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Abstract

The ability to generate fair curves and surfacesis important in
computer graphics (CG), computer-aided design (CAD), and
other geometric modeling applications. In this paper, we present
an iteration-based algorithm for generating fair polygonal curves
and surfaces that is based on a new discrete spring modd. In the
soring modd, a linear soring, whose length approximately
represents a curvature radius, is attached along the normel line of
each polygon node. Energy is assigned to the difference of the
lengths, thet is, the difference in curvature radius, of neighboring
sorings.  Our algorithm then minimizes the total energy by an
iterative approach. It accepts as inputs (1) an initial polygonal
curve (urface), which condds of a st of polygonal segments
(faces) and a st of nodes as polygon-vertices, and (2) congraints
for controlling the shape. The outputs are polygonal curves
(surfaces) with smooth shapes. We also describe a method for
improving the performance of our iterative process to obtain a
linear execution time. Our algorithm provides a tool for the fair
curve and surface desgnin an interactive environment.
Keywords geometric modding, far surface design, polygond
models, energy minimization

1. Introduction

The purpose of this paper is to provide an agorithm for
generating far curves and surfaces for use in the fidds of
computer grgphics (CG) and computer-aided design (CAD).
Generation of far shapes is a mgor topic in shgpe desgn
[51[12][291[21][25][26][27][29]. It is d o required in gpplications
such asfitting of smooth shapesto scattered points [8][ 23], texture
mapping [16], and so on.

The curves and surfaces treeted in this paper are represented in
polygond form. The inputs of the dgorithm are (1) an initia
polygond curve (surface) condigting of a sat of nodes and a &t of
polygond segments (faces), and (2) congraints for controlling the
shape. The dgorithm moves the nodes to suitable postions while
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minimizing the curvature veriation under the given condraints
The outputs are smoothly shgped polygond curves (surfaces). The
polygona surfacestregted inthis paper are not limited to triangular
meshes, they dso indude quadrilaterd meshes Theoreticdly, n-
sded faces such as pentagons or hexagons may aso beincluded in
the meshes.

Our dgorithm follows an iterative gpproach of the Gauss-Seidd
type node pogtions are iteratively updated under the given
congraints. To update the node pogitions, two types of soring force
are gpplied to each node: (1) aforce acting in the normd direction,
to optimize the curvature variation and (2) aforce in the direction
perpendicular to the normd, to optimize the node distribution.
Then main idea of this paper liesin the discrete spring model that
produces the former force minimizing curvature variation. Since
curvaure is a natura measurement of fairness, our soring model
producesfair curvesand surfaces.

As Taubin [26] points out, mos energy-minimizetion
gpproaches are expendve in terms of time and space. This paper
a0 providesamethod for achieving alinear executiontime,

Theremainder of the paper isorganized asfollows. In Section 2,
we summarize previous work. After defining a discrete spring
model in Section 3, we present a curve (surface) modding
agorithm based on the gring modd in Section 4. Section 5
describes some results obtained by using the dgorithm, and
Section 6 summarizesthe pgper.

2. PreviousWork

A condderable amount of work has been done on fair surfece
modeling. We congder that most of the previous work related to
polygond surface modeling can be dassified into two types finite-
difference goproaches and finiteelement goproaches Our
agoproach belongs to the former category. In both types of
goproach, node postions are dther updaed iteraivey or ae
cdculated by solving a large sparse liner sysem. In finite-
difference gpproaches, vaues are evauated only at nodes, whilein
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finite-dement gpproaches, vadues are evauaed over faces by
using numerica integration. One key factor that distinguishes
severd gpproaches within each category isthe spring modd thet is
used to move the node postions.

Irrespective of the classfication, when the digplacement of a
deformetion is large that is when the shepe of the initia
polygond surface is very different from the find shape, the
deformation reduces to anorHinear problem. Therefore, if solving
asparse linear system does not yield a suitable answer, the system
must be solved iteratively. Large deformations gopeear often in the
process of surface design. To condruct arobust dgorithm for such
cases, we seect aniterdive goproach.

Thefollowing two subsections survey both types of gpproach to
surface modeling. In the third subsection, some other gpplications
that usefairing asapart of ther dgorithm aredso surveyed.

2.1 Finite-Difference Approachesto Surface M odding

Laplacian smocthing is the eases way to generate a far
surface. This gpproach iteratively moves the postion of a node to
the barycenter of its neighboring nodes It has the characteridic
that the area of the surface is minimized under given condraints,
and isoften used to improve the geometrical irregularity of amesh
in the fidd of finite-dement meshing [12]. But when it is gpplied
to surface modding, the problem aises tha a shap tip is
generated in the neighborhood of a node fixed by a condraint.
Moreover, it is not possble to control normals by giving normal
condraints.

For surface modding, Szeliski and Tonnesen [25] used a
particle system, in which each partidle is defined by its postion
and normd, and the population of particles is controlled
automdticdly. To obtain a farly triangulated surface, they
minimized the weighted sum of three energy fectors (1) co-
planarity, (2) co-normality, and (3) co-circularity. The co-planarity
condition causes neighboring nodes to lie on each other’s tangent
plane, the co-normdity condition modifies irregular twisting of
two neighboring nodes, and the co-circularity condition preserves
condant curvature on edges connecting neighboring nodes.
Wheress ther gpproach uses three factors, our soring model
achievesadmilar effect by using just onefactor.

Madlet [18][19] provided a generd formulation for discrete
aurface interpolaion with many adjustable parameters. When
harmonic weighting [19] is sdected among his proposd
parameters - asin hisreaults -, his gpproach minimizes the sum of
the distances, each of which is from anode to the barycenter of its
neighboring nodes.

Taubin [26] proposed a fair surface design gpproach in which

high-frequency terms such as noise are removed by udng a
technique basad on Fourier andlysis. Due to its linear execution
time, hisgpproach is powerful for polygona surfaceswith millions

of nodes such as one cgptured by using a range scanner. The
gpproach involves iterative repetition of a Gaussan operaor,
which moves a node to a suitable position on a line connecting a
node and the barycenter of its neighboring nodes This pogtion is
determined in such away asto avoid shrinkage of the entire shape.
Basicdly, Taubin’s approach is suitable for removing noise from a
given initial shape without causing shrinkage.

The main difference between our approach and those of Mallet
and Taubin is that in our approach curvature variation is used as a
measurement of minimization. Curvature is a natural
measurement of fairness; consequently, our approach produces a
fairer shape than theirs.

Welch and Witkin [29] also proposed a mesh-based modeling
method for surfaces with arbitrary topology. After defining a local
surface equation in the neighborhood of each node, which fits the
latter's neighboring nodes in the least-square sense, they
minimized a fairness norm based on curvature, which is calculated
from the local surface. The local surface is temporarily used to
evaluate the curvature at a node, and the final outputs are only
node positions, not surfaces of faces. In the sense that curvature is
adopted as a fairing measurement, our approach is similar to theirs.
However, their approach has to solvexanbleast-square linear
system (wheren is the number of neighboring nodes) for each
node at each iteration. This is a time-consuming process if the
number of nodes is large.

Kuriyama and Tachibana [16] applied Gaussian operators not
only to node positions but also to second-order derivative vectors
at nodes. The magnitude of a second-order derivative vector is
equal to the curvature; therefore, their approach can be interpreted
as using Gaussian operators to optimize curvature. Kobbelt and his
colleagues [14] also proposed a similar approach.

Eck and Jaspert [7] proposed a fairing algorithm of planar
and spatial curves based on the measurement of discrete curvature
and torsion. Their approach timidly moves only one node in each
iteration, where the new position of the node is determined on a
line connecting the node and the weighted barycenter of its
neighboring nodes. The suitable position on the line is also
calculated in a heuristic way.

2.2 Finite-Element Approachesto Surface M odding

In comparison with finite-difference approaches, finite-element
approaches generally yield a higher-quality surface and generate
an explicit surface equation for each face, while they are
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computationally more expensve.

Ceniker and Gossrds gpproech [5] generates a Cl-
continuous surface by using a finitedement technique. They
goplied Zienkiewicz's shape function [30], which was origindly
proposed for finite eement andysds, to datain C1 continuity in
surface modding. Their approach minimizes a weighted
combination of the energy factors of amembraneand athin plate.

Wech and Witkin [28] also proposed an approach very smilar
to that of Ceniker and Gossard, dthough the former has more
generd formulations for both energy factors and shgpe contral
condraints.

Moreton and Sequin [21][22] presented a different type of
finite-dlement gpproach in which they use biquintic Bezier patches
and a farness norm based on measures of curvature variation.
Their gpproach produces the most impressive surface, but it istoo
expengvefor usein aninteractive environment.

2.3 Other ApplicationsUsng Fairing

Hagead and his colleagues [11] provided a solution to the
problem that Catmull-Clark’s subdivision surface scheme [4] gives
a shrunken surface without interpolating given control points In
ther process afarness factor proposed by Ceniker and Gossard
isusad in conjunction with the Catmull-Clark scheme. Theaim of
Eck and Hoppe's work [8] is to generate tensor product surfaces
from scattered points. They use athin plate as a fairness factor to
remove undulationsin surfaces. Levy and Mdlet [16] applied their
discrete smooth interpolation approach [18][19] to the non-
distorted texture-mapping problem. Koch and his colleagues [15]
applied the thin-plate approach to a system for Smuleting facid
aurgery, and DeCarlo and his colleagues [6] gpplied the thin-plate
goproach to geometric modding of human faces. As can be seen
in the above literature in this subsection, fairnessfactors are widdy
used in the area of CG and CAD adongsde factors unigue to eech
study, which depend on their gpplications Our gpproach has the
potentid to be goplied for such goplications.

3. Ddfinition of the Discrete Spring Modd!:
V-Spring

Figure 1 shows a planar curve and its normd lines & some
sampling points on the curve. Condder the normd lines a two
neighboring sampling points P and Py. For a curvature-continuous
curve, if P goproaches P, the intersection point H of the normal
lines convergesto acenter of curvatureat P; [3].

Therefore, our idea is to attach a linear goring, as shown in
Fgure 2(A), to each normd line of a node condding in a
polygond curve (surface). The linear goring works to keep equal

the springlengths|P: - H| and |P; - H| of aV-shgpeformed by P, H,
and P. The spring length goproximately represents the curveture
radius, therefore, keeping the spring length equd is equivaent to
minimizing variaion in the curvature radius.

Suppose node P is fixed by a congraint. If [P - H| is samdler
than |P, - H|, as shown in Figure 2(A), node P moves to a new
position dong the norma Ni in the direction that enlarges |Pi - H|
totheszeof |P; - H|. In contrag, if |P: - H| islarger, node Pi moves
to anew pogtion dong the norma Ni in the direction thet shortens
the|P: - H|to thesize of |P; - H|. Inastable configuration, P and P;
are conddered to be on a circular arc whose center isa H and
whose curvaureradiusis|P; - H| (=P + dP: - H)).

Because of this V-shaped configuration of virtua springs, our
Soring modd isnamed "V-Spring.”

Ni Ni

ol op

H

Figure 1: Planar curve and normal lines on some
sampling points.

Here we formdly define a digolacement dP, from a current
position to a new podtion, of a node Pi by the force of the spring
model on the suppostion thet B is fixed. Let P and Py be two
nodes, and let Ni and N;, be unit normal vectors associated with the
nodes, respectively. We assume the inner product dot(Ni, N;) to be
postive therefore, if two norma vectors with their negative inner
product are given, let eéther Ni or N; be the direction-reversed
vector. An intersection of the two normd lines is denoted by H
(seeFgure2(A)). Lett and tj bered vaues stisfying

Pi—H =tN; 1)
Pi-H =t N,
fi| and | corregpond to the digances [P - H| and [P - Hj,
repectively, because Ni and N; are unit vectors. We define the
digplacement dP; of node P: by our soring mode as

dpPsj = (tj —ti) Ni. @
(t - t) in the equation is caculated as follows. For the equation in

which H is deleted from Equation (1), by caculaing the inner
productswith Ni and Nij, we obtain the following equetions.
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dOt((Pj — Pi +tiNi —thj), (Ni)) =0, ©)
dot((P, - Pi + tiNi —tiN;), (Nj)) = 0.
By solving Equetion (3) in terms of ti and tj, we obtain
ti=dot((P— P), (- Ni + cos(a) Ny)) / (1-cos?(a)),
t =dot((P - P1), (~ cos(@)Ni +N;)) / (1-cos*(a)),
where cog(a) = dot( Ni, N; ). Consequerttly, (1 - t) in Equation (2) is

determined asfollows:
ti—ti= dOt((Pj - Pi), (Ni + Nj)) / (1+ cos(a))

_dot((P - P), (N + Ny)) @
T 1edot(NoN)
Therefore, Equation (2) iswritten as
ot((P - P, (N +N)) B,
dP; -Ep L+ dor(N, N) EN.. 6

The denominator of Equation (4) dways has a hon-zero vaue,
because cog(@) (=dot(N;, N;,)) is assumed to be postive. One may
condder from Figure 2(A) that anumerica error occurs when two
norma lines are pardld because of the dbsence of H.  However,
Equation (5) does not use H directly; therefore, our soring model
is gable even in the case of pardld normd lines. In this case,
Equation (5) is deduced to the following equation:
dPy =dot((P-P),N)N, (N =Ni=N).

In the case of a planar curve, normd lines dong Ni and N;
aways have an intersection. However, if we condder a non-planar
curve or asurface, normd lines do not dways intersect e a point.
Therefore, we cannot use Equation (1) asit isfor non-planar cases.
Ingteed of an intersection point H in Equation (1), we use Hi and
Hj, which are the feet of the shortest line segment connecting two
norma lines (see Fgure 2(B)). Then, for non-planar cases, we
modify Equation (1) to obtain the following equations

Pi—Hi =tiN;i, (6)
Pi—Hj =t N;.

For non-planar cases, the equiations corresponding to Equation (3)
ae
dot((H; - Hi), (Ni)) =0, @
dOt((Hj - Hi), (Nj)) =0.

By solving Equetion (7), we can derive an equation for (t - t) in
Equation (2) thet isthe same as Equation (4).

Ni
A
P Ni
I dr;
Pi E ]
. @
A
71 Ni
fem,
Pi

Figure 2: Definition of the oring modd. (A)
Digplacement dP; for aplanar curve. (B) Digplacement
dP; for anon-planar curveor asurface.

4. Curve/lSurfaceModding Usnga Discrete
SpringModd

4.1 Overview of theAlgorithm

A polygona surfaceis defined as apair of aset of nodesPi (i =
1, .., n), and ast of polygond faces We define neighboring nodes
P (=1, .., m of P to be a set of nodes connectedPitdoy
polygonal edges.

Our algorithm can be classified as an iterative method of Gauss-
Seidel type. The positions and normals of nodes are updated in
each iteration, and the iterations are continued until the termination
condition is satisfied. In one iteration, the updated latest positions
are always used to calculate the positions of other nodes. Figure 3
shows an overview of our algorithm.

Let Pi bethe pogtion of thei-th node
Let n bethe number of nodes
Whilg( termination condition is not satisfied ){
For(dl nodesPi (i=1, ..., n) X
Sep 1: Cdaulae psaudo-normd Ni

}
For(dl nodesPi (i=1, .., n) X
Sep 2: Cdaulae displacement dPi caused
by the force exerted by V-Spring
Sep 3: Cdeulaedigolacement dPu, | caused
by theforcefor regulaizing node distribution
Sep4: Pi =Pi + (dPi +dPuy, i)
}

}
Figure3: Overview of thealgorithm.
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The following subsections 4.2, 4.3, and 4.4 describe Sieps 1, 2,
and 3 in Figure 3, repectively. In Section 4.5 we describe severd
condraints. After describing the termination condition in Section
4.6, we give a method for reducing the execution time in Section
4.7. Up to Section 4.7, our discussion concerns surface modeling.
Section 4.8 extends the discussion to curve modding.

4.2 Pseudo-normal Calculation

Thefirgt gep of theagorithmisto caculate aunit normal vector
Ni for each node P: of a polygond surface (Step 1in Figure  3).
The polygond surface is a discrete moddl; therefore, the unit
norma vector must be caculaed only approximatdy. In our
implementation, we caculate the unit norma Ni by averaging the
normals of polygond faces adjoining the node.

There are more sophigticated ways to caculate the norma. For
example, oneway isto caculate the normd from a spherefitted to
the target node and its neighboring nodes in the least-square sense.
However, this is more time-consuming, and fails when the target
node and its neighboring nodes are on the same plane or the
neighboring nodes are placed so thet the target node is a saddle
point. Another way, used by Taubin [26], isto cdculate the normd
as the average of the vectors from target node to each of its
neighboring nodes. This is fagter, but it fails when the target node
and its neighboring nodes are on the same plane.

Our choice is the more basic but the more robugt way. In the
early phase of iterations, the norma vector is unrdiable; however,
as the iterdtions proceed, the normd vector converges to the
rdiable normd of thefair surface

4.3 Node Displacement by the Force of V-Spring

Node P obtains forces from its neighboring nodes Py (j = 1, ...,
m). Each force works to keep the edge from P to Py in acircular
arc. Each of the digplacementsdP; (j =1, ..., m) iscaculaed from
Equation (5). Node P moves to a new postion along the normal
Ni by the weighted average dP: of the displacementsdP; (j =1, ...,
m) asfollows:

dPi:ZWJdPij/ZWJ, ®
IE IE

where w (j = 1, ..., m) are weights for the averaging. In our
implementation, the weight wi is determined by the inverse of the
length of the edge connecting Pi and P;.

w=1/[P-P, (j=12..,m).

dpi dpi

@)

Figure4: Node displacement by forcesexerted by
neighboring nodes. (A) Planar curvecase. (B) Surface
caxe

4.4 Node Displacement for Regularizing Node Digribution

In finite-difference gpproaches it is important to maintain the
regular node didribution during the iteration process, because
uneven digribution of nodes results in incorrect esimation of
curvature. To obtain the regular node didtribution, we use a
vaiaion of a Lgplacian smoothing operator [12], which is a
popular and effective way for removing the irregularity. The
Laplacian operator moves a node to the barycenter of its
neighboring nodes However, gpplying the regular Laplacian
operator offsets the displacement dP: in Equation (8). Therefore,
our ideaisto use only a component dP.,, thet is perpendicular to
the normd Ni, of the displacement of the Laplacian operator.
Using only this component creates two displacements dP: and
dPu, perpendicular to each other. Therefore, the two displacements
do not offsst eech other. The digplacement dPu,i is written as
follows

dpu,i = dPuO,i - dPu:Li,
dPuo,i = & Pj/mE» Pi, dPu.i= dOt(dPuo,i, Ni) Ni.
=

45 Condgraints

Condraints are consdered to be externd forces for controlling
the shepe of a surface. Vaious kinds of condraints can be
conddered, depending on the requirements of gpplications. In this
section, we describe saverd important congraints used in surface
modeling. We classfy the condraints into two types direct and
indirect condraints.

Direct Condraints
Direct condraints are given directly for a certain node. Mgor
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condrantsare:

- Postiond condraints,

- Normd condraints.
A positiond congrant fixes anode to a certain postion during the
iterations, therefore, Seps 2 and 3 in Figure 3 are kipped for the
fixed node. A norma condraint fixes a norma of a node to a
certain direction. For the norma fixed node, the pseudo-normal
cdculaion (Sep 1 in Figure 3) is skipped and the given normd is
assigned.

In our gpproach, postiona condraints must be given at leagt to
end nodes for the case of an open polygond curve and to
boundary nodes for the case of an open polygona surface. Thet is
why the use of aLgplacian operator causes shrinkage of the shape.
If it is necessary to modify the shape of the boundary curves of a
surface, gart from the modding of boundary curves and go on to
the modeling of the surface bounded by the boundary curves.

Indirect Condraints

Indirect congraints are not directly connected to certain nodes.
During the iterations, connections between the condraints and the
nodes are updated dynamicaly. One mgor congraint we introduce
here is scattered points. This is an important application in CAD
and CG for generating a smooth surface fitted to scattered pointsin
the leest-gquare sense. In the gpplication, the condraint by a
scattered point affectsthe point on asurface dosest toit. Therefore,
in our discrete modd, we update the connection between the
scattered point and its closest node during the iterations.

We have to modify the dgorithm dightly to introduce the
indirect congtraints, the modified agorithm is shown in Figure 5.
InFgure5, dl the gepsexcept 2 and 5 arethe same asin Figure 3.

In Sep 2, each scattered point is connected to its nearest node.
Inpractice, it is not necessary to perform Step 2 & every iteration;
onceinevery sverd iterationsis enough. To find the neerest node,
it isenough to search neighbor of the previous nearest nodein first
and second orders, except when performing afirg seerch.

In Sep 5, externd forces from connected scattered pointsV; (j =
1, .., m) are gpplied to a node P.. The digolacement of Pi by Vj is
cdculaed asfollows

dPc,ij = ki dot(Vj—Pi, Ni) Ni, 9

where § denotesaweight assgned to V;. The digolacement dPxj is
interpreted as a ki -times component of vector V; - P dong the
norma Ni. In the same manner, we cdculate dPe;a, ..., dPc,imfor dl
connected scattered points. The find digolacement of node Pi by
the forces of its connected scatered points is determined by
weighted-averaging of dP,ij (j = 1, ..., m), asfollows:

dPc.i = ZVV] ch,ij/ZWJ,
= =

whee w ( = 1, .., m) ae weghts for averaging. In our
implementation, the weight wi is determined by the inverse of the
digance from node P to its foot Q to the tangent plane & Pi (see
Figure 6(B)).

w=1/|Pi-Qf (j=12..m).

The weighting means that the point doser to Pi contributes more.
When Q isidenticd with or very dose to P, a sufficiently large
vaueisasigned toitsw to avoid divison by zero.

In Equation (9), weight k; is used to make a trade-off between
fairing and keeping proximity to the scattered point V;. A larger ki
approximates V; more dosdly.

In the case of a planar curve lesst-square fitting is
geometricdly interpreted in such a way that, when a sring is
attached to each line from a scattered point to the nearest point on
a curve, the sum of the internd energies of the sorings are
minimized (see Figure 6(A)). Our goproach is geometricaly
interpreted as being to atach a spring to a line from a scattered
point to its foot in the tangent plane a the nearest node (see Figure
6(B)). We therefore condder that our gpproach is goproximetely
equivaent to leest-squarefitting.

The advantage of our goproach isthat it can be gpplied not only
to surfaces with regular topology, such astensor product surfaces,
but dso to surfaces with abitrary topology. In addition,
theoreticaly, n-sded polygons such as pentagons or hexagons
may beincluded in the polygond surface.

Let Pi bethe pogtion of thei-th node
Let n bethe number of nodes
Let Vi bethei-th scattered point
Let | bethe number of scattered points
While( termination condition isnot satisfied X
For(dl nodesPi (i=1, .., n) X
Sep 1: Cdaulae psaudo-normd Ni

}
For( dl scattered pointsVi (i =1, ..., [) X
Sep 2: Make connection of each scattered point
toitsnearest node

}
For(dl nodesPi (i=1, ..,n) X
Sep 3: Cdeulate digplacement dPi caused
by theforce exerted by V-Spring
Sep 4: Cdeulate digolacement dPu, i caused
by theforcefor regularizing node distribution
Sep5: Cdaulaedisplacement dPc, i causad
by theforce exerted by scattered points
Sep 6: Pi =Pi + (dPi +dPu, i +dPc, i)
}

}

Figure5: Overview of thefitting algorithm.
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GV B

Figure 6. Leag-squarefitting of a planar curveto scattered
points (A) Geometric interpretation of general least-square
fitting. (B) Geometric inter pretation of our fitting approach.

4.6 Termination Condition

To determine when to terminate iterations the maximum
among the norms of dl node displacements is compared with a
given threshold e If the maximum norm is less than the threshold
e the iterations are terminaed. The sze of the digolacement
depends on the resolution of the polygond surface; therefore the
displacement should be normalized by the Sizes of polygond faces.
In our implementetion, we normalize the diplacement of eech
node by the average length of its neighboring edges The
maximum norm of the normaized diglacements is then
compared with thethreshold e

4.7 Performance | mprovement

Iterative goproaches of the Jacobi or Gauss-Seidd typestend to
remove high frequencies quickly, while they take many iterations
to remove low frequencies. Consequently, if the number of nodes
isextremely large, it takes many iterationsto achieve convergence.
A promisng way to reduce the execution time is to employ multi-
grid methods [2][10][20]. Kobbdt and his colleagues [14] are
postively using the multi-grid method to mode dense meshes By
using the multi-grid method, a linear execution time can be
achieved.

The multi-grid method requires polygona surfaces with severa
different levels of resolutions Such surfaces can be obtained by
the use of mesh smplification dgorithms [1][9][13][24][27]. For
example, let M1, M2, and M3 bethreelevelsof polygond surfaces,
where M1 isthe finest and M3 is the coarsest (see Figure 7). The
V-cycle multi-grid method appliesiterations for polygond surfaces
with different levds, in the sequence{ M1, M2, M3, M2, M1}. The
firg haf of the process, going down from M1to M2, iscdled pre-
smoothing, and the second half of the process, coming up from
M3 to M1, is cdled post-amoothing. In the pre-smoothing, some
iterations are performed a each leve in order to remove noise. On
the coarsest levd M3, arough shape is predicted by the solution.

As the pogt-smoothing proceeds, the rough shape approaches the
precise shape.

In the pog-smoothing, iterations are performed a eech leve
until the termination condition described in Section 4.6 is satified.
Our termingtion condition is normalized by the resolution; this
provides an efficient way of determining the time at which to

moveon.
Presmooth& /ost smoothing

M2 2

|\/|3
Figure7: Concept of the multi-grid method
4.8 Extenson to CurveModding

Badcdly, the dgorithm for curve fairing is the same as the one
for surface fairing. In each iteration, the node P ismoved to anew
postion by the forces exerted by two neighboring nodes Pi-1 and
P (s Fgure 4(A)).

The case of aplanar curve does not involve any extension of the
asurfece case; however, in the case of a non-planar curve, the
cdculaion of the pseudo-normd Ni is more difficult than in the
aurface case From a sequence of nodes P, P, and P, we
cdculate the unit tangent Ti and the unit binormd Bi asfollows:

Ti= (Pi+1_ Pi—l)/ ‘ Pi+1— Pi—].H,
Bi = (Pi - Pi—1)><(Pi+1— Pi)/ H (Pi -

Pi—l)x(Pi+1— Pi) H,

where x denotesthe outer product. Asthe outer product of Bi and
Ti, we cdculatethe unit principal normd Ni asfollows:

Ni=BixTi / H Bi xTi H

If Py, P, and Pia are collinear, Bi and Ni are zero vectors, then the
digolacement dP: is a zero vector according to Equation (5). The
best way to obtain a fair curve is to goply V-Soring forcesin the
directions of both Bi and Ni; however, in practice, goplying aforce
only in thedirection of Ni givesafair curve, evenif the problemis
anon-planar case

5. Reaults

Figure 8 shows a result of fair surface generation obtained by
using our dgorithm. Figure 8(A) showstheinitid mesh with sharp
corners, that is, sudden changesin curvature, while figures (B) and



Published in Proceedings of Pacific Graphics '99, pp. 270-279.

(©) show the fared results with two different sets of direct
condraints. As can be seen in the figures, the agorithm produced
farer surfaces The surface of Figure 8(B) resulted when the
postions of nodes on the inner and outer boundaries were kept
unchanged by using the pogtiond condraints The surface of
Figure 8(C) was generated by condraining the normals of the
nodes on the inner and outer boundaries, in addition to the
posdtions of thee nodes  Figure 10 shows another result of
fairingin asheded imege.

Figure 9 shows the gtahility of our dgorithm by giving it an
extremely noisy mesh as initid data. We added random noise of
large amplitude to the mesh in Figure 8(A), and then processed the
noisy mesh by usng our dgorithm. Fve iterations of pre-
smoothing generated the smoother surface shown in Figure 9(B).
With further processng, the mesh converged to the fair surface
shownin Figure 9(C).

Table 1 showsthe execution time of our agorithm measured for
meshes of various resolutions. It indicates thet the time grows
gpproximately linearly to the complexity of the given meshes.

Table 1: Execution time for fair surface generation. The
execution time is measured for the surface shape with the
condraints shown in Figure 8(C). Column (a) in the table
contains data for the resolution shown in Figure 8(C).
Columns (b), (c), and (d) contain data for different resolutions
with the same surface shape. These data are measured under
thefollowing conditions

CPU: Pentium |1 450 MHz,

Sygem: WindowsNT 40,

Threshold efor termination condition: 0.001,

Number of levesfor multi-grid: 6,

Number of iterationsat each leve of pre-smoothing: 5.

@ (b) @ @

Number of nodes 553 1610 3644 14962
Number of faces(triangles) 95 3018 6933 29316
Execution time (sec) 2.38 138 364 177.1

Figure 11 shows the results of least-square fitting of polygona
curves, using indirect condraints as described in Section 4.5. The
initid curve, shown by the noisy thin line, converged to a smooth
curve, shown by the thick line. The node podtions of the initid
curve are asigned to scattered points. In Fgure 11(A), dl the
weights k in Equation (9) that are usad to redize a trade-off
between fairing and keeping proximity are st to 0.01, while in
Figure 11(B) they are st to 0.00001. As seen in the figures, the
agorithm produced fairer curves under theindirect condraints.

Figure 12 shows the result of leest-square fitting of a polygond
surface to scattered points Even though one pentagond fece is
included in the polygond surface, a smooth profile is generated

and fitted to the scattered points.

6. Summary

This paper has presented an dgorithm for generating fair
polygond curves and surfaces based on an iterdtive gpproach,
usng a new discrete goring modd. The adgorithm  produced
polygona curvesand surfaceswhoselocd variationin curvaureis
minimized.

In our discrete spring mode, a linear soring, whose length
approximately represents a curvature radius, is atached dong the
normd line of each node. Energy is assigned to the difference of
thelengths, that is, the difference in the curvature radius, of nearby
orings. Our dgorithm then triesto minimize the total energy by
an iteraive goproach. It accepts various condraints such as
posdtiond, norma, and lees-square condraints, so that ussful
surface model's can be generated for computer graphics, computer
alded design, and other geometric modeling applications.

The implementation of the agorithm is easy on account of its
geometricdly intuitive interpretation. The results of experiments
showed that the dgorithm generated fair surfaces that satisfy
postiond, normal, and other congtraints. The dgorithm was robust
to podtiona noise in the initid polygond data Computational
codsincreased gpproximately linearly to the number of nodesina
polygond curve (surface).

In our experience, the dgorithm is decidedly robust and seble;
however, the convergence of the agorithm need to be proved in
future work. The objective of this paper is to apply our spring
modd to shape modding; however, the fairing problem is not
limited to this gpplication and we will gpply our Soring model to
other applicationsin the course of our future work.
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Figure8: (A) Initial mesh.  (B) Deformed result from (A) under the postional congraintson inner- and outer-boundary
nodes. (C) Deformed result from (A) under the postional and normal congraintson inner- and outer-boundary nodes

Arrowson boundary nodesshow thedirectionsof normal congraints.

Figure9: Sability of thealgorithm.
pre-smoothing on thefinest leve.

(A) Initial mesh with random noiseon thenodes.  (B) Shape(A) after fiveiterationsof
(C) Shape(A) after full convergence.
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‘ (B) ‘

Figure 10: Shaded imageof adeformed result.  (A) Initial mesh.  (B) Deformed result from (A) under the positional and
normal congraintson nodesof upper-, lower-, and inner-boundaries.
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Figure11: L eas-squarefitting of a polygonal curveto scattered points A noisy thin linerepresentsan initial curve. A smoath thick
linerepresentsa converged curve. Node postions of theinitial curve are given as scattered points.  (A) All weightsk; in Equation
(9 arestt00.01. (B) All weightsk; are st to 0.00001.
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" (A) ' B)
Figure 12: Leagt-square fitting of a polygonal surface incduding a pentagonal face to scattered points (A) and (B) are different
view of the same surface.
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