between M and D. So if we flatten
a region of D to the plane, the link will provide us also a mapping
of the associated vertices and triangles of M to the plane.

Now we define the local relaxation operator U as the so called
weighted 2D Umbrella operator. It shifts a vertex vi depending on
a convex combination of its direct neighbors vij . Let pi and pij be
the respective parameter values obtained from the link to D. Then
U is defined as

U(pi) := pi +
1Pn

j=0 ωij

nX
j=0

ωij(pij − pi) , ωij ≥ 0

The appropriate choice of the weights ωij will be discussed at
the end of this section. The Umbrella operator U shifts vertices in
the parameter domain, that are lifted back to 3-space using the link.
This allows the restriction to D without expensive and error-prone
projection operators.

The actual relaxation process is similar to parameter-based fair-
ing applied in FSR [25] where a global parameterization (MAPS [19])
of D is used. In contrast to FSR (and also e.g. [2, 3]), we give up
the global parameterization and replace it by a set of local param-
eterizations mapping regions of D to the plane. The benefit is that
we do not have to rely on the quality of the global parameterization
that may even be hard to construct. For a global parameterization of
D that is defined over a coarse base domain, this prescribed domain
limits the coarsest resolution of the remesh, as the size of a 1-ring in
M is then restricted to that of a 1-ring in D. On the other hand, for
global flattening methods that induce cuts to the original surface, it

Figure 1: A closeup view of Tweety’s tail. Projection into a
fitting plane leads to degeneracies in areas with high curvature
(left), whereas a local mapping with Floater’s shape preserving
parameterizations performs well (right).

is not clear how the relaxation operator should behave if a 1-ring
intersects a cut. The price we have to pay with the new approach
is the on-the-fly construction of the local parameterizations which
cannot be done in a preprocessing step anymore. For this reason we
keep the domains of the different local parameterizations as small
as possible and apply caching whenever feasible.

We construct a set of local parameterizations {Φi}. Each pa-
rameterization Φi provides a piecewise linear mapping from a set
of domain triangles – the local domain Di

L ⊂ D – to the plane.
With the link to the remesh M we can thus map associated vertices
and triangles of M. When we start remeshing with M = D the
initial link provides a 1-to-1 mapping between the corresponding
vertices. Formally, for a vertex v ∈ M corresponding to ṽ ∈ D
we can choose a single triangle ∆̃ ∈ D that contains ṽ as its local
domain.

As we start the optimization process, U will compute a shift vec-
tor for v from a convex combination of the direct neighbors vj

in the 1-ring. Hence shifting v requires a larger domain, since a
parameterization of the 1-ring is needed. We try to keep this lo-
cal domain small as well as the updates on it. So we restrict the
shift to parameter points located in the intersection of the 1-ring
∆1(v) ⊂ M and the subset Dv

L ⊂ DL of triangles that this vertex
v is assigned to. This way we ensure that the new position is well
defined, i.e. has a mapping in the parameterization, and we avoid a
more expensive point-in-triangle test.

This determines the minimal domain that has to be covered by
the local parameterization. It consists of the union of

• triangles of DL covered by the triangles of v’s 1-ring, i.e.
{∆̃ ∈ DL|Φ(∆̃) ∩ Φ(∆1(v)) �= ∅},

and Dv
L which is defined as

• a single triangle ∆̃ ∈ DL, if the vertex is inside this triangle,
i.e. Φ(v) ∈ Φ(∆̃), or

• two neighboring triangles ∆̃1, ∆̃2 ∈ DL, if v is located on
their common edge, i.e. Φ(v) ∈ Φ(∆̃1 ∩ ∆̃2), or

• a 1-ring in DL, if v corresponds to a vertex ṽ in DL, i.e.
Φ(v) = Φ(ṽ).

Fig. 2 shows the three different cases.

168

Figure 2: Example for calculating the shift vector for the vertex inside triangle (left), on edge (middle), and on vertex (right) case.
The remeshM is drawn in wireframe, the domain meshD is shaded. The arrow shows the vector calculated by the relaxation
operator U , the shift is restricted to the shaded area, the dot marks the final position of the center vertex.

The reasons for keeping DL small are the lower costs for the
construction of a local parameterization as well as the lower distor-
tion that is induced. In fact, we might not even be able to construct
a reasonable parameterization in certain situations. Thus, U cannot
be computed for the corresponding vertex and we keep its position.
This rarely happens, and as the neighborhood of the vertex is re-
laxed we are likely to find a parameterization in the next iteration.

If the cone of normals of the triangles in DL has only a small
opening angle we can even use a simple projection to a fitting plane
for constructing the parameterization. This is especially useful in
the case when D is relatively coarse compared to M. (Just con-
sider the trivial case when a 1-ring of M is completely contained
in a single domain triangle of D.) In general we have to apply
a more sophisticated parameterization scheme. There are a num-
ber of methods for flattening disk-like 2-manifold meshes to the
plane ([7, 5, 11, 23]. We use Floater’s [7] shape preserving pa-
rameterization after projecting the boundary of DL to a plane. Due
to the definition of U the boundary is usually ”fairly convex” and
we almost always get a valid, bijective parameterization without
foldovers of triangles. In case of an invalid parameterization we ei-
ther could map the boundary to a circle and apply Floater’s method
again, thus ensuring a valid mapping or give up for this iteration
as mentioned above. Our experiments show that the less expensive
second alternative works well. We use the first alternative only af-
ter the construction of a local parameterization for this vertex has
failed several times.

Figure 3: The remeshM (straight lines) might miss some fea-
ture part of the domain meshD (curved) if we setωij = 1. We
have to incorporate the area of the triangles ofD that are cov-
ered by a 1-ring of a vertex inM into the relaxation operator
to solve this problem and get a uniform sampling ofD.

Consider a configuration as illustrated in Fig. 3. Despite the fact
that a projection parameterization is in general not a good choice
for highly curved surface regions (cf. Fig. 1), there is the problem
that the remesh M misses some feature part of the domain D. This
situation is likely to happen if M is coarse (cf. connectivity op-
timization described in the next section) compared to the surface

feature on D. In order to avoid this situation the relaxation oper-
ator U will take into account not only a 1-ring of M but also the
covered domain triangles, i.e. the convex weights ωij used for re-
laxation depend on the area of domain triangles.This explains why
the local domain DL must cover a 1-ring in M.

Formally, we can assign a local domain to every 1-ring. Practi-
cally, we assign to every mesh triangle ∆ ∈ M the set

C(∆) := {∆̃ ∈ D|Φ(∆) ∩ Φ(∆̃) �= ∅}
of domain triangles that have a non-empty intersection with ∆

in the parameter domain. The application of U requires the union
of all C(∆j) with triangles ∆j from the respective 1-ring.

In every single relaxation step only a single vertex v is repo-
sitioned. So the corresponding C(∆j) have to be updated. We
intersect each parameter triangle Φ(∆′

j) of the new 1-ring with all
triangles of Dv

L and reassign them to the new triangles ∆′
j . This

update step can be implemented efficiently since the intersection
tests are done for all triangles of the 1-ring which are sharing com-
mon edges. Thus, intermediate intersection results can be reused.
Moreover the outer hull of the 1-ring remains unchanged, hence
there is no need to test against it. Also, we only need to recompute
a parameterization if domain triangles have been added to the set
of triangles assigned to a 1-ring. This caching of local parameteri-
zations considerably speeds up our algorithm.

The choice of the weights ωij determines the energy to be min-
imized in the optimization process. Uniform weights will provide
a uniform distribution of triangles in the local parameter domains.
As the local domains are kept small, the resulting parameteriza-
tions are near isometric resulting in a uniform point distribution
in 3-space. However, Fig. 3 illustrates, that surface features of D
might be missed in the remesh. Hence we choose the weights ωij

for the weighted umbrella proportional to the area (in 3-space) of
all those domain-triangles that are covered by the 1-ring of vij and
thus are able to capture those features.

Of course, this is just one possible choice for the weights ωij

and there are many ways to adapt the ωij ’s to a specific applica-
tion. For instance one might also think of adapting the weights
with respect to principal directions of curvature which would lead
to an anisotropic remeshing. However, within the scope of this pa-
per we just want to illustrate the core concept of our framework and
will not go into detail here.

169

3. DYNAMIC CONNECTIVITY MESHES
Up to now, our remeshing scheme is able to reposition the ver-

tices of M on D. The other important component is to adapt the
resolution of M while optimizing the connectivity. Starting from
the initial connectivity of M, we apply simple topological opera-
tors that insert or remove vertices and regularize the connectivity.
This way we can incrementally adjust the complexity of M to a
desired target resolution. In order to achieve this, we apply an al-
gorithm similar to DCM [13], since we want to obtain a good mesh
quality according to the following criteria:

• No edge should be shorter than εmin.

• No edge should be longer than εmax.

• A vertex’ valence should be six.

First, we apply a half-edge collapse — which removes two tri-
angles (or one triangle for boundary edges) by collapsing one edge
into a single vertex — to all edges that fall below a length of εmin.

In the second step we insert a vertex on every edge that is longer
than εmax and connect it with the opposite vertex in the adjacent
triangle(s). The new vertex will be positioned on one of the end-
points of that edge e which was split (its parent-vertex). In fact,
we are creating two geometrically degenerated triangles in the first
place. But inserting the new vertex on the midpoint of e would
require an expensive point-in-triangle-search (cf. [4]) in the param-
eter plane, since we have to establish the link to D for the new
vertex.

To regularize the connectivity, we perform edge-flipping. This
becomes necessary since both edge-collapse and edge-split affect
the vertex balance, and according to Euler’s formula we want most
vertices to have valence six. Consequently, for every two neigh-
boring triangles �(A,B, C) and �(A, B, D) we flip the common
edge between A and B, if that reduces the total valence excess:

X
p∈{A,B,C,D}

(valence(p) − 6)2

Note that all three topological operations are inexpensive and
local since they do not need any global optimization and since they
only affect a small region on M. Moreover, M always remains
a valid 2-manifold (opposed to the 1–to–4 triangle-split which is
used in many subdivision schemes).

Now the desired resolution of M can be set by adapting εmin and
εmax. Notice that εmax > 2εmin has to be satisfied in order to avoid
generating two (with respect to εmin) invalid edges during the split
operation.

In practice, both algorithms, i.e. relaxation and DCM work in-
dependently of each other. The relaxation operator U is iteratively
applied to all the vertices. Here, the algorithm simply steps through
the list of vertices in a linear order. As soon as an edge exceeds
εmax or falls below εmin, the corresponding topological opera-
tion is performed. Additionally, we schedule those vertices for
immediate relaxation that were affected by the topological oper-
ation (the remaining vertex during the half-edge collapse and the
newly inserted vertex introduced by the edge–split) thus ensuring
a faster convergence of the particle system. Moreover, we partic-
ularly test the affected regions for possible edge-flips, since both
half–edge–collapse and edge–split presumably amplify the local
valence-excess.

Obviously, changes in the connectivity enforce an update of the
local domains that are used in the relaxation step. This is trivial
for the edge-split, since we introduce degenerated triangles which

Figure 5: After a split of a bone-edge ofM the newly inserted
bone-vertex (light) gets attached to a bone-edge ofD (thick
lines). If the new vertex has a corner-vertex as its parent (cen-
tral vertex), we attach it to that bone-edge that has the smallest
enclosing angle with the bone-edge that was split. Additionally
we require, that the opposite vertex ofM can be reached via
D’s skeleton (dotted arc). After that, the new vertex is allowed
to move on bone-edges ofD exclusively.

do not have an intersection with domain triangles. During the half-
edge collapse, we assign those domain triangles that were associ-
ated to the removed triangles to their respective neighbors. For the
edge-flip, the reassignment is trivial.

4. FEATURE PRESERVATION
Aliasing is a fundamental problem for a remeshing algorithm

which typically occurs at corners or sharp creases of D. It is often
mandatory to preserve such surface features but it can also be de-
sirable to preserve additional user defined features such as certain
vertices or edges.

Of course, refining M near the feature ad infinitum is not an ap-
propriate solution. Instead we have to make sure that we represent
those features with a limited number of faces of M. In order to do
so, it seems natural to align the edges along the features, i.e. or-
thogonal to the direction of maximal curvature. FSR [25] proposes
an effective feature-snapping algorithm that is able to recapture fea-
tures and is particularly useful if M and D differ.

Since we start with M = D, similar to [12, 3], we take a sim-
pler approach and make use of skeletons that are attached to both
meshes. In principle, a skeleton is a set of edges of D and can be
either selected by an automatic algorithm (e.g. [22, 20]) or by an
interactive selection done by the user. Additionally the users can
add vertices to the skeleton that they want to be preserved during
the remeshing.

In order to preserve this basic set of vertices and edges, we en-
hance the simple skeleton in a way that it consists of the following
three primitives:

bone-edgesare edges that were selected by the user/feature detec-
tion algorithm.

bone-vertices are vertices that have exactly 2 adjacent bone-edges.

corner-vertices are vertices that have �= 2 adjacent bone-edges or
vertices that are explicitly selected by the user.

The skeleton which is attached to D remains fixed during the
whole remeshing process while its counterpart on M is modified.
In order to ensure that the skeleton on M preserves the structure of
D’s skeleton, the key idea is to restrict the relaxation operator U for
the bone-vertices of M to the bone-edges of D. At the same time
we ensure that the three topological operations during the retrian-
gulation process (see Sec. 3) do not destroy this structure.

170

Figure 4: The original fandisk dataset with its skeleton and corner-vertices (left) gets remeshed (middle). Due to the restrictions im-
posed on the relaxation and topological operators, the skeleton is preserved even though we generated a really coarse approximation
(right) of the original mesh.

Hence, we apply the following restrictions to the relaxation op-
erator U and to the topological operations on M.

• Corner-vertices remain fixed and never get touched by any
topological operation.

• Bone-vertices are moving on bone-edges of D exclusively –
U(p) is simply projected back to that bone-edge, that has the
smallest enclosing angle with U(p).

• A half-edge-collapse of a bone-edge is allowed only if both
endpoints belong to the skeleton (vertices that do not belong
to the skeleton are allowed to collapse into the skeleton, but
become part of it in that case (cf. Fig. 5)

• Bone-edges never get flipped.

• If a bone-edge e gets split, the new vertex is a bone-vertex
as well. If the parent-vertex (see Sec. 3) happens to be a
corner-vertex, it is allowed to move in the direction of that
bone-edge of D that has the smallest enclosing angle with e
and where the other endpoint of e is reachable (cf. Fig. 5).

5. APPLICATIONS

5.1 Multiresolution Modeling
The motivation for creating our remeshing environment is its ap-

plication in our interactive multiresolution modeling framework HU-
MID (cf. [14]). In this paper, we just sketch the basic ideas, the
detailed description of the whole modeling procedure will soon be
available as separate technical report.

In our framework, the user selects the modeling-area MS0, a
bounded region on the mesh which separates that part of the mesh
which is subject to the modeling operation from the one that re-
mains fixed. Inside the submesh MS0, the user transforms dedi-
cated vertices and the algorithm adapts the remaining vertex-positions
in such a way that MS0 transforms smoothly into MSi while sur-
face details are preserved (cf. [17]).

The original algorithm does not change the connectivity of MS0

(but just adapts the vertex positions). This might lead to badly
shaped triangles in regions where extreme stretching/compression

occurs. We have incorporated our remeshing technique into HU-
MID and are now able to do interactive multiresolution modeling
with changing connectivity.

In order to do the dynamic remeshing, we first try to create a
global parameterization of MS0. This is done by projecting the
boundary of MS0 to a 2D polygon. The 2D position of the ver-
tices in the interior of MS0 are obtained by the same relaxation
procedure as it is described in Sec. 2 until the system converges
(the boundary vertices remain fixed). We are choosing this param-
eterization to ensure that the tessellation does not change as long
as the user does not apply any modification to MS0. Typically this
step takes only a fraction of a second for a moderately large region
of 5-10K�.

If the parameterization algorithm fails, i.e. if foldovers occur
(which rarely happens in our experiments), we fall back to suc-
cessive local parameterizations (cf. Sec. 2) at the price of a lower
frame-rate. Of course, computing a global parameterization only
once in a preprocessing step is preferred compared to successively
recomputing local parameterizations in every relaxation step. How-
ever, our local method enables us to process even those meshes that
cannot be mapped to 2D with the method from above.

The actual modeling is done in two separate steps. We first per-
form a modeling operation (cf. [14]) and feed the modified sur-
face MSi to the remeshing algorithm. Instead of using the original
modeling region MS0, we use MSi as domain mesh D. Since M0

and D are linked, we are always able to sample detail information
from the original surface and thus ensure that the surface details are
reconstructed correctly.

Note that the dynamic remeshing also ensures, that the triangu-
lation of the whole mesh remains intact. No stitching [24] to recon-
nect the region which remained fixed with the remeshed modeling
region MS0 is necessary.

5.2 Interactive Optimization
While the remeshing per se is fully automatic once the user has

specified input parameters as e.g. the target resolution and/or a
feature skeleton, we can also use it to provide a framework for in-
teractive mesh optimization. Therefore, the optimization process
is visualized by updating the displayed remesh after each iteration.
The user can change input parameters during the optimization pro-
cess, and he gets immediate visual feedback as the mesh converges
to an optimal remesh.

171

Even more important in this context is the ability to specify only
certain regions on the mesh that should be remeshed while the rest
remains fixed. This can be regions on the original surface that in-
clude only few sample points for example. The optimization pro-
cess runs just as before but schedules only vertices and edges in
the specified regions for optimization. Again, this automatically
ensures that the remeshed regions stay connected to the fix part of
the mesh as its resolution and connectivity are optimized, and no
additional zippering or stitching [24] is necessary.

In practice the user defined regions are often small enough to
allow the parameterization of a whole region over the plane. As no
local parameterizations have to be updated, this will significantly
speedup the algorithm.

In addition, the user can influence the behavior of the relaxation
operator U by adapting its weights ωij . This is done by defining
a scalar-field for the domain vertices that is linearly interpolated
on D. The field can be manipulated interactively, e.g. to increase
the local vertex density on M. The new weights are computed by
sampling and integrating the scalar values scaled by the inverse ar-
eas of the domain triangles. Of course, the user can always modify
the feature skeleton during the remeshing process. Fig. 6 shows an
example of an interactive remeshing session.

5.3
√

3-Remeshing
Arbitrary (irregular) meshes are the most general and flexible

boundary representation using triangles, but there is also the impor-
tant class of semi–regular – or subdivision–connectivity – meshes
often stemming from subdivision-algorithms (cf. e.g. [26]) that of-
fer many advantages over the irregular setting. On the one hand
this is due to their regular structure and on the other hand one can
exploit their mathematical proximity to polynomial surfaces. Many
algorithms, in particular in the context of rendering, filtering, tex-
turing and compression (cf. [1]), can benefit from this special struc-
ture.

In the past, a number of algorithms [6, 19, 9, 15] have been pro-
posed to convert an arbitrary input mesh into one having subdivision–
connectivity. We can apply our dynamic remeshing framework for
this conversion in the following way:

Instead of dyadic refinement (repeated 1–to–4–split operation),
which implies dealing with ’intermediate’ meshes containing red–
splits, we follow the idea of Kobbelt [16] and perform

√
3-adic

splits. This way we can reuse the basic topological operators and
ideas from Sec.3.

The conversion is done in two phases. Similarly to the MAPS-
algorithm (cf. [19]), we generate a coarse version of M = D
(cf. Sec. 2 and 3) by incrementally decreasing εminand εmax. The-
oretically, for genus zero objects, we can perform dynamic remesh-
ing down to a tetrahedron as long as we find a valid parameteriza-
tion for every 1–ring in M. In practice, for objects with features,
we are restricted by the rules imposed by the skeleton (see Sec. 4).

Once we have generated this coarse base-domain, we can start
with the refinement phase. Again, this is done similarly to the above
remeshing algorithm in that we apply topological changes com-
bined with permanent relaxation. But instead of using the DCM-
approach, we apply the topological operations as they are described
in [16]. (The 1–to–3 split can be implemented analogue to the
edge–split operation, i.e. we perform a topological 1–to–3 split
of a triangle, place the newly inserted vertex on one of the corner
vertices of the triangle which was just split and let the relaxation
operator handle the repositioning.) Note that due to the hierarchi-
cal approach, the particle system converges quickly and we need
just a few relaxation steps until the length of the relaxation vector
falls below some user defined threshold.

We have to make one restriction in order to conserve the skeleton
of M. As mentioned in Sec. 4, a skeleton-edge is not allowed to flip
in the first place. However, applying two refinement steps at once
leads to a complete triadic split of all triangles (and edges). Thus
we have a 1–to–1 correspondence of edges from the coarser level
to those on the finer level and consequently are able to preserve the
skeleton.

6. CONCLUSION
We presented a new algorithm for optimizing triangular meshes.

This incremental remeshing process includes the optimization of
the mesh connectivity based on the DCM approach as well as the
optimization of the vertex distribution. The vertices are scattered
regularly on the surface by simulating a particle system. This re-
laxation requires only local parameterization of the original sur-
face, a global parameterization is explicitly avoided. In particular,
we show how the local domains that are flattened to the plane can
be efficiently constructed and updated after vertex shifts and con-
nectivity changes.

The algorithm does not require to start with an initial mesh M =
D that is mapped 1-to-1 to the domain mesh, but we can also start
with an arbitrary mesh. In that case, we first construct a valid link
between M and D in a preprocessing step, and we require valid
local domains, e.g. a mapping from triangles of M to sets of trian-
gles of D. This can be done by an appropriate projection operator,
e.g. as used in [15]. However, for the sake of clarity we restricted
ourselves to M = D.

We have applied our framework to various application scenar-
ios. Results are shown on the next pages, a video with our dy-
namic remeshing framework in action is available on our web-site
(www.mpi-sb.mpg.de/ e vorsatz). Even for the tooth model at high-
est resolution (77K∆), the response times never exceeded 4-5 sec-
onds.

7. REFERENCES
[1] Pierre Alliez and Mathieu Desbrun. Progressive compression

for lossless transmission of triangle meshes. In SIGGRAPH
2001 Conference Proceedings, pages 198–205, 2001.

[2] Pierre Alliez, Mark Meyer, and Mathieu Desbrun. Interactive
geometry remeshing. In SIGGRAPH 2002 Conference
Proceedings, pages 347–354.

[3] Pierre Alliez, Éric Colin Verdière, Oliver Devillers, and
Martin Isenburg. Isotropic surface remeshing. 2003.

[4] P. J. C. Brown and C. T. Faigle. A robust efficient algorithm
for point location in triangulations. Technical report,
Cambridge University, 1996.

[5] Mathieu Desbrun, Mark Meyer, and Pierre Alliez. Intrinsic
parameterizations of surface meshes. In Computer Graphics
Forum, (Eurographics 2002), pages 209–218.

[6] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery,
and W. Stuetzle. Multiresolution analysis of arbitrary
meshes. In SIGGRAPH 1995 Conference Proceedings, pages
173–182.

[7] Michael S. Floater. Parametrization and smooth
approximation of surface triangulations. Computer Aided
Geometric Design, 14(3):231–250, 1997. ISSN 0167-8396.

[8] M. Garland and P. S. Heckbert. Surface simplification using
quadric error metrics. In SIGGRAPH 1997 Conference
Proceedings, pages 209–216.

172

Figure 6: An interactive remeshing session operating on the ear of the Max-Planck model. The original triangulation on the left gets
refined. Note that the partially remeshed area automatically connects to the fixed vertices on the boundary.

[9] Igor Guskov, Kiril Vidimce, Wim Sweldens, and Peter
Schröder. Normal meshes. In SIGGRAPH 2000 Conference
Proceedings, pages 95–102, 2000.

[10] H. Hoppe. Progressive meshes. In SIGGRAPH 1996
Conference Proceedings, pages 99–108.

[11] K. Hormann and G. Greiner. MIPS: An efficient global
parametrization method. In Curve and Surface Design:
Saint-Malo 1999, pages 153–162. 2000.

[12] Tao Ju, Frank Losasso, Scott Schaefer, and Joe Warren. Dual
contouring of hermite data. In SIGGRAPH 2002 Conference
Proceedings, pages 339–346.

[13] L. Kobbelt, T. Bareuther, and H.-P. Seidel. Multiresolution
shape deformations for meshes with dynamic vertex
connectivity. In Computer Graphics Forum (Eurographics
2000), volume 19, pages 249–260.

[14] L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Seidel.
Interactive multi–resolution modeling on arbitrary meshes.
In SIGGRAPH 98 Conference Proceedings, pages 105–114.

[15] L. Kobbelt, J. Vorsatz, U. Labsik, and H.-P. Seidel. A shrink
wrapping approach to remeshing polygonal surfaces.
Computer Graphics Forum (Eurographics 1999),
18(3):119–130.

[16] Leif Kobbelt. sqrt(3) subdivision. In SIGGRAPH 2000
Conference Proceedings, pages 103–112.

[17] Leif Kobbelt and Jens Vorsatz. Multiresolution hierarchies
on unstructured triangle meshes. Computational Geometry,
14(1-3):5–24, 1999.

[18] Leif P. Kobbelt, Mario Botsch, Ulrich Schwanecke, and
Hans-Peter Seidel. Feature-sensitive surface extraction from
volume data. In SIGGRAPH 2001 Conference Proceedings,
pages 57–66.

[19] A. W. F. Lee, W. Sweldens, P. Schröder, L. Cowsar, and
D. Dobkin. MAPS: Multiresolution adaptive
parameterization of surfaces. In SIGGRAPH 98 Conference
Proceedings, pages 95–104.

[20] Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérome
Maillot. Least squares conformal maps for automatic texture
atlas generation. In SIGGRAPH 2002 Conference
Proceedings, pages 362–371.

[21] P. Lindstrom. Out–of–core simplification of large polygonal
models. In SIGGRAPH 2000 Conference Proceedings.

[22] Christian Rössl, Leif Kobbelt, and Hans-Peter Seidel.
Recovering structural information from triangulated
surfaces. In Mathematical Methods for Curves and Surfaces:
Oslo 2000, pages 423–432, 2001.

[23] Olga Sorkine, Daniel Cohen-Or, Rony Goldenthal, and Dani
Lischinski. Bounded-distortion piecewise mesh
parameterization. In IEEE Visualization 2002 Conference
Proceedings, pages 355–362.

[24] Greg Turk and Marc Levoy. Zippered polygon meshes from
range images. In SIGGRAPH 94 Conference Proceedings),
pages 311–318.

[25] Jens Vorsatz, Christian Rössl, Leif Kobbelt, and Hans-Peter
Seidel. Feature sensitive remeshing. In Computer Graphics
Forum (Eurographics 2001), pages 393–401.

[26] D. Zorin and P. Schröder. Subdivision for modeling and
animation. In SIGGRAPH 2000 Course Notes.

173

Figure 7: Remeshing of geometrically and topologically more complex models (original data-sets on the left, remeshed version on the
right). Our algorithm works without an explicit patch-layouting for a global parameterization. A closeup view of Tweety’s tail can
be found in Fig. 1.

174

Figure 8:
√

3-remeshing of a tooth-model (original upper left). We first generate the coarse base domain (upper right) and start
refining by applying the topological

√
3 split operator twice per step (middle row). The lower row shows the final remesh.

175

