
SIGGRAPH 2006 Tutorial Notes “Interactive Shape Modeling”

Summary:
The course will present the state-of-the-art in digital modeling techniques, both in commercial
software and academic research. The goal of this course is to impart the audience with an
understanding of the big open questions as well as the skills to engineer recent research in
interactive shape modeling applications.

Presenters:

Marc Alexa
Professor, Faculty of Electrical Engineering & Computer Science
Technische Universität Berlin
marc@cs.tu-berlin.de

Alexis Angelidis
Postdoctoral Fellow, Department of Computer Science
University of Toronto
silex@dgp.toronto.edu

Marie-Paule Cani
Professor, Department of Computer Science
Co-director, GRAVIR
Institut National Polytechnique de Grenoble (INPG)
Marie-Paule.Cani@imag.fr

Sarah Frisken
Professor, Department of Computer Science
Tufts University
frisken@cs.tufts.edu

Karan Singh
Associate Professor, Department of Computer Science
University of Toronto
karan@cs.toronot.edu

Steven Schkolne
Faculty of Critical Studies and Integrated Media
California Institute of the Arts
steven@schkolne.com

Denis Zorin
Associate Professor, Department of Computer Science
New York University
dzorin@mrl.nyu.edu

1

Abstract:
Computer Graphics continues to battle the challenging question: “How quickly and effectively can
a designer transform a mental concept into a digital shape, which is easy to refine and reuse?”
Traditional techniques of sculpting and sketching continue to be among the quickest and most
expressive ways for designers to visually manifest their ideas. Many new modeling techniques
successfully use these paradigms for interactive design of digital shapes. Advanced geometric
modeling representations and algorithms are an essential foundation for this type of tools. The
course covers the gamut including fundamental mathematical representations of shape, efficient
algorithms, interaction paradigms and specialized hardware user interface devices, with
presentations unified by a strong emphasis on the use of each topic for interactive modeling
applications. The audience will be presented with the properties of various implicit, explicit and
hybrid shape representations and the capabilities, limitations and implementation details of current
algorithms for interactive shape creation and manipulation. The goal of this course is to impart the
audience with both an understanding of the big open questions as well as the skills to apply recent
research in interactive shape modeling applications.

Course Agenda and Contents:
8:30 – 9:30 Introduction & Motivation -- Conceptual Shape Design (Singh)
Pages 3 – 9

9:30 – 10:15 Mathematical representations of shape for modeling (Zorin)

10:15 – 10:30 Morning break

10:30 – 11:30 Global space & Free form deformations (Angelidis)
Pages 10 - 29

11:30 – 12:15 Multiresolution modeling (Zorin)
Pages 30 - 50

12:15 – 1:45 Lunch break

1:45 – 2:45 Mesh editing based on discrete Laplace and Possion models (Alexa)
Pages 51 - 59

2:45 – 3:30 Volumetric sculpting (Frisken)
Pages 60 - 66

3:30 – 3:45 Coffee break

3:45 – 4:45 Towards 'virtual clay' (Cani)
Pages 67 - 83

4:45 – 5:30 Gesture-based shape modeling (Schkolne)
Pages 84 - 93

For slide sets and more information please see http://www.interactiveshapemodeling.net/S2006

2

Industrial motivation for interactive shape modeling: a case study in
conceptual automotive design

Karan Singh∗

Computer Science, University of Toronto.

Abstract

As Computer Graphics makes rapid strides in various aspects of
digital shape modeling it is easy to lose perspective of the larger
motivations for digital shape modeling in design and animation.
This chapter provides a high level view of shape modeling illus-
trated within the space of conceptual automotive design. Automo-
tive design provides a unique perspective on digital shape mod-
eling, where digital models are critical to downstream production
processes but automotive designers almost exclusively work with
sketches, clay and other traditional media. Design iterations that
transition between physical and digital representations of a pro-
totype are thus a big bottleneck in the industrial design lifecycle.
In this chapter we propose a top-down approach, starting with the
design desirables and suggesting modeling paradigms that harness
skills and creativity of designers.

CR Categories: I.3.3 [Computer Graphics]: Geometric modeling,
User Interaction

Keywords: Shape modeling, User Interaction

1 Introduction

We shall not cease from exploring, and the end of all our exploring,

will be to arrive where we started, and know the place for the first time. -T.S.Eliot.

Computer Graphics continues to battle the challenging question:
How quickly and effectively can a designer transform a mental
concept into a digital object, that is easy to refine and reuse?If
hearing, speech and sight are analogous to the audio IN, audio OUT
and video IN of an electronic device, the essence of our problem is
that humans do not have an explicit video OUT.

This is a problem of great industrial importance today. Designers
almost exclusively prefer traditional design techniques of sculpting
and sketching, instead of computer aided digital styling tools that
operate on mathematical representations of geometry. Most man-
ufacturing processes, however, use digital models making design
iterations a big bottleneck in an industrial design lifecycle. The
majority of industry-based surface modeling research is, therefore,
focused on incrementally making existing digital styling tools more
designer friendly, while the root of the problem lies deeper.

The fundamental pitfall is that current digital tools are unable to
decouple the creative process from the underlying mathematical at-
tributes of the surface representation. As an example, when mod-

∗e-mail: karan@dgp.toronto.edu

eling an object using a network of bi-cubic or higher order polyno-
mial spline surface patches, concepts like patch resolution, topolog-
ical connectivity and continuity across surface patches constrain the
creativity of the designer. The solution is to start from scratch with a
designers perspective and develop computer interaction paradigms
that harness their skills and creativity. These interaction techniques
will in turn define the requirements of the underlying mathematical
representations of geometry. Studies have shown that designers and
people in general abstract shape as aggregations of complex surface
attributes, that we will collectively callsurface-featuresthat are in-
dependent of any geometric model representation.

Conceptual modeling should, therefore, focus among other things
on the development of new mathematical representations or adapt-
ing existing ones, to capture the essence of shape as perceived by
designers. To be able to make tangible progress towards such a goal
we must first mathematically quantify thisessence of shapein terms
of geometric surface-features. Design methodologies in industry
are both complex and diverse and it is important to have a well-
defined process to study and within which to evaluate proposed so-
lutions. This chapter will focus on the early stages of conceptual
automotive design, which has been slow in adapting to the use of
digital styling tools, despite being a trendsetter in digital modeling
for the engineering phase of its design lifecycle. Design iterations
and revisions that transition between physical and digital represen-
tations of a prototype are currently one of the big bottlenecks in the
design lifecycle of an automobile.

The remainder of this chapter is organized as follows: Section 2 dis-
cusses the generally desirable properties of systems for conceptual
design. Section 3 illustrates these properties within the automo-
tive design space. Section 4 then proposes a framework for con-
ceptual automotive design based on commonalities observed from
the current workflows in practice at various automotive design cen-
ters. Current trends in geometric shape representation and interac-
tive shape modeling are then discussed in the context of their ap-
plicability to the automotive design framework. Section 6 provides
concluding remarks.

2 Conceptual modeling desirables

Newer generations of industrial designers are increasingly savvy
with digital modeling techniques. Their design education, how-
ever, continues to be grounded in traditional sketching and sculpt-
ing techniques, which embody a number of desirable properties that
any digital modeling system should embrace.

• Abstraction from underlying surface math
Most mathematical surface manifolds are represented at some
point by a discrete set of points (control points for paramet-
ric or subdivision surfaces, vertices for polygon meshes) that
often become handles for shape manipulation. This not only
exposes the designer to the understanding of the mathematics
and topology of the shape representation but also forces the
learning and usage of tools that may not have been consid-
ered intuitive when decoupled from the geometric representa-
tion. Designer interaction paradigms should thus be defined

3

such that the user is oblivious of the underlying mathematical
surface representation. [Singh 1999] provides an example of
such design, where the user interacts with sweeps just like in
the physical world (see Figure 11) but the underlying curve
manipulation is accomplished through splicing and fitting cu-
bic spline curve segments.

• Invite interactive creative exploration
Often digital modeling tools are made easy to use by nar-
rowing their scope to a specific design space. As examples,
two successful sketching systems Teddy [Igarashi et al. 1999]
and SKETCH [Zeleznik et al. 1996] simplify the inference
of a 3D model from sketched curves by making assumptions
of the user design space. While SKETCH is tuned to create
simple analytic shapes, Teddy is focussed on the creation of
smooth organic forms. Design innovations are often the result
of serendipitous exploration. Design tools should thus be in-
teractive and easy to use without compromising their power
of creative expression, as far as possible. A major advantage
of interactive digital modeling tools is the ability to undo an
operation allowing users to experiment without fear of mak-
ing mistakes. It is thus important that increased complexity
and sophistication of a modeling tool does not come at the
expense of its interactivity.

• Allow for precision and constraints
Industrial design models typically need to adhere to vari-
ous engineering constraints before they can be manufactured
downstream. Integrating such constraints early into the con-
ceptual design process eliminates costly iterations in the de-
sign lifecycle, where models need to be redesigned because
they violate some insurmountable constraint.

• Workflow mimics traditional design media
Sketching and sculpting with physical media are both easy
to use and creatively unfettered approaches to visual com-
munication. Digital modeling techniques could do well to
capture the modalities that make these approaches success-
ful. Systems such as [Igarashi et al. 1999],[Tsang et al. 2004],
for example, strive towards the modeless fluidity of sketch-
ing and exploit traditionally used gestures to invoke various
commands as part of the sketching process

• Leverages domain expertise
Designers often have skills in using specialized physical de-
vices for conceptual design that digital modeling approaches
should attempt to benefit from. Many automotive design-
ers, for instance are proficient tape artists [Balakrishnan et al.
1999], a skill that allows them to lay out designs on large sur-
faces using tape of varying thickness and tension (see Fig-
ure 4).

3 Automotive design process

The current automotive design lifecycle is 3-4 years, of which as
much as half is spent in the early stages of conceptual design. Au-
tomotive designers largely work in traditional media and hand their
designs off to modellers. Modellers are technically skilled people
that create digital models with surfacing software, using the physi-
cal designs as a visual reference. These designs are then evaluated
both digitally and physically using rapid prototyping technology
and the entire process iterates towards a converging design. In ad-
dition to the general desirables of a conceptual modeller there are
many aspects of shape modeling that make the automotive design
space unique.

Figure 1: Curvature continuous surfaces

Figure 2: Automotive design constraints

Figure 3: Editing a physical model prototype

Figure 4: Digital Tape Drawing [Balakrishnan et al. 1999]

4

Figure 5: Sculpting with motion capture [Sheng 2004]

Figure 6: Manipulating curves with ShapeTape [Grossman et al.
2003]

• Curvature continuous shapes
Automobile surfaces display a high degree of continuity, bar-
ring a few sharp features that run along the character lines of
the design. Many automotive designers think in terms of the
shape, size and location of specular highlights on the design
and for these highlights to be smooth and unbroken, the sur-
faces needs to be at leastC2 continuous (see Figure 1).

• Character or flow lines captured intrinsically
Character and flow lines that define the principal curvatures
along surfaces are an important characteristic of automotive
design.

• Embodies geometric, surface and style constraints
While automobile design can be far more free-form than say
marine or airplane design (due to fluid and aerodynamic con-
straints), the designs must adhere to certain constraints. These
constraints can be geometric, such as hard points or dimen-
sions on the engineered design, surface constraints, such as
the circular shape of wheel arches, or stylistic, such as a sig-
nature look and feel for an entire family of automobiles (see
Figure 2).

• Flexible re-use of legacy data
Automotive designs do not change radically over short peri-
ods of time. It is thus important for design tools to facilitate
the evolution of models and support the re-use of parts of de-
signs that have already been engineered. Operations such as
cut and paste play an important role is data re-use (see Fig-
ure 7).

• Interfaces digital and physical modeling
Given the production lifecycle and costs that go into automo-
tive design it is unlikely that a design will ever be approved
without the creation of physical prototypes. Design updates
are often made on these prototypes making it important to
build better bridges between physical and digital modeling
techniques (see Figure 3).

• Large scale displays and novel interaction devices
Equally important to the automotive design process are design
visualizations at the true scale of the models. This implies the
need for large scale display devices [W. Buxton 2000] that are
capable of displaying an automobile to scale. A number of
high degree of freedom input devices today such as a flock
of birds [T. Grossman 2002],[Llamas et al. 2003], motion
capture systems [Sheng 2004] (see Figure 5) and ShapeTape
[Grossman et al. 2003] (see Figure 6) show potential at em-
ulating current large scale modeling techniques in practice in
automotive design (see Figure 4).

4 A proposed framework for automotive
design

We now distil these observations and a study of various automo-
tive design pipelines in practice into a proposed framework for
conceptual automotive design illustrated in Figure 7. We broadly
structure current and projected modeling technology and techniques
into three stages of rough model generation, model refinement and
model presentation.

4.1 Rough Model Creation

Sketches (on paper or using a pen and tablet), physical sculpture,
character lines and basic parameterized shapes typically form the
creative input to this earliest phase of digital model creation.

A big challenge in this stage is the ability to take such varied in-
put and transform it appropriately to consistently represent parts of
the model in a common 3D space. The side view sketch in Fig-
ure 8, for example, needs to be scaled to be consistent in space
with top and front view sketches. Early design sketches and sculpts
may also have inconsistent or missing information in parts of the
design that are resolved with model refinement. Determination of
the intended fidelity of different parts of the models in the different
pieces of input is thus a non-trivial problem. Precise engineering
criteria are left out of the initial design input to leave the designer
unencumbered creatively, but they are part of the input to the tech-
nique that constructs the rough model from the design input. As an
example, while a designers sketch may only adhere roughly to en-
gine block dimensions, the rough model created should make pre-
cise allowances for the engineering constraints. The rough model
should also have the ability to determine a set of surface-features
on the model that can be edited at this stage to make larger stylistic
changes to the model.

Physical 3D prototypes can be scanned [Curless] and the data
structured using reverse engineering techniques [V. Krishnamurthy
1996]. Creating 3D models from 2D sketches is far a trickier prob-
lem [Eggli et al. 1997],[Lowe 1991] but sketches do tend to have
surface-features and character lines explicitly depicted. In the fi-
nal analysis there is likely to be an element of user interaction in
the creation of a rough digital model from the given design input
[Tsang et al. 2004]. The success of a technique is likely to be in its

5

Engineering criteria

Sketches

Rough digital model
from parametric shapes, digitized
clay, feature lines or sketches.
Character lines can be edited for
stylistic change.

Refined digital model using a palette of refinement tools
(examples shown). Iterations converge to final design.

 Model Presentation with
photorealism using interactive
large- scale display devices.

Small clay model (1/24- 1/8)

Parameterized shapes

digital sculpting tools

analytic features on model

cut and paste

NC Milling

Evaluation tools
check design fidelity

Figure 7: Proposed Automotive Design Workflow

6

judicious use of user input to help resolve ambiguities in the given
input.

Figure 8: Aligning orthographic sketches into a common 3D space

4.2 Model Refinement

Once a rough digital model that has been structured and parameter-
ized with respect to various surface-features and character lines, it
is refined and embellished using tools that capture the design desir-
ables of Section 2 and Section 3. A good suite of tools is one that
would provide good coverage over the following functionality (see
Figure 7):

• Constraint preserving global deformations [Llamas et al.
2003].

• Cut and paste [Biermann et al. 2002].

• Surface-Feature based editing [Sorkine et al. 2004].

• Local deformation and sculpting of object detail [Massie T. H.
1994].

4.3 Model Presentation

Design reviews on automobiles typically take place on life-sized
displays or physical models built to scale with realistic materials
and lighting. Indeed many designers conceptualize models based
on the interplay between shape, shadows and highlights [P. Poulin
and Frasson 1998]. The importance of this observation is twofold.
First, digital modeling techniques should incorporate surface eval-
uation tools like curvature comb plots (see Figure 9), reflection and
zebra maps, and high quality rendering early in the modeling pro-
cess. Second, techniques that create lighting or edit shape based on
the direct manipulation of shadows and highlights [P. Poulin 1997]
are worthwhile additions to an automotive designers toolbox.

Once a version of a digital model is approved it is typically used
to generate a physical prototype and is also subjected to a number
of design and engineering fidelity checks that may result in further
iterations of the design cycle.

Figure 9: Curvature comb plot showing curvature discontinuities

5 Current modeling trends

It is clear that conceptual design in the future will require the co-
existence of both physical and digital representations of objects.
Physical models are converted to digital models using scanning de-
vices [Curless] and other data acquisition technology. Manufactur-
ing processes such as milling, injection molding and rapid proto-
typing machines give physical form to digital models, in materials
as varied as metal, synthetic foam and clay. The data acquisition
technology and modeling paradigms used, the manufacturing tech-
niques employed and last but not least the industrial application, all
critically affect the choice of geometric representation.

5.1 Geometric surface representations

There are a number of ways of representing the surface of an ob-
ject that are in active use in computer graphics today. The impor-
tant ones are: Point clouds, Polygon meshes, Parametric curve and
surface patches, Subdivision surfaces, Analytic shape primitives
(cubes, spheres, cylinders for example) with CSG operations and
Implicit surfaces (see Figure 10).

Figure 10: Various geometric representations used in automotive
design

Historically, continuous parametric curve and surface patches con-
structed from piecewise polynomial splines, have been used to rep-
resent industrial design objects [Farin 2001]. There were many rea-
sons for this. Cubic and higher order polynomials allow surfaces
to be controlled withC2 continuity. The curves and surfaces have
an inherent parametric structure and the control point data structure
with patch topology is fairly compact. As a result, Non-Uniform
Rational B-Splines (NURBS) are an industrial standard today.

A point-cloud [S. Rusinkiewicz 2000], in contrast is a dense point
sampling of a surface without any explicit surface elements. A
point-cloud where the points are connected by polygon elements to
form a surface manifold is called a polygon mesh. Polygon meshes
provide a faceted linear approximation to continuous object sur-
faces. Properties such as surface continuity and a structured pa-

7

rameterization are not inherent but can be imposed externally if the
mesh resolution is high enough. The lack of computing power to
handle high-resolution polygon meshes made them unsuitable for
industrial design applications in the past. Subdivision curves and
surfaces have existed since the early 70s [Chaikin] but have only
recently drawn great interest in the computer graphics community
as a way of bridging the complementary properties of parametric
surfaces and polygon meshes. Subdivision surfaces haveC2 dis-
continuities at extraordinary vertices (vertices with a valence other
than 4), making them far more popular in film and gaming appli-
cations than as a framework to represent surfaces for industrial de-
sign. While analytic shapes like spheres and cylinders are com-
monly found in various industrial objects, they are too restrictive
by themselves as a general framework to represent complex shapes
accurately.

Finally, implicit surface is a term that encompasses all objects that
are represented mathematically as the solution to an implicit equa-
tion of points in a Cartesian space [Bloomenthal 1997]. Implicit
surfaces are often built as an algebraic combination of analytic
primitives. Implicit surfaces are a very compact, continuous rep-
resentation and are a popular choice for interactive shape sculpting
techniques since they deal automatically with changes in genus and
topology of objects. Implicit functions such as radial basis func-
tions (RBF), have also been successful in approximating and fitting
a continuous surface model to sparse or irregularly sampled data
[J.C. Carr 2001]. The problem with implicit surfaces historically
has been the sampling search required to render the surface repre-
sented by the implicit function. This lack of an explicit parame-
terization also makes local morphological operations hard to define
computationally. It should be evident from this last paragraph, that
no one existing surface representation technique can be considered
to be a comprehensive superset of the others in terms of desirable
properties for the design of objects.

Recent advances in graphics hardware and computing power have
made it possible to render millions of points and triangles in real-
time [S. Rusinkiewicz 2000]. As mentioned earlier, many indus-
trial designers prefer to build physical prototypes in a real work-
shop to quickly resolve shape and form in 3D. These prototypes are
transformed to digital models by 3D shape acquisition technology,
typically as point clouds of widely varying sampling patterns and
densities. These are usually converted into dense polygon meshes
[Curless]. Most continuous surface representations, parametric or
implicit are also tessellated to a polygon mesh prior to rendering.
Meshes, however, are often unstructured and irregularly sampled
and display artifacts such as degenerate, flipped or sliver faces, un-
desirable holes and widely varying polygon sizes. Further, mesh
models often need to be parameterized, segmented and built in parts
as an assembly of complex shapes. The chief reason for this is that
point clouds and polygon meshes do not directly incorporate the
notion of surface-features.

In summary, there is a current trend towards preserving hybrid or
multiple representations of shape so as to benefit from the comple-
mentary properties of different geometric representation schemes.

5.2 Devices for display and interaction

It is evident that the standard keyboard and mouse metaphor falls
short in the design domain. Automotive design is a prime example,
where design prototypes are close to the actual size of an automo-
bile. Large format displays enable a designer to create, manipu-
late, and view the design of an automobile at full size. They are
currently in active use in automotive design centers, strictly as an
interface for design presentation but show promise for collabora-

tion and real-time editing of the design by a team, during design
reviews.

For novel displays to be used successfully in the design domain
they must work well with input technology that conveys human de-
sign intent. Haptic input technology, such as the Phantom (Sensable
Tech Inc.) allows us to investigate more effective digital sculpting
systems [Massie T. H. 1994]. Consequently, our surface represen-
tations need to be able to easily handle rapid changes in curvature
and even genus of the sculpted object, as well as represent the in-
ternal volume of the object. High degree of freedom input devices
such as ShapeTape [Grossman et al. 2003] and a motion capture
system [Sheng 2004] can be used to instrument the types of curve
and surface physical tools that designers use in the traditional de-
sign industry (like the steels car designers use to shape clay) (see
Figure 11). Motion-capture and 3D scanning systems can also be
used to interactively create and animate digital models of physical
objects [Liu 2003].

Figure 11: Curve modeling with sweeps [Singh 1999]

In general trends in conceptual shape modeling are moving in the
positive direction of decoupling the interaction techniques from the
underlying surface representation. Research on surface representa-
tion similarly is working towards structures which have the topo-
logical flexibility of unstructured data but also capture high level
shape concepts of character lines and other surface features.

6 Conclusion

In this chapter we have presented industrial motivation for digital
conceptual modeling tools. We have illustrated various desirable
properties of a conceptual modeller within the automotive design
space. We have defined a framework to structure the generally
practiced automotive design workflow and touched upon current
modeling representations and interfaces within this context. Vari-
ous chapters in this tutorial further address these issues and propose
detailed solutions to the questions raised in this chapter.

8

Acknowledgements

Many thanks to Ravin Balakrishnan, Tovi Grossman, Xia Liu, Jia
Sheng and members of the DGP lab, for their help with the work
presented in this chapter. Thanks also to Paraform Inc. and Alias
Inc. for their support of the field work and research presented here.
Ongoing work at DGP in conceptual design is supported by MI-
TACS.

References

BALAKRISHNAN , R., FITZMAURICE , G., KURTENBACH, G.,
AND BUXTON, W. 1999. Digital tape drawing. InProceedings
of the 12th annual ACM symposium on User interface software
and technology, ACM Press, 161–169.

BIERMANN , H., MARTIN , I., BERNARDINI, F., AND ZORIN, D.
2002. Cut-and-paste editing of multiresolution surfaces. In
SIGGRAPH ’02: Proceedings of the 29th annual conference on
Computer graphics and interactive techniques, ACM Press, New
York, NY, USA, 312–321.

BLOOMENTHAL , J. 1997.Introduction to Implicit Surfaces. Mor-
gan Kauffmann.

CHAIKIN , G. An algorithm for high speed curve generation.

CURLESS, B. From range scans to 3d models.

EGGLI, L., HSU, C., BRUDERLIN, B., AND ELBER, G. 1997.
Inferring 3d models from freehand sketches and constraints.
Computer-Aided Design 29, 2, 101–112.

FARIN , G. 2001.Curves and srufacs for CAGD, A practical guide
5th edition. Morgan Kauffmann.

GROSSMAN, T., BALAKRISHNAN , R., AND SINGH, K. 2003.
An interface for creating and manipulating curves using a high
degree-of-freedom curve input device. InProceedings of the
conference on Human factors in computing systems, ACM Press,
185–192.

IGARASHI, T., MATSUOKA, S., AND TANAKA , H. 1999. Teddy:
a sketching interface for 3d freeform design. InSIGGRAPH ’99,
ACM Press/Addison-Wesley Publishing Co., 409–416.

J.C. CARR, R.K. BEATSON, J. C. T. M. W. F. B. M. 2001.
Reconstruction and representation of 3d objects with radial basis
functions. InProc. SIGGRAPH ’2001, 67–76.

L IU , X. 2003. Plasticine surgery: editing digital models using
physical materials. InMaster Thesis, Computer Science, Uni-
versity of Toronto.

LLAMAS , I., K IM , B., GARGUS, J., ROSSIGNAC, J.,AND SHAW,
C. D. 2003. Twister: a space-warp operator for the two-handed
editing of 3d shapes.ACM Trans. Graph. 22, 3, 663–668.

LOWE, D. G. 1991. Fitting parameterized three-dimensional mod-
els to images.IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 13, 5 (May), 441–450.

M. PAULY, M. G. 2001. Spectral processing of point-sampled
geometry. InSIGGRAPH ’01.

MASSIE T. H., S. J. K. 1994. The phantom haptic interface : A
device for probing virtual objects. InProceedings of ASME’94.

P. POULIN , M. O., AND FRASSON, M.-C. 1998. Interactively
modeling with photogrammetry. InEurographics Workshop on
Rendering ’98.

P. POULIN , K. RATIB , M. J. 1997. Sketching shadows and high-
lights to position lights. InComputer Graphics International,
56–63.

S. RUSINKIEWICZ, M. L. 2000. Qsplat: A multiresolution point
rendering system for large meshes. InSIGGRAPH ’00.

SHENG, J. 2004. An interface for virtual 3d sculpting via phys-
ical proxy. InMaster Thesis, Computer Science, University of
Toronto.

SINGH, K. 1999. Interactive curve design using digital french
curves. InACM Symposium on Interactive 3D Graphics, 23–30.

SORKINE, O., COHEN-OR, D., LIPMAN , Y., ALEXA , M.,
RöSSL, C., AND SEIDEL, H.-P. 2004. Laplacian sur-
face editing. InSGP ’04: Proceedings of the 2004 Eurograph-
ics/ACM SIGGRAPH symposium on Geometry processing, ACM
Press, New York, NY, USA, 175–184.

T. GROSSMAN, R. BALAKRISHNAN , G. K. G. F. A. K. W. B.
2002. Creating principal 3d curves with digital tape drawing. In
Proceedings of the conference on Human factors in computing
systems, ACM Press, 121–128.

TSANG, S., BALAKRISHNAN , R., SINGH, K., AND RANJAN, A.
2004. A suggestive interface for image guided 3d sketching. In
Proceedings of CHI 2004, 591–598.

V. K RISHNAMURTHY, M. L. 1996. Fitting smooth sur-
faces to dense polygon meshes. InSIGGRAPH ’96, ACM
Press/Addison-Wesley Publishing Co., 313–324.

W. BUXTON, G. FITZMAURICE , R. B. G. K. 2000. Large dis-
plays in automotive design.IEEE Computer Graphics and Ap-
plications, 68–75.

ZELEZNIK , R. C., HERNDON, K. P., AND HUGHES, J. F. 1996.
Sketch: An interface for sketching 3d scenes. InComputer
Graphics (SIGGRAPH ’96 Proceedings), 163–170.

9

Space Deformations
and their Application To Shape Modeling

Alexis Angelidis Karan Singh

Dynamic Graphics Project, University of Toronto∗ Dynamic Graphics Project, University of Toronto

Abstract

We present an overview of a set of techniques called space
deformations, also known as free-form deformations, warps,
skinning or deformers. This family of techniques has various
applications in modeling, animation, rendering or simula-
tion, and we focus especially on their application to model-
ing. Space deformation techniques are mappings of space
onto another space, and can therefore be applied conve-
niently to any embedded geometry. This independence from
the underlying geometric representation of deformed shape
makes even the simplest and earliest deformation techniques
still applicable and popular in current industrial practice.

1 Introduction

Computer Graphics representations of shape are typically
defined using a discrete set of parameters that have a vi-
sual manifestation, such as the vertices of a mesh, control
points of parameteric curves and surfaces or skeletal shapes
of implicit surfaces. These visual parameters, traditionally,
also serve as handles for the interactive manipulation of the
underlying shape. Unfortunately, simply using underlying
mathematical handles as a manipulation interface has two
major disadvantages. First, there is no connection between
the resolution and visual layout of the shape handles and
the user desired manipulation. Creating a diagonal surface
ridge, for example, by moving control vertices of a rectan-
gular patch is a extremely difficult. Second,deformations
defined using the handles of a specific representation cannot
be trivially be applied to other shape representations or even
different instances of the same shape representation. Space
deformations are a family of techniques that address these
defficiencies by defining manipulations of space that are di-
rectly applicable to any embedded shape representation. We
present an overwiew of space deformation in Section 2, fol-
lowed by a more detailed presentation of various space defor-
mation techniques that are particularly applicable to shape
modeling in Section 3. In Section 4, we summarize the tech-
niques presented with a taxonomy of space deformation.

1.1 Principle of Modeling by Space Deformation

With space deformations, a deformed shape is obtained by
repeated deformation of the space in which the initial shape
is embedded. A convenient formalism can be used for spec-
ifying any modeling operation by deformation: the final
shape S(tn) is defined by composition of functions applied

∗On leave from the Graphics & Vision Research Lab., U. of

Otago, New Zealand.

to the initial shape S(t0):

S(tn) =

n−1

Ω
i=0

fti 7→ti+1(p) | p ∈ S(t0)

ff

(1)

where
n−1

Ω
i=0

fti 7→ti+1(p) = ftn−1 7→tn ◦ · · · ◦ f07→1(p)

The operator Ω expresses the finite repeated composition of
functions. Each function fti 7→ti+1R

3 7→ R
3 is a deformation

that transforms every point p of space at time ti into a
point of space at time ti+1. Sections 2 will focus on defining
functions fti 7→ti+1 . Section 3 will address issues related to
representing S(ti).

Normal Deformation: Computing accurate normals to the
surface is very important, since normals are used for shading
and their level of quality will dramatically affect the visual
quality of the shape. Let us recall that in order to compute
the new normal after deformation, the previous normal needs
to be multiplied by the co-matrix1 of the Jacobian of the
deformation [Barr 1984]. The Jacobian of f at p is the

matrix J(f,p) = (∂f
∂x

(p), ∂f
∂y

(p), ∂f
∂z

(p)), and the following

expression is a convenient way to compute the co-matrix of
J = (jx, jy, jz), where the vectors jx, jy and jz are column
vectors and × denotes the cross product:

JC = (jy × jz, jz × jx, jx × jy) (2)

Note that the multiplication of a vector by JC does not
preserve its length. It is therefore necessary to divide a de-
formed normal by its magnitude.

Generic blending: An practical advantage of space defor-
mation techniques is that they may be treated as black-
boxes and blended in a generic manner. Let us consider n
deformations fi and define a partition of unity wi, possibly
scalar fields. The deformations can be applied simultane-
ously to a point:

p +

n
X

i=1

wi(fi(p)− p) (3)

The space deformation family of techniques can therefore
be seen as a toolbox in which the tools can be combined
by handcrafting the weights wi. In the following, we will
however present them independently from each other to un-
derline their strength and weaknesses.

2 Space Deformations Techniques

This section reviews several space deformation techniques,
organized in four groups based on the geometric connectiv-
ity between the control handles: point/parameter controls,

1Matrix of the co-factors.

10

curve controls, surface controls, lattice-based controls and
blendable controls. Although all space deformation may be
blended using the above generic method, some of the tech-
niques include convenient blending techniques in their for-
malism, and the interacting handles are not restricted by
any connectivity.

For the sake of clarity, we present existing space defor-
mations aligned with the orthonormal axes ex, ey and ez

and within the unit cube [0, 1]3 whenever possible, because
a mere change of coordinates allows the artist to place the
deformation anywhere in space. To compare existing defor-
mation techniques from the same point of view, we also use
ez as the common axis of deformation when applicable, thus
we reformulate some of the original formulas. To begin with,
note that affine transformations (translation, rotations, and
scale) are the simplest examples of space deformations.

2.1 Point/parameters Control

This section contains the subset of space deformations whose
control parameters are disconnected elements often without
any explicit visual handle.

2.1.1 Global and Local Deformations of Solid Primitives

A. Barr defines space tapering, twisting and bending via
matrices whose components are functions of one space coor-
dinate [Barr 1984]. We denote (x, y, z)T the coordinates of
a point. We show in Figures 1, 2, and 3 the effects of these
operations, and we give their formula in the form of 4 × 4
homogeneous matrices to be applied to the coordinates of
every point to be deformed.

Tapering operation: The function r is monotonic in an in-
terval, and is constant outside that interval.

0

B

@

r(z) 0 0 0
0 r(z) 0 0
0 0 1 0
0 0 0 1

1

C

A

Figure 1: Taper deformation of a super-ellipsoid shape.

Twisting operation: The function θ is monotonic in an in-
terval, and is constant outside that interval.

0

B

@

cos(θ(z)) − sin(θ(z)) 0 0
sin(θ(z)) cos(θ(z)) 0 0

0 0 1 0
0 0 0 1

1

C

A

Figure 2: Twist deformation of a super-ellipsoid.

Bending operation: This operation bends space along the
axis y, in the 0 < z half-space. The desired radius of cur-
vature is specified with ρ. The angle corresponding to ρ is
θ = ẑ/ρ. The value of ẑ is the value of z, clamped in the
interval [0, zmax].
A. Barr observes that rendering the deformed shape with
rays of light is equivalent to rendering the undeformed shape
with curves of light. The curves of light are obtained by
applying the inverse of the deformation to the rays, assuming
the deformation is reversible.

0

B

@

cos θ 0 sin θ ρ− ρ cos θ − ẑ sin θ
0 1 0 0

− sin θ 0 cos θ ρ sin θ − ẑ cos θ
0 0 0 1

1

C

A

Figure 3: Bend deformation of a super-ellipsoid.

2.1.2 A Generic Implementation of Axial Procedural De-
formation Techniques,

C. Blanc extends A. Barr’s work to mold, shear and pinch
deformations [Blanc 1994]. Her transformations use a func-
tion of one or two components. She names this function
the shape function. Examples and formulas are shown in
Figures 4, 5, and 6.

0

B

@

r(z) 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1

C

A

Figure 4: Pinch deformation of a super-ellipsoid.

0

B

@

r(tan−1(x, y)) 0 0 0
0 r(tan−1(x, y)) 0 0
0 0 1 0
0 0 0 1

1

C

A

Figure 5: Mold deformation of a super-ellipsoid.

2.1.3 Geometric Deformation by Merging a 3D Object
with a Simple Shape

P. Decaudin proposes a technique that allows the artist to
model a shape by iteratively adding the volume of simple 3D
shapes [Decaudin 1996]. His method is a metaphor of clay
sculpture by addition of lumps of definite size and shape.
His deformation function is a closed-form, as opposed to a
numerical method that would explicitly control the volume
[Hirota et al. 1999].

Loosely speaking, this technique inflates space by blowing
up a tool in space through a hole. This will compress space
around the point in a way that preserves the outside volume.
Hence if the tool is inserted inside the shape, the tool’s vol-
ume will be added to the shape’s volume. On the other
hand, if the tool is inserted outside the shape, the shape will
be deformed but its volume will remain constant. This is
illustrated for the 2D case in Figure 9. A restriction on the
tool is to be star-convex with respect to its center c . The
deformation function is2 (see Figure 8):

f3D(p) = c + 3
p

ρ(p)3 + r(p)3 n (4)

� ρ(p) is the magnitude of the vector u = p− c.

2The 2D case is obtained by replacing 3 with 2.

11

0

B

@

1 0 0 s(z)
0 1 0 0
0 0 1 0
0 0 0 1

1

C

A

Figure 6: Shear deformation of a super-ellipsoid.

Figure 7: Steps of the modeling of a cat, image by P. De-
caudin.

� r(p) is the distance between c and the intersection of
the tool with the half-line (c,u).

�
n = u/‖u‖ is the unit vector pointing from c to p.

If the tool was not a star-convex in c, then r(p) would
be ambiguous. The deformation is foldover-free. It is con-
tinuous everywhere except at the center c. The effect of
the deformation converges quickly to the identity with the
increasing distance from c. The deformation can be con-
sidered local, and is smooth everywhere except at c. An
example in 3D is shown in Figure 7. A feature of this space
deformation which is rare, is that it has an exact yet simple
inverse in the space outside the tool:

f−1
3D (p) = c + 3

p

ρ(p)3 − r(p)3 n (5)

c
r

ρ
T

p
f(p)

Figure 8: The insertion of a tool at center c affects the
position of point p. See the deformation in Equations (4).

2.1.4 Interactive Space Deformation with Hardware As-
sisted Rendering

Y. Kurzion and R. Yagel present ray deflectors [Kurzion and
Yagel 1997]. The authors are interested in rendering the
shape by deforming the rays, as opposed to directly deform-
ing the shape. To deform the rays, one needs the inverse
of the deformation that the artist intends to apply to the

(a)

(b)

Figure 9: (a) Deformation of a shape (green) by blowing
up a tool (yellow) outside the shape. The shape’s area is
preserved. (b) Deformation of a shape by blowing up a tool
inside the shape. The shape’s area is increased by that of
the tool.

shape. Rather than defining a deformation and then trying
to find its inverse, the authors directly define deformations
by their inverse. Their tool can translate, rotate and scale
space contained in a sphere, locally and smoothly. More-
over they define a discontinuous deformation that allows the
artist to cut space, and change a shape’s topology. A tool is
defined within a ball of radius r around a center c. Let ρ be
the distance from the center of the deflector c and a point
p.

ρ = ‖p− c‖ (6)

Translate deflector: To define a translate deflector, the
artist has to provide a translation vector, t. The effect of
the translate deflector will be to transform the center point,
c, into c + t.

fT(p) =

p− t(1− ρ2

r2)2 if ρ < r
p otherwise

(7)

where θ ∈ R

Rotate deflector: To define a rotate deflector, the artist
has to provide an angle of rotation, θ, and a vector, n, about
which the rotation will be done. The reader can find the
expression of a rotation matrix, Rθ′,n,c, in Appendix ??.
Let us call θ′ an angle of rotation that varies in space:

θ′ = −θ(1− ρ2

r2
)4

fR(p) =

Rθ′,n,c · p if ρ < r
p otherwise

(8)

where ‖t‖ ∈ [0,
3
√

3r

8
]

Scale deflector: To define a scale deflector, the artist has
to provide a scale factor s. The scale deflector acts like a

12

magnifying glass.

fS(p) =

p− (p− c)(1− ρ2

r2)4s if ρ < r
p otherwise

(9)

where s ∈ [−1, 1]

Discontinuous deflector: To define a discontinuous deflec-
tor, the artist has to provide a translation vector, t. The
deflector is split into two halves, on each side of a plane go-
ing through c and perpendicular to t. In the half pointed
at by t, the discontinuous deflector will transform c, into
c+t, while in the other half, the discontinuous deflector will
transform c, into c− t. The effect will be to cut space. The
deformation applied to the rays is:

fD(p) =

8

>

<

>

:

p− t(1− ρ2

r2)2 if ρ<r and 0<(p− c) · t
p + t(1− ρ2

r2)2 if ρ<r and (p− c) · t<0
p otherwise

(10)

where θ ∈ R

Since this deformation is discontinuous on the disk separat-
ing the two halves of the deformation, a ray crossing that
disk will be cut in two, as we show in Figure 10(c). Thus
a shape intersection algorithm will have to march along the
ray from the two sides of the ray, until each curve crosses the
separating disk. This deformation assumes that the shape’s
representation has an inside and outside test. Note that
other authors have extended FFD for dealing with disconti-
nuities [Schein and Elber 2004].

(a) (b) (c)

(d) (e)

Figure 10: (a) Discontinuous deflector as observed by the
artist. Two arbitrary rays are shown. (b) Simple case, where
the ray of light crosses only one hemisphere. (c) When the
ray of light changes hemisphere, the curve of light is subject
to a discontinuity. (d, e) Images by Y. Kurzion and R. Yagel.

2.1.5 Twister

I. Llamas et al propose a method called twister in which
a twist transformation of points is weighted with a scalar
function [Llamas et al. 2003], i.e. in a similar way to IFFD
but with a transformation restrained to a twist. With this
restriction, they propose to weight single twists along the

trajectory of transformation rather than weighting the dis-
placement. They define a twist by transforming an orthonor-
mal coordinate system (o,u,v,w) into (o′,u′,v′,w′). The
axis of the twist is defined by a direction d and point a
on the axis, while the angle of rotation around the axis is α
and the translation factor along the axis is d:

d = g

‖g‖

where g=(u′−u)×(v′−v)+(v′−v)×(w′−w)+(w′−w)×(u′−u)

α = 2 arcsin(‖u′−u‖
2‖d×u‖

)

d = d · (o′ − o)

a = o+o′−dd
2

+ d×(o−o′)
2 tan(α/2)

(11)

Their procedure for deforming a point p with a twist param-
eterized in t is:

1. Bring p into local coordinates: translate by − a and
then rotate by a rotation that maps d onto z.

2. Apply the twist in local coordinates: translate by t d
along z and rotate by t α around z

3. Finally bring p back into world coordinates: rotate by
a rotation that maps z onto d and translate by a

To weight the twist, they propose to use a piecewise scalar
function:

t(p) = cos2(π‖p− o‖/2r) (12)

For operations that require simultaneous twists, they pro-
pose simply to add the displacement of the weighted twist.
Details for defining a two-point constraint can be found in
the paper.

2.2 Curve Control

Curve Control deformations are a subset of space deforma-
tions whose control-points are geometrically connected along
a curve. The curve may be initially straight or bent. To com-
pare existing deformation techniques from the same point of
view, we use ez as the common axis of deformation, thus we
reformulate some of the original formulas.

2.2.1 A Generalized de Casteljau Approach to 3d Free-
Form Deformation

Y.K. Chang and A.P. Rockwood propose a polynomial de-
formation that efficiently achieves “Barr”-like deformations
and more [Chang and Rockwood 1994], using a Bézier curve
with coordinate systems defined along ez at the curve’s con-
trol knots (z0, z1 . . . , zn) ∈ [0, 1]n+1. The initially straight
segment z ∈ [0, 1] is deformed by defining coordinate sys-
tems (ci,ui,vi,wi) along that segment. The shape follows
the deformation of the segment, as shown in Figure 11.
To compute the image q of a point p of the original shape,
the matrix transforming a point to a local coordinate sys-
tems is needed:

Mi =

0

B

@

ui,x vi,x wi,x ci,x

ui,y vi,y wi,y ci,y

ui,z vi,z wi,z ci,z

0 0 0 1

1

C

A
(13)

where wi = ci+1 − ci , and ui, vi are the handles.

Using this matrix, the deformation of a point is obtained
recursively with the de Casteljau algorithm for evaluating a

13

x
y

z

x
y

z

c

c
c

c

0

1

2

3

x
y

z

x
y

z

straight initial control points deformed
axis shape and handles shape

Figure 11: Example of the deformation of Y.K. Chang and
A.P.Rockwood applied to a super-ellipsoid. There is no need
to define a pair of handles for the end control point.

Bézier curve:

f j
i (p) = (1− pz)f

j−1
i (p) + pzf j−1

i+1 (p) (14)

where f0
i (p) = Mi · p

The original generalized de Casteljau algorithm presented
by Y.K. Chang and A.P. Rockwood is a recursion on affine
transformations rather than on points. They remark that
their recursion simplifies to the classic de Casteljau algo-
rithm when the affine transformations are degenerate, and
use the degenerate case in all their examples. As we show in
Figure 12, this method is capable of performing “Barr”-like
deformations and more.

initial stretch taper

swell twist bend

Figure 12: Deformation of a super-ellipsoid.

2.2.2 Axial Deformation

A limitation of the above method is the initial rectilinear
axis. If the shape is initially bent, the manipulation of an
initially straight control axis will not induce a predictable
behavior of the shape. F. Lazarus et al. develop an ex-
tension of axial-based deformations using an initially curved
axis [Lazarus et al. 1994]. Let us define a parametric curve
c(u). A point p in space is attached to local coordinates
along the curve. The origin of this local coordinate system
is c(up), the closest point to p on the curve, and the axes are
those of an extended Frenet frame that discards vanishing
points [Bloomenthal 1990]. To find the closest point to p on
curves, B. Crespin proposes an efficient algorithm based on
subdivision [Crespin 1999]. The axes are computed by prop-
agating along the curve a frame defined at one extremity of
the curve. The axes consist of three vectors: a tangent t(u),
a normal n(u) and a binormal b(u). The propagated frame
is computed as follows:

� the unit tangent at the origin is given by the equation
of the curve:
t(0) = dc(0)

du
/‖ dc(0)

du
‖.

� the normal and binormal are given by the Frenet frame,
or can be any pair of unit vectors such that the initial
frame is orthonormal.

To compute the next frame, a rotation matrix is needed. The
purpose of this matrix is to minimize torsion along the curve.
Numerous constructions of the rotation matrix require a fast
formulation:

R =

0

@

axx+θ axy+bz azx−by

axy−bz ayy+θ ayz+bx

azx+by ayz−bx azz+θ

1

A (15)

where
(ax, ay, az)

> =
t(ui)×t(ui+1)

‖t(ui)×t(ui+1)‖
α = 1− θ

θ = t(ui) · t(ui+1) β =
√

1− θ2
(16)

axx = αa2
x axy = αaxay bx = βax

ayy = αa2
y ayz = αayaz by = βay

azz = αa2
z azx = αazax bz = βaz

(17)

Given a frame at parameter ui, the next axes of a frame at
ui+1 are computed as follows:

� the tangent is defined by the equation of the curve:

t(ui+1) =
dc(ui+1)

du
/‖ dc(ui+1)

du
‖.

� the normal is given by the rotation of the previous nor-
mal: n(ui+1) = R · t(ui).

� the binormal is given by a cross product: b(ui+1) =
t(ui)× n(ui).

The choice of the size of the step, ui+1 − ui, depends on the
trade-off between accuracy and speed. B. Crespin extends
the axial deformation to surface deformation [Crespin 1999].

2.2.3 Blendeforming: Ray Traceable Localized Foldover-
Free Space Deformation

As explained in the introduction, the motivation for which a
space deformation should be foldover-free is its reversibilty,
with applications such as undoing operations or raytracing.
D. Mason and G. Wyvill introduce blendeforming [Mason
and Wyvill 2001]. A deformation is specified by moving a
point or the control points of a curve along a constrained
direction. Space follows the deformation of these control
features in a predictable manner.

They define the blendeforming deformation as a bundle
of non-intersecting streamlines. The streamlines are par-
allel, and described by a pair of functions: bx,y : R

2 7→
[−dmax, dmax] and bz : [0, 1] 7→ [0, 1]. Function bx,y controls
the amount of deformation for each individual z-streamlines,
and the choice of function bz affects the maximum compres-
sion of space along the streamlines. The deformation of point
p = (x, y, z)> is

pdef = (x, y, zdef)> (18)

where zdef = z + bx,y(x, y) bz(z)

It is the definition of bz together with a corresponding
threshold dmax that prevents foldovers, as shown in Fig-
ure 13. The following function is a possible choice for bz(z),
used in the example:

bz(z) =

16z2(1− z)2 if z ∈ [0, 1]
0 otherwise

(19)

with dmax =
3
√

3

16
' 0.324

14

Functions permitting larger values for dmax can be found
in the original paper. Since bx,y is independent of z, any
function with values in [−dmax, dmax] can be used for it, re-
gardless of the slope. Because the amplitude of the effect of
a blendeforming function is bounded by the dmax threshold,
it is obvious that modeling an entire shape uniquely with
blendeforming functions can be rather tedious. In the orig-
inal paper, the authors also propose blendeforming bending
functions defined in cylindrical coordinates, or using control
curves

x

y

z

x

y

z

x

y

z

(a) (b) (c)

Figure 13: (a) Initial scene: two parallel planes. (b) Blende-
forming, with bx,y(x, y) = (x2 − x + y2 − y − 1/2)2. The
value of dmax guarantees that the two planes will never in-
tersect. (c) With dmax < d, foldover occurs: the lower plane
intersects the higher plane.

Figure 14: Top: a control curve with height control points.
Bottom: a control curve with radial control points. Image
by D. Mason and G. Wyvill.

2.2.4 Interactive Skeleton-Driven Dynamic Deformations

S. Capell et al. propose a framework for skeleton-driven an-
imation of elastically deformable characters [Capell et al.
2002]. This techique defines over a character’s skeleton-
structure a layer of FFD lattice [Sederberg and Parry 1986]
with the control points driven by the dynamic equation of
elasticity. Simulation is beyond the scope of this overview,
thus we refer to the original paper for detail.

2.3 Surface Control

2.3.1 Surface-Oriented Free-Form Deformation (SOFFD)

K. Singh and E. Kokkevis introduce Surface-Oriented Free-
Form Deformation (SOFFD) in the context of character an-
imation [Singh and Kokkevis 2000].

To deform a shape S, a SOFFD is defined as a triple
(D, R, l): the reference surface R, the driver surface D and
a scalar value l that controls the influence. The SOFFD
process is made of three phases: bind, registration and de-
formation.

In the binding phase, the surfaces R and D are constructed
as low resolution representation of S. The surfaces R and D
are initially identical, and their patches define local coordi-
nate systems MR,i MD,i that correspond to each other.

In the registration phase, the local position of pS in each
patch of R is computed using qS,i = M−1

R,i · pS,i, and the in-
fluence ui of each patch of R at a point pS of S are computed
using the distance di to the ith patch of R :

ui =
wi

P

j wj

where wi =
1

1 + dl
i

(20)

In the deformation phase, the weighted effect are added to
compute the final deformation p′

S a point pS of S:

p
′
S =

X

ui MD,i · qS (21)

Figure 15: Deformation with SOFFD. Image by K. Singh
and E. Kokkevis

2.4 Lattice Control

The limitation of curve or surface controlled space deforma-
tion is the arrangement of the controls along a curve or on
a surface. Note that this statement is untrue only for wires,
which permits the blending of the controls [Singh and Fi-
ume 1998]. Lattice-based space deformations are techniques
that allow control points to be connected along the three
dimensions of space. There are two ways of understanding

15

lattice-based deformation, related to the manner in which
the artist expresses the deformation. Let us denote the space
deformation function by f .

In the first interpretation of lattice-based deformations,
the artist provides pairs of points: a source point and a des-
tination point, (pi,qi). The deformation f will interpolate
or approximate the pairs in this way f(pi) = fp(pi) ≈ qi.
The function fp is a position field. A position field does not
have any physical equivalent to which the artist or scientist
can relate, and requires a certain amount of imagination to
be visualized.

In the second interpretation of lattice-based deformations,
the artist provides a source point and a displacement of that
point, (pi,vi). The deformation f will interpolate or approx-
imate the pairs in this way f(pi) = pi + fv(pi) ≈ pi + vi.
The function fv is a vector field. There is a convenient phys-
ical analogy to a vector field. Vector fields are used in fluid
mechanics to describe the motion of fluids or to describe
fields in electromagnetics [Rutherford 1990; Griffiths 1999].
This analogy is of great help for explaining and creating new
space deformations.

While the effect of using either a position field or a vector
field is equivalent, the vector field also gives more insight
in the process of deforming space: in lattice-based space
deformations, the path that brings the source point onto the
desired target point is a straight translation using a vector.
In this section on lattice-based space deformation, we will
therefore consider the construction of a vector field rather
than a position field whenever possible.

2.4.1 Free-Form Deformation of Solid Geometric Models

The effect of Free-Form Deformation (FFD) on a shape is
to embed this shape in a piece of flexible plastic. The shape
deforms along with the plastic that surrounds it [Sederberg
and Parry 1986].

The idea behind FFD is to interpolate or approximate
vectors defined in a 3d regular lattice. The vectors are then
used to translate space. In their original paper, T. Seder-
berg and S. Parry propose to use the trivariate Bernstein
polynomial as a smoothing filter. Let us denote by vijk the
(l+1)×(m+1)×(n+1) control vectors defined by the artist.
The smoothed vector field is a mapping p ∈ [0, 1]3 7→ R

3.

v(p) =
l
X

i=0

„

i
l

«

(1−x)l−ixi

m
X

j=0

„

j
m

«

(1−y)m−jyj

n
X

k=0

„

k
n

«

(1−z)n−kzk

!!

vijk

(22)

Then the deformation of a point is a translation of that point

pdef = p + v(p) (23)

In order for the deformation to be continuous across the
faces of the FFD cube, the boundary vectors should be set to
zero. A drawback of using the Bernstein polynomial is that a
control vector vijk has a non-local effect on the deformation.
Hence updating the modification of a control vector requires
updating the entire portions of shape within the lattice. For
this reason, J. Griessmair and W. Purgathofer propose to
use B-Splines [Griessmair and Purgathofer 1989].

In commercial software, the popular way to let the artist
specify the control vectors is to let him move the control
points of the lattice, as shown in Figure 16(c). A drawback
often cited about this interface is the visual self occlusion of

the control points. This problem increases with the increase
in resolution of the lattice. Another drawback is that the
manipulation of of lattice of control points requires a strong
sense of spatial perception from the artist. Clearly, practical
FFD manipulation through control-points can only be done
with reasonably small lattices.

(a) (b) (c) (d)

Figure 16: FFD deformation. (a) Lattice of size 33. (b) Ini-
tial shape. (c) The popular interaction with an FFD lattice
consists of displacing the control points. (d) The discrete
vectors.

2.4.2 Extended Free-Form Deformation (EFFD)

Due to the practical limit of the size of the FFD-lattice,
the major restriction of an FFD is strongly related to the
arrangement of control-points in parallelepipeds. The par-
allelepipeds are also called cells. To provide the artist with
more control, S. Coquillart proposes a technique with non-
parallelepipedic and arbitrarily connected cells. The tech-
nique is called Extended Free-Form Deformation (EFFD)
[Coquillart 1990].

To model with EFFD, the artist first builds a lattice by
placing the extended cells anywhere in space, and then ma-
nipulates the cells to deform the shape. An extended cell is
a small FFD of size 44. The transformation from the cell’s
local coordinates s = (u, v, w)> to world coordinates is:

p(s) =
3
X

i=0

„

i
3

«

(1−u)3−iui

3
X

j=0

„

j
3

«

(1−v)3−jvj

3
X

k=0

„

k
3

«

(1−w)3−kwk

!!

pijk

(24)

The eight corners pijk∈{0,3}3 of a cell are freely defined by

the artist. The position of the remaining 44 − 8 are con-
strained by the connection between cells, so that continu-
ity is maintained across boundaries. This is done when
the artist connects the cells. Because the lattice is initially
deformed, finding a point’s coordinates s in a cell is not
straightforward. The local coordinates of a point p in a cell
are found by solving Equation (24) in s using a numerical
iteration. This can be unstable in some cases, although the
authors report they did not encounter such cases in practice.
Once s is found, the translation to apply to p is found by
substituting in Equation (24) the control points pijk with
the control vectors vijk. Note that specifying the control
points, the cells and the control vectors is rather tedious, and
results shown in the paper consist essentially of imprints. An
example is shown in Figure 17.

2.4.3 Preventing Self-Intersection under Free-Form De-
formation

In FFD, EFFD and DMFFD, if the magnitude of a control-
vector is too high, the deformation may produce a self-
intersection of the shape’s surface (see a self-intersection in
Figure 13). Once the shape’s surface self-intersects, there is
no space deformation that can remove the self-intersection.
The appearance of this surface incoherency is the result of

16

(a) (b) (b)

Figure 17: EFFD deformation, images by S. Coquillart. (a)
Control lattice. (b) Deformed lattice. (c) Result: a sand-pie.

a space foldover: the deformation function is a surjection of
R

3 onto R
3, not a bijection. J. Gain and N. Dodgson present

foldover detection tests for DMFFD deformations that are
based on uniform B-Splines [Gain and Dodgson 2001]. They
argue that a necessary and sufficient test is too time consum-
ing, and present an alternative sufficient test. Let us define
qijk, the deformed control points of the lattice. If the deter-
minants of all the following 3 × 3 matrices are all positive,
there is no foldover.

φijk = s det
`

qi±1jk − qijk , qij±1k − qijk , qijk±1 − qijk

´

where the sign s is 1 if (i±1, j±1, k± 1) are clockwise, else
−1. The idea underlying the test is that the determinant of
three column vectors is the volume of the parallelepiped de-
fined by these vectors. A negative volume detects a possible
singularity in the deformation. A technique for efficiently
testing several determinants at once can be found in the
original paper.

This test can then be used to repair the DMFFD. Let us
define (pi,vi), the pairs of points and vectors defining the
DMFFD. If a foldover is detected, the DMFFD is recursively
split into two parts: (pi,vi/2) and (pi + vi/2,vi/2). The
procedure eventually converges, and the series of DMFFDs
obtained are foldover-free and can be applied safely to the
shape.

2.4.4 Free-form Deformations with Lattices of Arbitrary
Topology (SFFD)

R.A. MacCracken and K.I. Joy have established a method
that allows the user to define lattices of arbitrary shape and
topology [MacCracken and Joy 1996]. The method is more
stable than EFFD since it does not rely on a numerical it-
eration technique.

Their method is based on subdivision lattices. We will
refer to it as SFFD, for subdivision FFD. The user defines a
control lattice, L: a set of vertices, edges, faces and cells. A
set of refinement rules are repeatedly applied to L, creating
a sequence of increasingly finer lattices {L1, L2, . . . Ll}. The
union of cells define the deformable space. After the first
subdivision, all cells can be classified into cells of different
type: type-n cells, n ≥ 3. See [MacCracken and Joy 1996]
for the rules.

Although there is no available trivariate parameterization
of the subdivision lattice, the correspondence between world
coordinates and lattice coordinates is possible thanks to the
subdivision procedure. The location of a vertex embedded in
the deformable space is found by identifying which cell con-
tains it. Then, for a type-3 cell, trilinear parameterization is
used. For a type-n cell, the cell is partitioned in 4n tetrahe-
dra, in which the vertex takes a trilinear parameterization.
Each point is tagged with its position in its cell.

Once a point’s location is found in the lattice, finding
the point’s new location is straightforward. When the artist

displaces the control points, the point’s new coordinates are
traced through the subdivision of the deformed lattice.

2.4.5 Scalar-Field Guided Adaptive Shape Deformation
and Animation (SFD)

J. Hua and H. Qin create a technique called SFD [Hua and
Qin 2004]. They define a deformation by attaching space to
the level-sets of an animated scalar field. The artist is offered
three different techniques for animating a scalar field. Since
there are many ways of attaching a point to a level-set of a
scalar field, the authors choose the way that keeps the shape
as rigid as possible.

They define φ(t,p(t)), the scalar field which is animated in
time, t. Since a moving point, p(t), is attached to a level-set
of the scalar field, the value of φ at p is constant in time:

dφ

dt
= 0 (25)

The square of Equation (25) gives a constraint:

(
dφ

dt
)2 = 0 (26)

There are several ways of attaching a point to a level set
while the scalar field is moving. The simplest way would
be to make a point follow the shortest path, found when
the magnitude of the point’s speed, ‖v(t)‖, is minimized.
Another possibility, chosen by the authors, is to minimize
the variation of velocity, so that the deformation is as rigid
as possible. Instead of using the divergence of the speed
to measure rigidity, they use an estimate by averaging the
variation of speed between that point’s speed, v, and its
neighbors’ speed, vk:

(∇ · v)2 ≈ 1

k

X

k

(v − vk)2 (27)

Since this is a constrained optimization problem [Weisstein
], there exists a Lagrange multiplier λ such that:

d

dv
(

d

dt
φ(t,p(t)))2 + λ

d

dv
(∇ · v)2 = ~0 (28)

According to the authors, λ is an experimental constant,
used to balance the flow constraint and speed variation con-
straint. Its value ranges between 0.05 and 0.25. We rear-
range this equation and expand the derivative of φ with the
chain rule:

d

dv

„

(∇φ · v +
∂φ

∂t
)2 + λ(∇ · v)2

«

= ~0 (29)

Let us define v̂, the average of the velocity of all the adjacent
neighbors connected with edges to point p. If we substitute
(∇·v)2 for its approximate given by Equation (27), and then
apply the derivative with respect to v, we obtain:

(∇φ · v +
∂φ

∂t
)∇φ + λ(v − v̂) = ~0 (30)

By solving the system of Equation (30), the updated position
is:

v = v̂ − v̂ · ∇φ + ∂φ
∂t

λ + (∇φ)2
∇φ (31)

The algorithm deforms a set of vertices in n sub-
steps. If n is set to one, the deformation takes
one step:

17

for i = 1 to n do
for all pk in the list of vertices to update do

Update the scalar field φ(t + ∆t,pk).

Deduce ∂φ
∂t

= φ(t+∆t,pk)−φ(t,pk)
∆t

Calculate ∇φ, possibly with finite differences.
Compute v̂ according to neighbors’ velocities.
Deduce v according to Equation (31).
Update vertex positions with pk(t + ∆t) = pk(t) +
v∆t

n
Improve surface representation using a mesh refine-
ment and simplification strategy.
if φ(t + ∆t,pk(t + ∆t)) ≈ φ(t,pk(t)) then

remove pk from the list of vertices to update.
end if

end for
end for

In the first step, since all the speeds are zero, we suggest
that they could be initialized with:

v = −
∂φ
∂t

λ + (∇φ)2
∇φ (32)

(a) (b) (c)

Figure 18: SFD applied to a digitized model of a dinosaur,
images by J. Hua and H. Qin.

Note that this technique requires an explicit surface in or-
der to compute the divergence of the speed. The advantage
of a large set of possible SFD shape operations (as large as
the set of possible animated scalar fields) is at the cost of
making the artist’s task rather tedious: specifying the ani-
mated field does not permit quick and repeated operations
on the shape, necessary for shape modeling.

2.5 Blendable

All deformations can be combined together by combin-
ing the deformations with a partition of unity defined in
space. Some deformation technique however include geo-
metric blending more strongly in their formalism, and define
blending methods that provides a variety of user control and
total freedom in placing the control handles.

2.5.1 Direct Manipulation of Free-Form Deformations
(DMFFD)

The manipulation of individual control points makes FFD
and EFFD tedious methods to use. Two groups of re-
searchers, P. Borrel and D. Bechmann, and W.M. Hsu et
al. propose a similar way of doing direct manipulation of
FFD control points (DMFFD) [Borrel and Bechmann 1991;
Hsu et al. 1992]. The artist specifies translations vi at points
pi in the form (pi,vi). The DMFFD algorithm finds con-
trol vectors that satisfy, if possible, the artist’s desire. Let
us define a single input vector v at point p. The FFD Equa-
tion (22) must satisfy

v = B(p)(vijk) (33)

Let ν = (3(l + 1)(m + 1)(n + 1)). The matrix B is the 3× ν
matrix of the Bernstein coefficients, which are functions of
point p. Note that their method is independent of the chosen
filter: instead of the Bernstein polynomials, W.M. Hsu et
al. use B-Splines and remark that Bernstein polynomials
can be used. P. Borrel and D. Bechmann on the other hand
found that using simple polynomials works just as well as
B-Splines. The size of the vector of control vectors (vijk)
is 3(l + 1)(m + 1)(n + 1). When the artist specifies µ pairs
(pi,vi), the FFD Equation (22) must satisfy a larger set of
equations:

0

B

@

v1

...
vµ

1

C

A
= B ·

0

B

@

vijk

...
vijk

1

C

A
where B =

0

B

@

B(p1)
...

B(pµ)

1

C

A
(34)

This set of equations can either be overdetermined or under
determined. In either case, the matrix B cannot be inverted
in order to find the vijk. The authors use the Moore-Penrose
pseudo-inverse, B+. If the inverse of B> ·B exists, then

B
+ = (B> ·B)−1 ·B> (35)

It is however preferable to compute the Moore-Penrose
pseudo-inverse using singular value decomposition (SVD).
The µ× ν matrix B can be written

B = U ·D · V > (36)

where U is an µ×µ orthogonal matrix, V is an ν×ν orthog-
onal matrix and D is an µ × ν diagonal matrix with real,
non-negative elements in descending order.

B
+ = V ·D−1 · U> (37)

Here, the diagonal terms of D−1 are simply the inverse of
the diagonal terms of D.

(a) (b) (b)

Figure 19: DMFFD deformation, images by W.M. Hsu et al.
(a) Initial scene. (b) The deformation is created according
to the displacement of several vertices of the green object.
(c) Result. The authors do not describe how the vertices on
the green object are selected.

The size of the basis, or, equivalently the number of con-
trol points, has a direct effect on the locality of the deforma-
tion around the selected point. In their approach, P. Borrel
and D. Bechmann pursue the reasoning even further, and
define a technique suitable for n-dimensional objects [Borrel
and Bechmann 1991]. In the context of shape animation,
i.e. in R

4 with time as the fourth dimension, the Bernstein,
B-Splines or simple polynomials are inappropriate. They
propose to use a basis that does not change the initial time,
t0, and final time, tf , of an object:

Bt(p, t)=

0

B

B

B

@

(t− t0)(t− tf)
(t− t0)(t− tf)t
(t− t0)(t− tf)t2

...

1

C

C

C

A

(38)

18

2.5.2 Simple Constrained Deformations for Geometric
Modeling and Interactive Design (scodef)

In simple constrained deformations (scodef), P. Borrel and
A. Rappoport propose to use DMFFD with radial basis func-
tions (RBF) [Borrel and Rappoport 1994]. The artist defines
constraint triplets (pi,vi, ri): a point, a vector that defines
the desired image of the point, and a radius of influence. Let

φi(p) denote the scalar function φ(‖p−pi‖
ri

) for short. The

motivation of using RBF is to keep the deformation local,
in the union of spheres of radius ri around the points pi. A
naive vector field would be:

v(p) =
n
X

i=1

viφi(p) (39)

Unless the points pi are far apart enough, Equation (39) will
not necessarily satisfy the artist’s input v(pi) = vi if the
functions φi overlap. However, this can be made possible by
substituting the vectors vi with suitable vectors wi.

v(p) =
n
X

i=1

wiφi(p) (40)

These vectors wi can be found by solving a set of 3n equa-
tions:

vi = (w1 . . .wn) ·

0

B

@

φ1(pi)
...

φn(pi)

1

C

A
where i ∈ [1, n] (41)

Let us take the transpose, and arrange the n equations in
rows. The following equation is the equivalent of Equa-
tion (34), but with radial basis functions:

0

B

@

v>
1

...
v>

n

1

C

A
=

0

B

@

φ1(p1) . . . φn(p1)
...

φ1(pn) . . . φn(pn)

1

C

A
·

0

B

@

w>
1

...
w>

n

1

C

A
(42)

where i ∈ [1, n]

Let Φ be the n × n square matrix of Equation (42). This
matrix takes the role of B in Equation (34). Since Φ can be
singular, the authors also use its pseudo-inverse Φ

+ to find
the vectors wi.

2.5.3 Dirichlet Free-Form Deformation (DFFD)

With DFFD, L. Moccozet and N. Magnenat-Thalmann pro-
pose a technique that builds the cells of a lattice automat-
ically [Moccozet and Magnenat-Thalmann 1997], relieving
the artist from a tedious task. The lattice cells are the
cells of a Voronöı diagram of the control points, shown in
Figure 20. The location of a point within a cell is neatly
captured by the Sibson coordinates. The naive deformation
of a point p is given by interpolating vectors defined at the
control points with the Sibson coordinate.

p +=
n
X

i=1

ai

a
vi (43)

Where ai is the volume of cell i stolen by p, and a is the vol-
ume of the cell of p. This interpolation is only C0. They use
a method developed by G. Farin [Farin 1990] to define a con-
tinuous parameterization on top of the Sibson coordinates.
The interpolation is made of four steps:

� build the local control net

� build Bézier abscissa

� define Bézier ordinates such that the interpolant is C1

� evaluate the multivariate Bernstein polynomial using
Sibson coordinates.

p3

p4

p2

p1

p5

a

p3

p1

p2

p5

p4
p

(a) (b)

a
a

aa

a5

4

3
2

1

p3

p2

p1

p5

p4

(c) (d)

Figure 20: 2D illustration of the Sibson coordinates (a)
Voronöı cells of the control points. (b) Voronöı diagram is
updated after the insertion of point p. (c) The areas stolen
by the point p from its natural neighbors give the Sibson co-
ordinates ai/a. (d) Local control net, with Bézier abscissa.

2.5.4 Implicit Free-Form Deformations (IFFD)

B. Crespin introduces Implicit Free-Form Deformations
(IFFD) [Crespin 1999]. Note that though it is called im-
plicit, the deformation is explicit. IFFD is rather a tech-
nique inspired by implicit surfaces, a vast branch of com-
puter graphics whose presentation is beyond the scope of
this document [Bajaj et al. 1997]. The field φ ∈ [0, 1] gener-
ated by a skeleton modulates a transformation, M , of points.
The deformation of point p with a single function is:

f(p) = p + φ(p)(M · p− p) (44)

He proposes two ways to combine many deformations simul-
taneously. Let use denote pi the transformation of p with
deformation fi. The first blending is shown in Figure 21. For
M , we have used a translation matrix. The second blendingattempts to solve the continuity issue, but requires the def-
inition of supplementary profile functions, γi. The purpose
of the index i is to assign individual profiles to skeletons.

In order to produce Figure 22, the following γi function
was used:

γi(p)=

8

>

<

>

:

1−(1−σ2)2 if σ∈ [0,1], where σ =
n
X

i=1

φi(p)

1 otherwise

(45)

19

pdef = p +
Pn

i=1(pi−p)φi(p)
P

n
i=1 φi(p)

Reference segments Translated segments

Figure 21: Blending weights based on summed displacement
magnitudes. The deformation is only defined where the
amounts φ are not zero, and is discontinuous at the interface
P

i φi = 0. This blending is useful when the deformed shape
is entirely contained within the field.

pdef = p +
Pn

i=1(pi−p)φi(p)γi(p)
P

n
i=1 φi(p)

(a)

(b)
Reference segments Translated segments

Figure 22: Blending weights based on displacement magni-
tudes and profile functions. For control points, the technique
works well. For segments, there is a discontinuity near their
intersection.

2.5.5 Wires: a Geometric Deformation Technique

K. Singh and E. Fiume introduce wires, a technique which
can easily achieve a rich set of deformations with curves as
control features [Singh and Fiume 1998]. Their technique is
inspired by armatures used by sculptors.

A wire is defined by a quadruple (R, W, s, r): the reference
curve R, the wire curve W, a scaling factor s that controls
bulging around the curve, and a radius of influence r. The
set of reference curves describes the armature embedded in
the initial shape, while the set of wire curves defines the new
pose of the armature.

On a curve C, let pC denote the parameter value for which
C(pC) is the closest point to p. Let us also denote C′(pC)
the tangent vector at that parameter value.

The reference curve, R, generates a scalar field F : R
3 7→

[0, 1]. The function F which decreases with the distance to
R, is equal to 1 along the curve and equals 0 outside a neigh-
borhood of radius r. The algorithm to compute the image
q of a point p influenced by a single deformation consists of
three steps, illustrated in Figure 23:

� Scaling step. The scaling factor is modulated with
F. The image of a point p after scaling is: ps =
R(pR) + (p − R(pR))(1 + sF(p)), where pR denotes
the parameter value for which R(pR) is the closest to
p.

� Rotation step. Let θ be the angle between the tangents
R′(pR) and W′(pR). The point ps is rotated around
axis R′(pR)×W′(pR) about center R(pR) by the mod-
ulated angle θ F(p). This results in point pr

� Translation step. Finally, a translation is modulated to
produce the image
pdef = pr + (W(pR)− R(pR)).

R’(p)R

W’(p)R RW(p)

p
sp

r

R(p)

p

R

3.translate

R
q 1.scaling

2.rotation

W

F>0F=0

Figure 23: Left: deformation of a point by a single wire:
the reference curve is in blue and the wire curve is in red.
Right: deformation of a shape with multiple wires (the three
images on the right by K. Singh and E. Fiume). The first
image shows the initial shape, the second shows the refer-
ence curves and the third shows the wire curves and the
deformed shape.

They propose different blending methods in the case when
a point is subject to multiple wires. These methods work by
taking weighted combinations of the individually deformed
point. Let us denote pi the deformation of p by wire i. Let
∆pi = pi − p. The simplest deformation is:

pdef = p +
Pn

i=1 ∆pi‖∆pi‖
m

P

n
i=1 ‖∆pi‖m

Reference curves Wire curves

Figure 24: Blending weights based on summed displacement
magnitudes. This blending is not free from artifacts: notice
the creases around the intersection in the upper-right figure.

The scalar m is defined by the artist. This expression is
not defined when m is negative and ‖∆pi‖ is zero. To fix
this, they suggest to omit the wires for which this is the case.
Their second solution is to use another blending defined for
both positive and negative values of m:

In order to use unmoved wires as anchors that hold the
surface, they use Fi(p) instead of ∆pi as a measure of prox-
imity:

Other capabilities of wires can be found in the original
paper [Singh and Fiume 1998]. Note that important to the
algorithm is computing the distance from each curve to each
deformed surface point.

20

pdef = p +
Pn

i=1 ∆pi

Q

j 6=i ‖∆pj‖
|m|

P

n
i=1

Q

j 6=i ‖∆pj‖
|m|

Reference curves Wire curves

Figure 25: Blending weights based on multiplied displace-
ment magnitudes. The deformation is defined at the inter-
section of the reference curves.

pdef = p +
Pn

i=1 ∆piFi(p)m

P

n
i=1 Fi(p)m

Reference curves Wire curves

Figure 26: Blending weights based on influence function.
The unmoved wire holds space still. This blending is not free
from artifacts: notice the creases around the intersection in
the upper-right figure.

2.5.6 Sweepers: Modeling with Gesture

Sweepers is a frameworks for shape modeling by ges-
ture[Angelidis et al. 2004b]. Note that there exist similar
work [Gain and Marais 2005; Kil et al. 2006]. The input
that defines transformations is a gesture, obtained with a
mouse or hand tracking device. A simple space deforma-
tion can be defined with a 4 × 4 transformation matrix M
(translation, rotation, scale, etc.) whose effect is spatially
weighted with a scalar field ϕ(p) ∈ [0, 1]. The function ϕ
encodes the amount of transformation at p ∈ R

3. To de-
fine a tool, a funtion ϕ is defined by composing a smooth
function µ to the distance to a shape.

µλ(d) =

0 if λ ≤ d
1 + (d

λ
)3(d

λ
(15− 6 d

λ
)− 10) if d < λ

(46)

This function is C2-continuous and antisymmetric about 0.5.
The tools proposed in the original papers are a ball tool, a
filled ellipsoid tool, or more generic mesh tools.

There are several ways to weight a transformation with
a weight, and sweepers uses fractions of transformation, by
using the exponential and logarithm of matrices (see a com-
plete overview in [Alexa 2002]). Note that as opposed to
the numerical method proposed by Alexa operator, sweep-
ers do not evaluate exp and log numerically, since some cases
reduce to more efficient and elegant closed-form formulas.
Thus the transformation M can be weighted with ϕ as fol-
lows:

f̈(p) = exp(ϕ(p) log M) · p (47)

The deformation f̈ is naive since it can create a foldover.
For example, if M is a translation of large magnitude, it can
map points within the support of ϕ onto points outside from
the support of ϕ, thus folding space onto itself.

Single Sweeper: By decomposing the transformation into
a series of s small enough transformations, and applying
each of them to the result of the previous one, foldovers
are avoided, for the same reason that the solution to a first
order differential equation is foldover-free (there is no accel-
eration). The decomposition in s steps for a general trans-
formation is expressed as follows:

f(p) =
s−1

Ω
k=0

fk(p)

where fk(p) = exp(ϕk(p)
s

log M) · p
and ϕk(p) = ϕ(exp(− k

s
log M) · p)

(48)

The value returned by ϕk is that of the scalar field ϕ trans-
formed by exp k

s
log M , a fraction of M . It can be shown that

there exists a finite number of steps such that the deforma-
tion is foldover-free (see [Angelidis 2005]). We propose the
following as a lower bound to the required number of steps s:

max
p
‖∇ϕ(p)‖ max

l∈[1,8]
‖log(M) · pl‖ < s (49)

where pl∈[1,8] are the corners of a box oustide which the
function ϕ equals zero.

Efficiency: In a single tool scenario, the transformations
convenient to input are translations, non-uniform and uni-
form scaling and rotations. In these cases, there is a closed-
form to the logarithm and exponential of matrices. If M is
a translation of vector d, the minimum number of steps is:

max
p
‖γ(p)‖ ‖d‖ < s (50)

The s vertex and normal deformations are:

fk(p) = p + ϕk(p)
s

d (51)

gk(n) = n + 1
s
(γk × n)× d (52)

If M is a uniform scaling operation of center c and scaling
factor σ, the minimum number of steps is:

max
p
‖γ(p)‖ σ log(σ)dmax < s (53)

where dmax is the largest distance between a point in the de-
formed area and the center c, approximated using a bound-

ing box. Let ~χ = log(σ)
s

(p − c). The s vertex and normal
deformations are:

fk(p) = p + (σ
ϕk(p)

s − 1)(p− c) (54)

gk(n) = n + (γk × n)× ~χ (55)

If M is a rotation of angle θ, center r and axis v =
(vx, vy, vz)

>, the minimum number of steps is:

max
p
‖γ(p)‖ θrmax < s (56)

where rmax is the distance between the axis of rotation and
the farthest point from it, approximated using a bounding
box. The s vertex deformations are:

fk(p) = p + (cos
ϕkθ

s
− 1)ξ × n + sin

ϕkθ

s
ξ (57)

where ξ = v × (p− r)

The s normal deformations are:

gk(n) = (n · v)v + v × (cos(h)n× v − sin(h)n)
+ θγ × (n× ξ

+ ((cos(h)− 1)(n× ξ) · v
+ sin(h)n · ξ)v)

where h = ϕkθ
s

(58)

21

Figure 27: Translatiom, scale and rotation.

Simultaneous Sweepers: Let us consider n operations, de-
fined with Mi∈[1,n] and ϕi∈[1,n]. A naive way to achieve
simultaneous deformations is

f(p) = exp(

n
X

i=1

ϕi(p) log Mi) · p (59)

This function is naive because it adds the effect of each op-
eration. The following expression provides a normalized and
smooth3 combination of all the transformations at any point
p in space4:
(

p if
P

k ϕk = 0

exp(
Pn

i=1

“

1−
Q

k(1−ϕk)
P

k ϕk
ϕi log Mi

”

· p) otherwise
(60)

where 1
P

k ϕk
is required to produce a normalized combina-

tion of the transformations and 1−
Qn

k=1(1−ϕk(p)) smooths
the deformation in the entire space. Figure 29 shows a com-
parison between additive blending of Equation (59) and the
correct one of Equation (60). In Figure 28, we show the
blending of sweepers in a secenario similar to other blending
presented in this section.

Reference segments Translated segments

Figure 28: Blending with sweepers. The resulting surface is
nice and smooth, as opposed to surfaces in Figures 24 25,
26, 21 and 22.

Equation (60) may produces foldovers for similar reasons
to the case of a single tool, with Equation (47). If we de-
compose it into small steps, foldovers can be avoided:

f(p) =
s−1

Ω
k=0

fk(p)

where fk(p) =

8

>

>

>

<

>

>

>

:

p if
P

j ϕk
j = 0

otherwise

exp(

n
X

i=1

1−Qj(1− ϕk
j)

P

j ϕk
j

ϕk
i log Mi

!

) · p

and ϕk
j (p) = exp(ϕj((

k
s

log M−1
j)) · p

(61)
The following expression is a lower bound to the required
number of steps, generalizing the single tool condition (see
justification in [Angelidis 2005]):

X

j

max
p

(‖∇ϕj(p)‖) max
l∈[1,8]

˛

˛

˛

˛log Mj · plj

˛

˛

˛

˛ < s (62)

3as smooth as the ϕi.
4The operator

L

expresses a repetive sum:
Ln

i=1 Mi = M1 ⊕

M2 ⊕ · · · ⊕ Mn.

(a)

-2

0

2

-2

0

2

0

1

2

3

-2

0

2

-2

0

2

-2

0

2

-2

0

2

0

1

2

3

-2

0

2

-2

0

2

-2

0

2

-2

0

2

0

1

2

3

-2

0

2

-2

0

2

-2

0

2

-2

0

2

0

1

2

3

-2

0

2

-2

0

2

(b)

-2

0

2

-2

0

2

0

1

2

3

-2

0

2

-2

0

2

-2

0

2

-2

0

2

0

1

2

3

-2

0

2

-2

0

2

-2

0

2

-2

0

2

0

1

2

3

-2

0

2

-2

0

2

-2

0

2

-2

0

2

0

1

2

3

-2

0

2

-2

0

2

Figure 29: Blending of three scalar fields. To illustrate the
behaviour of our blending in this figure, we directly combine
the scalar fields instead of using them to modulate a trans-
formation. (a) Adding the scalar fields. (b) By multiplying
each field with (1−Q(1−ϕk))/

P

ϕk, the sum of the fields
is normalized.

where plj∈[1,8] are the corners of a bounding box oustide
which the function ϕj equals zero. For an operation sym-
metric about a plane, the transformation matrices are of the
same type, thus blending them leads to simple expressions
(see [Angelidis 2005]).

The set of possible deformations with sweepers is quite
large because of the arbitrary shape of the tools and also be-
cause many tools’ deformations can be blended. The shapes
shown in Figure 30 were modeled in real-time in one hour
at most, and were all made starting with a sphere.

Figures 30(a) and 30(b) show the use of the multi-tool to
achieve smooth and symmetric objects. Figure 30(d) shows
that sharp features can be easily modeled. Figures 30(c)
and 30(i) show the advantage of foldover-free deformations,
as the artist did not have to concentrate on avoiding self-
intersections: our deformations do not change the topology
of space and thus preserve the topology of the initial object.

2.5.7 Swirling-sweepers: Constant Volume Modeling

In a non-virtual modeling context, one of the most important
factors which affects the artist’s technique is the amount of
available material. The notion of an amount of material is
not only familiar to professional artists, but also to children
who experience it with Play-Doh

�

at kindergarten, and to
adults through everyday life experience. A shape modeling
technique that preserves volume will take advantage of this,
and increase the intuitiveness of use. In Swirling-Sweepers,
the artist inputs a position h and translation t, and the
technique will create a deformation that transforms h into
h + t while the volume of the shape is preserved implicitly,
simply because the deformation satisfies a differential prop-
erty. Thus the volume of the shape does not require to be
computed, and the deformation can be applied to an open
surface.

Swirling-sweepers use swirls as building blocks. A swirl
twists space locally without compression or dilation (see
proof in [Angelidis et al. 2004a]): it preserves volume. A
swirl is defined by a point c, a rotation of angle θ around
an axis v (see Figure 31), and a scalar function ϕ describing

22

the amount of swirl

ϕ(p, λ) = µ(
‖p− c‖

λ
) (63)

where µ(d) =

0 if 1 ≤ d
1 + d3(d(15− 6d)− 10) if 1 > d

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Figure 30: All these shapes were modeled starting with a
sphere, in at most one hour. In (c), the first modeling step
was to squash the sphere into a very thin disk. In (g), eye-
balls were added.

The effect of a swirl is defined using the exponential and
logarithm of matrices (see a complete overview in ??), for
which there are closed-forms given bellow:

f(p) = exp(ϕ(p, λ) log R) · p (64)

where R denote the 4 × 4 matrix of a rotation of center c,
axis v and angle θ. This equation could have been defined in
several equivalent ways, for example using quaternions or an
algebraic formula. The above notation is however convenient
to combine multiple swirls:

f(p) =

exp(

n−1
X

i=0

(ϕi(p, λ) log Ri))

!

· p (65)

θ

c c
v v

λ

Figure 31: The effect on a sphere of a swirl centered at c,
with a rotation angle θ around ~v. The two shapes have the
same volume.

We now define how to place the above swirls to transform
h into h + t. Let us consider n points, ci, on the circle of
center h, and radius r lying in a plane perpendicular to t. To
these points correspond n consistently-oriented unit tangent
vectors vi (see Figure 32). Each pair, (ci,vi), together with
an angle, θi, define a rotation. Along with radii of influence
λi = 2r, we can define n swirls. The radius of the circle r,
is left to the user to choose. The following value for θi will
transform h exactly into h+t (see justification in [Angelidis
et al. 2004a]):

θi =
2‖t‖
nr

(66)

hh

4 swirls 8 swirls2 swirls

h

t t t

Figure 32: By arranging n basic swirls in a circle, a more
complex deformation is achieved. In the rightmost image:
with 8 swirls, there are no visible artifacts due to the discrete
number of swirls.

We show in Figure 32 the effect of the tool for different
values of n; in practice, we use 8 swirls. If the magnitude
of the input vector t is too large, the deformation of Equa-
tion (65) will produce a self-intersecting surface, and will not
preserve volume accurately. To correct this, it is necessary
to subdivide t into smaller vectors for the same reasons that
applies to solving discretely a first order differential equa-
tions. The number of steps must be proportional to the
speed and inversely proportional to the size of the tool. We
use:

s = max(1, d4‖t‖/re) (67)

23

As the circle sweeps space, it defines a cylinder. Thus the
swirling-sweeper is made of ns basic deformations. Figure 33
illustrates this decomposition applied to a shape. We sum-
marize here the swirling-sweepers algorithm:

Input point h, translation t, and radius r
Compute the number of required steps s

Compute the angle of each step, θi = 2‖t‖
nrs

for each step k from 0 to s− 1 do
for each point p in the tool’s bounding box do

M = 0
for each swirl i from 0 to n− 1 do

M += ϕi
k(p) log Ri,k

end for
p = (exp M) · p

end for
end for

t t s/

t s/

t s/

h

h + t

input step ... step sstep 1

Figure 33: A volume preserving deformation is obtained by
decomposing a translation into circles of swirls. 3 steps have
been used for this illustration. As the artist pulls the surface,
the shape gets thinner. The selected point’s transformation
is precisely controlled.

The point cik denotes the center of the ith swirl of the
kth ring of swirls. For efficiency, a table of the basic-swirl
centers, cik, and a table of the rotation matrices, log Ri,k,
are precomputed. We have a closed-form for the logarithm
of the involved matrix, given in Equations (68) and (69),
saving an otherwise expensive numerical approximation:

n = θivi

m = ci,k × n (68)

log Mi,k =

0

B

@

0 −nz ny mx

nz 0 −nx my

−ny nx 0 mz

0 0 0 0

1

C

A
(69)

Since these matrices almost antisymmetric, they are handled
as pairs of vectors, (n,m). Once M is computed, we use
a closed-form for computing exp M . Since the matrix M
is a weighted sum of matrices log Ri,k, the matrix M is of
the form of Equation (69), and can be represented with a
pair (nM ,mM). If nM = 0, then exp M is a translation of
vector ~mM . Else, if the dot product mM · nM = 0, then
exp M is a rotation of center c, angle θ axis v, as given by
Equation (70):

c = ω×m

‖ω‖2

θ = ‖nM‖
v = nM/θ

(70)

Finally, in the remaining cases, we denote l = ‖~nM‖, and we
use Equation (71) (see Appendix 2.5.7 for efficiency):

exp M = I + M + 1−cos l
l2

M2 + l−sin l
l3

M3 (71)

Symmetrical objects can be easily modeled by introducing
a plane of symmetry about which the tool is reflected. The
shapes shown in Figure 34 were modeled in real-time in half
an hour at most, and were all made starting with a sphere.
For instance 80 swirling-sweepers have been used to model
the alien.

Figure 34: Examples of models modeled with swirling-
sweepers. The mouse, the goblin, the alien and the tree
have respectively 27607, 25509, 40495 and 38420 vertices.
These objects were modeled in less than 30 min by one of
the authors. Eyeballs have been added. The shapes volumes
are respectively 101.422%, 99.993%, 101.158% and 103.633%
of the initial sphere, due to the finite number of steps, and
to our choice of shape representation.

3 Spape Deformation and Modeling

3.1 Desirable Properties for Modeling

The large number of space deformation techniques can lead
quickly to the naive conclusion that in any shape model-
ing by deformation scenario, the limitation of a technique
may be simply circumvented by using another technique.
This reasoning presents several flaws. Firstly, from the point
of view of a programmer, the amount of effort required to

24

implement a space deformation Swiss-army knife for shape
modeling would be considerable. Secondly, from the point
of view of an artist, choosing quickly the most appropriate
space deformation would require a vast amount of knowledge
of the underlying mathematics of many techniques, which
is a skill that should not be required. Thirdly, from a re-
searcher’s point of view, all space deformation techniques
are not necessarily designed for the specific purpose of shape
modeling, and there are surely efficient ways of dealing with
specific problems. Here a few guidelines for designing space
deformation techniques for the purpose of interactive shape
modeling.

Firstly, the subset of space deformations whose effect on
a shape is not local makes these techniques unsuitable for
the task of modeling shapes, since an artist’s operation on
a visible portion of the shape will have effects on portions
that are further away [Barr 1984; Blanc 1994; Chang and
Rockwood 1994; Lazarus et al. 1994]. Controlling the effect
of global deformations using weights would requires a certain
amount of craftsmanship from the artist.

Secondly, a large number of space deformation techniques
requires the artist to specify a rather large number of
control parameters [Sederberg and Parry 1986; Coquillart
1990; MacCracken and Joy 1996; Moccozet and Magnenat-
Thalmann 1997; Hirota et al. 1999; Hua and Qin 2004]. We
believe that for modeling, increasing the number of param-
eters does not increase the amount of control by an artist,
but rather it makes the task longer and more tedious. Many
techniques illustrate their capabilities on imported models,
that were either digitized or pre-modeled with conventional
modeling techniques with a few exceptions [Decaudin 1996;
Hsu et al. 1992; Llamas et al. 2003]. The absence of a model
entirely developed in one piece with a single technique may
be evidence that the technique is tedious to use for the ded-
icated purpose of modeling shapes.

Finally, many space deformation techniques do not pre-
vent a surface from self-intersecting after deformation, aside
from a couple of exceptions [Mason and Wyvill 2001; Gain
and Dodgson 2001]. A self-intersecting surface is a rather
annoying situation in modeling with deformation, since it is
impossible for a space deformation to remove a previously
introduced self-intersection. Thus we believe that the fol-
lowing are reasonable guidelines for deformation operations
for shape modeling:

� Its effective span should be controllable.

� Its input parameters should be reduced to their strict
minimum: a gesture.

� It should be predictable, in accordance with a
metaphor.

� It should be foldover-free.

� It should be sufficiently fast for existing computing de-
vices.

3.2 A Shape Description for Modeling

Because space deformations operations are independent
from the shape description, several choices are available to
represent a shape being deformed: mesh [Gain and Dodg-
son 1999], particles [Pauly et al. 2003], deformed raytracing
[Barr 1984], hybrid [Enright et al. 2002], and all the popular
shape descriptions: subdivision surfaces, NURBS and more.
In the context of shape modeling, the number of deforma-
tions is possibly excessively large, and issues related to such

excess have to be taken into consideration when defining a
shape description. This section presents a shape description
for interactive modeling which supports high deformation
and does not break when highly stretched [Angelidis et al.
2004b].

A simple way of representing a deformable shape is to
place a set of samples on the surface of the shape: this
makes the task of deforming the shape as straightforward
as deforming the points on its surface. Points are discrete
surface samples, and need to be somehow connected using
splatting, interpolation or approximation scheme in order to
display a continuous surface.

The presented method uses vertices connected with tri-
angles. Connectivity provides convenient 2D boundary in-
formation for rendering the surface as well as surface neigh-
borhood information, which enables the artist to define very
thin membranes without having them vanish, as shown in
Figure 30(c). The use of triangular C0 patches circumvents
issues related to non-regular vertices and smoothness main-
tenance across the boundaries that join patches. Also, cur-
rent hardware handles polygons very efficiently, which is rel-
evant to us since interactivity is among our objectives. The
reader however should be aware that point-sampled geome-
try is an active area of research [Pauly et al. 2003].

The possibly large number of deformations applied by an
artist requires some minimum surface sampling density. In
order to maintains this density, the presented method re-
quires the deformation to be capable of being split into sub-
steps.

Let us assume the scene is initialized with a polygonal
model, e.g. a sphere with a homogeneous density of nearly
equilateral triangles. To fetch the vertices that are deformed,
a query is done with the tool’s bounding box. Conveniently,
this bounding box is also used in Equation 49. Since the
principle of our swept deformations is to subdivide the input
gesture into a series of smaller ones, all the transformations
applied to the vertices are bounded. To take advantage of
this decomposition in steps, we apply a modified version of
a more generic algorithm [Gain and Dodgson 1999]. Our
method requires keeping two vertices and two normals per
vertex, corresponding to the previous and following state of
some small step operation fk. Loosely speaking, our surface-
updating algorithm assumes that smooth curves run on the
surface, and that the available vertices and normals should
be able to represent them well enough. If this is not the
case after deformation, then it means the surface is under-
sampled. On the other hand, if an edge is well enough rep-
resented by a single sample, then it is collapsed.

Let us consider an edge e defined by two vertices (v0,v1)
with normals (n0,n1), and the deformed edge e′ defined by
vertices (v′

0,v
′
1) with normals (n′

0,n
′
1). In addition to the

conditions in [Gain and Dodgson 1999] based on edge length
and angle between normals, we also base the choice of split-
ting edge e0 on the error between the edge and a fictitious
vertex, which belongs to a smooth curve on the surface. The
fictitious vertex is used only for measuring the error, and is
not a means of interpolating the vertices. If the error be-
tween the fictitious vertex and the edge is too large, the edge
e is split, and the new vertex and normal are deformed. On
the other hand if the fictitious vertex represents the edge e0

well enough, then edge e is collapsed, and the new vertex is
deformed. We define the fictitious vertex as the mid-vertex
of a C1 curve, since vertices and normals only provide 1rst

order information about the surface. The following cubic
polynomial curve interpolates the vertices v′

0 and v′
1 with

25

corresponding shape tangents t0 and t1, defined below:

c(u) = (v′
0(1 + 2u) + t0u)(1− u2)+

(v′
1(1 + 2(1− u))− t1(1− u))(1− (1− u)2)

(72)

The only constraint on tangent ti is to be perpendicular to
the corresponding normal ni. The following choice defines
tangents of magnitude proportional to the distance between
the vertices:

t0 = g − g · n′
0 n′

0

t1 = g − g · n′
1 n′

1 where g = v′
1 − v′

0
(73)

With the above tangents, the expression of the middle vertex
simplifies:

c(0.5) = (v′
0 + v

′
1 + (g · n′

0 − g · n′
1)/4)/2 (74)

With the fictitious vertex c(0.5), the tests to decide
whether an edge should be split or collapsed can now be
defined:

Too-long edge: An edge e0 is too long if at least one of the
following conditions is met:

� The edge is longer than Lmax, the size of a grid-cell.
This condition keeps a minimum surface density, so that
the deformation can be caught by the net of vertices if
the coating thickness λj is greater than Lmax.

� The angle between the normals n′
0 and n′

1 is larger than
a constant θmax. This condition keeps a minimum cur-
vature sampling.

� The distance between the fictitious vertex and the mid-
vertex of e′ is too large (we used Lmax/20). This condi-
tion prevents the sampling from folding on itself, which
would produce multiple sampling layers of the same sur-
face.

Too-short edge: An edge e′ is too short if all of the fol-
lowing conditions are met:

� The edge’s length is shorter than Lmin (we used
Lmax/2).

� The angle between the normals n′
0 and n′

1 is smaller
than a constant θmin.

� The distance between the fictitious vertex and the mid-
vertex of e′ is too small (we used Lmin/20).

Also, to avoid excessively small edges, an edge is merged
regardless of previous conditions if it is too small (we used
Lmin/20).

We stress that the procedure for updating the mesh is
applied at each small step, rather than after the user’s de-
formation function has been applied. Because vertex dis-
placements are bounded by the foldover-free conditions,
the update of our shape description does not suffer from
problems related to updating a greatly distorted triangula-
tion. Figure 35 shows a twist on a simple U-shape. Fig-
ure 36 shows the algorithm preserving a fine triangulation
only where required. Figure 37 shows the algorithm at
work in a more practical situation. The procedure out-
line is:

Compute the number of steps required s
for each step k do

Deform the points, and hold their previous values
for each too-long edge do

split the edge and deform the new point.
end for
for each too-short edge do

collapse the edge and deform the new point.
end for

end for

Limitation: With the updated mesh method, we choose to
ignore the history of functions applied to the shape by the
artist. Thus we “collapse” the history by freezing it in the
current shape. To explain the major consequence of this, let
us suppose the scene at a time tk, such that the shape S(tk)
is shown to the user. The next deformation produced by
the artist with the mouse is function ftk 7→tk+1 , and all the
mesh renements and simplications are performed in S(tk).
This is however an approximation: ideally the last operation
should be concatenated to the history of deformations, and
the whole series should be applied to the initial shape S(t0),

i.e.
n

Ω
i=0

fti 7→ti+1 should be applied to each new vertex. This

would however become more and more time consuming as
the sequence of deformations gets longer (n gets larger), and
the modeling software would eventually become unusable.

Figure 35: Example of our mesh-updating algorithm on a
highly twisted U-Shape. The close-up shows a sharp feature,
with finer elongated triangles.

Figure 36: Behaviour of our mesh-updating algorithm on an
already punched sphere. The decimation accompanying the
second puch simplifies the small triangles of the first punch.
The tool has been removed for a better visualization.

4 Comparing Techniques

Space deformations can be compared according to several
criteria, thus the sequential presentation of Section 2 does
not give the entire picture of the landscape of space defor-
mations. We will identify objective criteria to attempt com-
paring techniques on a fair ground.

� Modeling philosophy: for the task of deforming a shape,
the intended usage of a technique can be either to use
many simple deformations, or a few but complex de-
formations. For example, a deformation that require
the user to define a complex control structure will most
likely be of the “few but complex deformations” kind.
These approaches tend to be most efficient in the con-
text of animation.

26

Figure 37: Close-up of the goat. Notice the large triangles
on the cheek and the fine ones on the ear. The initial shape
is a sphere.

� Connectivity of control space: deformations define sev-
eral control parameters of type position, direction,
affine transform, thickness, and more. Some of these
controls have a direct relation with the Euclidean space,
and we accord more importance to these since they are
manipulated by the user in a geometric sense. The con-
nectivity of the Euclidean controls can be 0D, 1D, 2D
or 3D, corresponding to the notion of parameter/point,
a curve, a surface, or a block of jello. For example, a
mouse can handle a 0D control, and will need to be used
repeatedly to control higher dimensions, as opposed to
a curve control interface [Grossman et al. 2003] that
can contol a 1D control space all at once. Note that
this is different from the dimension of the input re-
lated to hardware limitations: e.g. a mouse inputs 2D
coordinates, while a curve control interface inputs 3D
coordinates.

� Free Control Blending: all deformations can be com-
bined together by combining the deformations with a
partition of unity defined in space (see Section 1.1).
Some deformation techniques include geometric blend-
ing more strongly in their formalism, and define blend-
ing methods that provides a variety of user control and
a level of freedom in placing the control handles. These
methods are have advantages as techniques with 3D
connectivity control space, without any cumbersome
structural constrain.

� Differential properties: by taking into account the time
parameter, a deformation can be understood as a con-
tinuum deformation. By satisfying some differential
properties, a deformation can implicitly preserve some
properties of the shape being deformed such as sur-
face self-interection avoidance, preserving volume or
dynamics.

5 Conclusion

Space deformation is a set of very generic techniques that
may be used in the context of modeling, rendering [Coleman
and Singh 2004; Mei et al. 2005], animation and simulation.
This overview focuses on the context of shape modeling, and
we also present a method for representing the shape being
deformed. Recent work has shown that it is possible to de-
fine properties of the shape with differential properties of
the deformation. This may be a promissing direction for

future work. Also, the similarity between space deforma-
tion and vector fields makes space deformation a pedagogical
tool for understanding continuum mechanics, and they can
be somehow used for handcrafting physical phenomena. For
example, swirling-sweepers [Angelidis et al. 2004a] shares
similarities with vortex-based smoke simulation [Angelidis
and Neyret 2005].

Acknowledgments Many thanks to Marie-Paule Cani, Ge-
off Wyvill and Scott King for their contribution to the work
presented in this chapter.

References

Alexa, M. 2002. Linear Combination of Transformations.
ACM Trans. Graph. 21, 3 (Jul), 380–387.

Angelidis, A., and Neyret, F. 2005. Simulation of Smoke
Based on Vortex Filament Primitives. In SCA’05: Proc.
of the 2005 Symposium on Computer Animation, 87–96.

Angelidis, A., Cani, M.-P., Wyvill, G., and King, S.
2004. Swirling-sweepers: Constant-volume modeling. In
Pacific Graphics 2004, IEEE, 10–15. Best paper award at
PG04.

Angelidis, A., Wyvill, G., and Cani, M.-P. 2004.
Sweepers: Swept user-defined tools for modeling by de-
formation. In Proceedings of Shape Modeling and Appli-
cations, IEEE, 63–73. Best paper award at SMI04.

Angelidis, A. 2005. Shape Modeling by Swept Space De-
formation. PhD thesis, University of Otago.

Bajaj, C., Blinn, J., Bloomenthal, J., Cani-Gascuel,
M.-P., Rockwood, A., Wyvill, B., and Wyvill,
G. 1997. Introduction to Implicit Surfaces. Morgan-
Kaufmann.

Barr, A. 1984. Global and Local Deformations of
Solid Primitives. In ACM Trans. Graph. (Proc of SIG-
GRAPH’84), 21–30.

Blanc, C. 1994. A generic implementation of axial proce-
dural deformation techniques. In Graphics Gems, vol. 5,
249–256. Academic Press.

Bloomenthal, J. 1990. Calculation of reference frames
along a space curve. Graphics gems, 567–571.

Borrel, P., and Bechmann, D. 1991. Deformation of
n-dimensional objects. In Proceedings of the first sympo-
sium on Solid modeling foundations and CAD/CAM ap-
plications, 351–369.

Borrel, P., and Rappoport, A. 1994. Simple constrained
deformations for geometric modeling and interactive de-
sign. In ACM Transactions on Graphics, vol. 13(2), 137–
155.

Capell, S., Green, S., Curless, B., Duchamp, T., and
Popović, Z. 2002. Interactive Skeleton-Driven Dynamic
Deformations. ACM Trans. Graph. 21, 3 (Jul), 586–593.

Chang, Y.-K., and Rockwood, A. P. 1994. A general-
ized de Casteljau approach to 3d free-form deformation. In
Proceedings of SIGGRAPH’94, ACM Press / ACM SIG-
GRAPH, Computer Graphics Proceedings, Annual Con-
ference Series, ACM, 257–260.

27

Reference aka Section Phylosophy Connectivity Blendable Differential
properties

[Barr 1984] 2.1.1 0D 7
[Blanc 1994] 2.1.2 0D 7

[Decaudin 1996] 2.1.3 m/s 0D 7
[Kurzion and Yagel 1997] Ray-deflectors 2.1.4 m/s 0D 7

[Llamas et al. 2003] Twister 2.1.5 m/s 0D 7
[Chang and Rockwood 1994] 2.2.1 f/c 1D 7

[Lazarus et al. 1994] 2.2.2 f/c 1D 7
[Crespin 1999] 2.2.2 f/c 1D,2D 7

[Mason and Wyvill 2001] Blendeformer 2.2.3 m/s 0D,1D 7 foldover-free
[Capell et al. 2002] 2.2.4 f/c 1D 7 dynamics

[Singh and Kokkevis 2000] SOFFD 2.3.1 f/c 2D 7 foldover-free
[Sederberg and Parry 1986] FFD 2.4.1 f/c 3D 7

[Coquillart 1990] EFFD 2.4.2 f/c 3D 7
[Gain and Dodgson 2001] 2.4.3 m/s 3D 7 foldover-free

[MacCracken and Joy 1996] SFFD 2.4.4 f/c 3D 7
[Hua and Qin 2004] SFD 2.4.5 f/c 3D 7

[Borrel and Bechmann 1991; Hsu et al. 1992] DMFFD 2.5.1 m/s 0D X

[Borrel and Rappoport 1994] scodef 2.5.2 f/c 3D X

[Moccozet and Magnenat-Thalmann 1997] DFFD 2.5.3 f/c 0D X

[Crespin 1999] IFFD 2.5.4 m/s 0D X

[Singh and Fiume 1998] Wires 2.5.5 f/c 1D X

[Angelidis et al. 2004b] Sweepers 2.5.6 m/s 0D X foldover-free
[Gain and Marais 2005] 2.5.6 m/s 0D X foldover-free
[Angelidis et al. 2004a] Swirling-

sweepers
2.5.7 m/s 0D X volume-preserving

Table 1: f/c means “few complex” and m/s means “many simple”. All deformations are blendable in a sense, thus blendable
above means that the deformation provide additionnal blending features.

Coleman, P., and Singh, K. 2004. Ryan: rendering your
animation nonlinearly projected. In NPAR ’04, ACM,
129–156.

Coquillart, S. 1990. Extended free-form deformation:
A sculpturing tool for 3d geometric modeling. In Pro-
ceedings of SIGGRAPH’90, ACM Press / ACM SIG-
GRAPH, vol. 24(4) of Computer Graphics Proceedings,
Annual Conference Series, ACM, 187–195.

Crespin, B. 1999. Implicit free-form deformations. In Pro-
ceedings of the Fourth International Workshop on Implicit
Surfaces, 17–24.

Decaudin, P. 1996. Geometric deformation by merging
a 3d object with a simple shape. In Graphics Interface,
55–60.

Enright, D., Fedkiw, R., Ferziger, J., and Mitchell,
I. 2002. A Hybrid Particle Level Set Method for Improved
Interface Capturing. J. Comput. Phys. 183, 1, 83–116.

Farin, G. 1990. Surfaces over Dirichlet tessellations. Com-
puter Aided Geometric Design 7(1-4) (June), 281–292.

Gain, J., and Dodgson, N. 1999. Adaptive refinement and
decimation under free-form deformation. Eurographics’99
7, 4 (April), 13–15.

Gain, J., and Dodgson, N. 2001. Preventing self-
intersection under free-form deformation. IEEE Trans-
actions on Visualization and Computer Graphics 7, 4
(October-December), 289–298.

Gain, J., and Marais, P. 2005. Warp sculpting. IEEE
Transactions on Visualization and Computer Graphics
11(2) (Apr), 217–227.

Griessmair, J., and Purgathofer, W. 1989. Deforma-
tion of solids with trivariate b-splines. In Eurographics
Conference Proceedings, Elsevier Science, 137–148.

Griffiths, D. J. 1999. Introduction to Electrodynamics,
third ed. Prentice Hall.

Grossman, T., Balakrishnan, R., and Singh, K. 2003.
An interface for creating and manipulating curves using
a high degree-of-freedom input device. In CHI 2003 Con-
ference Proceedings, 185–192.

Hirota, G., Maheshwari, R., and Lin, M. 1999. Fast
volume-preserving free form deformation using multi-level
optimization. In Proceedings of the fifth ACM symposium
on Solid modeling and applications, ACM, 234–245.

Hsu, W. M., Hughes, J. F., and Kaufman, H. 1992.
Direct manipulation of free-form deformations. In Pro-
ceedings of SIGGRAPH’92, ACM Press / ACM SIG-
GRAPH, vol. 26(2) of Computer Graphics Proceedings,
Annual Conference Series, ACM, 177–184.

Hua, J., and Qin, H. 2004. Scalar-field-guided adaptive
shape deformation and animation. The Visual Computer
1, 1 (April), 47–66.

Kil, Y., Renzulli, P., Kreylos, O., Hamann, B.,
Monno, G., and Staadt, O. 2006. 3d warp brush mod-
eling. Journal of Computer and Graphics, ELSEVIER
30(4).

28

Kurzion, Y., and Yagel, R. 1997. Interactive space defor-
mation with hardware assisted rendering. IEEE Computer
Graphics and Applications 17(5) (September/October),
66–77.

Lazarus, F., Coquillart, S., and Jancène, P. 1994.
Axial deformations: an intuitive deformation technique.
In Computer-Aided Design, vol. 26(8), 607–613.

Llamas, I., Kim, B., Gargus, J., Rossignac, J., and
Shaw, C. 2003. Twister: A space-warp operator for
the two-handed editing of 3d shapes. In SIGGRAPH,
vol. 22(3) of ACM Transactions on Graphics, Annual
Conference Series, ACM, 663–668.

MacCracken, R. A., and Joy, K. I. 1996. Free-form de-
formations with lattices of arbitrary topology. In Proceed-
ings of SIGGRAPH’96, ACM Press / ACM SIGGRAPH,
Computer Graphics Proceedings, Annual Conference Se-
ries, ACM, 181–188.

Mason, D., and Wyvill, G. 2001. Blendeforming: Ray
traceable localized foldover-free space deformation. In
Proceedings of Computer Graphics International (CGI),
183–190.

Mei, C., Popescu, V., and Sacks, E. 2005. The occlusion
camera. In Eurographics 2005, vol. 24(3).

Moccozet, L., and Magnenat-Thalmann, N. 1997.
Dirichlet free-form deformation and their application to
hand simulation. In Computer Animation’97, 93–102.

Pauly, M., Keiser, R., Kobbelt, L., and Gross, M.
2003. Shape modeling with point-sampled geometry. In
Proceedings of SIGGRAPH’03, vol. 22(3), ACM, 641–650.

Rutherford, A. 1990. Vectors, Tensors and the Basic
Equations of Fluid Mechanics. Dover.

Schein, S., and Elber, G. 2004. Discontinuous free form
deformations. In Proceedings of Pacific Graphics, IEEE,
227–236.

Sederberg, T., and Parry, S. 1986. Free-form defor-
mation of solid geometric models. In Proceedings of SIG-
GRAPH’86, ACM Press / ACM SIGGRAPH, vol. 20(4) of
Computer Graphics Proceedings, Annual Conference Se-
ries, ACM, 151–160.

Singh, K., and Fiume, E. 1998. Wires: a geometric defor-
mation technique. In Computer graphics, Proceedings of
SIGGRAPH’98, ACM Press / ACM SIGGRAPH, Com-
puter Graphics Proceedings, Annual Conference Series,
ACM, 405–414.

Singh, K., and Kokkevis, E. 2000. Skinning Charac-
ters using Surface Oriented Free-Form Deformations”. In
Graphics Interface, 35–42.

Weisstein, E. Lagrange multipliers. From
Mathworld – A Wolfram Web Ressource
http://mathworld.wolfram.com/LagrangeMultipliers.html.

29

Modeling with Multiresolution Subdivision Surfaces

presenter: Denis Zorin
New York University

Abstract

Subdivision surfaces and their multiresolution extensions are a
powerful representation for surface modeling and design. In this
chapter we survey a variety of subdivision-based modeling methods
including multiresolution deformations, boolean operations, cut-
and-paste editing of surfaces, defining free-form sharp features and
adding topologically complex detail. These notes are based on the
articles “A Survey of Subdivision-Based Tools for Surface Model-
ing” by I. Boier-Martin, D. Zorin and F. Bernardini, and “Interactive
modeling of topologically complex geometric detail” by J. Peng, D.
Kristjansson and D. Zorin.

1 Introduction

Subdivision surfaces and their multiresolution extensions offer sev-
eral advantages over both irregular meshes and spline patches, two
of the most commonly used surface representations today. Subdi-
vision offers a compact way to represent geometry with minimal
connectivity information. It generalizes the classical spline patch
approach to arbitrary topology, it naturally accommodates multiple
levels of detail, and produces meshes with well-shaped elements ar-
ranged in almost regular structures, suitable for digital processing.
When combined with multiresolution analysis, subdivision offers a
powerful modeling tool, allowing for complex editing operations to
be applied efficiently at different resolutions.

In recent years, the set of tools available for manipulating sub-
division surfaces has been growing steadily. Algorithms for direct
evaluation [Stam 1998; Zorin and Kristjansson 2002], editing [Bier-
mann et al. 2001; Biermann et al. 2002a; Biermann et al. 2002b;
Biermann et al. 2000], texturing [Piponi and Borshukov 2000], and
conversion to other popular representations [Peters 2000] have been
devised and hardware support for rendering of subdivision surfaces
has been proposed [Boo et al. 2001; Bischoff et al. 2000; Pulli and
Segal 1996].

We focus on the use of subdivision-based representations for
styling and conceptual design. We explore various methods for
manipulating subdivision surfaces and, whenever possible, we il-
lustrate the evolution of such methods from related representations.
We pay particular attention to interactive tools which are suitable
for design as they allow the designer to instantaneously evaluate re-
sults. While we are trying to provide an overview of the area and
include the most relevant methods, we realize that the volume of
published work goes well beyond that covered in these notes which
is by no means exhaustive (see also [Dyn and Levin 2002; Sabin
2002] for additional surveys). Many of the topics presented relate to
issues we have addressed in our own work which we hope will pro-
vide some insights to those pursueing similar interests. We do not
attempt to compare these techniques to tools based entirely on irreg-
ular meshes or point-based techniques: each approach has a set of
advantages and disadvantages and is preferable for a particular set
of problems. Any comparison of stand-alone tools may be mislead-
ing as modeling tools usually exist in the context of a larger CAD
or computer animation system, and integration with other available
tools may be of primary importance when a surface representation
is chosen.

2 Background

The basic idea of using subdivision to produce smooth curves and
later, smooth surfaces, has been around for many years (see [Zorin
et al. 2000] for a brief incursion into the history of subdivision).
However, it is only recently that powerful design tools based on this
representation have emerged. This is partly due to the recent advent
of multiresolution techniques that facilitate capturing of non-trivial
shapes and partly due to even more recent advances in subdivision
theory and methods for direct and efficient evaluation of subdivi-
sion surfaces. For the purpose of this survey, we provide a brief
review of the basic concepts pertaining to subdivision surfaces. For
additional details we refer the reader to [Zorin et al. 2000; Warren
and Weimer 2001].

Subdivision defines a smooth surface recursively as the limit of
a sequence of meshes (see Figure 1). Each finer mesh is obtained
from a coarse mesh by using a set of refinement rules which de-
fine a subdivision scheme. Many schemes have been proposed in
the literature. Examples include Doo-Sabin [Doo and Sabin 1978],
Catmull-Clark [Catmull and Clark 1978], Loop [Loop 1987], But-
terfly [Dyn et al. 1990; Zorin et al. 1996], Kobbelt [Kobbelt 1996a],
Midedge [Peters and Reif 1997]. Different schemes lead to limit
surfaces with different smoothness characteristics. For design pur-
poses, the Catmull-Clark [Catmull and Clark 1978], Loop [Loop
1987] schemes are most often employed as they are closely related
to splines (a de-facto standard in modeling today) and generate C2-
continuous surfaces over arbitrary meshes.

Figure 1: Subdivision defines a smooth surface recursively as the
limit of a sequence of meshes.

Multiresolution subdivision extends the concept of subdivision
by allowing detail vectors to be introduced at each level. Hence, a
finer mesh is computed by adding detail offsets to the subdivided
coarse mesh. Given a semi-regular mesh, i.e., a mesh with subdi-
vision connectivity, it can be easily converted to a multiresolution
surface by defining a smoothing operation to compute a coarse level
from a finer level. The details are then computed as differences
between levels. This representation was introduced by several au-
thors in different forms [Lounsbery et al. 1997; Pulli and Lounsbery
1997; Zorin et al. 1997]. Figure 2 illustrates the power of multires-
olution in capturing complex shapes.

A close connection exists between multiresolutin subdivision
and wavelets [Stollnitz et al. 1996]. In particular, two operations
known as Synthesis and Analysis can be defined to propagate data
from coarse to fine and in reverse throughout the subdivision hier-
archy, similar to wavelet transforms. Analysis computes positions
of control points on a coarse level i− 1 by applying a smoothing
filter to points on level i. Multiresolution details on level i are com-
puted as differences between the two levels. Conversely, Synthesis

30

Figure 2: Top: multiresolution subdivision extends the concept of
subdivision by introducing detail vectors at each level. Bottom:
surfaces obtained by subdivision of the same coarse mesh look very
different depending on the amount of detail introduced and the level
at which it is introduced. From left to right: no details to progres-
sively more details added on finer levels.

Figure 3: Natural parameterization of a subdivision surface. Each
time we apply the subdivision rules to compute the finer control
mesh we also apply midpoint subdivision to a copy of the initial
control mesh. A mapping from a denser and denser subset of the
control polyhedron (left) to the control points of a finer and finer
control mesh (right) is obtained through repeated subdivision. In
the limit, a map from the control polyhedron to the surface is ob-
tained.

reconstructs the data on level i by subdividing the control mesh of
level i−1 and adding the details [Zorin et al. 1997].

An important property of subdivision surfaces is that they can
be naturally interpreted as functions on the domain defined by the
base mesh (see Figure 3). This parametric interpretation is useful
in many circumstances related to design, from derivation of differ-
ential quantities to dealing with constraints along arbitrary curves.
Figure 3 illustrates this natural parameterization.

3 Free-Form Editing

Free-form manipulation of 3D models is a popular method for mod-
ifying existing shapes which attempts to mimic to a certain extent
the process of modeling or sculpting a physical object by hand. The
applications are numerous, from animated character creation, to vir-
tual restorations, to industrial design.

The sculpting metaphor for geometric modeling has its roots
in the parametric surface works of Sabin [Sabin 1971] and
Bezier [Bézier 1974] which contain early mentions of surface de-
formations. Subsequent work has spanned more than three decades

and continues to be investigated in the context of modern systems
and surface representations (e.g., [Barr 1984; Sederberg and Parry
1986; Coquillart 1990; Halstead et al. 1993; Chang and Rockwood
1994; MacCracken and Joy 1996] [Singh and Fiume 1998; Kobbelt
1996b; Zorin et al. 1997; Pulli and Lounsbery 1997; Qin et al. 1998;
Takahashi 1998; Weimer and Warren 1998] [McDonnell and Qin
2000; Turk and O’Brien 2002; Grinspun and Schröder 2001; Boier-
Martin et al. 2004]).

The basic idea of free-form modeling is to introduce a degree of
transparency between the designer and the mathematical model of
the surface being shaped. Instead of controlling the shape through
a set of non-intuitive surface parameters, free-form deformations
allow the shape to be controlled through intuitive manipulation of
the surface itself or the space surrounding it. The main challenge
is to perform the manipulation through a limited set of controls
and to define natural deformations of the surface away from the
control positions. Different variations of this paradigm have been
developed, including axial deformations [Barr 1984; Chang et al.
1994; Lazarus et al. 1994] which alter the axis of a shape to induce
its deformation, lattice deformations [Sederberg and Parry 1986;
Coquillart 1990; MacCracken and Joy 1996] which operate on the
cells of a space lattice to deform the volume inside the lattice, ma-
nipulations on scalar field embeddings [Hua and Qin 2003], con-
trol mesh editing methods which shape parameterically-defined sur-
faces by imposing constraints on their control meshes [Zorin et al.
1997], and variational methods which operate by optimizing an en-
ergy functional over the surface under constraints [Takahashi 1998;
Boier-Martin et al. 2004].

We focus our attention on methods that take advantage of sub-
division representations and among these, we emphasize those that
support interactive multiscale modeling. Subdivision representa-
tions are particularly suitable for free-form editing due to their hi-
erarchical nature which easily accommodates multiscale edits, as
well as their efficiency in terms of storage and access. For a survey
of deformable models based on other representations see [Gibson
and Mirtich 1997].

3.1 Control mesh manipulations

Manipulating control meshes offers a straightforward interface
which supports interactive shape deformations. This approach has
been extensively employed in spline-based modeling [Cohen et al.
2001] and can be naturally extended to subdivision surfaces. Col-
lections of control mesh vertices, edges, and faces are re-positioned
so as to induce modifications of the resulting limit surface. In ad-
dition, control points can be added and edges and faces can be split
to increase the complexity of the shape as editing progresses. This
type of manipulation is very common and can be found at the ba-
sis of commercial modeling packages with support for subdivision
surfaces. It is routinely used for animated character design (e.g.,
in Discreet’s 3D Studio Max [dsm], in Alias’ Maya [may]) and
is becoming increasingly popular for industrial modeling (e.g., in
Dassault Systèmes’ Catia [cat]). Figure 4 illustrates examples of
shape modeling through control point manipulation.

Single resolution control mesh manipulations offer only limited
flexibility in designing shapes: only coarse shape deformations can
be accommodated. Multiresolution subdivision surfaces are a much
more powerful representation which lends itself very naturally to
multiscale editing. Depending on the level at which the editing oc-
curs, either a global deformation (coarse level) or a local deforma-
tion (fine level) is induced. This idea was exploited, for instance,
in [Zorin et al. 1997; Pulli and Lounsbery 1997] for interactive mul-
tiresolution editing of Loop surfaces and in [DeRose et al. 1998]
for Catmull-Clark ones. Using a combination of subdivision (i.e.,
transforming a coarse mesh into a finer one) and smoothing (i.e.,
transforming a fine mesh into a coarser one), edits performed at

31

Figure 4: Shape modeling through control point manipulation:
Loop subdivision surface (top), Catmull-Clark subdivision surface
(bottom).

different levels of subdivision can be propagated through the hier-
archy while keeping the magnitude of multiresolution details under
control. Figure 5 illustrates edits at various scales performed on the
Armadillo model.

Figure 5: Multiresolution editing according to [Zorin et al. 1997]:
left – input model; right – editing result. Note the large-scale edit
of the belly and the fine-scale edit around the chin.

Variations of this approach include modeling with displaced
subdivision surfaces [Lee et al. 2000] and subdivision surface fit-
ting [Suzuki et al. 1999; Litke et al. 2001a; Ma and Zhao 2000].
The displaced representation can be viewed as a restricted form of
multiresolution subdivision consisting of a control mesh and a sin-
gle level of scalar details. A domain surface is generated from the
control mesh using Loop subdivision [Loop 1987]. A displacement
map computed from the scalar displacement is then applied over
the domain to generate the final surface. The displacements can

be edited to create fine-level features on the surface, while control
mesh edits lead to global shape alterations. In surface fitting a sur-
face is deformed to conform to the shape of another given data set
(e.g., points, curves, another surface). This approach is somewhat
different than those discussed so far in that it is less suitable for in-
teractive manipulation. Typically some optimization of the surface
being fitted is performed in order to determine optimal control point
positions which lead to a best fit between the surface and the target.
The accuracy of the fit is controlled through a threshold parameter
that bounds the error between the target and the fitted surface.

3.2 Variational design

Variational surface design operates on the principle of modifying
a shape so that its fairness is optimized. Surface fairness is typ-
ically measured in terms of its energy and the idea is to find a
minimum-energy state which, in turn, corresponds to the fairest
possible shape. In Computer Graphics, energy-minimizing surfaces
became popular in the context of simulating physical properties of
materials [Barr 1984; Terzopoulos and Fleischer 1988; Welch and
Witkin 1992]. Celniker and Gossard [Celniker and Gossard 1999]
and later Welch and Witkin [Welch and Witkin 1992] pointed out
the relationship between fair surface design and energy minimiza-
tion.

Most commonly, fairness is expressed as an integral of a physical
parameter associated with a real object bearing the shape of the
surface [Halstead 1996]. A widely used measure of fairness is the
combination of stretching and bending energies:

Energy(S) = α
Z

||I||2dS+β
Z

||II||2dS (1)

where I and II denote the first and second fundamental forms of
the surface and || · || is a suitably chosen matrix norm [Terzopoulos
et al. 1987].

For practical purposes, discretized linear forms of equation (1)
using parametric derivatives are typically employed:

Estretch ≈
Z

Ω

(
∂S
∂u

)2

+

(
∂S
∂v

)2

dudv (2)

Ebend ≈
Z

Ω

(
∂2S
∂u2

)2

+2

(
∂2S
∂u∂v

)2

+

(
∂2S
∂v2

)2

dudv (3)

where Ω denotes the parametric domain of the surface S. Most
variational approaches take advantage of these expressions, al-
though alternative approaches have been proposed (e.g., [Cirak
et al. 2002]). The main differences are in the types of param-
eterizations used to derive the differential quantities. For exam-
ple, Greiner [Greiner 1994] and later Kobbelt [Kobbelt 1996a] sug-
gested a discrete exponential map for local parameterizations (see
Figure 6) such that each vertex P0 has coordinates (0,0) and its
1-ring neighbors Pi ∈ R(P0) are assigned coordinates:

(ui,vi) = ei

(
cos

(
∑

j∈R(P0)

α j

)
,sin

(
∑

j∈R(P0)

α j

))
(4)

where

α j =
2π� (Pl

jP
l
0Pl

j+1)

∑
j∈R(0)

� (Pl
jP

l
0Pl

j+1)
. (5)

32

Figure 6: Local quadratic interpolant used to approximate first and
second order derivatives [Boier-Martin et al. 2004].

In the context of subdivision surfaces, Halstead et al. [Halstead
et al. 1993] were among the first to describe a method for interpo-
lating a given shape with a Catmull-Clark surface while minimiz-
ing surface fairness. Given the lack of a "natural" parameterization
near extraordinary points, they re-formulated the stretch and thin-
plate energy definitions in terms of the control meshes at different
subdivision levels (rather than the limit surface). In their method
subdivision is used to isolate extraordinary vertices and bi-cubic
spline evaluation is used to evaluate the fairness norm away from
such vertices.

Kobbelt [Kobbelt 1996b] introduced the concept of variational
subdivision to create interpolatory subdivision rules that place
newly inserted vertices so as to minimize a global energy func-
tional. Using a similar idea, Weimer and Warren [Weimer and
Warren 1998] propose two schemes for variational subdivision of
thin-plate splines. One scheme provides an exact solution to the
variational problem, but the subdivision matrix has to be recom-
puted at every subdivision level. The other scheme is only approx-
imate, but has the advantage that rules can be precomputed. Both
schemes are restricted to rectilinear grids. Another method which
connects subdivision with fairing and cascading multigrid methods
was proposed in [Diewald et al. 2002]. The basic idea in this case
is to interpret the evolution of the surface under curvature motion
as a filtering proces.

Later on, Friedel et al. [Friedel et al. 2003] proposed using
the characteristic map parametrization to construct first order data-
dependent energies. This leads to a nonlinear minimization prob-
lem which is solved by re-writing the surface energy as a linear
combination of precomputed stiffness matrices.

Constraints play an important role in variational design methods.
In their absence, the optimization problem has a trivial solution,
which usually leads to the collapse of the surface to a single point
(an exception is the method of Boier-Martin et al. [Boier-Martin
et al. 2004] in which the trivial solution corresponds to the input
surface). We distinguish between two classes of constraints [Welch
and Witkin 1992]:

• Finite-dimensional: involve point and normal constraints at
discrete locations on the surface. These are the most com-
monly used. Point constraints are used to enforce spatial inter-
polation conditions. For subdivision surfaces such constraints
typically correspond to control points and are easy to imple-
ment by solving linear systems. Normal constraints are used
to enforce surface normals at certain points on a surface. Dif-
ferent approaches can be used to constrain normals: express-
ing the fact that two tangent vectors must be perpendicular
to the prescribed normal, enforcing the positions of the ver-
tices of a given face so that the face normal coincides with
the prescribed one, or constraining tangent vectors rather than
normals (the last two tend to over-constrain the problem).

• Transfinite: involve one or two-dimensional surface entities
such as embedded curves and patches. Curve constraints are
among the most common in this category. Enforcing such
constraints involves solving an integral over the entity. For ex-
ample, to constrain a surface curve C(t) = S(u(t),v(t)) along
a given space curve C0(t), the following must be satisfied:

Z

(C−C0)
2

= 0 (6)

Such constraints are usually discretized and enforced either
by using a least-squares approach [Welch and Witkin 1992]
or by reparameterizing the surface to align control points or
edges with constraints [Boier-Martin et al. 2004] (see also Al-
gorithm 1 in section 4). An alternative approach is to evaluate
the curves and to incorporate the result of the evaluation into
the subdivision rules to produce a limit surface that interpo-
lates the curves. This is the object of combined subdivision
schemes [Levin 1999] (see also [Nasri 2000; Nasri and Abbas
2002; Schaeffer et al. 2004]).

Figure 7 illustrates the result of modeling with various types of
constraints.

Another important consideration in dealing with constraints is
the region of influence of a constraint. It is defined as the portion of
the surface affected by the constraint. The region of influence can
be explicitly enforced [Kobbelt 2000] by letting the designer en-
circle an area on the surface. This generates boundary constraints
between the surface inside the area of influence and the rest of the
surface. Alternatively, in the case of hierarchical representations
such as subdivision hierarchies, the region of influence can be con-
trolled indirectly through the levels at which constraints are defined.
For example, Takahashi et al. [Takahashi 1998] impose constraints
at various scales using a wavelet framework. Constraints are be-
ing propagated from finer to coarser scales, however, the region of
influence of each constraint is not controlled in any way. In [Boier-
Martin et al. 2004] the influence of a constraint is explicitly en-
forced by the coarse level at which the constraint is propagated.
Thus, more global or local edits can be performed depending on
the level to which the constraint is restricted: a coarser level will
induce a more global deformation, whereas a finer level will pro-
duce a more local edit (see Figure 8).

A related issue is that of detail preservation. When a global
shape change occurs, it is often expected that the high frequency
details are preserved over the modified surface. The face of Venus
in Figure 9 is represented as a multiresolution subdivision surface
in which non-trivial detail vectors capture the organic shape of the
model. If a shape deformation is performed by pulling on a single
point at the tip of the nose, a naive energy optimization approach
leads to a fair shape that satisfies the constraints, but all the details
of the face are lost (note that boundary constraints must also be im-
posed in this case to avoid the collapse of the surface to a single
point). One solution is to separate the high-frequency information
before optimization and to "re-apply" it to the new shape [Kobbelt
2000]. This introduces an overhead related to saving and restoring
surface details. To avoid this overhead, Boier-Martin et al. [Boier-
Martin et al. 2004] propose to define a vector field of deformations
over the surface and to optimize the energy of this vector field rather
than the energy of the surface itself. Initially all deformation vec-
tors are null. When an edit occurs, the corresponding deformation
vector (i.e., at the tip of the nose) becomes non-null. The optimiza-
tion procedure tries to smooth the deformation field under the con-
straints defined by the non-null vectors. Since the deformations are
defined with respect to the detailed shape, the details are preserved
during deformation. Note that, in this case, boundary constraints
are not necessary as the rest shape in the absence of constraints is
the input shape.

33

(a) (b)

(c) (d)

Figure 7: Constraint types: (a)-(b) point and discretized curve constraints; (c)-(d) normal constraints.

Figure 8: Region of influence of a multiresolution constraint: left –
input model; middle – constraint is propagated to the coarsest sub-
division level, inducing a global deformation of the head by pulling
a single point on the nose; right – constraint is propagated only two
levels coarser inducing a more localized edit.

An added advantage of subdivision hierarchies is that they fa-
cilitate the use of multigrid methods [Briggs 1987] to solve the
constrained minimization problem. In the presence of many con-
straints, however, even multigrid solvers may be too slow to yield
results at interactive rates. A possible solution [Boier-Martin et al.
2004] is to aim for an approximate solution during interaction and
a more accurate (non-interactive) result after the interaction has
stopped. Figure 10 illustrates the differences between a Catmull-
Clark approximation obtained at interactive rates and a more accu-
rate multigrid minimization.

For completeness, we mention the fact that the evolution of en-
ergy over time has also been considered to derive dynamic surface
models [Terzopoulos and Qin 1994; Qin and Terzopoulos 1996].
Dynamic models based on subdivision surfaces have been proposed
by Qin et al. [Qin et al. 1998]. Such models are typically too com-
plex to support interactive design operations.

Topology modifications. The free-form modeling methods dis-
cussed so far operate by deforming the input surface without chang-
ing its topology. Some applications, however, may require topolog-
ical modifications, such as creating handles and tunnels. An inter-
active sculpting environment which supports this type of edits was
proposed in [Gonzalez-Ochoa and Peters 1999]. The Localized hi-

Figure 9: Energy optimization with constraints: left – input mul-
tiresolution subdivision surface with details; middle – optimization
without detail preservation; right – optimization with detail preser-
vation.

erarchy Surface Splines allow adding handles and punching holes,
while maintaining C1 continuity across the surface which is repre-
sented explicitly in piecewise polynomial or spline form. The main
idea behind localized hierarchies is to allow local edits on locally
refined mesh fragments based solely on coarser level data. Direct
manipulation is performed by interacting directly with the surface
rather than with control mesh. The types of operations supported
include fillets, blends, semi-sharp features, extrusions, holes, and
bridges.

Using meshes as an underlying representation, Guskov et
al. [Guskov et al. 2002] propose a user-driven procedure for in-
ducing topological modifications in a semi-regular setting. The
so-called hybrid meshes are multiresolution surface representations
which enhance subdivision-based refinement operations with irreg-
ular operations that support changes in topology and approximate
detailed features at multiple scales. In [Guskov et al. 2002], hybrid
meshes are defined as quadrilateral meshes on which regular 1− 4
face splits are combined with irregular operations through which
groups of quads are removed and/or replaced.

34

Figure 10: Computing a solution to the energy minimization prob-
lem with different accuracies: left - input model; middle - Catmull-
Clark solution obtained interactively; right - multigrid solution.

4 Boolean Operations

Boolean operations provide a straightforward approach to creating
complex models from simpler ones using intuitive combinations.
Addition, subtraction, and intersection can be packaged into editing
tools for modeling solids bounded by subdivision surfaces.

4.1 Mesh-Based Approximations

Traditionally, Boolean operations on boundary representations (B-
reps) of solids have required intersecting parametric surfaces, re-
moving the unwanted parts, and building new surfaces from the
remaining ones. This approach presents a number of challenges, as
intersections are difficult to perform for high-order B-reps and often
lead to increasingly complex intersection curves. Exact matching of
surfaces bordering such curves is also problematic, as it is not easy
to ensure that curves in different parametric domains coincide in
3D. Consequently, subsequent editing of the resulting models may
lead to unwanted artifacts in the surface (e.g., cracks) which require
special handling.

A substantially simpler approach, proposed by Linsen [Linsen
2000] is to use the control meshes corresponding to the paramet-
ric parts being combined, rather than the surfaces themselves. This
implies that the intersections between solids are only approximately
computed. At the same time, the problem of intersecting arbitrary
surfaces translates into the much simpler one of intersecting arbi-
trary meshes. The meshes are first triangulated to avoid difficulties
posed by handling of non-planar faces. Two approaches to building
a combined control mesh are discussed: clipping triangles along
the intersection boundaries and connecting intersection points and
removing faces along the intersection curves and remeshing the re-
sulting gaps. The latter has the advantage that it produces a more
visually pleasing result. The main drawbacks in both approaches
lie in the inefficiency of computing triangle-mesh intersections and
robustness issues associated with such computations as well as gap
filling for arbitrary gap topologies (see also [Lanquetin et al. 2003]
for variations on the topic of computing intersection curves for sub-
division surfaces).

Using a similar control-mesh based approach, Biermann et
al. [Biermann et al. 2001] propose an approximate scheme for com-
puting Boolean operations which deals with several important is-
sues: matching the topology and the geometry of the intersection
curve, fitting the resulting surface to the original data, and accu-
rately capturing and representing sharp features in the result. The
method uses piecewise-smooth multiresolution Loop [Loop 1987]
subdivision surfaces to represent surfaces being combined. The al-
gorithm assumes that each part being used in a Boolean operation
is bounded by a closed orientable surface. It follows several steps:

1. Compute intersection curves.

2. Build resulting control mesh and compute an initial parame-
terization of the resulting surface over this mesh.

3. Optimize the parameterization from the previous step.

4. Use multiresolution fitting to approximate the input data as
closely as possible.

For the first step, the authors improve on both the efficiency and
the robustness of the naive mesh-mesh intersection approach by us-
ing bounding box hierarchies to accelerate computations and a per-
turbation scheme [Seidel 1998] to increase robustness.

After determining the topology of the intersection, control
meshes are merged with special consideration for several issues:
preserving the topology of the cut, inserting a minimal number of
new vertices, and keeping their valence small. The input control
meshes are cut along intersection curves and a new control mesh is
combined from the remaining pieces. The cutting process takes ad-
vantage of the natural parameterization of subdivision surfaces over
their control meshes (see section 2) to approximate the intersection
curve by alternating so-called Snapping and Refinement steps:
Algorithm 1 (snapping and refinement):

Given a domain mesh M and an intersection curve c(t) in M
Repeat

For each vertex v of a triangle intersected by c do
1. Find α ∈ c closest to v
2. Snap v to α if possible

Adaptively refine parameterization
until (curve adequately approximated)

Snapping is performed between points of the curve and paramet-
ric mesh vertices, if they are sufficiently close. While optional, this
step considerably reduces the complexity of the resulting domain
(fewer faces). The role of the refinement is to increase the accuracy
with which intersection curves are approximated. It is typically per-
formed by midpoint subdivision of triangles which are intersected
by curves multiple times or which fully contain curves. Figure 11
illustrates this process. The output of this step consists of piece-
wise linear approximations of the intersection curves, either along
input edges or along newly introduced edges obtained by splitting
triangles.

After cutting, the portions of the control meshes not required
in the Boolean operation are removed and the meshes are joined
along their boundaries. This is also done in two steps: vertices
along one boundary are paired to corresponding vertices along the
other boundary. When correspondences do not exist, triangles along
the boundary are refined so as to introduce new vertices. Paired
vertices close to one-another are merged together. During merging,
intersection curves are also tagged with sharp feature tags (see also
section 5).

By construction, the resulting merged control mesh constitutes
a parameterization domain with the property that every one of its
vertices belongs to one of the original domains. However, the initial
parameterizations of the parts of the input models corresponding
to the Boolean operation may not be optimally parameterized over
the new domain. An optimization procedure is used to reduce the
distortion of the resulting surface over the new domain.

The last step of this method computes optimal positions of con-
trol points given the previously computed parameterization. The
merged control mesh is subdivided a number of times and the re-
sulting mesh is fitted to the original data in least-squares sense. Re-
sults of Boolean operations obtained with this method are shown in
Figure 12.

4.2 Surface Cut-and-Paste

Surface pasting can be viewed as an instance of a Boolean oper-
ation. The basic paradigm implies creating new models by com-
bining pieces of existing models. In its most basic form, a cut-
and-paste operation involves selecting and transferring a feature of

35

Figure 11: Refinement and snapping: two steps of refinement are shown on the left. The image of the curve in parameter space and vertex
snapping are shown on the right (see [Biermann et al. 2001]).

Figure 12: Boolean operations on multireolution subdivision surfaces [Biermann et al. 2001].

interest from a source surface to a target surface. There are several
fundamental steps involved such an operation:

1. Feature selection

2. Separation of surfaces into base and detail parts

3. Transferring the feature onto the target surface

The idea of pasting surfaces was first introduced in the context of
hierarchical splines [Barghiel et al. 1994; Chan et al. 1997]. In this
case a tensor-product B-spline surface is designated as the feature
to be attached to another surface. Steps (1), (2) are assumed to have
been performed in a pre-processing stage and (3) is achieved by
representing tensor-product B-splines as Greville displacement B-
splines [Barghiel et al. 1994] and applying a mapping that takes into
account the topology of the target surface and the Greville displace-
ment representation of the feature [Barghiel et al. 1994]. The main
restriction is that there are no smoothness guarantees at the bound-
ary between the feature and the target surface (not even C0 continu-
ity). One solution is to refine the feature surface so that its boundary
better approximates the target. However, this amounts to introduc-
ing unnecessary control points over the entire feature (rather than
only along boundaries), making subsequent processing of the fea-
ture very inefficient. An alternative solution was proposed by [Con-
rad and Mann 2000] and makes use of quasi-interpolation [deBoor
and Fix 1973] to improve the result of pasting. In this case, inte-
rior feature control points are pasted using Greville displacements,
while boundary points are pasted using quasi-interpolation. This
leads to a composite surface which still exhibits discontinuities
along the pasting boundary, however, less severe than in the orig-
inal approach. In addition to the lack of continuity, the types of
features that can be pasted are also limited by the underlying sur-
face representation. Performance is also an issue due to expensive
evaluations. An interactive spline-based interface was developed
in [Ma 2000]. Due to performance limitations, the feature is not
positioned directly onto the target surface, but rather is floating in

its vicinity and the user is presented with a rough outline of the con-
tour of the feature on the target. Once a position is decided upon,
the actual pasting occurs.

Biermann et al. [Biermann et al. 2002a] describe a more general
procedure for cutting and pasting portions of existing surfaces using
an intuitive approach, similar to those commonly used for 2D image
cut-and-paste. The user initiates a cutting operation by selecting a
feature of interest on an existing surface (termed the source surface
(see Figure 13 (a)). She also specifies a position on a target surface
where the source feature is to be pasted (see Figure 13 (b)). The ac-
tual pasting is performed in a sequence of steps (Figures 13(c)-(g))
which take advantage of the underlying semi-regular representation
to achieve interactive rates. A discussion of the main steps follows.

Feature selection is performed interactively by the user who se-
lects a region of interest on the source surface. A free-form closed
space curve is used to outline the selection. The portion of the sur-
face inside the curve constitutes the feature(s) of interest. The curve
can have an arbitrary shape and does not have to be aligned with
underlying mesh edges. The portion of the surface inside the curve
must have disk topology, but it does not have to be a height field
(see Figure 14).

Base / detail separation must be performed on both the source
and target surfaces to define what constitutes feature detail as op-
posed to the larger-scale surface shape that should be ignored. Since
this is largely dependent on the semantics of the operation, it is best
left to the user. In [Biermann et al. 2002a], the authors propose a
continuum of base surface choices controlled by a flatness param-
eter. The base surfaces are obtained by smoothing the original sur-
face to various degrees or by simple energy minimization within the
feature boundary. Figure 15 illustrates the different effects obtained
using different base surfaces for the source and target models.

Feature transfer is a complex process as it generally involves
finding a mapping between two arbitrary surfaces. The solution
proposed in [Biermann et al. 2002a] is to build the mapping as
a composition of maps to an auxiliary plane. The advantage of
this approach is that it no longer requires parameterizing an arbi-
trary (source) surface onto another arbitrary (target) surface. In-

36

(a) (b) (c)

(d) (e) (f)

Figure 13: Feature-based design of an ornate vase: (a) input (source) surfaces; (b) target surface; (c) result after multiple pasting operations;
Steps of a cut-and-paste sequence according to [Biermann et al. 2002a] shown for the bottle pattern: (d) source feature selection; (e) finding
a target region around a user-selected position on the target surface; (f) parameterization of source (left) and target (right) regions onto a
common plane (shown displaced for illustration).

Figure 14: Pasting and interactively placing a complex feature: a
digitized model of a clay ear constitutes the feature to be pasted
onto the mannequin head. The ear can be interactively scaled, ro-
tated, and translated on the surface of the head.

stead, flattening methods which have been much more extensively
researched [Sheffer and de Sturler 2001; Desbrun et al. 2002] are
needed. For the source surface the flattening is relatively easy to
perform as the feature is already selected and homeomorphic to a
disk. For the target surface the problem is more complicated as
the surface can have any shape and can be quite large. In order
to avoid flattening the entire target surface, the authors propose a
method for approximating the portion of the target surface that is

actually involved in pasting. As the user specifies a target location
where the feature is to be pasted, the goal is to find a region that
resembles the source feature in shape and size. To identify such a
region, a generalized radial parameterization of the feature bound-
ary is used [Biermann et al. 2002a] (see also Figure 16). Once
such a region is found, the transfer of the source feature onto the
target model is done by aligning the planar parameterizations of the
source and target regions followed by resampling the source feature
onto the target connectivity.

Figure 16: Finding a target region through radial parameterization
of the feature outline

37

Figure 15: The effects of changing the base surface on the result of pasting: (top) digitized bottle detail appears on the vase differently,
depending on the choice of base surface; (bottom) the butterfly feature is pasted on a rock model with and without preservation of target
detail.

The pasting method of Biermann et al. [Biermann et al. 2002a]
provides a robust and efficient pipeline for interactive surface past-
ing. Its main constraints are related to self-intersections that may
appear when features are pasted onto highly curved surfaces and to
topological constraints on the features that can be pasted (i.e., only
features with disk topology are handled). The former can be solved
using a hierarchical pasting approach, in which the feature to be
pasted is decomposed into frequency bands and the pasting is per-
formed progressively, by pasting low-frequency details first, and
high-frequency ones on top. The latter problem is more complex
and requires more careful handling. A possible solution, albeit out-
side the subdivision framework, has been recently proposed in [Fu-
rukawa et al. 2003]. In this case, a volumetric approach is used to
parameterize the feature and B-spline fitting is used to separate base
from details. The advantage lies in the generality of features that are
handled, including higher genus ones and the ability to paste them
on highly curved areas. The main drawbacks are related to B-spline
fitting and the need to introduce a large number of points in order
to obtain a good fit. The result is not a seamless representation,
but rather a composite one consisting of the original and the pasted
part. In addition, the feature cannot be interactively dragged on the
target surface.

4.3 Surface Trimming

Trimming, i.e., cutting holes in the surface of an object along spec-
ified curves, can also be considered as an instance of a Boolean
operation. Since this type of operation requires special subdivision
rules along the trim boundary, we classify it as a special case of a
non-smooth feature and we discuss it in section 5.

5 Non-Smooth Features

Subdivision surfaces can be naturally used to model smooth sur-
faces of arbitrary topological type. Many real objects, however, ex-
hibit non-smooth features, such as sharp edges and boundaries, cor-

ners, and darts. While multiresolution detail vectors may be used
to approximate sharp features (see Figure 17), a different setting is
required to represent such features exactly. It entails altering the
subdivision rules to produce limit surfaces that are only piecewise
smooth, i.e., consist of smooth patches joined together along pos-
sibly sharp boundaries. To represent piecewise smooth surfaces,
control mesh edges and vertices are typically tagged for special
handling (see Figure 18). Special subdivision rules are employed
in the vicinity of tagged mesh elements so as to avoid smoothing
them. An edge can be tagged as a crease edge and vertices inci-
dent to crease edges may be tagged as one of the following (see
Figure 18):

• crease vertex: exactly two crease edges join smoothly at this
vertex

• corner vertex: two or more crease edges join non-smoothly at
this vertex

• dart vertex: exactly one crease edge is adjacent to this vertex

smooth sharp

Figure 17: Multiresolution details are required to approximate
sharp features using smooth surface representations (left three im-
ages). A piecewise smooth surface representation (right) allows
sharp features to be modeled with detail vectors.

Early mention of special rules for surfaces with boundaries ap-
peared in the work of Doo [Doo 1978] and Nasri [Nasri 1991],

38

however accompanied only by partial analyses of the resulting sur-
faces. The first rules leading to provably C1-continuous surfaces
were defined in [Hoppe et al. 1994] as a generalization of the Loop
subdivision rules [Loop 1987]. The analysis of the resulting sur-
faces can be found in [Schweitzer 1996]. As pointed out in [Bier-
mann et al. 2000], the rules introduced in [Hoppe et al. 1994] have
two main drawbacks: they are not suitable for modeling concave
corners and the shape of the generated surface boundaries depends
on the number of interior control points adjacent to each boundary
point. The latter leads to undesirable gaps between surfaces joined
along such a boundary. Both problems were handled by Biermann
et al. [Biermann et al. 2000] for the Loop [Loop 1987] and Catmull-
Clark [Catmull and Clark 1978] subdivision schemes.

Figure 18: Mesh tags corresponding to (from left to right): crease,
dart, and corner sharp features.

Modifications are sometimes applied to subdivision rules to
achieve different effects. For example, deRose et al. [DeRose et al.
1998] propose an edge sharpness parameter s to vary sharpness
along an edge and to allow for different degrees of sharpness. The
parameter is used to blend between the positions psmooth of a con-
trol point obtained with the smooth subdivision rules and a point
psharp obtained with sharp subdivision rules:

pnew = (1− s)psmooth + spsharp, s ∈ [0,1]

Biermann et al. [Biermann et al. 2000] propose a flatness param-
eter f and a normal modification. The flatness parameter control
the speed at which control points in a neighborhood converge to the
tangent plane. The subdivision rules are modified to blend between
control point positions obtained without flatness modification and
points in the tangent plane (p denotes the vector of control points
in the neighborhood of a point,a0,a1,a2 are the limit position and
tangents at that point, and xi denote the right eigenvectors of the
subdivision matrix):

pnew = (1− f)p+ f (a0x0 +a1x1 +a2x2), f ∈ [0,1]

The normal modification is somewhat similar, in that it inter-
polates between the control point position obtained without the
modification and positions in a prescribed tangent plane (a nor-
mal n is prescribed through a pair of tangent vectors computed as
a′i = (ain)n):

pnew = p+ t((a′1 −a1)x
1 +(a′2 −a2)x

2), t ∈ [0,1]

Examples of sharp features modeled as proposed by Biermann et
al. [Biermann et al. 2000] are illustrated in Figure 19. A software
library for piecewise smooth subdivision based on these rules is
freely available from [Biermann and Zorin 1999].

A generalization of the subdivision concept that accommodates
sharp features was developed by Sederberg et al. [Sederberg et al.
1998]. By drawing an analogy between recursive subdivision
schemes and knot insertion for B-splines, the authors propose
non-uniform versions of the Doo-Sabin [Doo 1978] and Catmull-
Clark [Catmull and Clark 1978] subdivision schemes (under the

general denomination of non-uniform recursive subdivision sur-
faces or NURSS). Each edge in a non-uniform Catmull-Clark con-
trol mesh (each control point in a Doo-Sabin mesh) is assigned
a knot spacing. When all knot spacings are equal, the standard
schemes are obtained. Two types of subdivision rules have to be
considered for NURSS: the usual refinement scheme for the ge-
ometric positions of control points and an additional refinement
scheme for knot spacings. Sharp features can be generated by set-
ting certain knot spacings to zero.

The methods described so far require sharp features to be aligned
with control mesh edges. Moreover, they provide little control over
the profile of the resulting features. To address these limitations,
Khodakovsky et al. [Khodakovsky and Schröder 1999] propose a
curve-based feature editing approach. Feature curves are defined
directly on the model surface through user interaction and can fol-
low arbitrary paths, unconstrained by the connectivity of the under-
lying mesh. Features are obtained by perturbing the surface in the
vicinity of feature curves. The curves can exist on multiple levels of
a subdivision hierarchy. At each level, perturbations are computed
with respect to local frames, so any coarse level modifications of the
surface are carried through to finer levels. Several parameters are
used to control the profile of a feature. In particular, sharp features
can be obtained by specifying different normal directions for the
profile on either side of the curve. This method brings forth a num-
ber of significant contributions with respect to previous approaches:
it takes advantage of the multiresolution setting to define features
through detail vectors at different levels, it does not impose any
restrictions on the location of the feature curves on the surface or
on their topology (curves can intersect or self intersect), and vary-
ing profiles allow both smooth and sharp features to be represented.
The main drawback is that it does not preserve the input representa-
tion: after editing, the result is no longer a pure multiresolution sub-
division surface, but rather a combined representation, consisting of
a surface and a curve. This means that other subdivision-based tools
that require as input a pure multireolution representation cannot be
directly applied to the result of an editing operation performed with
this method.

Figure 19: Sharp features generated with the rules proposed
in [Biermann et al. 2000]. From left to right: concave corner, con-
vex corner, and smooth crease.

This problem is solved in [Biermann et al. 2002b] which uses
the reparameterization idea described in section 4.1 to align the pa-
rameterization of the surface with the feature curves. Subsequently,
sharp subdivision rules can be used along such curves. Figure 20
illustrates this process. An arbitrary feature curve is first projected
onto the control mesh at some subdivision level (typically a coarse
level which is subsequently refined). A piecewise linear approx-
imation of the curve image in the parametric domain is computed
by alternating Snapping and Refinement steps similar to those of Al-
gorithm 1. The Snapping step moves mesh vertices onto the curve
if they are sufficiently close, while the Refinement step subdivides
the parameterization linearly. If c : [0,1] → X denotes the image of
a feature curve in the parameter domain X of the goal is to repa-
rameterize the domain X such that c passes through the vertices
of X . This reduces to finding a one-to-one mapping Π : X → X
which maps vertices of X to curve points: Π(vi) = c(ti), for some

39

vertices {v0,v1, . . .} and curve parameters {t0, t1, . . .}. After a fi-
nite number of iterations of snapping and refinement, the resulting
curve [v0,v1, . . .] is guaranteed to have the same topology as c and
to follow along mesh edges (and / or diagonals in the case of the
Catmull-Clark scheme). After reparameterization, the input surface
is resampled according to the new parameterization. Intuitively, this
moves the control mesh on the surface and places mesh vertices on
the feature curve. Subsequently, the actual feature can be created by
tagging the appropriate mesh edges and applying sharp subdivision
rules.

Figure 20: Reparameterization for approximating a feature curve:
quads in parameter domain are recursively split and vertices are
snapped to the curve. After several subdivision steps the curve
is approximated by a sequence of vertices and follows along quad
edges or diagonals.

In the case of Catmull-Clark meshes, there is an additional com-
plication: the feature curve may pass through mesh diagonals after
reparameterization (see Figure 21) and the standard crease rules do
not support this situation. Biermann et al. [Biermann et al. 2002b]
introduce new subdivision rules to deal with creases along quad di-
agonals. Sample results obtained with this method are shown in
Figures 22. Note that the output surface is a multiresolution subdi-
vision surface which can be manipulated with other tools designed
to operate on such a representation. In addition, the framework is
suitable not only for creating interior sharp features with various
profiles (e.g., engravings, embossings), but also to create bound-
aries, i.e., to trim the input surface along the feature curves. An
example of a trimmed surface is shown in Figure 22.

Figure 21: Standard sharp rules do not cover cases when the sharp
edge (thick line) passes through a quad diagonal. New rules are nec-
essary for such cases. Dotted lines and circles indicate vertices ob-
tained by reflection used to define subdivision rules for such cases
(see [Biermann et al. 2002b] for details).

For completeness, we also mention the trimming method pro-
posed by Litke et al. [Litke et al. 2001b] which is complementary
to that of Biermann et al. [Biermann et al. 2002b]. In this case
quasi-interpolation is used to approximate a trimmed surface with
a combined subdivision surface [Levin 1999].

Figure 22: Surfaces obtained after trimming and embossing with
sharp features using the method described in [Biermann et al.
2002b]. Top: input curves are shown on the surface (left) and
projected into parameter space (middle). The surface obtained is
shown on the right. Bottom: a self-intersecting feature.

6 Adding topologically complex detail

6.1 Overview

Common surface representations, subdivision-based representa-
tions in particular, work well for objects of relatively simple topol-
ogy and continuous geometric structure. However, for many types
of objects, the local geometry can be highly complex. Examples
include fur, bark, cracked surfaces, grilles, peeling paint, chain-link
fences and others. In these cases, using meshes or patches to rep-
resent small-scale geometry is often prohibitively expensive. But if
we ignore the small-scale structure, a complex surface often has a
simple overall shape, well represented by a mesh or a smooth sur-
face.

In this section we describe a combined volume-surface repre-
sentation for handling geometry of this type, extending the idea of
volume textures. Volume textures aligned with the surface make it
possible to represent geometrically and topologically complex de-
tails in implicit form, encoding the surface as an isosurface in a
layer. This idea was explored by a number of researchers in the
past as discussed below.

This representation has important advantages:

• It uses simple and efficient data structures (textures) to repre-
sent highly irregular geometry.

• Small features of high topological complexity can be easily
introduced and modified.

• Image processing techniques can be used to modify small-
scale geometry without topological constraints.

• Hierarchical representations can be naturally constructed us-
ing filtering on volumetric textures.

• One can easily use procedural modeling and simulation to
produce complex effects near the surface.

Two algorithms central to the goal of using this approach in mod-
eling applications. In addition to surface parametrization required
by 2D texturing, volume textures require parameterizing a region

40

Figure 23: A surface with fine-scale detail added as volume texture.

of space near a surface. Most of the previous work on volume tex-
tures used techniques such as normal displacement, which results in
self-intersections near concave features. We describe an algorithm
for computing volume layer parametrizations with a number of de-
sirable properties, which can be used to update the parametrization
interactively; this is the central geometric algorithm of this repre-
sentation.

While isosurfaces are convenient for many types of operations,
they are much more difficult to render than conventional meshes.
We describe algorithms for volume texture rendering that enable in-
teractive manipulation of volume-textured objects. Our algorithm
for rendering volume-textured surfaces extends the approach of di-
rect slice-based isosurface rendering for volumes. We take advan-
tage of the programmable graphics hardware to reduce the geom-
etry requirements of the slice-based methods, which is crucial for
interactive rendering of volume textures. The description of this
rendering algorithm can be found in [Peng et al. 2004].

6.2 Related work

Our work builds on research in several areas.

Volume textures. The idea of volume textures goes back to the
work by Kajiya and Kay [Kajiya and Kay 1989]. Our work was
motivated by the work of F. Neyret and co-workers (e.g. [Neyret
1995; Neyret 1998; Meyer and Neyret 1998]) as well as recent work
on fur rendering [Lengyel 2000; Lengyel et al. 2001].

Our geometry is to some extent similar to the slab representa-
tion used for modeling weathered stone ([Dorsey et al. 1999]) and
for volume sculpting in [Agarwala 1999]. ([Dorsey et al. 1999])
uses the fast marching method (e.g. [Sethian 1999]) to construct
layers around a surface. Envelope construction [Cohen et al. 1996]
provides another alternative. Our method is compared with both in
Section 6.4.

Stable medial axes. Our construction is closely related to the
work in vision and medical imaging on using various types of me-
dial axis approximations to analyze shape and extract surfaces from
volume data (e.g. [Pizer et al. 1994; Eberly et al. 1994]). In these

papers a form of the medial axis of an object implicitly defined by a
density function is first constructed without recovering the bound-
ary of the object. Our generalized distance function (Section 6.4) is
similar to some of the medialness functions used to construct sta-
ble medial axes. Our work is closest to [Siddiqi et al. 1999] which
solves the Hamilton-Jacobi equations for the medialness function
on a regular grid to recover a skeleton. [Yezzi and Prince 2002]
uses a Laplacian equation solved on a regular grid to compute cor-
respondences between nested surfaces. Our generalized distance
function has the property of pruning away insignificant medial axis
branches close to the surface (see Section 6.4). R-functions have
been used to achieve similar effects ([Ricci 1973; Rockwood 1987;
Pasko et al. 1995]), but with more complex computation based on a
CSG representation of the surface.

Implicit surfaces and volume modeling. There is an exten-
sive body of literature related to volume-based representations (see
[Bloomenthal 1997] for a list of references); some recent important
work includes [Frisken et al. 2000; Carr et al. 2001]. Interactive
and procedural volume sculpting techniques [Wang and Kaufman
1995; Agarwala 1999; Cutler et al. 2002] can be applied to our sur-
face representation. Most work on volume modeling focuses on
volume data in pure form, i.e. objects are represented as level sets
of a function defined by volume samples. We concentrate on an
approach which blends parametric and surface representations.

Structured mesh generation. Constructing a collection of lay-
ers aligned with a surface is a common problem in structured mesh
generation. Mesh generation is a large and complex field aiming to
build meshes suitable for a variety of numerical algorithms for solv-
ing PDEs (see, e.g. surveys [Henshaw 1996; Bern and Plassmann
2000] and the book [Steinberg and Knupp 1993]). Such meshes
often have to satisfy stringent requirements for the algorithms to
achieve optimal or nearly-optimal convergence rates, especially for
CFD problems, for which object-aligned grids are particularly im-
portant [Henshaw 1996].

Our goal is more modest: we aim to construct a shell aligned
with the surface efficiently, maintaining nondegeneracy without ex-
plicitly minimizing a distortion measure. At the same time, the
criteria used to formulate the PDEs in hyperbolic mesh generation
methods (volume preservation and orthogonality), are not necessar-
ily the best for our applications.

6.3 Representation

We refer to the initial surface for which we construct a shell as the
base surface. We consider shells which are obtained by displacing
points of the base surface along line segments defined at vertices,
which we call directors. At each vertex of the surface, we store shell
thickness, the number of shell layers stored and texture coordinates.
The shell consists of slabs corresponding to the faces of the mesh
or individual patches. Each slab is a deformation of a prism.

Shells can be exterior (e.g. for fur modeling), interior (e.g. for
cracks) and envelope with layers located on both sides of the sur-
face. Our technique works for all shell types.

The main additional storage is the 3D textures associated with
the surface. The number of layers in the shell corresponds to the
number of pixels in the texture in the direction perpendicular to
the surface. The alpha channel of the texture defines the effective
surface implicitly as the isosurface corresponding to a fixed alpha
value. The remaining texture channels are used to store the gradient
of α. The number of layers can vary across the surface. In an
extreme case, as shown in Figure 24 the number of layers can go
down to one. If there are no features on a portion of the surface we
do not need textures for that region.

41

Figure 24: Surface with a volume layer attached.

In our implementation we use multiresolution surfaces with sub-
division connectivity, which make it easy to parametrize slices of
3D textures and construct consistent hierarchies for surface and im-
plicit volumentric geometry. However, the basic techniques that we
have developed can be applied to arbitrary meshes with 2D texture
coordinates.

6.4 Constructing shells

In this section we describe our basic algorithm for constructing
shells around surfaces. Intuitively, one can think about this pro-
cess as growing thick skin on the surface; shells constructed by our
method behave more or less like elastic compressible skin, which
was our goal.

To make a shell useful for volumetric texturing, a number of
properties are desirable:

• The layers should not intersect. This requirement is motivated
by the "skin" metaphor which we believe to be natural for ma-
nipulating this type of surface representation in many cases.

• The layers should have the same connectivity. This is crucial
for defining a vertex’s volumetric texture coordinates (s, t,r).
They can be obtained as follows in this case: (s, t) are given
by the base surface parametrization which is assumed to be
known, and r is incremented proportionally along the dis-
placement director from the base surface.

• The shell should maintain prescribed thickness whenever pos-
sible. However, if thickness cannot be maintained due to geo-
metric obstacles, a valid shell with locally decreased thickness
should be produced. This corresponds to the intuitive idea of
elastic “sponge-like” skin; note that volume preservation is
somewhat undesirable as it is likely to result in fold forma-
tion.

• The shell should be close to the one obtained by normal dis-
placement whenever possible.

• The shell at a point should depend only on the parts of the sur-
face close to that point. This property is important for model-
ing applications and for efficient implementation.

Next, we describe our shell construction algorithm motivated by
these requirements.

6.5 The basic algorithm

To describe our algorithm in detail, we need some formal notation.
We assume that our base surface is a mesh or a higher order sur-
face associated with a mesh (subdivision surface, spline surface
etc.) without self-intersections. Formally, our goal of construct-
ing a shell around the surface can be described as follows: given a
surface M in R3, construct a one-to-one map f (x, t) from the direct
product M × [0,1] into R3. We focus on shells for which f (x, t) is

ba

Figure 25: a. Medial axis of a box. b. The shell with target thick-
ness exceeding one half of the box size constructed using the gra-
dient along the medial axis. The shell director lines are shown.

linear, i.e. at each point, f (x, ·) is entirely defined by the direction
of displacement and shell thickness.

Main ideas. Our algorithm is based on a simple idea: to construct
a shell, we always need to move away from the surface. In the
places where this is impossible (the simplest example is the center
of a sphere) the shell cannot be extended further.

To understand how this idea can be made more formal, we con-
sider the example shown in Figure 25 in more detail. Suppose we
are building an interior shell, offsetting a surface M (in this case, a
box) in the direction opposite to the outside normal. If the gradient
of the point-to-surface distance function d(x,M) is defined, “mov-
ing away” from the surface more formally can be characterized as
moving along the gradient of the distance function. This gradient
points exactly along a normal direction to the surface whenever it
is defined. In such cases we can propagate the shell away from the
surface simply moving along the normal. However, the distance
function is singular at some points of space which are called (me-
dial axis points). Unfortunately the medial axis comes close to the
surface at concavities and extends all the way to the object at sharp
features, as shown in Figure 25. However, even on the medial axis
it is often possible to move away from the surface. E.g., if we start
from the corner of the box, we just move along the branch of the
medial axis. While the complete gradient of the distance function
is not defined, it is defined along the medial axis, i.e. the deriva-
tives can be computed for any direction tangent to the medial axis.
Define the extended distance function gradient by setting the value
of the gradient at the medial axis to the gradient along the medial
axis, whenever it is defined. The magnitude of this gradient is not
necessarily one: the sharper the angle of the concavity, the smaller
it is. For the horizontal part of the medial axis of the box, it is
identically zero. We note that these are exactly the points where no
further motion is possible, because shell parts extended from two
sides of the box run into each other. This shows that the magnitude
of the gradient of the distance function along the medial axis can
be used as a measure of how easy it is to move a particle located at
that point of space away from the surface.

These observations suggest the following simple abstract algo-
rithm for constructing the director of a shell: to obtain the director
of a shell of thickness h at point x, first follow the extended gradient
field g(x) = ∇xd(x,M) of the distance function, solving the ODE

∂F(x, t)
∂t

= hg(x) (7)

where h is the desired thickness, and F(x, t) is position along the
integral line of the gradient field passing through x. Then de-
fine f (x, t) by linear interpolation between x and F(x,1). Note
that as long as the integral curve F(x, t) does not reach the medial
axis, it remains a straight line with unit speed parametrization, as
‖g(x)‖= 1. For our box example and sufficiently large h this yields
a shell completely filling the box (Figure 25b). Unfortunately, it is
difficult to solve Equation 7, as the field is discontinuous, and we
would have to compute the medial axis and the gradient along it. To

42

0

0.2

0.4

0.6

0.8

1

1.2

�2 �1 1 2

Figure 26: The red plot shows the standard distance function from a
point on the line to the set of two points {−1,1}. Other lines show
the averaged distance functions for different values of p.

make the algorithm practical, we replace the distance function with
a function we call Lp-averaged distance function.

Averaged distance functions. The basis of our definition is the
following simple observation. We can rewrite the distance function
from a point x to a surface M as

d(x,M) = inf
y∈M

|x−y| =
(

sup
y∈M

|x−y|−1

)−1

=
(
‖|x−y|−1‖L∞(M)

)−1

(8)

This definition lends itself to a natural generalization:

dp(x,M) =
(
‖A−1|x−y|−1‖Lp(M)

)−1

= A1/p
(

Z

M
|x−y|−pdy

)−1/p (9)

where A is the area of the surface M. This normalization by the
area is introduced to ensure that the gradient of this distance func-
tion is nondimensional and close to magnitude 1 at infinity, which
mimicks the properties of the gradient of the euclidean distance. In-
tuitively, one can expect the gradient direction field of this function
to have similar properties to the gradient field of the euclidean dis-
tance function as p approaches ∞. Another intuitive interpretation
of this distance function is as a potential field generated by charges
on the surface raised to the power −1/p. In practice, we have ob-
served that even for small values of p, the fields are quite simi-
lar. This is illustrated in Figure 26 and 27. The one-dimensional
averaged distance functions are compared to the standard distance
function in Figure 26, and fields of several values of p in a two-
dimensional box are shown in Figure 27. However, unlike the case
of the euclidean distance function, the gradient of this function is
well defined away from the surface, as the integration and differen-
tiation can be exchanged. Using the averaged dp(x,M) yields the
analog of Eq. 7 in which the gradient has an explicit expression and
the medial axis does not have to be computed explicitly.

It can be proved that for p > 1 in 3D (and p > 0 in 2D), the direc-
tion of the gradient gp, at points on a smooth surface, coincides with
the normal1. Furthermore, in all our experiments we have observed
that the magnitude of the gradient remains close to one near the sur-
face, and decays in the area close to the conventional medial axis.
So our function defines a fuzzy medial axis, pruning away insignif-
icant branches corresponding to concavities, and with the gradient
field close to zero only in areas where the shell genuinely cannot

1An interesting observation that p = 1 in 3D corresponds to the the elec-
tric field potential which makes it clear that this value cannot be used: e.g.
the potential is constant inside a hollow uniformly charged sphere.

p=1 p=10

p=5 p=20

Figure 27: Field lines of the gradient field of the distance function
for several values of p.

Figure 28: The four diagrams on the left show self-adjusting shell
behavior of an exterior shell in the concave region. With an angle of
up to 90 degrees, no compression in shell thickness is observed, but
at greater angles the shell starts to compress. The three diagrams in
the right column illustrate an interior shell. The first image shows
the interior shell for which a prescribed thickness is achieved. As
the object is deformed, the shell compresses to avoid folds (pre-
scribed thickness remains the same).

be expanded (see Figure 28 for the results of our two-dimensional
experiments on deforming curves).

Localization. The function is supported over the whole surface.
However, it does not make sense to take into account portions of
the surface which are much further away than double the target shell
thickness; thus, we integrate only over the parts of the surface which
fit inside a sphere of radius 2h, making our calculation local. The
extra distance beyond h is neccessary to ensure stability.

Boundaries. So far we have assumed that M does not have a
boundary. Near the boundary, the averaged distance function is
likely to yield shells with considerable distortion due to the fact
that the distance field has to make a 180-degree turn. The standard
distance function handles this case well, but the averaged function
gradient field turns in the outward direction. This problem is solved
by adding artificial faces at the boundary. A single additional vertex
is added for each boundary vertex. The direction to the new vertex
is obtained by using a tangent direction across the boundary, and
the distance is taken to be equal to the shell thickness. It should
be noted that such an extension is satisfactory if there are no other

43

parts of the surface near the boundary. Otherwise, the extension can
overlap a different surface part.

6.6 Numerical and performance considerations

There are two main difficulties in using the averaged distance func-
tion to construct shells: we need to solve the ODE, which is stiff
if the trajectory approaches the medial axis, and we need to com-
pute the field gradient efficiently. While the ODE in most cases is
well-behaved, it is stiff near the medial axis. The gradient, which is
an integral over the surface, is also expensive to evaluate. We have
evaluated several solution techniques (variants of explicit and im-
plicit Euler and Runge-Kutta methods) and obtained the best perfor-
mance and stability using an adaptive explicit Euler method. This
algorithm is given below in somewhat simplified form, where Δ is
the variable step size, x0 is the starting point on the surface, x is
the current position along the trajectory, g is the gradient of the av-
eraged distance function at the point, h is the prescribed thickness,
and ε is the adaptivity threshold for the change in the direction.

x = x0; t = 0;
g = Field(x0);
while t < h

Δ = 2Δ0;
do

Δ = Δ/2;
xnew = x+Δ∗g;
gnew = Field(xnew);

while the angle between g and gnew is above ε;
x = xnew; t + = Δ;
g = gnew;

end while

Computing integrals per face. The simplest method for calcu-
lating the integrals is to do pointwise summation over the surface.
However, this approach does not work well in the case where the
sampling is fixed and the surface has very sharp angles. This is easy
to understand if the sample points are thought of as charges, con-
sidering the field as a surface charge density field. The approximate
gradient field may “escape” between points when a surface region
with high curvature is not sampled densely enough for numerical
methods; this results in shell inversion. This “escape” problem can
be avoided by integrating analytically over triangles of the surface
mesh (quads can be split into triangles for this purpose). Fortu-
nately, it is possible to integrate 1/r3 over a wedge, and a triangle
can be represented as a complement of three wedges in a plane,
obtained by extending each triangle side in one direction. For a sin-
gle wedge, the integral can be computed explicitly. Without losing
generality, we can assume that the non-negative x axis is the starting
edge of the wedge, then the integral when p = 3 is

Z

� |x−y|−3dy =
2
w

arctan

(
w

(|x|−u)cot β
2 − v

)
(10)

where (u,v,w) is the coordinates of the point x, and β is the counter-
clockwise angle of the wedge � . This formula is then differentiated
on u, v, and w for the calculation of gradient. Using these formu-
las, the integral over the mesh can be evaluated precisely if desired.
While computing the gradient in this way is more expensive, this
eliminates the need for refinement, and in fact using a coarser reso-
lution version of the mesh yields good results.

Accelerating integral computation. The expense of computing
the gradient can be considerable for an interactive application since
it involves a surface integral.

Figure 29: Left: cross-section of the shell for a shape with sharp
corners; Right: same object with volume texture added.

Figure 30: Cross-sections of interior and exterior shells of the
bunny.

target thickness

Figure 31: Folding for extreme shell thickness (prescribed thick-
ness equal to the objects bounding box size, only 70% of the shell
shown to show the fold clearly.)

Figure 32: Comparison of the results of normal displacement
method (upper right) and our method (lower right) for a saddle.

44

Although we only integrate over a small part of the surface, in-
side a ball near a given point, further acceleration helps. We use the
Barnes and Hut algorithm [Barnes and Hut 1986] to compute the
integral hierarchically. Although the calculation is already constant
time, this algorithm is easy to implement, and provides a substantial
speedup.

Examples. Several examples of external and internal shells and
textures are shown in Figures 29,30 and 33-37. The timings for
simpler objects were fractions of a second. For the bunny mesh in
Figure 30, the external shell was generated in 1.8 sec on a 1GHz
Pentium III, and the internal shell in 8 sec. The longer time for
the internal mesh is due to refinement necessary to compute a valid
shell inside the ears. The target thickness for the exterior shell was
set at 10% of the bounding box size, and at 5% for the interior shell.

Limitations of the approach. The resulting shell is not guaran-
teed to be one-to-one; this is essentially inevitable, as we require
directors to be straight. However, as shown in Figure 31, a rather
large shell thickness needs to be prescribed with a special type of
geometry for the failure to occur; for this figure, the requested shell
thickness was close to the size of the bounding box of the whole
object.

Comparison with alternatives. Shells created with normal dis-
placement and with our method are compared in Figure 32. For
a saddle as shown in the picture, the normal displacement method
inevitably generates a self intersecting shell. It does not matter on
which side of mesh the shell is expanded.

Level set methods, the fast marching method in particular,
present the main alternative to our approach. However, the level
set methods do not solve the problem of shell construction directly.
The methods do not readily provide any mapping from the orig-
inal surface to the advancing front, and the topology of the front
may change. In fact this is an advantage for many applications but
makes shell construction difficult. An additional step is required to
establish the correspondence, as described in [Sethian 1994]. An-
other alternative is the envelope construction [Cohen et al. 1996]
which preserves the topology of the original surface. We have ex-
plored this approach and found that the thickness of such envelopes
is very low in the regions of concavities, and the shape of the sur-
face of the envelope tends to be undesirable in such areas.

Finally we note that [Yezzi and Prince 2002] uses a conceptu-
ally similar (although numerically quite different) approach for con-
structing correspondences between surfaces, if we note that com-
puting our integrals over the whole surface for p = 1 corresponds
to solving the Laplace equation using Poisson formula. As we have
pointed out, the value p = 1 does not work for constructing shells.

6.7 Results

In this section we describe a variety of operations that we have im-
plemented in our modeling system using algorithms described in
the previous sections.

Deformations. When the base surface is deformed, the shell
needs to be recomputed. We take advantage of the locality of the
field defining the shell, and recompute only the part which is within
the field influence distance from the modified surface part. This can
be done at interactive rates (Figure 33). We note that if a volume
deformer is used to modify the surface, the same volume deforma-
tion can be applied to the shell and no interactive recomputation is
necessary; however, for significant deformations it is still better to
recompute the shell.

Moving geometry along the surface. Image editing operations
can be relatively easily applied to volumetric textures, which results
in changes in the implicitly defined geometry (Figure 34). How-
ever, when these operations are implemented, geometric distortion
of the 2D texture mapping should be taken into account. This prob-
lem is identical to the one addressed in [Biermann et al. 2002a].
The target area, to which the texture is moved, and the source area
are reparameterized on a common planar domain with a distortion-
minimizing parametrization. The common parameterization is used
to resample the source texture over the target geometry. The same
approach can be used for volume textures.

Boolean operations and carving. One of the advantages of vol-
ume geometry representations is that boolean operations become
relatively simple (Figure 33). In the case of volume textures, the sit-
uation is complicated by the fact that the transformation from world
coordinates to texture coordinates is nonlinear. However, it is still
relatively straightforward to compute a boolean operation between
a regular nondistorted volume object and the volume-textured sur-
face: this requires resampling the volume object over the shell grid,
which is straightforward.

Applying a boolean operation to two volume-textured surfaces is
much more difficult.

Animated Textures. Removing details from the underlying ge-
ometric representation and placing them into 3D textures makes
some animations much easier to execute. One example of this is
the boiling man (Figure 35). The texture is procedurally animated
to show the bubbles. Bubbles can easily appear, separate from the
surface and burst, as they are represented implicitly. Another ex-
ample of texture animation is growing trees on the surface. The
speed of our shell generation algorithm also enables us to animate
the base mesh and the texture at the same time (Figure 35,36).

Rendering Performance. The performance of the rendering al-
gorithm is quite good, especially for large textures. The turbine
blade shown in the video uses 128 slices through a 512x512x512
texture (compressed to 134 MB) and exhibits real-time perfor-
mance. With 512 slices shown near the end of the clip, the qual-
ity is slightly greater, and the rendering time is still acceptable for
interactive tasks.

On the other hand, when we try to stress geometric complexity,
we run into performance limitations. For example, with the shirt
shown in the video, we are limited to about 16 slices while still
obtaining close to real-time performance (17fps with either nor-
mal or texture coordinate interpolation). The video was created
using a Quadro 3000 card clocked at the standard 400/850 Mhz
(core/memory).

References

AGARWALA, A. 1999. Volumetric Surface Sculpting. Master’s
thesis, MIT.

BARGHIEL, C., BARTELS, R., AND FORSEY, D. 1994. Pasting
spline surfaces. In Mathematical Methods for Curves and Sur-
faces: Ulvik, Norway, Vanderbilt University Press, 31–40. Avail-
able at ftp://cgl.uwaterloo.ca/pub/users/rhbartel/Paste.ps.gz.

BARNES, J., AND HUT, P. 1986. A hierarchical O(N logN) force
calculation algorithm. Nature 324, 446.

BARR, A. H. 1984. Global and local deformations of solid primi-
tives. Proc. of SIGGRAPH 84, 21–30.

45

Figure 33: Editing operations: deforming a volume-textured surface and cutting a hole on the chain-mail shirt.

Figure 34: The first two are simple objects with small-scale geometry added. The last two show the operation of moving a geometric texture
on a surface.

Figure 35: An animated bubbling texture applied on a deforming head and two stages of a growing bush texture with a zoomed-in view.

Figure 36: A structural texture on a deforming plane and a kiosk. The second and the forth pictures are showing zoomed-in details. Volume
textures are used on the kiosk roof and walls.

46

Figure 37: Several different volumetric textures applied on the bunny. Only the heads are shown to view the geometric details.

BERN, M., AND PLASSMANN, P. 2000. Mesh generation. In
Handbook of computational geometry. North-Holland, Amster-
dam, 291–332.

BÉZIER, P. 1974. Mathematical and practical possibilities of
UNISURF. CAD, 127–152.

BIERMANN, H., AND ZORIN, D., 1999. Subdivide 2.0 software.

BIERMANN, H., LEVIN, A., AND ZORIN, D. 2000. Piecewise
smooth subdivision surfaces with normal control. In Proceedings
of SIGGRAPH 00, 113–120.

BIERMANN, H., KRISTJANSSON, D., AND ZORIN, D. 2001. Ap-
proximate boolean operations on free-form solids. In Proceed-
ings of SIGGRAPH 01, 185–194.

BIERMANN, H., MARTIN, I., BERNARDINI, F., AND ZORIN, D.
2002. Cut-and-paste editing of multiresolution surfaces. ACM
TOG. Special issue for SIGGRAPH conference 21, 3, 312–321.

BIERMANN, H., MARTIN, I., ZORIN, D., AND BERNARDINI, F.
2002. Sharp features on multiresolution subdivision surfaces.
Graphical Models 64, 2, 61–77.

BISCHOFF, S., KOBBELT, L. P., AND SEIDEL, H.-P. 2000. To-
wards hardware implementation of loop subdivision. In Proc. of
the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics
Hardware, 41–50.

BLOOMENTHAL, J., Ed. 1997. Introduction to implicit surfaces.
Morgan Kaufmann.

BOIER-MARTIN, I., RONFARD, R., AND BERNARDINI, F. 2004.
Detail-preserving variational surface design with multiresolution
constraints. In Proc. Shape Modeling International, SMI’04.

BOO, M., AMOR, M., DOGGETT, M., HIRCHE, J., AND
STRASSER, W. 2001. Hardware support for adaptive sub-
division surface rendering. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS Workshop on Graphics Hardware.

BRIGGS, W. L. 1987. Multigrid Tutorial. SIAM.

CARR, J. C., BEATSON, R. K., CHERRIE, J. B., MITCHELL,
T. J., FRIGHT, W. R., MCCALLUM, B. C., AND EVANS, T. R.
2001. Reconstruction and representation of 3d objects with ra-
dial basis functions. In Proceedings of ACM SIGGRAPH 2001,
67–76.

In http://www.catia.ibm.com.

CATMULL, E., AND CLARK, J. 1978. Recursively generated B-
spline surfaces on arbitrary topological meshes. CAD 10, 6, 350–
355.

CELNIKER, G., AND GOSSARD, D. 1999. Energy-based mod-
els for free-form surface shape design. In Proc. ASME Design
Automation Conference.

CHAN, L. K. Y., MANN, S., AND BARTELS, R. 1997. World
space surface pasting. In Proceedings of Graphics Interface,
W. Davis, M. Mantei, and V. Klassen, Eds., 146–154.

CHANG, Y., AND ROCKWOOD, A. P. 1994. A generalized de
casteljau approach to 3D Free-Form deformation. Proc. of SIG-
GRAPH 94, 257–260.

CHANG, M. M., SEZAN, M. I., AND TEKALP, A. M. 1994. Adap-
tive bayesian segmentation of color images. Journal of Elec-
tronic Imaging 3, 404–414.

CIRAK, F., SCOTT, M., ANTONSON, E., ORTIZ, M., AND
SCHRÖDER, P. 2002. Integrated modeling, finite-element anal-
ysis, and engineering design for thin-shell structures using sub-
division. Computer Aided Design 43, 137–148.

COHEN, J., VARSHNEY, A., MANOCHA, D., TURK, G., WEBER,
H., AGARWAL, P., JR., F. P. B., AND WRIGHT, W. 1996. Sim-
plification envelopes. In Proceedings of SIGGRAPH 96, 119–
128.

COHEN, E., RIESENFELD, R. F., AND ELBER, G. 2001. Geomet-
ric Modeling with Splines. A K Peters Ltd.

CONRAD, B., AND MANN, S. 2000. Better pasting via quasi-
interpolation. In Curve and Surface Design: Saint-Malo,
1999, Vanderbilt University Press, Nashville, TN, P.-J. Laurent,
P. Sablonnière, and L. L. Schumaker, Eds., 27–36.

COQUILLART, S. 1990. Extended free-form deformation: a sculp-
turing tool for 3d geometric modeling. In Proc. of SIGGRAPH
90, 187–196.

CUTLER, B., DORSEY, J., MCMILLAN, L., MÜLLER, M., AND
JAGNOW, R. 2002. A procedural approach to authoring solid
models. In ACM Transactions on Graphics (SIGGRAPH 2001),
vol. 21-3, 302–311.

DEBOOR, C., AND FIX, G. J. 1973. Spline approximtion by quasi-
interpolants. Journal of Approximation Theory 8, 19–45.

DEROSE, T., KASS, M., AND TRUONG, T. 1998. Subdivision
surfaces in character animation. In Proceedings of SIGGRAPH
98, 85–94.

DESBRUN, M., MEYER, M., AND ALLIEZ, P. 2002. Intrinsic pa-
rameterizations of surface meshes. In Eurographics conference
proceedings, 209–218.

47

DIEWALD, U., MORIGI, S., AND RUMPF, M. 2002. A cascadic
geometric filtering approach to subdivision. CAGD 19, 9, 675 –
694.

DOO, D., AND SABIN, M. 1978. Analysis of the behaviour of
recursive division surfaces near extraordinary points. CAD 10,
6, 356–360.

DOO, D. 1978. A subdivision algorithm for smoothing down irreg-
ularly shaped polyhedrons. In Proceedings on Interactive Tech-
niques in Computer Aided Design, 157–165.

DORSEY, J., EDELMAN, A., LEGAKIS, J., JENSEN, H. W., AND
PEDERSEN, H. K. 1999. Modeling and rendering of weathered
stone. In Proceedings of ACM SIGGRAPH 99, 225–234.

In http://www.discreet.com.

DYN, N., AND LEVIN, D. 2002. Subdivision schemes in geometric
modelling. Acta Numerica 11.

DYN, N., LEVIN, D., AND GREGORY, J. A. 1990. A butterfly
subdivision scheme for surface interpolation with tension con-
trol. ACM TOG 9, 2 (April), 160–169.

EBERLY, D., GARDNER, R., MORSE, B., PIZER, S., AND
SCHARLACH, C. 1994. Ridges for image analysis. Journal
of Mathematical Imaging and Vision 4, 351–371.

FRIEDEL, I., MULLEN, P., AND SCHRODER, P. 2003. Data-
dependent fairing of subdivision surfacesn. In Proc. of SM 03.

FRISKEN, S. F., PERRY, R. N., ROCKWOOD, A. P., AND JONES,
T. R. 2000. Adaptively sampled distance fields: A general rep-
resentation of shape for computer graphics. In Proceedings of
ACM SIGGRAPH 2000, 249–254.

FURUKAWA, Y., MASUDA, H., MIURA, K. T., AND YAMATO, H.
2003. Cut-and-paste editing based on constrained b-spline vol-
ume fitting. In Proceedings Computer Graphics International.

GIBSON, S. F. F., AND MIRTICH, B. 1997. A survey of de-
formable modeling in computer graphics. Tech. Rep. TR-97-19,
MERL, Cambridge, MA.

GONZALEZ-OCHOA, C., AND PETERS, J. 1999. Localized-
hierarchy surface splines (less). In Proc. Symp. on Interactive
3D Graphics, 7–15.

GREINER, G. 1994. Surface construction based on variational
principles. In Wavelets, Images and Surface Fitting, P. J. Laurent,
A. LeMéhauté, and L. Schumaker, Eds. AK Peters, 277–286.

GRINSPUN, E., AND SCHRÖDER, P. 2001. Normal bounds for
subdivision-surface interference detection. In Proc. of IEEE Vi-
sualization 01.

GUSKOV, I., KHODAKOVSKY, A., SCHRÖDER, P., AND
SWELDENS, W. 2002. Hybrid meshes: Multiresolution using
regular and irregular refinement. In Proc. Symp. Comp. Geom.,
264–272.

HALSTEAD, M., KASS, M., AND DEROSE, T. 1993. Efficient, fair
interpolation using Catmull-Clark surfaces. In Proc. SIGGRAPH
1993, 35–44.

HALSTEAD, M. A. 1996. Efficient Techniques for Surface Design
Using Constrained Optimization. PhD thesis, Univ. of California
at Berkeley.

HENSHAW, W. D. 1996. Automatic grid generation. In Acta
numerica, 1996, vol. 5 of Acta Numer. Cambridge Univ. Press,
Cambridge, 121–148.

HOPPE, H., DEROSE, T., DUCHAMP, T., HALSTEAD, M., JIN,
H., MCDONALD, J., SCHWEITZER, J., AND STUETZLE, W.
1994. Piecewise smooth surface reconstruction. In Computer
Graphics Proceedings, Annual Conference Series, ACM Sig-
graph, 295–302.

HUA, J., AND QIN, H. 2003. Free-Form deformations via sketch-
ing and manipulating scalar fields. In Proc. ACM Symp. on Solid
Modeling and Applications, 328 – 333.

KAJIYA, J. T., AND KAY, T. L. 1989. Rendering fur with three
dimensional textures. In Proceedings of the 16th annual con-
ference on Computer graphics and interactive techniques (SIG-
GRAPH 89), 271–280.

KHODAKOVSKY, A., AND SCHRÖDER, P. 1999. Fine level feature
editing for subdivision surfaces. In Proceedings of ACM Solid
Modeling.

KOBBELT, L. 1996. Interpolatory subdivision on openquadrilateral
nets with arbitrary topology. In Proc. of Eurographics 96, 409–
420.

KOBBELT, L. 1996. A variational approach to subdivision. Com-
put. Aided Geom. Design 13, 8, 743–761.

KOBBELT, L. P. 2000. Discrete fairing and variational subdivision
for freeform surface design. The Visual Computer 16, 3-4, 142–
150.

LANQUETIN, S., FOUFOU, S., KHEDDOUCI, H., AND NEVEU,
M. 2003. Computing subdivision surface intersection. In Proc.
WSCG ’03.

LAZARUS, F., COQUILLART, S., AND JANCENE, P. 1994. Axial
deformations: an intuitive deformation technique. CAD 26, 8,
607–61.

LEE, A., MORETON, H., AND HOPPE, H. 2000. Displaced subdi-
vision surfaces. In Proc. of SIGGRAPH 00, 85–94.

LENGYEL, J. E., PRAUN, E., FINKELSTEIN, A., AND HOPPE,
H. 2001. Real-time fur over arbitrary surfaces. In 2001 ACM
Symposium on Interactive 3D Graphics, 227–232.

LENGYEL, J. 2000. Real-time hair. In Rendering Techniques 2000:
11th Eurographics Workshop on Rendering, Eurographics, 243–
256.

LEVIN, A. 1999. Interpolating nets of curves by smooth subdivi-
sion surfaces. Proc. of SIGGRAPH 99, 57–64.

LINSEN, L. 2000. Netbased modelling. In Proc. SCCG ’00, 259–
266.

LITKE, N., LEVIN, A., AND SCHRÖDER, P. 2001. Fitting subdi-
vision surfaces. In Proc. of IEEE Visualization 2001, 319–324.

LITKE, N., LEVIN, A., AND SCHRODER, P. 2001. Trimming for
subdivision surfaces. Computer Aided Geometric Design 18, 5,
463–481.

LOOP, C. 1987. Smooth Subdivision Surfaces Based on Triangles.
Master’s thesis, University of Utah, Department of Mathematics.

48

LOUNSBERY, M., DEROSE, T., AND WARREN, J. 1997. Multires-
olution analysis for surfaces of arbitrary topological type. ACM
TOG 16, 1 (January), 34–73.

MA, W., AND ZHAO, N. 2000. Catmull-clark surface fitting for
reverse engineering applications. In Proceedings of Geometric
Modeling and Processing, 274–282.

MA, M. 2000. The Direct Manipulation of Pasted Sur-
faces. Master’s thesis, University of Waterloo, Water-
loo, Ontario, Canada N2L 3G1. Available on WWW as
ftp://cs-archive.uwaterloo.ca/cs-archive/CS-2000-15/.

MACCRACKEN, R., AND JOY, K. I. 1996. Free-Form deforma-
tions with lattices of arbitrary topology. In Proc. of SIGGRAPH
96, 181–188.

In http://www.alias.com.

MCDONNELL, K., AND QIN, H. 2000. Dynamic sculpting and
animation of Free-Form subdivision solids. In Proc. of IEEE
Computer Animation.

MEYER, A., AND NEYRET, F. 1998. Interactive volumetric tex-
tures. In Eurographics Rendering Workshop 1998, Springer
Wein, New York City, NY, G. Drettakis and N. Max, Eds., Euro-
graphics, 157–168.

NASRI, A. H., AND ABBAS, A. 2002. Designing Catmull-Clark
subdivision surfaces with curve interpolation constraints. Com-
puters and Graphics.

NASRI, A. H. 1991. Surface interpolation on irregular networks
with normal conditions. CAGD 8, 89–96.

NASRI, A. 2000. Interpolating meshes of boundary intersecting
curves by subdivision surfaces. The Visual Computer 16.

NEYRET, F. 1995. A general and multiscale model for volumetric
textures. In Graphics Interface ’95, Canadian Human-Computer
Communications Society, W. A. Davis and P. Prusinkiewicz,
Eds., Canadian Information Processing Society, 83–91.

NEYRET, F. 1998. Modeling animating and rendering complex
scenes using volumetric textures. IEEE Transactions on Visual-
ization and Computer Graphics 4, 1 (Jan.–Mar.), 55–70.

PASKO, A., ADZHIEV, V., SOURIN, A., AND SAVCHENKO, V.
1995. Function representation in geometric modeling: concepts,
implementation and applications. The Visual Computer 11, 8,
429–446.

PENG, J., KRISTJANSSON, D., AND ZORIN, D. 2004. Interac-
tive modeling of topologically complex geometric detail. ACM
Transactions on Graphics (SIGGRAPH 2004 Processings) 23, 3,
635–643.

PETERS, J., AND REIF, U. 1997. The simplest subdivision scheme
for smoothing polyhedra. ACM TOG 16, 4.

PETERS, J. 2000. Patching Catmull-Clark meshes. In Proceedings
of SIGGRAPH 00, 255–258.

PIPONI, D., AND BORSHUKOV, G. 2000. Seamless texture map-
ping of subdivision surfaces by model pelting and texture blend-
ing. In Proceedings of SIGGRAPH 00, 471–478.

PIZER, S., BURBECK, C., COGGINS, J., FRITSCH, D., AND
MORSE, B. 1994. Object shape before boundary shape: Scale-
space medial axes. Journal of Mathematical Imaging and Vision
4, 303–313.

PULLI, K., AND LOUNSBERY, M. 1997. Hierarchical editing and
rendering of subdivision surfaces. Tech. Rep. UW-CSE-97-04-
07, Dept. of CS&E, University of Washington, Seattle, WA.

PULLI, K., AND SEGAL, M. 1996. Fast rendering of subdivision
surfaces. In Proc. Eurographics Workshop on Rendering, 61–70.

QIN, H., AND TERZOPOULOS, D. 1996. D-NURBS: A physics
based framework for geometric design. IEEE TVCG 2, 1, 85–96.

QIN, H., MANDAL, C., AND VEMURI, B. 1998. Dynamic
Catmull-Clark subdivision surfaces. IEEE TVCG 4, 3, 215–229.

RICCI, A. 1973. A constructive geometry for computer graphics.
The Computer Journal 16, 2, 157–160.

ROCKWOOD, A. 1987. Blending surfaces in solid geometric mod-
eling. PhD thesis, Cambridge University.

SABIN, M. 1971. Interrogation techniques for parametric surfaces.
In Advanced computer graphics - economics, techniques and ap-
plications, R. D. Parslow and R. E. Green, Eds. Plenum Press,
1095–1118.

SABIN, M. A. 2002. Subdivision surfaces tutorial. SMI 02.

SCHAEFFER, S., WARREN, J., AND ZORIN, D. 2004. Lofting
curve networks using subdivision surfaces. submitted.

SCHWEITZER, J. E. 1996. Analysis and Application of Subdivision
Surfaces. PhD thesis, University of Washington, Seattle.

SEDERBERG, T. W., AND PARRY, S. R. 1986. Free-form defor-
mation of solid geometric models. In Proc. of SIGGRAPH 86,
151–160.

SEDERBERG, T. W., ZHENG, J., SEWELL, D., AND SABIN, M.
1998. Non-uniform recursive subdivision surfaces. In Proceed-
ings of SIGGRAPH 98, 387–394.

SEIDEL, R. 1998. The nature and meaning of perturbations in
geometric computing. Discrete Computational Geometry 19, 1,
1–17.

SETHIAN, J. A. 1994. Curvature flow and entropy conditions ap-
plied to grid generation. J. Comput. Phys. 115, 2, 440–454.

SETHIAN, J. 1999. Level Set Methods and Fast Marching Methods.
Cambridge University Press. ISBN 0521645573.

SHEFFER, A., AND DE STURLER, E. 2001. Parameterization of
faceted surfaces for meshing using angle based flattening. Engi-
neering with Computers 17(3), 326–337.

SIDDIQI, K., BOUIX, S., TANNENBAUM, A., AND ZUCKER,
S. W. 1999. The hamilton-jacobi skeleton. In ICCV (2), 828–
834.

SINGH, K., AND FIUME, E. 1998. Wires: A geometric deforma-
tion technique. In Proc. of SIGGRAPH 98, 405–414.

STAM, J. 1998. Exact evaluation of catmull-clark subdivision
surfaces at arbitrary parameter values. In Proceedings of SIG-
GRAPH 98, 395–404.

STEINBERG, S., AND KNUPP, P. M. 1993. Fundamentals of Grid
Generation. CRC Press.

STOLLNITZ, E. J., DEROSE, T., AND SALESIN, D. H. 1996.
Wavelets for computer graphics: theory and applications. Mor-
gan Kaufmann.

49

SUZUKI, H., TAKEUCHI, S., KIMURA, F., AND KANAI, T. 1999.
Subdivision surface fitting to a range of points. In Proc. Pacific
Graphics.

TAKAHASHI, S. 1998. Variational design of curves and surfaces
using multiresolution constraints. The Visual Computer 14(5/6),
208–227.

TERZOPOULOS, D., AND FLEISCHER, K. 1988. Modeling inelas-
tic deformation: Viscoelasticity, plasticity, fracture. In Proc. of
SIGGRAPH ’88, 269–278.

TERZOPOULOS, D., AND QIN, H. 1994. Dynamic NURBS with
geometric constraints for interactive sculpting. ACM TOG 13, 2,
103–136.

TERZOPOULOS, D., PLATT, J., BARR, A., AND FLEISCHER, K.
1987. Elastically deformable models. In Proc. of SIGGRAPH
87, 205–214.

TURK, G., AND O’BRIEN, J. 2002. Modelling with implicit sur-
faces that interpolate. ACM TOG 21, 4, 855 – 873.

WANG, S. W., AND KAUFMAN, A. E. 1995. Volume sculpting. In
Proceedings of the 1995 symposium on Interactive 3D graphics,
ACM Press, 151–156.

WARREN, J., AND WEIMER, H. 2001. Subdivision Methods for
Geometric Design: A Constructive Approach. Morgan Kauf-
mann.

WEIMER, H., AND WARREN, J. 1998. Subdivision schemes for
thin-plate splines. Proc. EUROGRAPHICS ’98 17, 3.

WELCH, W., AND WITKIN, A. 1992. Variational surface model-
ing. In Proceedings of SIGGRAPH ’92, vol. 26, 157–166.

YEZZI, A., AND PRINCE, J. L. 2002. A PDE approach for thick-
ness, correspondence, and gridding of annular tissues. In ECCV
(4), Springer, vol. 2353 of Lecture Notes in Computer Science,
575–589.

ZORIN, D., AND KRISTJANSSON, D. 2002. Evaluation of piece-
wise smooth subdivision surfaces. The Visual Computer 18, 5–6,
299 – 315.

ZORIN, D., SCHRÖDER, P., AND SWELDENS, W. 1996. Interpo-
lating subdivision for meshes with arbitrary topology. In Proc.
of SIGGRAPH 96, 189–192.

ZORIN, D., SCHRÖDER, P., AND SWELDENS, W. 1997. Inter-
active multiresolution mesh editing. In Proc. of SIGGRAPH 97,
259–268.

ZORIN, D., SCHRÖDER, P., DEROSE, T., KOBBELT, L., LEVIN,
A., AND SWELDENS, W., 2000. Subdivision for modeling and
animation. SIGGRAPH’00 Course Notes.

50

Mesh Editing based on Discrete Laplace and Poisson Models

Marc Alexa
Faculty of EE & CS

TU Berlin

Abstract

Surface editing operations commonly require geometric details of
the surface to be preserved as much as possible. We argue that
geometric detail is an intrinsic property of a surface and that, con-
sequently, surface editing is best performed by operating over an
intrinsic surface representation. This intrinsic representation could
be derived from differential properties of the mesh, i.e. its Lapla-
cian. The modeling process poses nonzero boundary constraints so
that this idea results in a Poisson model. Different ways of repre-
senting the intrinsic geometry and the boundary constraints result
in alternatives for the properties of the modeling system. In par-
ticular, the Laplacian is not invariant to scaling and rotations. Ei-
ther the intrinsic representation is enhanced to be invariant to (lin-
earized) transformations, or scaling and rotation are computed in
a preprocess and are modeled as boundary constraints. Based on
this representation, useful editing operations can be developed: In-
teractive free-form deformation in a region of interest based on the
transformation of a handle, transfer and mixing of geometric detail
between two surfaces, and transplanting of a partial surface mesh
into another surface. The main computation involved in all opera-
tions is the solution of a sparse linear system, which can be done at
interactive rates. We demonstrate the effectiveness of this approach
in several examples, showing that the editing operations change the
shape while respecting the structural geometric detail.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—curve, surface, solid and object rep-
resentations

1 Introduction

Surfaces in computer graphics are mostly represented in global co-
ordinate systems: explicit representations are based on points, ver-
tices, or nodes that are typically described using absolute Euclidean
coordinates. Implicit representations describe the shape as the level
set of a function defined in Euclidean space. A global coordinate
system is the natural choice for all operations involving other ob-
jects such as rendering, intersection testing and computation, trans-
formations, or CSG modeling. On the other hand, for local surface
modeling, it would be desirable that the representation captures the
local shape (i.e. the intrinsic geometry of the surface) rather than
the absolute position or orientation in Euclidean space.

Manipulating and modifying a surface while preserving the ge-
ometric details is important for various surface editing operations,
including free-form deformations [Sederberg and Parry 1986; Co-
quillart 1990], cut and paste [Ranta et al. 1993; Biermann et al.
2002], fusion [Kanai et al. 1999], morphing [Alexa 2003a], and
others. Note that the absolute position of the vertices in a mesh
is not important for these operations, which calls for an intrinsic
surface representation.

A partially intrinsic surface mesh representation are multi-
resolution decompositions [Forsey and Bartels 1988; Zorin et al.
1997; Kobbelt et al. 1998; Kobbelt et al. 1999; Guskov et al. 1999].
In a multi-resolution mesh, the geometry is encoded as a base mesh
and several levels of refinement. The refinement is typically de-

scribed locally, so that geometric details are mostly captured in a
discrete set of intrinsic coordinates. Using this representation, sev-
eral modeling operations can be performed on an appropriate user-
specified level-of-detail. Note, however, that the locality of multi-
resolution representations is potentially limited: The support (or
extent) of the representation of a single vertex increases from fine
to coarse levels of the hierarchy. Thus, modeling operations are
restricted to a discrete set of regions and levels-of-detail. For exam-
ple, when cutting out a partial mesh for transplanting operations,
the original multi-resolution representation is invalidated because
parts of the base domain and (potentially) other levels of the hierar-
chy are missing.

This approach to encode geometric details is to use differentials
as coordinates for the vertices [Alexa 2003b; Botsch and Kobbelt
2004; Sorkine et al. 2004; Yu et al. 2004]. This provides a fully in-
trinsic representation of the surface mesh, where the reconstruction
of global coordinates from the intrinsic representation always pre-
serves the intrinsic geometry as much as possible given the model-
ing constraints. Using a differential representation for editing oper-
ations has been shown to be quite effective in image domain [Fattal
et al. 2002; Ṕerez et al. 2003]. The image domain has a natural
regular parameterization and resulting inherent definition of a gra-
dient, which allows modeling many editing tasks as a discrete Pois-
son equation. However, this approach cannot be directly applied or
adapted to discrete (as well as continuous) surfaces.

2 The Laplacian representation

Let the meshM be described by a pair(K,V), whereK is a sim-
plicial complex representing the connectivity of vertices, edges,
and faces, andV = {v1, . . . ,vn} describes the geometric positions
of the vertices inR3. We use the following terminology: the
neighborhood ringof a vertex i is the set of adjacent vertices
Ni = { j|(i, j) ∈ K} and thedegree di of this vertex is the num-
ber adjacent edges (or vertices), i.e. the number of elements inNi .
We assume thatdi > 0, i.e. that the mesh is connected.

Instead of using absolute coordinatesV, we would like to de-
scribe the mesh geometry using a set of differentials∆ = {δi}.
Specifically, coordinatei will be represented by its Laplace vec-
tor. There are different ways to define a discretized version of the
Laplace operator for meshes, and each of them has certain advan-
tages. Most of them are based on the one-ring of a vertex

δi = vi −ci j ∑
j∈Ni

v j , ∑
j

ci j = 1, (1)

and differ in the definition of the coefficientsci j . The topological
Laplacian ([Taubin 1995]) simply uses the similar weights for all
neighboring vertices, i.e.ci j = 1/di . In our and others’ experience
the the cotangent weights (e.g. [Meyer et al. 2003]) perform best in
most applications.

The transformation betweenV and∆ can be described in matrix
algebra. LetC = {ci j }, then

∆ = (I −C)V. (2)

The LaplacianL = I −C is invariant under translation, however,
sensitive to linear transformations. Thus,L is expected to have rank

51

(a) (b) (c) (d)

Figure 1: Advanced mesh editing operations using Laplacian coordinates: free-form deformations (a-b), detail transfer (c) and mesh trans-
planting (d). Representing the geometry using the Laplacian coordinates enables preservation of detail.

n−1, which meansV can be recovered from∆ by fixing one vertex
and solving a linear system of equations.

3 Mesh modeling framework

The basic idea of the modeling framework is to satisfy linear mod-
eling constraints (exactly, or in the least squares sense), while pre-
serving differential properties of the original geometry in the least
squares sense [Alexa 2003b; Lipman et al. 2004]. Without addi-
tional linear constraints the deformed geometryV ′ is then defined
by

min
V ′

n

∑
i=1

∥∥∥∥∥δi −

(
v′i −

1
di

∑
j∈Ni

v′j

)∥∥∥∥∥
2

. (3)

If the original surface was a membrane, the necessary constraints
for the minimizer lead toL2V = 0, which has been advocated by
Botsch and Kobbelt [Botsch and Kobbelt 2004] in the context of
modeling smooth surfaces. If, in contrast, the original surface con-
tained some detail, the right-hand side is non-zero and we arrive at
a variant of the discrete Poisson modeling approach of Yu et al. [Yu
et al. 2004].

The basic type of linear modeling constraints is to prescribe the
absolute position of some vertices, i.e.v′i = v̂i . These constraints
are best incorporated by also satisfying them in the least squares
sense, possibly weighted to trade-off between modeling constraints
and the reproduction of original surface geometry.

We found that the easiest way of implementing the approach is
to write the conditions to be satisfied in the least squares sense as a
large rectangular systemAV ′ = b and then solveATAV ′ = ATb.
Prescribing positions for some vertices then simply yields addi-
tional rows of the form

wi‖v′i = v̂i . (4)

Note that in fact these are three rows for each constraint, asv are
column vectors with three elements.

This framework can be extended towards constraints on arbitrary
points on the mesh. Note that each point on the surface is the linear
combination of two or three vertices. A point on an edge between
verticesi and j is defined by one parameter as(1−λ)vi +λv j ,
0≤ λ ≤ 1. Similarly, a point on a triangle is defined by two pa-
rameters. We can put positional constraintsv̂i j on such a point by
adding rows of the form

(1−λ)v′i +λv′j = v̂i j (5)

to the system matrixA.

Furthermore, also differentials could be prescribed. Note thatδi
points roughly in normal direction at vertexi and that its length is
proportional to the mean curvature. This allows us to prescribe a
certain normal direction and/or curvature for a vertex, simply by
adding a row of the form

v′i − ∑
j∈Ni

ci j v′j = δ̂i . (6)

The modeling operation is typically localized on a part of the
mesh. This part of the mesh is selected by the user as the region of
interest (ROI) during the interactive modeling session. The opera-
tions are restricted to this ROI, padded by several layers of anchor
vertices. The anchor vertices yield positional constraintsv′i = v̂i in
the system matrixA, which ensure a gentle transition between the
altered ROI and the fixed part of the mesh.

Based on the constraints formulated so far, local surface detail
is preserved if parts of the surface are translated, but changes with
rotations and scales. There are several ways of dealing with linear
transformations:

• They could be defined and prescribed based on the modeling
operation [Yu et al. 2004].

• They could be deduced from the membrane solution (i.e.
LV ′ = 0) [Lipman et al. 2004].

• They could be implicitly defined by the solution, if the rota-
tional part is linearized [Sorkine et al. 2004].

In any case, we first need to extend the definition of the local intrin-
sic representation to incorporate linear transformations.

4 Incorporating linear transformations

The main idea to account for local linear transformations is to as-
sign each vertexi an individual transformationTi . These transfor-
mation are then applied to the original geometry by a transforming
each local Laplacianδi with Ti . This results in a slightly modified
functional defining the resulting geometryV ′:

min
V ′

n

∑
i=1

∥∥∥∥∥Tiδi −

(
v′i −

1
di

∑
j∈Ni

v′j

)∥∥∥∥∥
2

(7)

Note that in the formulation of this minimization as solving a sys-
temAV′ = b the partTiδi is contained in the right-hand side column
vectorb. This is important because it implies the systemA can be

52

(a) (b) (c)

Figure 2: Deformations of a model (a) with detail that cannot be expressed by height field. The deformation changes the global shape while
respecting the structural detail as much as possible.

solved independent of the transformationsTi to be applied to vertex
i, allowing theTi to be changed during interactive modeling.

The following approaches vary in how the local transformations
Ti are computed.

4.1 Prescribing the transformations

Yu et al. [Yu et al. 2004] let the user specify a few constraint trans-
formations and then interpolate them over the surface. In particular,
the rotational and scaling parts are treated independently, i.e. the
transformation is factored asTi = RiSi , whereRi is the local rotation
andSi is a symmetric matrix containing scale and shear. Initially all
vertices are assumed to be not rotated, scaled or sheared. Modeling
operations might induce local linear transformations.

One could view this (slightly more general as in [Yu et al. 2004])
as a scattered data interpolation problem: In few vertices a (non-
zero) rotation or non-unity scale are given. All vertices should then
be assigned a scale and rotation so that the given constraints are
satisfied and the field of rotations and scales is smooth. In order
to apply well-known techniques only a distance measure for the
vertices is necessary. Yu et al. [Yu et al. 2004] use the topological
distance of vertices in the mesh.

Then, each local rotation and scale are a distance-weighted aver-
age of given transformations. The easiest way to derive the distance
weights would be Shephard’s approach. This definesTi for each
vertex and, thus,V ′. Note that transformations can be changed in-
teractively.

4.2 Transformations from the membrane solution

Lipman et al. [Lipman et al. 2004] compute the rotations from the
membrane solution. They first solve∆V ′ = 0 and then compute
each transformationTi based on comparing the one-rings inV and
V′ of vertexi.

The basic idea for a definition ofTi is to derive it from the trans-
formation ofvi and its neighbors tov′i and its neighbors:

min
Ti

(
‖Tivi −v′i‖2 + ∑

j∈Ni

‖Tiv j −v′j‖2

)
. (8)

This is a quadratic expression, so the minimizer is a linear function
of V ′.

Note that this is not significantly slower than computing the solu-
tion for the initial local identity transformations: The system matrix
A has to be factored once, from the first solution allTi are computed,
b is modified accordingly, and the final positionsV ′ are computed
using back-substitution.

Figure 3: Editing 2D meshes using Laplacian-coordinates fitting.
The red dots denote fixed anchor points and the yellow are the
pulled handle vertices. The original meshes are colored blue.

4.3 Linearized implicit transformations

The main idea of [Sorkine et al. 2004] is to compute an appropri-
ate transformationTi for each vertexi based on the eventual new
configuration of verticesV ′. Thus,Ti(V ′) is a function ofV ′.

Note that in Eq. 7 both theTi and theV ′ are unknown. However,
if the coefficients ofTi are a linear function inV ′, then solving for
V ′ implies findingTi (though not explicitly) since Eq. 7 is still a
quadratic function inV ′. If we defineTi as in Eq. 8, it is a linear
function inV ′, as required.

However, ifTi is unconstrained, the natural minimizer is a mem-
brane solution, and all geometric detail is lost. Thus,Ti needs to be
constrained in a reasonable way. We have found thatTi should in-
clude rotations, isotropic scales, and translations. In particular, we
want to disallow anisotropic scales (or shears), as they would allow
removing the normal component from Laplacian representation.

The transformation should be a linear function in the target con-
figuration but constrained to isotropic scales and rotations. The
class of matrices representing isotropic scales and rotation can be
written asT = sexp(H), whereH is a skew-symmetric matrix. In
3D, skew symmetric matrices emulate a cross product with a vec-
tor, i.e.Hx = h×x. Drawing upon several other properties of 3×3
skew matrices (see Appendix A), one can derive the following rep-
resentation of the exponential above:

sexpH = s(αI +βH + γ hTh) (9)

53

(a) (b) (c)

Figure 4: The editing process. (a) The user selects the region of interest – the upper lip of the dragon, bounded by the belt of stationary
anchors (in red). (b) The chosen handle (enclosed by the yellow sphere) is manipulated by the user: translated and rotated. (c) The editing
result.

(a) (b) (c) (d)

Figure 5: Different handle manipulations. (a) The region of interest (arm), bounded by the belt of stationary anchors, and the handle.
(b) Translation of the handle. (c), (d) Rotation of the handle. Note that the detail is preserved in all the manipulations.

Inspecting the terms we find that onlys, I , andH are linear in the
unknownss andh, while hTh is quadratic1. As a linear approx-
imation of the class of constrained transformations we, therefore,
use

Ti =

 s h1 −h2 tx
−h1 s h3 ty
h2 −h3 s ty
0 0 0 1

 (10)

This matrix is a good linear approximation for rotations with small
angles.

Given the matrixTi as in Eq. 10, we can write down the linear
dependency (cf. Eq. 8) ofTi onV ′ explicitly. Let (si ,hi , t i)T be the
vector of the unknowns inTi , then we wish to minimize

‖Ai(si ,hi , t i)T −bi‖2, (11)

where Ai contains the positions ofvi and its neighbors andbi
contains the position ofv′i and its neighbors. The structure of
(si ,hi , t i)T yields

Ai =

vkx

vky
−vkz

0 1 0 0
vky

−vkx
0 vkz

0 1 0
vkz

0 vkx
−vky

0 0 1
...

 ,k∈ {i}∪Ni ,

(12)

1Figure 3 illustrates editing of a 2D mesh. Note that in 2D the matrices
of classsexp(H) can be completely characterized with the linear expression

Ti =

 a w tx
−w a ty
0 0 1

 .

and

bi =

v′kx

v′ky

v′kz

...

 ,k∈ {i}∪Ni . (13)

The linear least squares problem above is solved by

(si ,hi , t i)T =
(

AT
i Ai

)−1
AT

i bi , (14)

which shows that the coefficients ofTi are linear functions ofbi ,
sinceAi is known from the initial meshV. The entries ofbi are
simply entries ofV ′ so that(si ,hi , t i) and, thus,Ti is a linear func-
tion in V ′, as required.

4.4 Adjusting Ti

In many modeling situations solving for absolute coordinates in the
way explained above is sufficient. However, there are exceptions
that might require adjusting the transformations.

A good way of updating transformations for all three mentioned
approaches is this: The current set of transformations{Ti} is com-
puted fromV andV ′. Then eachTi is inspected, the corresponding
Laplacian coordinateδi is updated appropriately depending on the
effect to be achieved, and the system is solved again. For exam-
ple, if anisotropic scaling has been suppressed but is wanted, the
{δi} are scaled by the inverse of the anisotropic scale implied by
the constraints.

5 Mesh Editing

There are many different tools to manipulate an existing mesh. Per-
haps the simplest form consists of manipulating ahandle, which is a

54

(a) (b) (c)

Figure 6: Detail transfer; The details of the Bunny (a) are trans-
ferred onto the mammal’s leg (b) to yield (c).

set of vertices that can be moved, rotated and scaled by the user. The
manipulation of the handle is propagated to the shape such that the
modification is intuitive and resembles the outcome of manipulating
an object made of some physical soft material. This can be gener-
alized to a free-form deformation tool which transforms a small set
of control points defining a complex of possibly weighted handles,
enabling mimicking other modeling metaphors (see e.g., [Bendels
and Klein 2003] and the references therein).

The editing interaction is comprised of the following stages:
First, the user defines the region of interest (ROI) for editing. Next,
the handle is defined. In addition, the user can optionally define
the amount of “padding” of the ROI bystationary anchors. These
stationary anchors form abelt that supports the transition between
the ROI and the untouched part of the mesh. Then, the user manip-
ulates the handle, and the surface is reconstructed with respect to
the relocation of the handle and displayed.

The submesh of the ROI is the only part considered during the
editing process. The positions of the handle vertices and the station-
ary anchors constrain the reconstruction and hence the shape of the
resulting surface. The handle is the means of user control, therefore
its constraints are constantly updated. The unconstrained vertices
of the submesh are repeatedly reconstructed to follow the user in-
teraction. The stationary anchors are responsible for the transition
from the ROI to the fixed untouched part of the mesh, resulting in a
soft transition between the submesh and stationary part of the mesh.
Selecting the amount of these padding anchor vertices depends on
the user’s requirements, as mentioned above. We have observed in
all our experiments that setting the radius of the “padding ring” to
be up to 10% of the ROI radius gives satisfying results.

The reconstruction of the submesh requires solving linear least-
squares system as described in Section 2. The method of building
the system matrix (Eq. 14), including the computation of a sparse
factorization, is relatively slow, but constructed only once when the
ROI is selected. The user interaction with the handle requires solely
updating the positions of the handle vertices in the right-hand-side
vector, and solve.

Figures 4 and 5 illustrate the editing process. Note that the de-
tails on the surface are preserved, as one would intuitively expect.
Figure 2 demonstrates deformation of a model with large extruding
features which cannot be represented by a height field.

6 Detail Transfer

Detail transfer is the process of peeling the coating of asourcesur-
face and transferring it onto atarget surface. See Figure 6 for an
example of such operation.

Let Sbe the source surface from which we would like to extract
the details, and let̃S be a smooth version ofS. The surfacẽS is a

(a) (b) (c) (d)

Figure 7: The details of theMax Planckare transferred onto the
Mannequin. Different levels of smoothing were applied to theMax
Planckmodel to peel the details, yielding the results in (c) and (d).

low-frequency surface associated withS, which can be generated by
filtering [Desbrun et al. 1999; Fleishman et al. 2003]. The amount
of smoothing is a user-defined parameter, and it depends on the
range of detail that the user wishes to transfer.

We encode the details of a surface based on the Laplacian repre-
sentation. Letδi andδ̃i be the Laplacian coordinates of the vertex
i in S and S̃, respectively. We defineξi to be the encoding of the
detail at vertexi defined by

ξi = δi − δ̃i . (15)

The values ofξ j encode the details ofS, since given the bare surface
S̃we can recover the original details simply by addingξ j to δ̃i and
reconstructingSwith the inverse Laplacian transformL−1. That is,

S= L−1(δ̃ +ξ) . (16)

In this case of a detail transfer ofS onto itself, S is faithfully
reconstructed. However, in general, instead of coatingS̃with ξ , we
would like to add the detailsξ onto an arbitrary surfaceU . If the
target surfaceU is not smooth, it can be smoothed first, and then the
detail transfer is applied. In the following we assume that the target
surfaceU is smooth. Before we move on, we should note that the
detail transfer fromSonto S̃ is simple, since the neighborhoods of
the corresponding verticesi have the sameorientation. We define
the orientation of a vertexi in a surfaceS by the normal direction
of i over S̃. Loosely speaking, the orientation of a point reflects
the general orientation of its neighborhood, without respecting the
high-frequencies of the surface.

When applying a detail transfer between two surfaces, the de-
tail ξ should be first aligned, or rotated with respect to the target.
This compensates for the different local surface orientations of cor-
responding points in the source and target surfaces.

The following is an important property of the Laplacian coordi-
nates:

R·L−1(δ j) = L−1(R·δ j) , (17)

whereL−1 is the transformation from Laplacian coordinates to ab-
solute coordinates, andR a global rotation applied to the entire
mesh. The mapping between corresponding points inSandU de-
fines different local orientations across the surfaces. Thus, our key
idea is to use the above property of the Laplacian coordinates lo-
cally, assuming that locally the rotations are similar.

Assume that the source surfaceSand the target surfaceU share
the same connectivity, but different geometry, and that the corre-
spondence between their vertices is given. In the following we gen-
eralize this to arbitrary surfaces.

The local rotationRi at each vertexi in S andU is taken to be
the local rotation between their corresponding orientations. Letns
andnu be the normals associated with the orientations ofi in Sand

55

(a) (b) (c) (d)

Figure 8: Detail transfer. The orientation of details (a) are defined by the normal at the corresponding vertex in the low frequency surface in
(b). The transferred detail vector needs to be rotated to match the orientation of the corresponding point in (c) to reconstruct (d).

U , respectively. We define the rotation operatorRi by setting the
axis of rotation asns×nu and requiringnu = Ri(ns). Denote the
rotated detail encoding of vertexi by ξ ′

i = Ri(ξi). Having all theRi
associated with theξi , the detail transfer fromSontoU is expressed
as follows:

U ′ = L−1(∆+ξ
′) (18)

where∆ denotes the Laplacian coordinates of the vertices ofU .
Now the new surfaceU ′ has the details ofU .

(a) (b) (c)

Figure 9: Transferring the details of theMannequinonto the face
of theBunny. (a) The source surfaceS. It is significantly smoothed
to peel the details. (b) The smoothed surfaceS̃. (c) The result of
detail transfer onto theBunny.

6.1 Mapping and Resampling

So far we assumed that the source and target meshes (S andU)
share the same connectivity, and hence the correspondence is read-
ily given. However, detail transfer between arbitrary surfaces is
more involved. To sample the Laplacian coordinates, we need to
define a mapping between the two surfaces.

This mapping is established by parameterizing the meshes over
a common domain. Both patches are assumed to be homeomorphic
to a disk, so we may chose either the unit circle or the unit square as
common domain. We apply the mean-value coordinates parameter-
ization [Floater 2003], as it efficiently produces a quasi-conformal
mapping, which is guaranteed to be valid for convex domains. We
fix the boundary conditions for the parameterization such that a cor-
respondence between the source and target surfaces is achieved, i.e.
we identify corresponding boundary vertices and fix them at the
same domain points. In practice, this is a single vertex inSand in
U that constrains rotation for the unit circle domain, or four bound-
ary vertices for the unit square domain.

Some applications require a more careful correspondence than
what can be achieved from choosing boundary conditions. For ex-
ample, the mapping between two faces (see Figure 7) should link

(a) (b)

Figure 11: Transplanting ofArmadillo’s details onto theBunny
back with a soft transition (a) and a sharp transition (b) between
the two types of details. The size of the transition area in which the
Laplacians are blended is large in (a) and small in (b).

relevant details like facial features such as the brow wrinkles of
the Max Planck. In this case the user provides a few additional
(inner) point-to-point constraints which define a warp of the mean-
value parameterization. In our implementation we use a radial basis
function elastic warp, but any reasonable warping function can do.

In general, a vertexi ∈U is mapped to some arbitrary point in-
side a triangleτ ∈ S. We experimented with several methods for
sampling the Laplacian for a vertex. The best results are obtained
by first mapping the 1-ring ofi ontoS using the parameterization,
and then computing the Laplacian from this mapped 1-ring. Note
that this approach assumes a locally similar distortion in the map-
ping. This is usually the case for the detail transfer; we used the
1-ring sampling in all the respective examples. We obtain simi-
lar results by linear interpolation of the three Laplacian coordinates
sampled at the vertices of the triangleτ. While this approach leads
to some more “blurring” compared to the first one, it is even simpler
and does not suffer from extremely different parametric distortion.
In addition, no special treatment is required at the boundary of the
domain in case the patch was initially cut to be homeomorphic to a
disk.

After the mapping betweenU and S has been established and
the Laplacians have been sampled, the detail transfer proceeds as
explained before. Note that now the correspondingξi is the differ-
ence between thesampledLaplacian coordinates inS and S̃. See
the examples in Figures 6, 7 and 9.

6.2 Mixing Details

Given two meshes with the same connectivity and different details,
the above transfer mechanism can be applied on a third target mesh

56

(a) (b) (c)

Figure 10: Mixing details using Laplacian coordinates. The Laplacian coordinates of surfaces in (a) and (b) are linearly blended in the middle
to yield the shape in (c).

from the two sources. Figure 10 illustrates the effect of blending
the details. This example emphasizes the mixing of details, as the
details of the two source meshes differ in the smoothness, form
and orientation. Note that the details are gradually mixed and the
global shape of the target mesh is deformed respectively. By adding
anchor points over the target, its shape can be further deformed.
Figure 11 shows the application of this mechanism to transplant
Armadillo’s details onto theBunny’s back with a soft transition. In
the next section we further discuss this transplanting operation.

7 Transplanting surface patches

In the previous sections we showed how the Laplacian coordinates
allow to transfer the details of surface onto another and how to grad-
ually mix details of two surfaces. These techniques are refined to al-
low a seamless transplanting of one shape onto another. The trans-
planting operation consists of two apparently independent classes
of operations: topological and geometrical. The topological op-
eration creates one consistent triangulation from the connectivities
of the two submeshes. The geometrical operation creates a grad-
ual change of the geometrical structure of one shape into the other.
The latter operation is based on the Laplacian coordinates and the
reconstruction mechanism.

Let Sdenote the mesh that is transplanted onto a surfaceU . See
Figure 12, where the right wing (S) of theFelineis transplanted onto
theBunny(U). The transplanting requires the user to first register
the two parts in world coordinates. This defines the desired location
and orientation of the transplanted shape, as well as its scale.

The user selects a regionU◦ ⊂ U onto whichS will be trans-
planted. In the rest of the process we only work withU◦ and do not
alter the rest ofU . U◦ is cut such that the remaining boundary is
homeomorphic to the boundary ofS. We simply project the bound-
ary ofSontoU◦. The two boundary loops are zipped, thus creating
the connectivity of the resulting meshD (Figure 12(a)).

The remaining transplanting algorithm is similar to detail trans-
fer and mixing. The user specifies a region of interest onD, vertices
outside the ROI remain fixed.

Next, the respectivetransitional regions S′ ⊂ SandU ′ ⊂U◦ are
selected starting from the cut boundaries onSandU◦. SinceS′ ⊂D,
this implicitly defines the transitional regionD′ ⊂ D along with a
trivial mapping between vertices ofS′ andD′.

For sampling, we require an additional correspondence between
S′ andU ′, hence we parameterize both meshes over the unit square.
The user guides this construction by cuttingS′ andU ′ such that
both meshes are homeomorphic to a disk. The cuts enable the map-
ping to the common domain, and in addition they serve as intuitive
means to align the mappings such that there is a correspondence
between the patches. In our experiments no further warping was
necessary to improve the correspondence (cf. Section 6.1).

Once the transitional regions and the mappings are defined, the
transplanting procedure is ready to sample the Laplacian coordi-
nates ofS′ andU ′ over D′. The corresponding Laplacian coor-
dinates are linearly blended with weights defined by their relative
position in the unit square parameter domain. More precisely, if

v ∈ [0,1] defines the coordinate along the “height” axis (the blue
and red lines in Figure 12(b), then the weights arev and(1− v),
respectively. Since the length distortion of the maps may signifi-
cantly differ, we linearly interpolate the Laplacian coordinates for
sampling (cf. Section 6.1). The remainder of the ROI is sampled
overD, and the reconstruction respects the belt of anchors which is
placed to pad the boundaries of the ROI. Figures 12(c),(d) show the
result.

8 Implementation details

All the techniques presented in this paper are implemented and
tested on a Pentium 4 2.0 GHz computer. The main computational
core of the surface reconstruction algorithm is solving a sparse lin-
ear least-squares problem. We use a direct solver which first com-
putes a sparse triangular factorization of the normal equations and
then finds the minimizer by back-substitution. As mentioned in
Section 5, constructing the matrix of the least-squares system and
factorizing it takes the bulk of the computation time. This might
seem as a heavy operation for such an application as interactive
mesh editing; however, it is done only once per ROI selection. The
solve by back-substitution is quite fast and enables to reconstruct
the surface interactively, following the user’s manipulations of the
handle. It should be noted that the system is comprised only of the
vertices that fall into the ROI; thus the complexity is not directly
dependent on the size of the entire mesh, but rather on the size of
the ROI. We experimented with various ROIs of sizes in the or-
der of tens of thousands of vertices. The “intermediate preprocess”
times observed were a few seconds, while the actual editing pro-
cess runs at interactive framerates. Some short editing sessions are
demonstrated in the accompanying video.

9 Conclusions

Intrinsic geometry representation for meshes fosters several local
surface editing operations. Geometry is essentially encoded using
differential properties of the surface, so that the local shape (or, sur-
face detail) is preserved as much as possible given the constraints
posed by the user. We show how to use this representation for inter-
active free-form deformations, detail transfer or mixing, and trans-
planting partial surface meshes.

It is interesting to compare the Laplacian-based approach to
multi-resolution approaches: Because each vertex is represented in-
dividually as a Laplacian coordinate, the user can freely choose the
editing region and model arbitrary boundary constraints, however,
computing absolute coordinates requires the solution of a linear sys-
tem. On the other hand, the non-local bases in multi-resolution
representations limit the choice of the editing region and boundary
constraints, but absolute coordinates are computed much simpler
and faster by summing displacements through the hierarchy. Addi-
tionally, we would like to mention that we have found the Laplacian
approach to be easier to implement and less brittle in practice.

57

(a) (b) (c) (d)

Figure 12: Transplanting ofFeline’s wings onto theBunny. (a) After cutting the parts and fixing the desired pose, the zipping (in green)
defines the target connectivityD. The transitional regionD′ is marked red. Additional cut inD′ (in yellow) enables mapping onto a square.
(b) D′ is sampled over the respective regionsU ′ ⊂U◦ (U◦ is the cut part of theBunny’s back) andS′ (the bottom of the wing). The texture
with uv-isolines visualizes the mapping over the unit square. The cut (in yellow) aligns the two maps. (c) The result of reconstruction. The
ROI is padded by a belt of anchors (in red). Note the change of the zipping seam triangles (green) and the details within the transition region.
(d) The flyingBunny(see also Figure 1(d)).

In general, modeling geometry should be coupled to modeling
other surface properties, such as textures. The machinery of dis-
crete Poisson equations has already shown to be effective for im-
age editing, so that editing textured surface should probably be per-
formed on a combined differential geometry/texture representation.

Acknowledgment

Models are courtesy of Stanford University and Max-Planck-
Institut für Informatik.

References

ALEXA , M. 2003. Differential coordinates for local mesh morphing and
deformation.The Visual Computer 19, 2, 105–114.

ALEXA , M. 2003. Differential coordinates for local mesh morphing and
deformation.The Visual Computer 19, 2, 105–114.

BENDELS, G. H., AND KLEIN , R. 2003. Mesh forging: editing of 3d-
meshes using implicitly defined occluders. InProceedings of the Euro-
graphics/ACM SIGGRAPH Symposium on Geometry Processing, 207–
217.

BIERMANN , H., MARTIN , I., BERNARDINI, F., AND ZORIN, D. 2002.
Cut-and-paste editing of multiresolution surfaces. InProceedings of
the 29th annual conference on Computer graphics and interactive tech-
niques, 312–321.

BOTSCH, M., AND KOBBELT, L. 2004. An intuitive framework for real-
time freeform modeling.ACM Trans. Graph. 23, 3, 630–634.

COQUILLART, S. 1990. Extended free-form deformation: A sculpturing
tool for 3D geometric modeling. InProceedings of SIGGRAPH 90, 187–
196.

DESBRUN, M., MEYER, M., SCHRÖDER, P., AND BARR, A. H. 1999.
Implicit fairing of irregular meshes using diffusion and curvature flow.
In Proceedings of ACM SIGGRAPH 99, 317–324.

FATTAL , R., LISCHINSKI, D., AND WERMAN, M. 2002. Gradient domain
high dynamic range compression. InProceedings of ACM SIGGRAPH
2002, 249–256.

FLEISHMAN , S., DRORI, I., AND COHEN-OR, D. 2003. Bilateral mesh
denoising. InProceedings of ACM SIGGRAPH 2003, 950–953.

FLOATER, M. S. 2003. Mean-value coordinates.Computer Aided Geomet-
ric Design 20, 19–27.

FORSEY, D., AND BARTELS, R. 1988. Hierarchical b-spline refinement.
In Proceedings of ACM SIGGRAPH 88, 205–212.

GUSKOV, I., SWELDENS, W., AND SCHRÖDER, P. 1999. Multiresolution
signal processing for meshes. InProceedings of ACM SIGGRAPH 99,
325–334.

KANAI , T., SUZUKI , H., MITANI , J.,AND K IMURA , F. 1999. Interactive
mesh fusion based on local 3D metamorphosis. InGraphics Interface
’99, 148–156.

KOBBELT, L., CAMPAGNA , S., VORSATZ, J., AND SEIDEL, H.-P. 1998.
Interactive multi-resolution modeling on arbitrary meshes. InProceed-
ings of ACM SIGGRAPH 98, 105–114.

KOBBELT, L., VORSATZ, J., AND SEIDEL, H.-P. 1999. Multiresolution
hierarchies on unstructured triangle meshes.Computational Geometry:
Theory and Applications 14, 5–24.

L IPMAN , Y., SORKINE, O., COHEN-OR, D., AND LEVIN , D. 2004. Dif-
ferential coordinates for interactive mesh editing. InInternational Con-
ference on Shape Modeling and Applications 2004 (SMI’04), 181–190.

MEYER, M., DESBRUN, M., SCHRDER, P.,AND BARR, A. H. 2003. Dis-
crete differential-geometry operators for triangulated 2-manifolds.Visu-
alization and Mathematics III, pages 35–57.

PÉREZ, P., GANGNET, M., AND BLAKE , A. 2003. Poisson image editing.
In Proceedings of ACM SIGGRAPH 2003, 313–318.

RANTA , M., INUI , M., K IMURA , F., AND M ÄNTYL Ä , M. 1993. Cut and
paste based modeling with boundary features. InSMA ’93: Proceedings
of the Second Symposium on Solid Modeling and Applications, 303–312.

SEDERBERG, T. W., AND PARRY, S. R. 1986. Free-form deformation of
solid geometric models. InProceedings of SIGGRAPH 86, 151–160.

SORKINE, O., LIPMAN , Y., COHEN-OR, D., ALEXA , M., RÖSSL, C.,
AND SEIDEL, H.-P. 2004. Laplacian surface editing. InProceedings of
the Eurographics/ACM SIGGRAPH Symposium on Geometry process-
ing, Eurographics Association, 179–188.

TAUBIN , G. 1995. A signal processing approach to fair surface design. In
Proceedings of ACM SIGGRAPH 95, 351–358.

YU, Y., ZHOU, K., XU, D., SHI , X., BAO, H., GUO, B., AND SHUM , H.-
Y. 2004. Mesh editing with poisson-based gradient field manipulation.
ACM Trans. Graph. 23, 3, 644–651.

ZORIN, D., SCHRDER, P., AND SWELDENS, W. 1997. Interactive mul-
tiresolution mesh editing. InProceedings of ACM SIGGRAPH 97, 259–
268.

58

A Exponential of a 3 ×3 skew symmetric
matrix

Let h ∈ R3 be a vector andH ∈ R3×3 be a skew symmetric matrix
so thatHx = h×x,∀x∈R3. We are interested in expressing the ex-
ponential ofH in terms of the coefficients ofH, i.e. the elements of
h. The matrix exponential is computed using the series expansion

expH = I +
1
1!

H +
1
2!

H2 +
1
3!

H3 + . . .

The powers of skew symmetric matrices in three dimensions have
particularly simple forms. For the square we find

H2 =

−h2
2−h2

3 h1h2 h1h3
h1h2 −h2

1−h2
3 h2h3

h1h3 h2h3 −h2
1−h2

2

= hhT −hTh I

and using this expression (together with the simple fact that
H h = 0) it follows by induction that

H2n = (−hTh)n−1hhT +(−hTh)n I

and
H2n−1 = (−hTh)n−1H

for n∈ N. Thus, all powers ofH can be expressed as linear combi-
nations ofI , H, andhhT , and, therefore,

expH = αI +βH + γhhT

for appropriate factorsα,β ,γ.

B Implementation Details

For ease of re-implementation, we explicitly give the rows of the
basic system matrixA. The main complication results from the ro-
tations, which are linearized and computed from the displacements
of one-rings.

We focus on one vertexv0 = (v0x,v0y,v0z) and its Laplacian
δ0 = (δ0x,δ0y,δ0z), yielding three rows in the system matrix. The
transformationT adjustingδ0 minimizes the squared distances be-
tween corresponding verticesV = (v1,v2, . . .) in the one-ring ofv:

T =

 s −h3 h2
h3 s −h1
−h2 h1 s

 (19)

The coefficients are linear expression in the displaced coordinates
V′ (see [Sorkine et al. 2004] for details on how to derive the coeffi-
cients)

s= ∑
i

sixv
′
ix +siyv

′
iy +sizv

′
iz

= sxv′x +syv′y +szv′z,
(20)

where the abbreviationsv′{x,y,z} are the rows ofV′. Similar com-
putations lead to the linear expressions forh1,h2,h3 and coefficient
vectorsh.

Now we can plug these expressions into the matrixT and multi-
ply with δ0 to find

Tδ0 =

 ∑k∈{x,y,z}
(
δ0xsk−δ0yh3k +δ0zh2k)v

′
k

)
∑k∈{x,y,z}

(
δ0xh3k +δ0ysk−δ0zh1k)v

′
k

)
∑k∈{x,y,z}

(
−δ0xh2k +δ0yh1k +δ0zsk)v′k

)
 (21)

The constraintTδ0 = δ ′
0 = v′0−∑i wiv′i results in three rows of the

systemAV = b of the form

∑
k∈{x,y,z}

(
δ0xsk−δ0yh3k +δ0zh2k)v

′
k

)
−v′0x

(1,w1,w2, . . .) = 0

∑
k∈{x,y,z}

(
δ0xsk−δ0yh3k +δ0zh2k)v

′
k

)
−v′0y

(1,w1,w2, . . .) = 0

∑
k∈{x,y,z}

(
δ0xsk−δ0yh3k +δ0zh2k)v

′
k

)
−v′0z

(1,w1,w2, . . .) = 0

(22)

or explicitly for, e.g.,x:

v′x
(
(1,w1,w2, . . .)−δ0xsx−δ0yh3x +δ0zh2x

)
+

v′y
(
δ0xsy−δ0yh3y +δ0zh2y

)
+

v′z
(
δ0xsz−δ0yh3z +δ0zh2z

)
= 0.

(23)

We see that the basic system matrix essentially contains three block
copies of the Laplace matrix on the main diagonal, one for each
coordinate direction. The additional coefficients in the off-diagonal
blocks link the coordinate directions to accommodate rotations.

59

1. Introduction
Distance fields provide an implicit representation of shape that
has advantages in many application areas; in this overview, we
focus on their use in digital design. Distance fields have been used
in Computer Aided Design since the 1970’s (e.g., for computing
offset surfaces and for generating rounds and filets). More
recently, distance fields have been used for freeform design where
their dual nature of providing both a volumetric representation
and a high-quality surface representation provides a medium that
has some of the properties of real clay. Modern computer systems
coupled with efficient representations and methods for processing
distance fields have made it possible to use distance fields in
interactive design systems. This overview reviews previous work
in distance fields, discusses the properties and advantages of
distance fields that make them suitable for digital design, and
describes Adaptively Sampled Distance Fields (ADFs), a distance
field representation capable of representing detailed, high quality,
and expressive shapes. ADFs are both efficient to process and
have a relatively small memory footprint.

2. Distance Fields
An object’s distance field specifies, for any point in space, the
distance from that point to the boundary of the object. The
distance can be signed to distinguish between the inside and
outside of an object (see Figure 1a). Distance fields are a specific
example of implicit functions, which have a long history of use
and study (e.g., see [Bloomenthal 1997]). A distance field can be
represented by a scalar function dist(x) which maps x ∈ ℜn onto
ℜ. Typically, the boundary Ω of an object represented by a
distance field is located at the zero-valued iso-surface of the
distance function, i.e., Ω is the set of all points where dist(x) = 0.

The general form of a distance function is dist(x) = Norm(x –
S(x)), where Norm(u) is a metric that decreases monotonically
with ||u|| and S(x) is a point on the boundary Ω. A minimum
distance function is such that S(x) = s*, where s* is on Ω and
|Norm(s*)| ≤ |Norm(s)| ∀ s ∈ Ω. Such general forms of the
distance function have uses in various applications (e.g., distance
fields with non-vanishing gradients are used in Computer Aided
Design and Manufacturing (CAD/CAM) by [Biswas and Shapiro
2004]), but Euclidean distance (i.e., dist(x) = ±||x – s*||) is
frequently used because of its utility in a number of applications
(e.g., collision detection and surface offsetting).

2.1 Properties of Distance Fields
Distance fields have a number of useful properties. Unlike
boundary representations, a distance field representing an object is
defined everywhere in space and not just on the object’s surface.
With a distance field representation, it is trivial to determine
whether a point is inside, outside, or on the boundary of the
represented shape; the distance function is simply evaluated at a
query point and compared to the value of the iso-surface
representing the boundary. The gradient of the distance field (i.e.,
(δdist(x)/δx, δdist(x)/δy, δdist(x)/δz) in 3D) yields the surface
normal if the point x lies on the boundary Ω and the direction to

the closest point on the surface for points off of the boundary Ω.
Euclidean distance fields are C0 continuous everywhere in

space and C1 continuous except at boundaries of Voronoi regions
(see Figure 2). Discontinuities in the gradient occur near sharp
corners and along the medial axis of the shape and can be avoided
1) near the boundary Ω by filtering the boundary representation to
avoid sharp corners (e.g., see [Sramek and Kaufman, 1999]) or 2)
throughout the field by using alternatives to the Euclidean
distance function (e.g., see [Biswas and Shapiro 2004]).

2.2 Operations on Distance Fields
Distance fields are particularly useful in design because they
make it fast and simple to combine preexisting shapes using
Boolean operations such as unioning, differencing, and
intersection (see Figure 3). Such Boolean operations are used in
Constructive Solid Geometry (CSG) to combine primitive solids
such as spheres, cylinders, and rectangular boxes to form complex
shapes. Boolean operations are often used in volumetric sculpting
systems because they can be used to add or subtract material to
the surface of an object along the swept path of a virtual sculpting
tool.

When objects are represented as distance fields, Boolean

Designing with Distance Fields

 Sarah F. Frisken Ronald N. Perry
 Tufts University MERL
 frisken@cs.tufts.edu perry@merl.com

Figure 2. a) The signed 2D distance field of this letter ‘D’ is C0

continuous everywhere and b) C1 continuous everywhere except
on the boundaries of Voronoi regions.

a) b)

a) b)

Outside

Boundary

Inside

Figure 1. a) A 2D shape and b) its 2D distance field. The shape’s
distance field represents its boundary, its interior (tinted brown
here for illustration) and the space in which it sits.

60

operations can be performed using simple min() and max()
operators (see Table 1). Although the resultant fields are not
strictly Euclidean (in particular, the combined field near sharp
corners is non-Euclidean), the fields are often a reasonable
approximation to the true Euclidean distance field close to the
object boundary.

Operation
Name

Symbolic
Representation

Combined Distance

Intersection dist(A ∩ B) min(dist(A), dist(B))
Union dist(A ∪ B) max(dist(A), dist(B))
Difference dist(A – B) min(dist(A), –dist(B))

Table 1. Boolean operations can be performed on objects
represented by distance fields using simple min() max() operators.
The functions listed in this table assume a signed distance field
with the object surface lying at the zero-valued iso-surface and a
sign convention that uses positive distances for points inside the
shape and negative distances for points outside of the shape.

2.3 Advantages of Distance Fields
Distance field have several advantages over boundary
representations for representing and rendering shapes. First,
distance fields represent more than just the boundary of the shape;
they also provide a representation of the object’s interior and the
space in which the object sits. This additional information is what
makes it easy to perform CSG on distance fields and also provides
important information for physical simulation (e.g., it can be used
to detect collisions and, if a collision occurs, to determine
penetration depth and the direction from the intersecting point to
the closest surface point).

Second, distance fields represent more than just a single
boundary. By changing the iso-surface value, we can obtain an
infinite number of offset surfaces. In contrast to boundary
representations, surface offsetting with distance fields handles
changes of topology robustly. This feature plays an important role
in the utility and success of Level Set approaches (e.g., see Osher
and Fedkiw 2002, and Sethian 1996) which use distance functions
to represent evolving boundaries.

3. Applications of Distance Fields
Distance fields have been used in many fields including
CAD/CAM, medical imaging and surgical simulation, modeling
deformation and animating deformable models, level set methods,

simulating fluid dynamics for modeling smoke and fluids, scan
conversion or ‘voxelization’, reconstructing shape from range
data, and robotics. See [Frisken and Perry, 2002] and [Jones et al.,
2006] for summaries of the use of distance fields in computer
graphics and computer vision.

3.1 Distance Fields in Digital Design
Early work using distance fields for digital design was done in
CAD/CAM for offsetting (e.g., Ricci 1973 and Breen 1991),
tolerancing (e.g., Requicha 1983), and generating rounds and
filets (Rockwood 1989). Freeform design using distance fields has
been done in the context of implicit surface modeling (e.g.,
Bloomenthal and Wyville 1990, Cani Gascuel 1993) and volume
graphics (e.g., Galyean and Hughes 1991, Wang and Kaufman
1995, and Avila and Sobierajski 1996). These early freeform
modeling systems typically produced ‘blobby’ models, i.e.,
organic models without sharp edges, corners, or other fine detail,
thereby limiting the utility of such systems. More powerful
computers coupled with the use of spatial data structures for
reducing the memory requirements of sampled distance fields
have recently enabled the development of systems that can
produce higher resolution models (e.g., Sensable Technologies’
Freeform modeling system, Baerentzen 1998, Perry and Frisken
2001, Museth et al. 2002, and Blanch et al. 2004).

4. Representing Distance Fields
4.1 Implicit vs. Sampled Representations
The distance field of simple geometric shapes such as spheres,
rectangular boxes, conics, and ellipsoids can be represented
implicitly. For example, the distance field of a sphere centered at
the origin can be written using the implicit expression
distSphere(x,y,z) = R – (x2 + y2 + z2)½. Processing implicit shape
representations (e.g., for rendering, modeling via CSG operations,
or performing collision tests) requires evaluating the implicit
expression at query points as needed.

Implicit functions for more complex shapes are often very
difficult to specify and/or too costly to evaluate, thus making an
implicit representation of an object’s distance field impractical.
For this reason, distance fields are often represented as sampled
volumes, where each sample in the volume measures the distance
from the corresponding sample point to the object. The distance
from an arbitrary point to the object is reconstructed from local
sampled values using an interpolation function. For example, in a
regularly sampled rectilinear volume, tri-linear interpolation is
often used to reconstruct the distance at an arbitrary point from
the 8 nearest sampled values of the volume. Figure 4 illustrates

A B A B A B

Figure 3. Distance fields can be trivially combined and edited using Boolean operations such as union, difference, and intersection.
These Boolean operations can be expressed as simple min() and max() operators.

Union: A ∪ B
dist(A ∪ B) = max(dist(A), dist(B))

Difference: A – B
dist(A – B) = min(dist(A), –dist(B))

Intersection: A ∩ B
dist(A ∩ B) = min(dist(A), dist(B))

61

sampled distances to a 2D shape.
As long as the maximum curvature of an object is not too

high, a sampled distance field can provide a reasonably good
representation of the object’s surface. As was shown in [Gibson
1998a], the surface of a sphere can be represented with a very
small volume of samples, especially when both the distance and
the gradient of the distance field are stored for each sample point
(see Figure 5). However, for detailed models, the distance field
must be sampled at high enough rates to avoid aliasing during
reconstruction and rendering. Large models that have even small
regions with high detail have very high memory requirements
and/or limited resolution when the distance field is stored in a
regularly sampled volume. Because generating the sampled
representation requires evaluating the distance function at every
sample point in the volume, regularly sampled volumes are also
slow to generate and process.

4.2 Improving Efficiency
There has been a significant amount of effort made to speed up
the generation of regularly sampled distance fields. Many of these
approaches are summarized in [Jones et al. 2006]. Researchers at
the University of North Carolina [Hoff et al. 1999, Hoff et al.
2001, and Sud et al. 2004] have used graphics hardware to speed
up the distance computation in 2D and later in 3D. Others reduce
processing by restricting evaluation of the distance field to a
‘shell’ or ‘narrow band’ around the object surface [Curless 1996,
Jones 1996, Desbrun and Cani-Gascuel 1998, and Whitaker
1998]. In some cases, accurate distance values evaluated in the
shell are then propagated to voxels outside the shell using fast
distance transforms [Jones and Satherley 2001, Zhao et al. 2001]
or fast marching methods from level sets [Kimmel and Sethian
1996, Breen et al. 1998, Whitaker 1998, and Fisher 2001].
[Szeliski and Lavalle 1996, Wheeler 1998, and Strain 1999]
evaluate distance values at cell vertices of a classic or ‘3-color’
octree (i.e., an octree where all cells containing the surface are
subdivided to the maximum octree level) to reduce the number of
distance evaluations over regular sampling.

4.3 Adaptively Sampled Distance Fields
More recently, it was observed that substantial savings both in
memory requirements and in the number of distance evaluations
required to represent an object could be made by adaptively
sampling the object’s distance field according to the local
complexity of the distance field rather than whether or not a
surface of the object was present. [Gibson 1998a] noted that the
distance field near planar surfaces can be reconstructed exactly
from a small number of sample points using trilinear
interpolation. This observation led to Adaptively Sampled
Distance Fields (ADFs) [Frisken et al. 2000], which use detail-
directed sampling, i.e., high sampling rates where there are high
frequencies in the distance field and low sampling rates where the
distance field varies smoothly. As illustrated in Figure 6, this
approach results in a substantial reduction in the number of
distance evaluations and significantly fewer stored distance values
than would be required by a 3-color quadtree. ADFs are a
practical representation of distance fields that provide high quality
surfaces, efficient processing, and a reasonable memory footprint.
[Perry and Frisken 2001] demonstrate the practical utility of

Figure 4. a) A 2D shape and 3 signed sampled distance values. b)
A regular sampling of the distance field.

a) b)

-30

10
-20

a) b)

c) d)

Figure 5. The surface of a sphere is well represented by a sampled
distance field even at very low resolution. a) radius = 30 sample
points, b) radius = 3 sample points, c) radius = 2 sample points,
d) radius = 1.5 sample points.

Figure 6. Quadtree representations for storing a sampled distance
field of a 2D shape. a) is a boundary-limited (i.e., 3-color)
quadtree in which cells are subdivided to their maximum level if
they contain the shape’s boundary. a) is an ADF with a
biquadratic reconstruction function in which cells are subdivided
according to local detail in the distance field. The ADF requires
significantly fewer distance samples to achieve the same
representation quality.

a) b)

62

ADFs in a 3D sculpting system that provides real time volume
editing and interactive ray casting on a desktop PC (Pentium IV
processor) for volumetric models that have a resolution equivalent
to a 2048x2048x2048 volume.

While there are various instantiations of ADFs (see Figure 7
for some examples) [Frisken et al. 2002], this paper is primarily
focused on quadtree and octree-based ADFs which subdivide the
space enclosing an object into rectilinear cells whose size depends
on the local detail of the distance field (see Figure 6b). A set of
sampled distance values are stored for each leaf cell of the
quadtree or octree. Distances and gradients of the distance field at
arbitrary points within a cell can be reconstructed by interpolating
the sampled values stored for the cell (and possibly neighboring
cells). We currently use trilinear interpolation for reconstructing
3D distance fields from distances sampled at the eight corners of
3D ADF leaf cells and biquadratic interpolation for reconstructing
2D distance fields from nine sample points stored in 2D ADF leaf
cells. Note that ADFs essentially subdivide space into small
regions over which we have a local implicit function that is
defined by the sample points associated with that region and the
interpolation function. This subdivision of the globally implicit
distance field into spatially-limited local implicit fields provides
efficient querying and processing of the field.

Recently, we have implemented an improved 2D ADF
representation that uses a biquadratic interpolation function for
better quality and more efficient representation of curved edges
(see Figures 6b and 8a) and specialized ADF cells that provide a
compact and exact representation of the distance field near
corners and thin sections of a 2D shape (see Figure 8b) [Perry and
Frisken 2003, Frisken and Perry 2004].

5. Processing Adaptively Sampled Distance Fields
5.1 ADF Generation
Octree-based ADFs can be generated using a top-down tiled
generation algorithm described in [Perry and Frisken 2001].
Starting with a geometric description of an object (e.g., a triangle
model) and the root cell of the ADF, cells of the ADF are
recursively subdivided until the field within a cell is well
represented by the cell’s sampled distance values and its
reconstruction function. For example, for an octree-based ADF
using trilinear interpolation, distances from the object to each cell
vertex and distances to a set of test points within the cell are
computed. The distances at cell vertices are used to reconstruct
estimates of the distances at the test points; if the estimates do not
match the computed distances at the test points, the cell is further
subdivided. Additional data structures are used to avoid
recomputing distances whenever possible and to ensure that
shared distances (i.e., the distance value of a vertex that is shared
by several cells) are only stored once.

5.2 Direct Rendering
3D ADFs can be rendered in several ways: directly via ray tracing
and indirectly by first generating a surface representation (e.g.,
points or triangles) that can be rendered via a traditional graphics

Figure 8. Improved ADFs for more accurate and efficient 2D
shape representation. a) a 2D ADF with a biquadratic
interpolation function for reconstructing distance values and b) an
ADF with special cell representations for corners and thin
sections of the shape.

Figure 9. An ADF
rendered as points at
two different scales.

a) b)

Figure 7. Various ADF instantiations: a) a 2D shape and its b) quadtree-based ADF, c) wavelet-based ADF, and d) multi-resolution
triangulation-based ADF.

a) b) c) d)

63

pipeline (e.g., OpenGL). For direct rendering, a ray is cast into the
ADF in the view direction for each pixel. Cells that might contain
the surface (as indicated by the cell’s distance values) are tested in
front to back order for ray-surface intersections. If an intersection
occurs, the intersection point and the gradient of the distance field
at the intersection point are determined and used to compute the
color of the pixel. Secondary rays (e.g., shadow rays or reflection
rays) can be spawned at each intersection point for higher quality
rendering. An adaptive ray casting approach can be used to
achieve reasonable full-image rendering rates and fast local
updates of regions that are being interactively edited [see Perry
and Frisken 2001 for details].

5.3 Point-based Rendering
The octree data structure lends itself well to point-based rendering
approaches [Perry and Frisken 2001]. To generate a point-based
model of the surface, leaf cells of the octree that contain the
surface are seeded with a set of randomly generated points. A
uniform distribution of points over the surface can be achieved by
seeding leaf cells with a number of points that is proportional to
the size of the leaf cell (i.e., large leaf cells are seeded with more
points than small leaf cells). Once the seeded points are placed in
each leaf cell, they are relaxed onto the surface by following the
gradient of the distance field until they reach the surface. The
points can be optionally shaded using the gradient of the distance
field at their final locations. This approach is quite fast, allowing
800,000 Phong-shaded points to be generated in 1/5 of a second
on a Pentium II processor in 2001. Figure 9 shows a point-base

model rendered via OpenGL at two different sizes.

5.4 Tessellation
ADFs can also be converted to triangle models which can be
rendered interactively using graphics hardware. We use a
modified SurfaceNets triangulation algorithm [Gibson 1998b,
Perry and Frisken 2001] (later relabeled as Dual Contouring in [Ju
et al. 2002]) to create topologically consistent, high quality
triangle models on the fly. The octree data structure of the ADF
can be exploited for creating Level-of-Detail triangle models (see
Figure 10). The tesselation algorithm is very fast and handles
adjacent octree cells whose sizes differ by greater than a factor of
two. The method was able to generate 200,000 triangles in 0.37
seconds on a Pentium II processor in 2001 and is considerably
faster on today’s workstations.

5.5 Concept Modeling
Building on prior work in implicit modeling (see e.g.,
[Bloomenthal 1997]), modeling with generalized cylinders (e.g.,
[Crespin et al. 1996] and [Aguado et al. 1999]), and sketched-
based input (e.g., [Cohen et al. 2001] and [Grimm 1999]), we
have implemented a prototype system for creating expressive and
detailed 3D creatures and other organic models via a simple and
intuitive interaction method. Leveraging off of traditional 2D
drawing, this system incorporates three design stages: 1) free-
hand sketching of skeleton curves that rough out the basic shape
of the object, 2) fleshing out the geometry of the creature by
specifying a set of 2D cross-sectional profiles that are lofted along
the skeleton, and 3) editing the lofted surface to add high
resolution geometric detail via a brush-based carving metaphor.
These three stages are illustrated in Figure 11.

In the second design stage, the user fleshes out the geometry
by lofting 2D cross-sectional profiles along the skeleton. The
profiles are represented as 2D ADFs and are edited using a new
2D profile editor that provides a seamless interface between pixel-
based (painting) and vector-based (curve drawing) metaphors.
Because lofting is performed as an implicit blend, the cross
sections can have arbitrary topology. A new robust lofting method
that exploits ADFs is used to produce high resolution models that
accurately reflect the detailed shape of the 2D profiles.

5.6 Detailed Carving
ADFs provide a significant improvement over regularly sampled
distance fields and distance fields stored in 3-color octrees (i.e.,
octrees subdivided based on the presence of an object’s surface

Figure 10. The octree data structure can be exploited for
generating level-of-detail triangle models. a) a low resolution
triangle model and b) a medium resolution model generated from
an ADF.

Figure 11. a) A skeleton curve defining the basic shape and a set of 2D profiles that are placed perpendicular to the skeleton to define the
surface of the shape. Note that the profiles can have arbitrary topology. In b) the profiles have been lofted along the skeleton producing an
expressive concept model. In c) detail has been added to the surface of the shape using a brush-based carving tool.

a) b)

a) b) c)

64

rather than on detail in the distance field) because the smaller
memory size and faster processing times of ADFs enable
interactive carving at very high resolution. Carving is
accomplished by performing Boolean operations (e.g.,
differencing or unioning) between the carving tool and the object
being carved. For practical purposes, the effect of the carving tool
is limited to a bounding region surrounding the tool. ADF cells of
the object that lie within this bounding region are regenerated; the
distance field in the regenerated cells is computed by applying the
appropriate Boolean operation to the distance field of the tool and
the distance field of the object.

[Perry and Frisken 2001] describe Kizamu, a system for
sculpting detailed characters that uses ADFs. This system
provides a means for generating ADF models from various
sources such as stock distance functions (e.g., spheres, rectilinear
boxes, cones, and cylinders), CSG combinations of stock distance
functions, height fields and range data, extrusion and revolution of
2D ADFs, lathing of existing ADFs, and triangle models. Kizamu
(i.e., “to carve” in Japanese) allows users to perform detailed
carving of the surfaces of these ADF models using a pressure
sensitive pen and a brush-based metaphor. The carving tool can be
applied perpendicular to the viewing direction or in a direction
normal to the local object surface. The system maintains a history
of operations during carving and provides infinite undo and redo
operations. Figures 11c, 12, and 13 show several parts generated
using Kizamu, illustrating that ADFs can be used to produce
smooth, organic surfaces with high quality edges and corners and
intricate geometric detail.

6. Summary
The use of distance fields for representing and processing shape
has application in many fields. In particular, distance fields
provide an intuitive representation for digital design because they
can be intuitively and efficiently combined using Boolean
operations and they can be edited and manipulated in ways that
resemble real clay. More efficient algorithms and efficient
representations of distance fields (such as ADFs) have facilitated
several systems that use distance fields for design. In this
overview, we have discussed properties and advantages of
distance fields for representing shape, reviewed previous work
using distance fields in digital design, and described methods for
representing and processing ADFs together with two systems that
use ADFs for concept modeling and detailed carving.

7. References
AGUADO, A., MONTIEL, E., AND ZALUSKA, E., 1999. Modeling

Generalized Cylinders via Fourier Morphing. ACM
Transactions on Graphics, 18(4), pp. 293-315.

AVILA R. AND SOBIERAJSKI L. 1996. A Haptic Interaction Method
for Volume Visualization. Proc. IEEE Visualization, pp. 197-
204.

BAERENTZEN J., 1998. Octree-based volume sculpting. Proc. Late
Breaking Hot Topics, IEEE Visualization, pp. 9–12.

BISWAS, A. AND SHAPIRO, V. 2004. Approximate Distance Fields
with Non-Vanishing Gradients. Graphical Models, 66(3), pp.
133-159.

BLANCH, R., FERLEY, E., CANI, M-P., AND GASCUEL, J., 2004.
Non-Realistic Haptic Feedback for Virtual Sculpture. Research
report 5090, INRIA, France.

BLOOMENTHAL, J. AND WYVILLE, B. 1990. Interactive Techniques
for Implicit Modeling. Computer Graphics, 24(2), pp. 109-116.

BLOOMENTHAL, J. (ED.), 1997. Introduction to Implicit Surfaces.
Morgan Kaufman Publishers.

BREEN, D., 1991. Constructive Cubes: CSG Evaluation for
Display Using Discrete 3D Scalar Data Sets. Proc.
Eurographics, pp. 127-141.

BREEN, D., MAUCH, S., AND WHITAKER, R., 1998. 3D Scan
Conversion of CSG Models into Distance Volumes. Symp. on
Volume Visualization, pp. 7-14.

COHEN, J., MARKOSIAN, L., ZELEZNIK, R., AND HUGHES, J., 1999.
An Interface for Sketching 3D Curves. Proc. Interactive 3D
Graphics, pp. 17-21.

CRESPIN, B., BLANC, C., AND SCHLICK, C., 1996. Implicit Swept
Objects. Proc. Eurographics, pp. 165-174.

CURLESS, B. AND LEVOY, M., 1996. A Volumetric Method for
Building Complex Models from Range Images. ACM
SIGGRAPH, pp. 303-312.

DESBRUN, M. AND CANNI-GASCUEL, M-P., 1998. Active Implicit
Surface for Animation. Graphics Interface, pp. 143-150.

FISHER, S. AND LIN, M., 2001. Fast Penetration Depth Estimation
for Elastic Bodies Using Deformed Distance Fields. IEEE/RSJ
International Conference on Intelligent Robots and Systems.

FRISKEN, S., PERRY, R., ROCKWOOD, A., AND JONES, T., 2000.
Adaptively Sampled Distance Fields: a General Representation
of Shape for Computer Graphics. ACM SIGGRAPH, pp. 249-
254.

FRISKEN, S. AND PERRY, R., 2002 Efficient Estimation of 3D
Euclidean Distance Fields from 2D Range Images. Proc. IEEE
Symposium on Volume Visualization, pp. 81-89.

FRISKEN, S., PERRY, R., AND JONES, T., 2002 Detail-Directed
Hierarchical Distance Fields. U.S. Patent 6,396,492.

Figure 12. Detailed ADFs created using the Kizamu sculpting
system. a) a 3D surface of revolution created from a sculpted 2D
ADF and b) a part extruded from a 2D ADF with 3 punched
holes.

Figure 13. Highly detailed ADFs created from range data using
the Kizamu sculpting system. a) stones and sand and b) tree bark.

a) b)

a) b)

65

FRISKEN, S. AND PERRY, R., 2004. Method for Generating an
Adaptively Sampled Distance Field of an Object with
Specialized Cells. U.S. Patent Pending.

GASCUEL, M-P. 1993. An implicit Formulation for Precise
Contact Modeling between Flexible Solids. ACM SIGGRAPH,
pp. 313-320.

GALYEAN T. AND HUGHES J., 1991. Sculpting: an Interactive
Volumetric Modeling Technique. ACM SIGGRAPH, pp. 267-
274.

GIBSON, S. 1998a. Using DistanceMaps for Smooth Surface
Representation in Sampled Volumes. Symp. Volume
Visualization, pp. 23-30.

GIBSON, S. 1998b. Constrained Elastic SurfaceNets: Generating
Smooth Surfaces from Binary Segmented Data. Proceedings
MICCAI.

GRIMM, C., 1999. Implicit Generalized Cylinders using Profile
Curves. Proc. Implicit Surfaces.

HOFF III, K., CULVER, T., KEYSER, J., LIN, M. AND MANOCHA, D.,
1999. Fast Computation of Generalized Voronoi Diagrams
Using Graphics Hardware. ACM SIGGRAPH, pp. 277-285.

HOFF III, K., ZAFERAKIS, A., LIN, M., AND MANOCHA, D., 2001.
Fast and Simple 2D Geometric Proximity Queries Using
Graphics Hardware. Symp. Interactive 3D Graphics.

JONES, M., 1996. The Production of Volume Data from Triangular
Meshes Using Voxelization. Computer Graphics Forum, 15(5),
pp. 311-318.

JONES, M. AND SATHERLEY, R., 2001. Shape Representation
Using Space Filled Sub-Voxel Distance Fields. Int. Conf.
Shape Modeling and Applications, pp. 316-325.

JONES, M., BAERENTZEN, J. A., AND SRAMEK, M., 2006. 3D
Distance Fields: A Survey of Techniques and Applications,
accepted for IEEE Transactions on Visualization and Computer
Graphics.

JU, T., LOSASSO, F., SCHAEFER, S., AND WARREN, J., 2002. Dual
Contouring of Hermite Data. ACM SIGGRAPH, pp. 339-346.

KIMMEL, R. AND SETHIAN, J. 1996. Fast Marching Methods for
Computing Distance Maps and Shortest Paths. CPAM Report

669, Univ. of California, Berkeley.
MUSETH, K., BREEN, D., WHITAKER, R., AND BARR, A., 2002.

Level set surface editing operators. ACM SIGGRAPH, pp. 330-
338.

PERRY R. AND FRISKEN, S. 2001. Kizamu: A System for Sculpting
Digital Characters. ACM SIGGRAPH, pp. 47-56.

PERRY R. AND FRISKEN S., 2003. Method for Generating a Two-
Dimensional Distance Field within a Cell Associated with a
Corner of a Two-Dimensional Object. U.S. Patent 7,034,830.

RICCI, A., 1973. A Constructive Geometry for Computer
Graphics. Computer Journal, 16(2), pp. 157-160.

REQUICHA, A., 1983. Toward a theory of geometric tolerancing.
International Journal of Robotics Research, 2(4), pp. 45-60.

ROCKWOOD, A., 1989. The Displacement Method for Implicit
Blending in Solid Models. ACM Trans. Graphics, 8(4), pp.
279-297.

SRAMEK, M. AND KAUFMAN, A., 1999. Alias-free voxelization of
geometric objects. IEEE Trans. on Visualization and Computer
Graphics, 3(5), pp. 251-266.

STRAIN, J., 1999. Fast Tree-based Redistancing for Level Set
Computations. J. Comp. Physics, 152, pp. 648-666.

SUD, A., OTADUY, M. A., AND MANOCHA, D., 2004 DiFi: Fast 3D
Distance Field Computation Using Graphics Hardware.
Computer Graphics Forum 23(3), pp.557-566.

SZELISKI, R. AND LAVALLE, S., 1996. Matching 3-D anatomical
surfaces with non-rigid deformations using octree-splines. Int.
J. Computer Vision, 18(2), pp. 171-186.

WANG S. AND KAUFMAN A., 1995. Volume sculpting, Symposium
on Interactive 3D Graphics, pp. 151-156.

WHEELER, M., SATO, Y., AND IKEUCHI, K., 1998. Consensus
surfaces for Modeling 3D Objects from Multiple Range
Images. Int. Conf. Computer Vision.

WHITAKER, R., 1998. A Level-Set Approach to 3D Reconstruction
from Range Data. Int. J. Computer Vision, pp. 203-231.

ZHAO, H-K., OSHER, S., AND FEDKIW, R., 2001. Fast Surface
Reconstruction using the Level Set Method. 1st IEEE
Workshop on Variational and Level Set Methods, pp. 194-202.

66

Towards Virtual Clay

Marie-Paule Cani
GRAVIR lab (IMAG-INRIA) and INP Grenoble

Alexis Angelidis∗

Dynamics Graphics Project, University of Toronto

Abstract

Providing the user with an intuitive sculpting system similar
to real clay is one of the most challenging goals of interactive
shape modeling. A user should ideally be able to deform,
add and remove material freely in real time, without any
geometric or topological constrains on the modeled shape.

This chapter reviews and compares three techniques that
bring virtual shape modeling closer to this objective. The
two first ones rely on a specific representation of the sculpted
shape, namely the iso-surface of a scalar field stored in a grid.
Because this representation conveniently captures topolog-
ical changes, adding and removing material is straightfor-
ward. Based on this representation, we compare a geomet-
ric versus a physically-based method for handling local and
global shape deformations that make the model closer to
virtual clay. We also discuss solutions for providing users
with an intuitive interface with haptic feedback. A third
and very different approach is to define the deformations of
the sculpted model as spatial deformations, such that the
operation is applicable to a wide range of shape representa-
tions. We show that the extension of sweepers (presented in
the space deformation chapter of this tutorial) to constant
volume ”swirling-sweepers” produces an intuitive clay-like
behavior of the modeled shape. This technique provides a
very good alternative to physically-based virtual clay when
preserving the shape’s topology is desirable.

1 Introduction

Making the creation and edition of a virtual shape as
straightforward as the manipulation of real clay is an un-
solved challenge. Compared to standard tools for virtual
shape modeling, real clay is a simple and often familiar way
to create complex shapes: Play-Doh

�

is introduced to chil-
dren since kindergarten. And many artists still prefer to
express themselves by interacting with real clay rather than
using a computer, even if the resulting shape needs to be
digitalized for subsequent use. This occurs in a variety of
fields such as automotive design or the modeling of 3D char-
acters for the film industry. The attraction towards real
clay for drafting a shape is due to several reasons: In stan-
dard digital modeling systems, hand manipulation and the
sense of touch are replaced by a more complex and indi-
rect manipulation interface. Also, the operations that the
user performs on the shape are intuited by his understand-
ing of the underlying mathematics describing the shape: he
cannot merely push or pull the object’s surface. This is the
case, for instance, when manipulating the control points of a
NURBS or a subdivision surface. In addition, making holes
or connecting separated parts of the shape is not always a
straightforward operation.

∗On leave from Graphics & Vision lab, U. of Otago.

If one could get the advantages of real clay in a computer-
based modeling system, one could have the best of both
worlds. As opposed to real clay, virtual clay is not affected
by drying nor cracking, it may be mutated back and forth
between soft and dry states as needed, and the artist may
take a pause at any time without worrying about the mate-
rial changing in the meanwhile. Furthermore, gravity may
be switched off, and the artist would not have to worry
about the shape collapsing under its own weight. Finally,
all the advantages of standard shape modeling tool would
apply: the artist would be able to work at any scale and use
any size of tool, simplifying the production of fine details
as well as global features, and virtual modeling would allow
copy/paste, undo, as well as more clay-specific ideas such as
temporarily removing a part of the model to ease the editing
of hard-to-reach areas.

This chapter explores and compares different approaches
towards virtual clay for interactive modeling. After a quick
review of related work, we first detail a solution based on
purely geometric and volumetric modeling [Ferley et al.
2000; Ferley et al. 2002; Blanch et al. 2004]. The modeled
shape is defined as an iso-surface of a scalar field stored in
a virtual multi-grid, enabling quick prototyping of arbitrary
shapes with no limitation in space extent or in level of detail.
Solutions for enabling local deformations in this framework
and for generating haptic feedback are provided. The second
model [Dewaele and Cani 2004a; Dewaele and Cani 2004b]
introduces more general local and global deformations us-
ing a similar representation. This layered physically-based
model captures in real-time important properties of real clay:
plasticity, mass preservation and surface tension. Intuitive
user interaction in this context is discussed. Volume being
probably the most important property of real clay, we finally
present a deformation technique that preserves the volume
of a shape. This is done implicitly, by preserving the vol-
ume locally, at every point in space. These deformations
also preserves the topology of the shape, which may or may
not be a desirable property. The operations are applied in
real-time to a surface represented with an adaptive mesh.
User action is intuitive and produces clay-like deformations
of the shape [Angelidis et al. 2004a].

2 Related work

2.1 Implicit surfaces

Implicit representations have been identified for long as a
very good model for representing clay-like objects [Bloomen-
thal et al. 1997]: in addition to their well known ability to
represent smooth, deformable shapes, they ensure a coherent
definition of a closed surface with a well defined interior and
exterior. They also handle conveniently any kind of topo-
logical change, such as digging a hole in an object, splitting

67

it into several parts or merging several disconnected compo-
nents.

Standard modeling with implicit surfaces is performed us-
ing control primitives called skeletons that generate a scalar
field from which an iso-surface is extracted. These scalar
fields can then be combined in various ways, the most ba-
sic one being summation. A drawback of this constructive
approach is that the cost of field evaluation grows with the
number of primitives. If used in a sculpting system in which
each user action results in the creation of a new primitive,
the field evaluation would quickly become prohibitive and
forbid interactivity. Interactive sculpting with implicit sur-
faces has thus been tackled using different approach: the
field function is directly stored in the form of discrete values
sampled on a 3D grid. Skeleton-based primitives can still be
used for representing the user-controlled tools that modify
this field. These approaches are presented next.

2.2 Volumetric sculpting

Interactive modeling based on discrete scalar field repre-
sentation was first introduced in 1991 by T. Galyean and
J. Hughes [Galyean and Hughes 1991]. The field was stored
on a regular 3d grid (voxmap). The tool used to edit the
field was also discretized and particular attention was paid
to prevent aliasing when the discrete tool was re-sampled
into the field grid. Available tool actions included adding
or removing material, and smoothing the surface through a
convolution applied to the 3D field.

In 1995, S. Wang and A. Kaufman [Wang and Kaufman
1995] extended the interaction to carving using tools de-
duced from a pre-generated 203 volume raster or sawing (ex-
truding) via curves drawn onto the screen.

The following year, R. Avila and L. Sobierajski [Avila
and Sobierajski 1996b] used a force feedback articulated arm
to command the tool in a similar context. The very rapid
update rate required limited the tool size to 3-5 voxels.

Several extensions enabling the multi-resolution visualiza-
tion or edition of the sculpted shape were introduced in the
next few years: J. Bærentzen [Bærentzen 1998] proposed an
octree-based representation of the field, aimed at accelerat-
ing ray-casting. S. Frisken [Frisken et al. 2000; Perry and
Frisken 2001] presented the Adaptively Sampled Distance
Field (ADF) approach detailed in the previous chapter of
this tutorial. A. Raviv and G. Elber [Raviv and Elber 2000]
proposed a different hierarchical approach based on the com-
bination of trivariate B-Spline volumes to represent the field.

2.3 Physically-based modeling

The volumetric models we just reviewed were restricted to
simple operations such as adding material or carving it, but
contrary to real clay, did not provide any mechanism for de-
forming an existing shape. K. Mc Donnel and H. Qin [Mc-
Donnell et al. 2001; McDonnell and Qin 2002] explored the
introduction of physically-based deformations within such
a volumetric sculpting framework. They addressed more
specifically the cases when the field function is defined by ei-
ther a trivariate B-spline function of by a subdivision solid.
Masses and spring networks attached to the control poly-
gon defining the field were used to generate deformations of
the sculpted shape. Although indirect, this interaction with
the structure storing the field achieved interesting results in
terms of interactive deformations with haptic feedback.

Closer to the physically-based modelling of clay, cellular
automata were introduced in a volumetric, discrete field rep-

resentation to allow free-form modeling with volume conser-
vation and topological changes [Arata et al. 1999; Druon
et al. 2003]. However, these models did not capture large-
scale deformations such as bending the limbs of a clay model.

More generally speaking, real clay (see Figure 1) lies be-
tween plastic solids and viscous fluids, so one could think of
extending either of these models for setting up a physically-
based representation. However, the existing real-time mod-
els for elastic or plastic-solids rely on pre-computations or on
a hierarchical structure for achieving a high frame rate. This
prevents from using them in a framework where the objects
topology changes over time. Both Eulerian simulations and
particle systems (now often called mesh-less models) have
been used for representing viscous fluids. They have been
rendered using an implicit surface (or a level-set) or through
point-based rendering, both approaches conveniently captur-
ing the resulting topological changes. In addition to ensuring
real-time performances, the difficulty with these models is to
set up internal cohesion forces that make the model behave
as clay. In particular, a piece of material lying on the ground
should not spread as a viscous liquid would do. A more de-
tailed discussion of physically-based deformable models is
over the scope of this tutorial, but a very good survey can
be found in [Nealen et al. 2005]. No mention can be found
of a real-time, physically-based model convenient for clay.

Figure 1: Real clay lies between plastic solids and viscous liq-
uids. As such, it can undergo local and global deformations,
including as weel as changes of toology such as splitting and
merging.

3 Implicit sculpting with local deformations

This section details the implementation of a sculpting sys-
tem which enables, in addition to the addition and removal
of material, the application of local deformations to the
shape [Ferley et al. 2000]. The shape representation is based
on the simple idea of a discrete field function stored in a 3D
grid. The sculpted object is an iso-surface of this field. We
first discuss different kinds of tools and actions and then de-
tail the data structures enabling efficient field storage with
no limitation of the shape extend in space. A snapshot of
the resulting sculpting system is depicted on Figure 2.

In the remainder of this chapter, we take the convention
that the field value corresponds to the density of virtual clay:
the value is zero where there is no material and increases to a
given maximal value inside the sculpted object. The surface
of the latter is defined as an iso-surface of the field function.
The user edits it, e.g. uses tools to add, remove or move ma-
terial, by locally modifying the field function (stored as men-
tioned earlier, as a set of discrete values sampled in space).

68

Figure 2: Sample snapshot of our sculpting application. The
object being modeled is environment mapped so that the
user can better appreciate its shape. The sculpting tool is
displayed in wireframe. The yellow spheres represent the
lights that the user can move around while sculpting.

3.1 Sculpting tools

The easiest way to set up tools for editing a scalar field is to
define them as primitives generating scalar fields as well. A
tool will act by adding or removing its field contribution to
the discrete field function that defines the sculpted object.
More precisely a tool is defined by:

� a contribution, i.e. a field function with local support,
attached to the tool’s local frame. The tool’s bounding
box bounds the region in space where the tool’s contri-
bution is non-zero. The tool’s shape used for display is
an iso-surface of the contribution.

� an action, that defines the way the tool’s field is to be
combined with the object’s field (which may be zero or
not in the region where the tool is applied).

Tool’s contribution

We use two kinds of tools: analytical implicit primitives and
discrete tools defined through sculpting using our applica-
tion. In both cases, the tool’s contribution is usually posi-
tive inside the tool and smoothly decreases to vanish at the
border of a limited region of influence. This enables local
control of the sculpted shape and saves computational time.

The simplest analytical primitives that can be imple-
mented are spheres and ellipsoids. We use Wyvill’s field
function [Wyvill et al. 1986] to generate an isotropic (spher-
ical) field around the tool center. General ellipsoids can be
obtained by scaling the tool along its three axes.

The user can also sculpt freeform tool shapes within our
application. The shape displayed for the tool corresponds to
the same iso-surface as the one visualized during its design
process. The tool can also be scaled along the three axes of
its local frame before being re-used. Since applying such a
discrete tool requires the evaluation of its field between its
samples’ location (see below), we define a continuous field
for the tool using tri-linear interpolation.

Standard tool actions

The tool’s actions listed below are similar to those presented
in [Galyean and Hughes 1991; Avila and Sobierajski 1996b]:

� deposit material, i.e. add the tool’s contribution to the
(possibly) existing field values that define the sculpted
object.

� carve material, either smoothly by subtracting the
tool’s contribution to the object’s field or un-smoothly
by setting all field values under the tool’s region of in-
fluence to zero.

� paint material by changing the color attributes stored
together with the object’s field value. Again, this can
be done either smoothly or not, depending on the way
the tool’s contribution is taken into account to modify
or remove the previously existing color values.

� smooth the shape being modeled by applying a low-
pass filtering of the the object’s field function over the
tool’s region of influence.

Local deformation tool

Our aim is to produce an intuitive local deformation, sim-
ilar to the one a rigid tool would cause when interacting
with clay, while avoiding the computational cost and sta-
bility problems of a physical simulation of the material dis-
placements. Our method is inspired from an approach de-
veloped for standard skeleton-based implicit surfaces, which
consists in applying a negative field to compress the object
in the area where another object penetrates it, while cre-
ating a bulge by adding a positive field to imitate material
displacement around the contact region [Cani and Desbrun
1997].

We set the tool contribution to negative values inside the
tool’s iso-surface, in order to erase the material inside the
tool; then the contribution becomes positive immediately
outside the tool, where some material is to be added in order
to compensate the loss of volume. Finally the contribution
vanishes to zero as we reach the border of the tools region of
influence. These combined negative and positive actions im-
itate the displacement of matter that occurs when a real tool
collides with a block of clay. In practice, the contribution
is defined by combining a standard tools contribution (de-
creasing with the distance to the tools surface) with an an-
alytical, smooth deformation function (refer to [Ferley et al.
2000] for details). A local deformation tool and the deforma-
tion it produces are depicted in Figures 3. Figures 4 shows
an inprint onto a sculpted surface made by a tool sculpted
within our application.

3.2 Representation of the discrete scalar field

Let us now discuss the data structures needed for efficiently
representing the spatial samples of the field that defines the
sculpted object. A straightforward solution consists in using
a predefined, regular 3D grid. This is however very limita-
tive: the grid then encloses the model, limiting its extension
in space; moreover, it wastes memory by storing irrelevant
sample points where no field is defined. We rather use dy-
namic data structures that only store the relevant voxels
(intuitively, those where a field value is defined) of a virtual,
infinite grid.

We call the regularly spaced points that sample the field
Vertices. Each of them stores a field value between an

69

Figure 3: (left) Ellipsoidal local deformation tool (right) De-
formation made by sweeping this tool over a block of virtual
clay.

Figure 4: Local deformation created by a tool sculpted
within our system.

arbitrary minVal and maxVal, a color and some cached
data, such as the field gradient and the point location (this
avoids its recomputation from the virtual grid indices). Each
Vertex with a field value higher than minVal is stored in
the VertexTree, which samples the region of space where
some material has been deposited. Values above maxVal are
clamped to maxVal. When requesting the value of a Vertex

not defined, the returned value is minVal.
The regular space sampling we use divides space in cubical

elements called Cells. Each Cell having at least one Vertex
defined is stored in a CellsTree. A Cell is made up of:

� eight pointers to its Vertices, one of which at least
being non-null.

� an index deduced from the value of its eight Vertices

relative to the iso-value, which encodes the Cell/iso-
surface intersection configuration (this is a standard
step in the Marching-cube algorithm; see [Bloomenthal
et al. 1997] for details).

� twelve pointers to edges.

The Cells that intersect the iso-surface (depending on their
index value) are also inserted into another structure which
we call crossList. To optimize surface display, an Edge

structure is created to store the intersections of a Cells edge
with the iso-surface.

We tried two different implementations for the above dy-
namical data-structures (the VertexTree, the CellsTree, the
crossList and the EdgeTree): balanced binary search trees
and hash-tables. Our tests were in favor of the hash-tables
implementation (see details in [Ferley et al. 2000]).

Figure 5: Data structures for the field representation. Left:
the Cell-Tree. Middle: the cross-list. Right: the sculpted
surface

3.3 Applying a tool: data structures update

Each time a tool is applied all the dynamical structures we
just defined need to be quickly, locally updated. To this end,
we first compute the axis-aligned bounding box surrounding
the local tool bounding box. Then, we walk through this
box by:

1. transforming from world to local (tool) coordinate only
the two extremal points of the box (Pmin and Pmax)
and the three displacement vectors (that move from
one Vertex to the next in each axis direction).

2. starting from the Pmin point, we reach the next point
simply by adding its displacement vector to its current
location, and similarly adding its counterpart displace-
ment vector to its counterpart location in local (tool)
frame coordinate.

Note that any scaling can be applied to the tool by applying
the inverse scaling to the local location we just obtained.

For each Vertex examined during this walkthrough, we
distinguish three cases:

1. the Vertex is in the world bounding box, but outside of
the local bounding box. It can be very quickly rejected,
since the bounding box containment is a very rapid test
in the local frame coordinate. We call these Vertices

the visited Vertices.

2. the Vertex is inside the local bounding box, but out-
side the tool’s influence (i.e. the tool’s field has a null
contribution at this point). To identify this case, we
must compute the tool’s field value for that point; we
call them the computed Vertices (meaning that we
computed the tool’s field, but finally the Vertex wasn’t
modified).

3. the last category concerns the Vertices whose values
were effectively modified. We call them the dirtied
Vertices because they have to be updated (cleaned).

All the dirtied Vertices are inserted into a temporary tree
called modified.

Each time a redisplay is needed, we successively extract
(pop) every Vertex from the modified tree. For each
Vertex, we then update the eight Cells that share it. We
use a timestamp-mechanism to avoid multiple Cell exami-
nations. Examining a Cell consists in computing its index,
i.e. a bitmask deduced from its Vertices values relative
to iso. If the Cell doesn’t cross the iso-surface, we’re fin-
ished with it. If it crosses the iso-surface, its index corre-
sponds to a given surface crossing configuration stored in a
pre-computed table (this is a standard step of the Marching
Cubes process). This configuration tells us which Edges of

70

the Cell are intersected. The corresponding Edges are then
updated.

Creating or updating an Edge consists in (re-)computing
the field gradients of its two Vertices (using for instance
a central difference scheme). Then, the intersection point
is obtained by linearly interpolating the Vertex attributes
(such as the location, gradient and color) weighted by the
corresponding potential field value stored. The interpolated
gradient serves as surface normal.

3.4 Practical use of the system

One key feature to encourage creative explorations is to allow
multiple successive tries: the user can experiment whatever
he desires without any consequence because he can always
return to an earlier configuration.

We achieve the undo/redo process via temporary undo-
files: each time a tool is applied, we dump all the modi-
fied Vertices into a new undo-file. In our implementation,
dumping a Vertex corresponds to:

1. writing its indices in the virtual grid (i.e. the triplet
(i, j, k) relative to its current origin and step size.

2. writing its previous value and attributes (color only in
our case, the other attributes such as the location and
gradient are simply caches, and can be computed).

3. writing its new value and color after modification.

An example of complex object created with our sculpting
system is depicted in Figure 6. Creating this shape required
a number of trials and errors. It took three hours before
the user was satisfied with the result. The main practical
difficulty for the user was deciding, using a simple 2D display
on a screen, whether the active tool was located in front of
the sculpted surface or if it was intersecting it (which was
desired for locally inflating or carving the surface). Several
times during the edition, some material was added above
the sculpture by mistake, so the undo mechanism proved
very useful. The haptic feedback discussed next brings an
effective solution to this positionning problem.

Figure 6: This sculpture was created using our volumet-
ric sculpting system in about three hours, using a mere 2D
mouse and 2D display on a screen.

4 Force feedback

Like every artistic process, virtual sculpture requires a strong
interaction between the artist and his artwork. Feeling the

material being modeled enforces the metaphor of sculpting
and the immersion of the user, making the creative activity
easier. The need for haptic feedback is even stronger when
the user visualizes his 3D sculpture on a standard screen:
without force feedback, correctly positioning an editing tool
with respect to the sculpture is difficult, since it may require
changing the viewpoint several times to check the tool’s po-
sition.

Fortunately, the incorporation of force feedback in a vir-
tual sculpture system does not need to follow the strict con-
straints of physical accuracy. Indeed, there is no strong need
for tactile realism in virtual sculpture, since the only aim is
to increase the artist’s ability to be creative. This freedom
allows the use of expressive haptic rendering, enhancing cer-
tain aspects of the models being displayed.

This section proposes an effective solution to the incorpo-
ration of expressive haptic feedback in the volumetric sculpt-
ing system we just described, together with a simple solution
for reducing the instability problems during the interaction.
As our results show, our new haptic rendering improves in-
teractivity and immersion, thus making the sculpting system
far easier to use. This work was first described in [Blanch
et al. 2004]

4.1 Computing haptic forces

The haptic rendering was done with a Phantom desktop de-
vice, which is a 6DOF articulated arm able to render 3D
force feedback [Massie and Salisbury 1994]. Figure 3 shows
the use of the Phantom desktop to model a character.

Figure 7: A user modeling a character with the virtual sculp-
ture sofware using 3D glasses a Phantom desktop device.

The advantage of having a volumetric representation for
defining the surface and its gradient is that interesting local
information is available to compute force feedback. As Avila
[Avila and Sobierajski 1996a; Avila 1998] showed, there is no
need to make complex computations to calculate plausible
forces. Our forces express in a simple way pseudo-physical
properties: volumetric viscosity and surface contact.

Viscosity

Equation (1) shows how a friction force can be computed.
This force tends to resist the movement proportionally to
the material density and to the speed of motion.

~fv = −αfv0

V

V0

~̇p (1)

The parameters in equation (1) are: α, a positive constant
dimensionally equivalent to the inverse of a speed; fv0 , the
friction intensity on the surface; V0 , the value of the potential

defining the isosurface. ~̇p is the speed at the point ~p. V is
the value of the scalar field function at the same point and

71

~fv is the resulting volumetric viscosity force for this point
and speed.

This force grows with the density of matter and the speed
of the tool and is directed in the opposite direction of the
movement. This reaction makes the user feel the volumetric
property of his artwork by the resistance it opposes to the
movement but it doesn’t give any clue about the surface.

Contact

Equation 2 shows how the surface can be expressed in term of
force feedback. This force is normal to the surface and grows
rapidly when the tool enters the isosurface. The intensity of
the force is clamped to ensure the safety of the simulation.

~fc = −fc0

~grad(V)

‖ ~grad(V)‖

„

V

V0

«e

(2)

This force is locally equivalent to a spring model with
stiffness e if we consider the field function V as a distance to
the isosurface. This haptic feedback gives the user the ability
to touch his artwork by feeling contact with the isosurface.

4.2 Expressive haptic rendering

With those two forces expressing volumetric and surfacic
properties of the sculpture, it’s possible to give the user a
good feeling of his work [Huang et al. 1998]. We extend
this technique by using different combinations of the forces
according to the user’s intentions.

Changing the haptic representation of the object being
manipulated according to user actions provides an expressive
force feedback. This rendering adapts the simulation of the
reality to the action of the artist, providing different feedback
for the same object. This variability makes it non-realistic
but enhances the interactive experience.

We achieve the goal of reinforcing the impact and the us-
ability of the simulation by making it less realistic, in the
same way non-photorealistic picture does for visual render-
ing. This is our notion of “non-tacto-realistic” or “expres-
sive” haptic rendering.

Forces combination

We found that the surfacic force is very useful when position-
ing the tool on the sculpture but can be disturbing when the
user edits his work. If the tool can’t enter inside the sculp-
ture, carving an existing model is difficult. By attenuating
the surfacic force when the user modifies his sculpture and
enforcing the volumetric rendering, we reinforce the feeling
of manipulating matter, not only a surface.

Thus, two combinations of the forces are used depending
on the interaction mode of the user.

Equation (3) is used when the user is passive and equation
(4) when he’s applying a tool. When the user is passive, the
surfacic force dominates and when he’s active, the volumet-
ric force takes over, which can be expressed by: αp > βp

and αa < βa. The variation of each relative contribution is
expressed by: αp > αa and βp < βa.

~f = αp
~fc + βp

~fv (3)

or αa
~fc + βa

~fv (4)

The transition between the parameters is done smoothly
to avoid discontinuities in the resulting force by using the
equation (5) where p varies continuously from 0 when the

user is passive, to 1 after he has started to apply the tool,
and from 1 to 0 for the opposite transition.

~f = (αp + p(αa − αp))~fc + (βp + p(βa − βp)) ~fv (5)

4.3 Stabilization of the haptic feedback

If the update of the force at 1kHz rate is not reached, there
is a potential source of vibration in the system. This re-
quirement is not an issue with our system because of the
simplicity of the forces. However, a haptic simulation can’t
be stable in every condition because of the user being in-
volved in the loop [Gillespie and Cutkosky 1996].

The original solution presented here is a particular case
of virtual coupling introduced in [Colgate et al. 1995] with-
out using complex linear circuit theory as in [Adams and
Hannaford 1999].

Origin of the vibrations

By its definition resulting of a gradient, the surfacic force
tends to repulse the tool in an area where the magnitude of
the force is smaller. The lag introduced by the user in its
reaction makes him resist to a strong force when the tool
is already outside the active area. Then, he doesn’t meet a
resistance and reenters the repulsing area. The repetition of
this sequence causes the unexpected vibrations.

Filtering the force to make it vary smoothly is not a good
solution because it doesn’t guarantee that the position, re-
sulting of the concomitant action of the user and the haptic
feedback, will never jerk. Our solution is to filter the posi-
tion coming from the device and to use this filtered position
that can’t vibrate, to compute the force feedback. As a side
effect, this force is naturally smooth.

Filtered position

To avoid vibration, a damped position is computed using a
low-pass filter that cuts the high spatial frequencies of the
real position of the device. This filter is just an exponential
damping having a time constant adapted to the vibration we
want to cut. Equation (6) gives the definition of the damped
position ~pd in function of the real one ~pr, τ being the time
constant of the filter.

~δp = ~pr − ~pd(t− 1) (6)

~pd(t) ← ~pd(t− 1) + τ ~δp

Using this damped position eliminates the vibrations well.
However, cutting the high frequencies of the movement intro-
duce a lag that is noticeable in high amplitude movements.
We can then use the fact that those movements, even at
high speed, are not vibration but express the user’s inten-
tion to really move to another area. The vibrations are then
characterized by high frequencies and low amplitude.

So we compute (see equation (7)) a confidence γ vary-
ing between 0 and 1 in the damped position depending on
the distance between the real position and the damped one.
If the two positions are close, meaning there is a potential
vibration of low amplitude or that the tool doesn’t move,
the confidence in the damped position is 1; if the position is
far away, the confidence tends to 0. The distant constant λ
characterizes the amplitude of movement we want to cut.

γ =
1

‖ ~δp‖/λ + 1
(7)

72

A filtered position resulting from a combination of the
real and damped one is then computed using this confidence.
Equation (8) shows this filtered position ~pf as a linear com-
bination of ~pr and ~pd.

~pf = γ ~pd + (1 − γ) ~pr (8)

The continuous variation between the real and damped
position makes it unnoticeable to the user and the surfacic
force resulting can’t be discontinuous.

Spatial coherence

An interesting property of the filtered position can be de-
duced from the relations above. Equation (8) directly im-
plies equation (9); from (6) we can deduce (10) and then
(11) can be deduced from (7).

Finally, we can deduce that the distance between the fil-
tered position and the real one ‖ ~pf − ~pr‖ is always smaller
than λ, the distance characterizing the confidence factor
(equation (12)).

‖ ~pf − ~pr‖ = γ ‖ ~pd − ~pr‖ (9)

= γ ‖ ~δp‖ (10)

=
‖ ~δp‖

‖ ~δp‖/λ + 1
(11)

≤ λ (12)

This property ensures a spatial coherence between the real
position and the filtered one used to display the tool and
to compute the forces by guaranteeing they will never be
distant from more than λ. This distance being of the same
order than the magnitude of the vibrations, it’s rather small
and the user can’t even notice the offset between the two.
This ensures the good immersion of the user, making artistic
work possible.

5 Multi-resolution implicit sculpting

This section presents an extension of the previous 3D sculp-
ture system that enables interaction with a sculpted object
at any modeling scale, without having to be concerned with
the underlying mathematical representations. It allows the
user to model both fine and coarse features while maintain-
ing interactive updates and display rates.

The modeled surface is still an iso-surface of a scalar-field.
The new idea is to store the field in a hierarchical grid that
dynamically subdivides or un-divides itself according to the
size of the tool being used. The extent of the structure, in
terms of space and resolution, is fully dynamic; it is driven
by the actions of the user and has no size limitation of max-
imum depth. This system allows for precise, interactive di-
rect modeling through the addition and removal of material.
As the underlying scalar field representation is completely
hidden from the user, the use of the system is intuitive and
gives the feeling of direct interaction with the sculpted sur-
face. This work was first presented in [Ferley et al. 2002]

5.1 Hierarchical scalar field

We extend the idea of dynamic structures to store the field
function described in section 3.2 by providing a mechanism
for locally refining the sampling rate. There are several ways
to do so, as illustrated in Figure 9. In order to allow a

Figure 8: Use of haptic feedback: This sculpture was
achieved within less than one hour, to be compared with the
three hours needed to sculpt the bust in Figure 6, without
feedback forces.

multiresolution representation, a cell isn’t replaced by a set
of sub-cells, but is rather enriched with it: the sub-cells are
its successors or children. As we do not want to restrict the
user to any resolution limit (as well as we don’t restrict the
extent of the model in space), we allow the dynamic creation
and deletion of successors sets. This precludes the use of
classical octree storage optimizations. We rather reduce the
structure overcost by allowing a direct jump to much finer
resolutions. In practice, we recursively subdivide space by
a constant factor n in each dimension (n = 3 in Figure 9),
leading to an ntree structure.

The next point to discuss is whether to:
(1) express the samples at a finer level, k + 1 as a delta
contribution over the average or median value that would
be stored at the coarser level k;

Figure 9: Subdivision principle. Several choices are possible
such as replacing the left Cell by the subdivided Cells on the
right or referencing the subdivided Cells as children of the
left Cell (e.g. enriching the left Cell), duplicating or not the
Vertex elements that have the same position, etc.

73

(2) store directly the field value in each sample, thus using
simple subsampling for coarser levels.

Solution 1 appears more elegant, as it looks like a wavelet
decomposition of the 3D scalar field. However, it yields the
extra cost of maintaining the hierarchy coherency. Coarser
levels would need to be updated when detailed modifications
are conducted on smaller levels, in order to recompute the
average or median field’s values.

Solution 1 also suggests that large changes on the low-
resolution levels could effortlessly be reflected on the higher
ones: storing some min-max information along the hierarchy
would allow rapid pruning of the volume parts that become
completely outside or inside of the modeled shape. However,
the hierarchy exploration from the root node to the leaves
(which is also requested in solution 2) cannot be avoided,
since the surface representation has to be updated.

With the subsampling approach of solution 2, there is no
need to compute the interpolated values from the coarser
levels: the field value at a vertex is directly given. More-
over it allows no duplication of the Vertex nodes between
resolutions. In contrast, solution 1 would force the eight
Vertices of the Cell at the left of Figure 9 to be distinct from
their counterparts in the sub-cells on the right because the
sub-cell values define a delta contribution over them. Lastly,
solution 2 offers a kind of vertical independence over the
hierarchy: each level is completely independent from its an-
cestors, and can thus be updated independently. Therefore,
we have adopted solution 2.

When subdividing the grid (i.e. during Cell creation), we
pay special care to share the Vertex nodes among common
faces or edges between the adjacent Cells of the same level.
Once these shared structures are wired, their forthcoming
updates won’t cost more than a time-stamp comparison to
prevent useless computations.

5.2 Tool Guided Adaptive Subdivision

Applying a tool

The refinement of the hierarchical structure we just defined
is tailored by the resolution of the tools the user applies dur-
ing editing. Applying a small tool or a tool with sharp fea-
tures will result in a local refinement of the structure. Since
the user can then switch to a coarser tool, special attention
has to be paid to the efficiency of updates. In order to give
an interactive feedback whatever the tool’s size, tools are ap-
plied in an adaptive way, the grid being always updated from
coarse to fine levels. This maintains interactive rates even
for large tool-sizes. A dynamic Level-Of-Detail (LOD) mech-
anism ensures that the surface of the object is also displayed
at interactive rates regardless of the zoom value: surface el-
ements, generated and stored at each level of resolution, are
displayed depending on their size on the screen. The system
may switch to a coarser surface display during user actions,
thus always insuring interactive visual feedback.

More precisely, applying the tool involves two important
steps:
(1). we must ensure that the tool is correctly sampled, i.e.
the cell resolution of the field representation must be small
enough to capture the tool’s features.
(2). for each covered vertex, we have to combine its cur-
rent field value with the tool’s contribution at that point,
depending on the predefined tools action:
ALGORITHM: Applying a Tool to a Cell

Cell::apply(Tool t, Action a) {
foreach Vertex v do { a.update(t,v); }
if (I have no children) { checkSubdivide(t); }

if (I have children) {
foreach Cell child do { child.apply(t,a); }

}
}

Now, how do we know if we need to subdivide a given
cell (checkSubdivide test in the algorithm above)? Let’s
suppose that the tool has an ellipsoidal shape. We would
like to obtain something like Figure 10, where the sampling
rate increases (i.e. the cell size decreases) in regions where
the tool has sharp features.

Figure 10: Sampling an ellipsoidal tool. (a). Only 2 consec-
utive levels. (b). All the levels hierarchically created.

First, we query the tool attributes for requirements on a
minimal security cell-size to reach, in order not to miss any
of its features. This information may be constant over the
tools influence region, or locally computed. For example,
if the tool field is stored as a hierarchy of cells, we use the
size of the leaf cell as the minimal size to reach.

Once we have reached this minimal size, the field could
still be ill-sampled. For example, if we use a eraser action,
we might create field discontinuities, even with spherical
tools. Our choice here is to try to estimate the discrepancy
of the field. If the cell’s discrepancy is higher than a given
tolerance, we go on subdividing. Pragmatically, we use this
strategy only on cells that are crossing the surface, as this
is our region of interest. Moreover, using this strategy in
regions where no surface exists could disturb the surface
when it reaches these regions; as the details existing only
in the field (and consequently hidden from the user) would
suddenly become visible on the surface being created.

Figure 11: Sampling an ellipsoidal tool: the large ellipsoid
is the tool, and the small one inside it is the surface created.
The figure shows the maximum resolution reached in highly
curved areas.

As stated above, using a subtractive tool can cause discon-

74

tinuities in the scalar field so the subdivision process might
never end. Here again we rely on the tool to query a maxi-
mum depth to reach. In fact, this is formulated as a smallest
cell size not to overpass, which we call the maximum resolu-
tion. It could, exactly as the minimum resolution above, be
locally adapted inside the tool’s region of influence. At the
moment, our ellipsoidal tools only expresses it as a constant
factor, depending on the tool’s scale used. This yields:

ALGORITHM : Testing a cell for subdivision
Cell::checkSubdivide(Tool t) {

if (size > t.getMinResolution()) {
subdivide();

} else {
if (size < t.getMaxResolution()) {

if (estimateDiscrepancy() > acceptableDis-
pcrepancy) {

subdivide();
}

}
}

}

We do not have a priori knowledge of the field’s profile
before we reach the bottom level of subdivision. Thus we
cannot stop the subdivision to conduct any simplification
(“undivide” of Figure 9) at any particular level, as we cannot
guarantee that the finer level will not add surface details.
As a result, we conduct a separate simplification pass over
the whole sampled field at idle moments of the interaction.
The simplification strategy we are currently using is rather
drastic, as it destroys every Cell that does not (and whose
children do not) cross the surface.

Updating the coarser levels first, as depicted in the apply
algorithm, is crucial to provide an interactive visual feed-
back. This means careful initialization of the newly created
Vertex set. The creation of the new vertices for the sub-
cells requires interpolation of the field value prior to the
current tool application, so that the tool’s modifications can
properly be added.

5.3 Priority Queue Based Field Update

The recursive approach for performing field updates, de-
scribed in Section 5.2, isn’t suitable for an interactive up-
date. Actually, it walks along the hierarchy depth first, thus
missing the requirement to completely update coarser lev-
els before considering finer ones. Next, we explain how to
get this feature, which is essential for achieving interacive
display.

From coarser to finer levels

We use a priority queue sorted on the level addressed and on
the tool/action concerned to ensure an update from coarser
to finer levels. The tools/actions must be sequentially ap-
plied, but we should update the coarser levels first. Thus we
perform a straightforward priority evaluation based on these
two criteria.

The Apply procedure outlined in 5.2 is not altered much.
It still updates its internal vertices and subdivides if needed.
Then, instead of recursively calling apply on the existing
children, it simply inserts a new element made up of the
same ToolCopy and the next level.

Emptying the queue

To empty the priority queue we need to find all the cells of
a given size (or level) that are intersected by the ToolCopy
(which is much like an image of the Tool at the moment
its application was posted). Without any additional struc-
ture, this would mean recursively walking through the cells
hierarchy from the root-cell until we reach the cells having
the desired size. To the cost of walking from the root-cell
we must add the extra-cost of the intersection test with the
tool for each cells of the intermediate levels.

To avoid these useless computations, we use a simple cell-
queue with basic constant-time operations (pushback and
popfront) to temporarily store the cells intersected by the
tool from one level to the next. Cell-queues are indexed by
a ToolCopy and the size of the cells it contains. They can be
directly inserted/handled inside the manager priority queue,
whose elements are then the cell-queues.
The Apply procedure of 5.2 is again slightly modified: it
receives a cell-queue as an extra parameter. Children cells
that intersect the tool are appended to this queue.

Another benefit of these cell-queues is that they allow
interruption of the processing of a given level if any coarser
level is inserted inside the manager. The interrupted cell-
queue is simply re-inserted in the manager priority queue,
and is properly handled from where it was suspended when
the working task returns to it.

5.4 Surface creation and display

The surface of the sculpted object is still generated using a
Marching Cubes algorithm. If a given cell, at any resolution,
crosses the iso-value, we associate a Surface Element to it.
This structure stores the Marching Cubes configuration in-
dex (an integer) and at most twelve pointers to some Surface
Points, i.e. intersections of the iso-surface with the current
Cell’s edges. As a result, we obtain many approximations
(Level Of Detail) of the iso-surface at each level of the cells
hierarchy.

Additionally, the Surface Element is used to estimate the
surface discrepancy introduced in Section 5.2. We need a
quantity that indicates the flatness of the extracted surface.
We decide to exploit the normals extracted at the surface
points. If the normals are all pointing in a similar direction,
the surface will be well represented by our linear approxi-
mation. On the contrary, if they have very different direc-
tions, our linear approximation is poor and the sampling
rate should be increased to better match the underlying iso-
surface. We use a straightforward estimator that computes
a kind of standard deviation of the surface normals.

The refinement process guided by the discrepancy esti-
mator enables correct sampling of the field. However, at the
leaf level of the hierarchy we obtain far too many triangles
for any current graphic hardware to display interactively.

To address this problem, we compute for each cell an esti-
mated projected size on the screen. It is estimated from the
cell’s size and the distance of the cell’s center to the screen
projection plane. Using this projected size, we can stop the
hierarchy exploration when the projection of the current cell
becomes too small. For example, if the projected size of a
cell is smaller than a pixel, the triangles contained inside its
children will be smaller, so we avoid visiting them and rather
draw the surface element of the current cell.

This mechanism gives control over the number of dis-
played cells at each frame and dynamically selects a LOD
dependent on the distance to the projection plane. We au-
tomatically adjust the minimum projected size from frame to

75

frame to maintain a given framerate during user interaction.
At the end of each frame, we measure the time spent from
the previous frame end and we use the difference with the
desired display time to weight the growing factor of the min-
imum projected size. Pragmatically, we used the third power
of this difference to minimize its influence when the display
time is near its goal, and emphasize it when it’s far from it,
keeping its sign. When the user is idle, the limit projected
size is progressively reduced close to zero. So the fully de-
tailed geometry can be rendered if the user waits sufficiently
long; which will allow a non-interactive but accurate display
during the session.

Contrary to other multiresolution iso-surface construc-
tions, we pay no attention to the cracks that appear be-
tween adjacent cells of different sizes. A first reason for
this choice is that the surface is always changing during the
sculpting process. Another reason comes from the fact that
we dynamically select, at each frame, where to stop in the
cells hierarchy display. Reconnecting surface elements would
force us to always track the neighboring cells. This would
largely slow down the display rate, which is especially true in
our unconstrained hierarchy (adjacent cells could be distant
from more than one level of resolution). Moreover, as long
as a sufficiently large number of polygons is displayed, the
cracks can remain hardly visible (see Figure 12), it is thus
a posteriori not worth the effort. An offline global polygo-
nization is computed when the sculpted object needs to be
exported.

Figure 12: Three steps of a character’s modelling through
the editing of an imported polygonal mesh. This example
illustrate multi-resolution sculpting, since large tools were
used for creating a smooth body for the character while very
small ones were needed to create the wings of the helmet and
the chain.

6 Virtual Clay with local and global defor-
mations

Although the previously described sculpting techniques offer
real-time interaction and several interesting features such as
force feedback or multi-resolution editing, the user’s action
is mostly restricted to carving and adding material. With
a very limited kind of local deformation, this method fails
to fulfill the versatile modeling interface we are looking for.
Several of the essential features of real clay are not simu-
lated, such as the ability to be globally bent or twisted, the
preservation of volume during global and local deformations
and surface tension.

This section presents a volumetric, real-time virtual clay
model which can be both sculpted by adding or removing
material and deformed through the interaction of rigid tools.
The model mimics the global and local effects of plastic-
ity, mass preservation and surface tension found in real clay.

Our method enables the user to specify local properties of
the clay such as color and fluidity, and allows the simulta-
neous use of an arbitrary number of tools. These contri-
butions make this virtual clay model ready for direct hand
manipulation, as discussed in conclusion. This work was
first presented in [Dewaele and Cani 2004a; Dewaele and
Cani 2004b]

In this section, the clay surface is defined as the iso-surface
of iso-value 0.5 of a scalar field that represents the clay den-
sity. Field values are stored in a 3D grid and clamped be-
tween 0 (an empty cell) and 1 (a cell full of clay).

6.1 A layered model for virtual clay

We are seeking for a model which, in addition to classi-
cal carving or addition of material, is able to capture lo-
cal and global deformations expressed through clay displace-
ment from a grid cell to another.

Rather than trying to be physically accurate, we use a lay-
ered physically-based model to simulate the desired features
of clay in real-time. The layers we use are:

1. Large scale deformations: This first layer allows the
user to bend or twist parts of the sculpted model using
several rigid tools. The deformations are plastic: the
clay will not come back to its initial state after the
deformation is applied.

2. Volume conservation: This second layer prevents
volume variation by iteratively poring clay in excess
(i.e. clay in cells which density value exceeds 1 or which
are occupied by a tool) into neighboring cells. This re-
sults into intuitive folds and local bulges when the user
deforms or presses the clay.

3. Surface tension: This third layer mimics surface ten-
sion by moving clay in cells where the density value is
below 0.5 towards the surface of the sculpted model.
As a result, clay does not spread into non-visible low-
density regions, and the object remains compact any-
time.

During simulation, the three layers are emulated in turn,
over the same virtual clay representation (the 3D grid storing
the density field). This yields a real-time model that reacts
very similarly to real clay, as our results show. Figure 13
gives a schematic representation of the three layers.

6.2 Large scale deformation layer

We are seeking for the large scale, plastic deformation pro-
duced by the action of user-controled tools. Contrary to
most physically-based models used in Computer animation,
there is no need to use a dynamic model here: getting a static
“equilibrium shape” after each user’s action is sufficient.

This layer computes the displacement δ to apply to the
clay material lying in a given grid cell as a linear combination
of the displacements dictated by the user-controled tools.

Combining the actions of multiple tools

Being able to interact by simultaneously using an arbitrary
number of tools is an essential feature of our model: since
we are trying to create a material close to real clay, sculpting
with several tools, one of which may freeze a region of the
clay to keep it still will be much more effective that using a
single tool. It will even be mandatory to globally bend or

76

Figure 13: A layered model for virtual clay. (a) Large-scale
deformations modeling plasticity. (b) Local deformations
insuring constant volume. (c) Surface tension avoiding the
spreading of clay over space.

twist the clay, operations we perform using our ten fingers
in the real world.

Since the clay is a viscous fluid, the displacement of a
user-controlled tool basically moves the clay around it the
same way. The difficulty is to model the relative influence of
the different tools on parts of the clay located in between.

The idea is to define regions of influence for each tool tool,
in the spirit of voronoi regions but with a smooth transition
between them. To achieve this, we compute as follows weight
coefficients ki for each tool, that are used to compute the
displacement δ of the clay in a cell as:

ki =
1 − di−minj (dj)

minj (dij)

2
and δ =

P

i kiδi
P

i ki
(13)

where j refers to all the other involved tools, d1 is the pseudo-
distance from the current cell t a given tool, and dij is
the pseudo-distance between two tools. We use a pseudo-
distance instead of the Euclidian distance since the clay can
be folded, so parts that are close in the 3D space can be far
away inside the material.

More precisely, the pseudo-distance models the propaga-
tion of the quantity of movement inside a semi-fluid material.
It can be seen as the length of the path, inside the object,
along which the motion is transmitted. The longer this path
is or the smaller the clay density is along it, the smaller
the generated motion is. The pseudo-distance is computed
through a propagation scheme that starts from a tool and
propagates in the clay until it reaches its border or cells
covered by other tools. For each non-empty cell ci:

di = minneighbours(dj) +
1

ρi
(14)

where ρi is the density of clay in ci. This results into
Voronoi-like regions of influence, with a continuously varying
effect of a tool’s motion between them.

Rotating tools

Up to this point, we only considered that tools motion would
be translations when they are in contact with the clay. How-
ever, the user may also rotate tools, expecting to produce
rotations or twists in the clay.

The motion of a solid rotating object cannot be described
by a simple displacement vector. Instead, a point A rigidly
linked to the tool moves according to displacement field:

δA = δO + OA× ω (15)

where δO is the translation of point O (the center of the
tool) and ω, the screw of the tool. To take into account
the rotation of the tool, we simply replace the previous δi in
equation (13) by the δA for cell i in equation (15). This way,
more general deformations can be generated. For instance,
a bar of clay can be twisted by simply turning a tool at one
end of the bar.

6.3 Mass-conservation layer

6.3.1 Principles

The mass-conservation layer of the simulation aims at en-
forcing volume conservation. It also models local matter
displacements near the surface of the object due to the tool’s
action. It will result in prints when the user pushes the tool
on the object, in folds, etc. Of course, none of these effects
can be produced by the previous layer. Indeed, the clay
needs to locally move laterally and then even in the oppo-
site direction from the tool to create bumps and folds around
it.

The idea behind this layer is quite simple: if, in a cell, the
density is greater than the maximum allowed value, 1, the
excess is distributed into the six closest cells. When those
cells are not full, the process terminates. If they have an
excess of matter, they will distribute it among their own
closest cells, and so on. Matter will move from cells to cells
and finally reach the object’s border, where it will find some
room to remain. We will see that the object inflates in those
areas.

We found the ideas behind this layer in fluid mechanics.
When the medium sees locally an excess of pressure (i.e.
an excess of matter), we get motions of the fluid from the
areas with high pressures to areas with lower ones, until a
uniform pressure is obtained. The main difference is that we
only consider excess with regard to the maximum density
and do not compare it to the surrounding values. This way,
our clay remains solid, and doesn’t tend to occupy the whole
space.

6.3.2 Interaction with tools

Now we need to see how tools can interact with our mass-
conservation layer. We want the tool to push the clay in
front of it when the user presses the tool against the object.
The interaction is quite straightforward: where we have a
tool, there’s no more room for matter. The cells covered by
the tool cannot contain clay anymore, so all the clay in those
cells is in excess. We use the process we just described for
moving this matter.

Rather than using purely rigid tools, we limit aliasing ar-
tifacts by defining them using a density function. The tool’s
density decreases near its edges. When the tool occupies
eighty percent of a cell (i.e. its density value in the cell
is 0.8), there is room for twenty percent of clay. Thus the
carved object will have the same roughness as the tool. It is
possible, too, to use a previously sculpted piece of clay as a
tool. We thus let the user design his own complex tools, for
example to be able to make prints or bas reliefs.

A small problem remains. If we simply move matter in-
side the tool to all close cells, some clay can go through the

77

whole tool and exit on the other side. We thus add one
more rule for interacting with tools: clay inside tools can
only move outwards. For each cell occupied by the tool, we
define allowed and forbidden directions among the six pos-
sible directions to neary cells. This way, tools really push
matter in front of them, and no clay goes through the center
of the tool.

For efficiency reasons, we precompute those allowed direc-
tions when we design a tool. This is done by looking for the
closest direction to the surface of the tool. We could simply
use the (discrete) gradient of the tool’s field function. But
this will not work for tools sculpted within our system, since
we clamped the field value to 1 inside the tool. We need a
second field function, with no clamping value this time, so
that the gradient can be meaningfully computed anywhere.
If we have only a field function already clamped to 1 to de-
scribe the tool, we have to build this second field function.

This can be done by using a propagation scheme starting
from the edges of the tool, and going inside. We use the
same algorithm we described in the large-scale displacement
algorithm to compute the influence of the tools, except we
got rid of the 1/density term. This way, we have everywhere
an estimation of the distance to the surface of the tool, and
the gradient points towards the outer part of the tool. This
computation is performed each time we convert a piece of
clay into a new tool.

Moving clay in one direction is allowed if this direction
makes an angle with the direction of the gradient under a
given threshold. We choose to use a 60 degree angle. We
normalize gradient, and we compare its components to 0.5
and -0.5 to decide whether motion along the x−, y−, and
z-axes should be allowed.

6.4 Surface tension

After several deformations using the two layers above, the
matter tends to become less and less compact. Clay pushed
by the tools can indeed be dispersed around the object, and
the transition from inside (density equal to 1) to outside
(void cells) gets slower and slower. One of the problems
with cells with low densities is that the user does not see
them, so strange effects can arise if a tool pushes these small
quantities of clay in front of it: clay popping from nowhere
when density, due to action of the tool, rises to the threshold;
innacurate changes of the surface location, etc. Moreover,
since matter in cells of low density is no longer visible, the
object’s volume will seem to decrease, even if matter does
not really disappear.

The surface-tension layer tries to resolve and avoid these
problems. It keeps the gradient of density near the surface
of the clay to an acceptable value. Matter in cells with very
low densities is moved to nearby cells with higher densities.
We look for every cell with a value below a threshold. At
each such cell, we compute the gradient of the field function
by using finite differences with nearby cells. If the length of
the gradient is below another threshold (which correspond
to the gradient we would like to have near the surface of the
object), we move clay from the cell with a low density to
closest cells with higher ones. This way, the object remains
compact. The layer can be seen as adding a surface tension
effect for a fluid.

While the previous layer prevents the contraction of the
clay, this layer tries to avoid expansion. It will separate the
object in two different compact parts if the user stretches it
too far, due to the decrease of density in the central region.

Even with surface tension, some very small pieces of mat-

ter may separate from the main block of clay, like crumbs
from a piece of toast; these are sets of a few neighboring
cells with above-threshold densities. This is still physically
correct, and the user should not be surprised, since these
crumbs are visible. But because they can be distracting for
the user, we get rid of them as soon as possible by removing
them from the working space. If we want to preserve the
volume of the object, we can put the matter removed this
way back in the closest cell with high density, as if the crumb
had been eaten up by the clay.

6.5 Local properties of clay

Adding local properties for clay, such as color or a locally
varying fluidity parameter is made straightforwards by our
volumetric representation: we just store the extra parameter
values in each non-empty grid cell.. The main concern is how
to adequately attach the local properties to the clay when it
moves and deforms.

Updating local properties

A local property should be linked to the clay material in a
cell rather than to its specific position in space. We thus have
to update cell parameter values each time some clay moves
due to the action of one of the layers. Although clay motion
is modeled by increasing the density value in a destination
cell while decreasing it in a source cell, the values of local
properties only have to be updated in the destination cell,
since the material’s nature in the source cell remains the
same.

Let ρi represent the amount of clay being transported to
the destination cell and νi be the vector of associated local
properties. Let ρj and νj respectively be the quantity of
clay and its parameters already stored in the destination
cell. Then the natural choice for computing the new values
of local properties associated to the quantity of clay ρi + ρj

in the destination cell is the weighted average:

νdestination =
ρjνj + ρiνi

ρj + ρi
(16)

For instance, in the case of fluidity, ν represents the propor-
tion of water in the clay. The new proportion is indeed the
weighted average of the previous values.

Deforming non-homogeneous clay

Clay with locally varying fluidity is modelled by setting an
extra parameter in each cell in order to store the proportion
of water contained. In areas where the density of clay is low
or where fluidity is high, the movement should propagate
less from a cell to another. To achieve this, we still compute
the pseudo-distance from a tool using the previous scheme,
but we replace equation 14 by:

di = minneighbours(dj) +
1

(1− fi)ρi
(17)

so that the ”distance” increases more quickly where density
ρi is low and fluidity f is high.

6.6 Results and discussion

Figure 14 shows some snapshots or our virtual clay sculpting
system. It shows that the model exhibits both global and
local deformations and demonstrates its ability to convey

78

Figure 14: Snapshops of the virtual clay sculpting system.

topological changes (with the tool used to make a hole) while
preserving a constant volume for the clay. For this first
examples, only two tools were used, one of which keeping
the whole or a part of the clay frozen to a fixed position.

Figure 15: Globally bending and twisting a piece of clay.

Figure 15 shows the ability of the model to take into
acound both translations and rotational motion of the tools
in contact with the clay.

Figure 16 illustrates the fact that the clay model can be
deformed by the combined motion of an arbitrary number
of user-controlled tools, in the manner of the user’s fingers
of both hands used to deform real clay.

Comparing these results with the real images depicted
in figure 1 shows that our model achieved capturing the
main features of real clay. However, there is a good reason
why this physically-based system was only used, up to now,
to perform very simple, proof-of-concept deformations: the
closer a model is to real clay, the most difficult interaction is.
Although possible, sculpting a complex shape using a single,
rigid tool controlled with the mouse is difficult and time-
consuming. Indeed, most people would use their ten fingers

Figure 16: Deforming a piece of virtual clay through the
simultaneous action of four tools, to be compared to the
real-clay deformation at the bottom right of figure 1.

and may-be the palm of their hand for modeling with real
clay. Although interaction with an arbitrary number of tools
is made possible by our model, a good way for the real-time
control of these multiple tools still needs to be defined. The
best solution would be the real-time control of virtual hands
interacting with the clay. This could be done by either using
a data glove or a system based on cameras for capturing the
motion of the users hands. However, finding a method for
providing a convincing force feedback in such a framework
would be very difficult, since the sense of touch is very dif-
ferent from the kind of feedback an exo-skeleton glove can
provide.

This leads to the question: how far should a digital
model for clay try to mimic the behavior of real material?
Gestured-based deformations as the sweepers technique pre-
sented in the space deformation chapter provide a much eas-
ier control, since the user can place the deformation tool
either inside, outside or partly inside the model to control
the part of the shape he wants to deform. Could we add
constraints to generated deformations, so that they become
as natural to us as real clay deformations, while keeping the
same easiness of use? This is the approach we are studying
next.

7 Swirling-sweepers: constant volume
space deformations

In a non-virtual modeling context, one of the most impor-
tant factors that affects the artist’s technique is the amount
of available material. This notion is not only familiar to
professional artists, but also to children who play at kinder-
garten with Play-Doh

�

and to adults through everyday life
experience. A shape modeling technique that preserves vol-
ume will take advantage of this familiarity, and will hopefully
be genuinely intuitive to use.

The model presented in this section is an extension to
constant volume deformations of the sweepers technique pre-
sented in the chapter on space deformation of this tutorial.
As such, it combines the advantages of a very simple gesture-
based interaction with characteristics similar to real clay.

7.1 Swirl

We introduce a particular case of sweeper, a swirl, as a rota-
tion whose magnitude decreases away from its center. For-
mally, a swirl is defined by a center point c, together with a
rotation of angle θ around an axis v (see Figure 17). A ra-
dial function ϕ, defines how the amount of rotation decreases

79

away from c, within a sphere of radius λ around c:

ϕ(p, λ) = µ(
‖p− c‖

λ
) (18)

where µ(d) =

0 if 1 ≤ d
1 + d3(d(15− 6d)− 10) if 1 > d

θ

c c
v v

λ

Figure 17: The effect on a sphere of a swirl centered at c,
with a rotation angle θ around ~v. The two shapes have the
same volume.

The function µ is a picewise C2 polynomial, antisymmet-
ric about 0.5. Although in this section we will develop our
technique on this choice for µ, alternative functions may also
be used. Informally, a swirl twists space locally around axis
v without compression or dilation (see proof in [Angelidis
et al. 2004b]), thus it preserves implicitly1 the volume of
any shape embedded in the deformed space. The equation
defining the effect of a swirl on space may be defined in sev-
eral equivalent ways, for example using quaternions or an
algebraic formula. For convenience reasons that will become
apparent in the next section, we chose to define the effect a
swirl using the exponential and logarithm of matrices (see a
complete overview in [Alexa 2002]), for which we will give
closed-forms in Section 7.3):

f(p) = exp(ϕ(p, λ) log R) · p (19)

where R denote the 4 × 4 matrix of a rotation of center c,
axis v and angle θ. The exponential or logarithm of a 4× 4
matrix is a 4×4 matrix, and are formally defined as the limit

series expM =
P∞

k=0
Mk

k!
and log N = −P∞

k=1
(I−N)k

k
.

7.2 Ring of Swirls

hh

4 swirls 8 swirls2 swirls

h

t t t

Figure 18: By arranging n basic swirls in a circle, a more
complex deformation is achieved. In the rightmost image:
with 8 swirls, there are no visible artifacts due to the discrete
number of swirls.

With the exp and log formulation, it is very convenient to
define the effect of simultaneous swirls, simply by summing

1The term implicit refers to volume preservation, and is not

related to the implicit surface representation of previous section.

the weighted matrix logarithms:

f(p) =

exp(

n−1
X

i=0

(ϕi(p, λ) log Ri))

!

· p (20)

It is important here to remark that the above blending is not
the blending formula of simultaneous tools defined in [An-
gelidis et al. 2004b], and uses simple weights. The reason
for using the above simple blending equation as opposed to
the one of [Angelidis et al. 2004b] is that the latter modu-
lates the amount of individual transformations locally, and
attempting to control the volume with it would be inappro-
priate. Using swirls as building blocks, we now provide a
useful way for the artist to input n swirls by specifying a
single translation t. Let us consider n points, ci, on the cir-
cle of center h, and radius r lying in a plane perpendicular
to t. To these points correspond n consistently-oriented unit
tangent vectors vi (see Figure 18). Each pair, (ci,vi), to-
gether with an angle, θi, define a rotation. Along with radii
of influence λ = 2r, we can define n swirls. The radius of
the circle r, is left to the user to choose. The following value
for θi will transform h exactly into h+ t (see justification in
[Angelidis et al. 2004b]):

θi =
2‖t‖
nr

(21)

With such defined swirls, the deformation of Equation (20) is
a deformation tool capable of transforming a selected point
to a desired location. We show in Figure 18 the effect of
the tool for different values of n; in practice, 8 swirls are
sufficient.

Preserving Coherency and Volume If the magnitude of the
input vector t is too large, the deformation of Equation (20)
will produce a self-intersecting surface, and will not preserve
volume accurately. The reason for self-intersection is ex-
plained in [Angelidis et al. 2004b]. The volume is not ac-
curately preserved because the blending of Equation (20)
blends the transformation matrices, and not the real defor-
mations. To correct this, it is necessary to subdivide t into
smaller vectors for the same reasons that applies to solving
discretely a first order differential equations. Thus foldovers
and volume preservation are healed with the same strategy.
The number of steps must be proportional to the speed of
the translation, and inversely proportional to the size of the
tool. We use:

s = max(1, d4‖t‖/re) (22)

As the circle sweeps space, it defines a cylinder. Thus the
swirling-sweeper is made of ns basic deformations. Figure 19
illustrates this decomposition of the deformation applied to
a shape.

7.3 Swirling-Sweepers Algorithm & Implementation

We summarize here the swirling-sweepers algorithm:

Input point h, translation t, and radius r
Compute the number of required steps s

Compute the angle of each step, θi = 2‖t‖
nrs

for each step k from 0 to s− 1 do
for each point p in the tool’s bounding box do

M = 0
for each swirl i from 0 to n − 1 do

M += ϕi
k(p, λ) log Ri,k

80

t t s/

t s/

t s/

h

h + t

input step ... step sstep 1

Figure 19: A volume preserving deformation is obtained by
decomposing a translation into circles of swirls. 3 steps have
been used for this illustration. As the artist pulls the surface,
the shape gets thinner. The selected point’s transformation
is precisely controlled.

end for
p = (expM) · p

end for
end for

The point cik denotes the center of the ith swirl of the kth

ring of swirls. For efficiency, a table of the basic-swirl cen-
ters, cik, and a table of the rotation matrices, log Ri,k, are
precomputed. We have a closed-form for the logarithm of
the involved matrix, given in Equations (23) and (24), sav-
ing an otherwise expensive numerical approximation:

n = θivi

m = ci,k × n (23)

log Ri,k =

0

B

@

0 −nz ny mx

nz 0 −nx my

−ny nx 0 mz

0 0 0 0

1

C

A
(24)

Note that this matrix is almost antisymmetric, thus we can
handle it with a pair of vectors, (n,m). Once M is com-
puted, we use a closed-form for computing expM . Since
the matrix M is a weighted sum of matrices log Ri,k, the
matrix M is of the form of Equation (24) as well, and can
be represented with a pair (nM ,mM). If nM = 0, then
expM is a translation of vector mM . Else, if the dot prod-
uct mM ·nM = 0, then expM is a rotation of center c, angle
θ axis v, as given by Equation (25):

c = !×m

‖!‖2

θ = ‖nM‖
v = nM/θ

(25)

Finally, in the remaining cases, we denote l = ‖nM‖, and we
use Equation (26):

expM = I + M + 1−cos l
l2

M2 + l−sin l
l3

M3 (26)

Symmetrical objects can be easily modeled by introducing
a plane of symmetry about which the tool is reflected (see
Figure 21).

Efficiency: Applying the exponential of the matrix to a
point does not require to compute the exponential of the
matrix explicitely. Let us define the matrix M with a pair
of vectors, (n,m).

exp(M) · p = p + (m + n× p)b + (n×m

l2
− p)a

+ n((n ∗ p)a + (n ∗m)(1− b)) 1
l2

where l = ‖n‖
a = 1 − cos(l)

b = sin(l)
l

(27)

For even faster performances, the exponential may be re-
placed with a first order approximation:

exp(M) · p ≈ (I + M) · p = p + n× p + m (28)

7.4 Results

Figure 20 shows how much the deformations created by
swirling sweepers give a clay-like behaviour to the scupted
shape. In particular, the material seems to be swept along
with the tool, as soft, real-clay would.

Figure 20: When pushed or pulled, a sphere will inflate or
deflate elsewhere.

In Figure 21, we compare the shapes’ volume with unit
spheres on the right. The shapes volumes are respectively
101.422%, 99.993%, 101.158% and 103.633% of the initial
sphere. Note that 80 swirling-sweepers have been used to
model the alien, thus the error of each steps is of no conse-
quence to the user. The small errors are due to the finite
number of steps, and to our choice of shape representation,
and can be reduced by increasing the number of steps s and
the number of samples on the deformed shape. The shapes
shown in Figure 21 were modeled in real-time in half an hour
at most, not including the design phase. They were all made
starting with a sphere, thus all the feature were genuinely
created with our method.

8 Discussion and conclusion

We have presented three different approaches towards vir-
tual clay, all enabling shape creation and editing at interac-
tive framerates. The first one is an extension of volumetric
implicit sculpting with no limitation of the shape extent in
space or resolution, thanks to the use of a virtual grid for
storing the field samples. Local deformations mimicking a
displacement of matter are added to enhance realism, but
no mechanism is provided for applying more global defor-
mations to the shape. Closer to real-clay, the second model
incorporates physically-based deformations within the pre-
vious shape representation, yielding visually realistic defor-
mations. At the other end of the spectrum, the last model
incorporates a constraint from the physical world, constant
volume deformations, within a geometric modeling frame-
work. It provides a very practical system for intuitively de-
forming a shape when no change of topology needs to be
applied.

One should however note that the closer we get towards
a virtual clay model, the more attention we have to pay to
user interaction: while the first and last sculpting systems
are well suited to sculpting with a single tool (controlled for
instance via a 3D mouse or an haptic device), sculpting a
complex shape with the second model, much closer to real

81

Figure 21: Examples of models modeled with swirling-
sweepers. The mouse, the goblin, the alien and the tree
have respectively 27607, 25509, 40495 and 38420 vertices.
These objects were modeled in less than 30 min by one of
the authors. Eyeballs have been added.

clay, cannot easily be done without defining an appropriate
interface: in the real world, the user needs both hands to
bend, twist or locally deform a piece of clay. A mechanism
for interactively controlling the motion of virtual hands is
thus required.

Lastly, haptic interaction proved to be a great aid in a
sculpting process. In the first system we presented, feeling
the model helped the user decide more easily if he was adding
material onto or in front of the surface. However, haptic
interaction through a force feedback device is still very far
from the sense of touch a designer feels when he sculpts with
real clay. A long term goal would be to incorporate haptic
feedback in the direct-hand manipulation interface we are
seeking for the second model. Since we consider the use
of haptic gloves as intrusive, we are thinking about rather
using a “real-object interface”: The user would manipulate
a real deformable object (e.g. a ball full of sand), serving
as an avatar for all or for a part of the sculpture (see Fig-
ure 22). His hand gestures would be captured by cameras
and the reconstructed gestures be used to deform the virtual

Figure 22: Our concept for direct hand manipulation for
virtul clay.

sculpture. We believe that such an interface providing a real
sense of touch, even not exactly correlated with the display,
would be a good advance towards making virtual sculpture
as intuitive as the manipulation of real clay.

Acknowledgments

Many thanks to Eric Ferley, Jean-Dominique Gascuel, Re-
naud Blanch, Guillaume Dewaele, Geoff Wyvill and Scott
King for their respective contributions to the different vir-
tual clay models presented in this chapter.

References

Adams, R. J., and Hannaford, B. 1999. Stable haptic
interaction with virtual environments. IEEE Transactions
on Robotics and Automation 15, 3, 465–474.

Alexa, M. 2002. Linear combination of transformations. In
Proceedings of SIGGRAPH’02, ACM Press / ACM SIG-
GRAPH, vol. 21(3) of ACM Transactions on Graphics,
Annual Conference Series, ACM, 380–387.

Angelidis, A., Cani, M.-P., Wyvill, G., and King, S.
2004. Swirling-sweepers: Constant-volume modeling. In
Pacific Graphics 2004, IEEE, 10–15. Best paper award.

Angelidis, A., Cani, M.-P., Wyvill, G., and King, S.
2004. Swirling-sweepers: Constant-volume modeling. In
Pacific Graphics 2004, IEEE, 10–15. Best paper award at
PG04.

Arata, H., Takai, Y., Takai, N. K., and Yamamoto,
T. 1999. Free-form shape modeling by 3d cellular au-
tomata. In International Conference on Shape Modeling
and Applications, 242–247.

Avila, R. S., and Sobierajski, L. M. 1996. A haptic
interaction method for volume visualization. In IEEE Vi-
sualization ’96, IEEE, 197–204.

Avila, R., and Sobierajski, L. 1996. A haptic interac-
tion method for volume visualization. Computer Graphics
(Oct.), 197–204. Proceedings of Visualization’96.

82

Avila, R. S. 1998. Volume haptics. Computer Graphics,
103–123. SIGGRAPH’98 Course Notes #01.

Bærentzen, A. 1998. Octree-based volume
sculpting. Presented at IEEE Visualization ‘98 .
www.gk.dtu.dk/Andreas/publications.html.

Blanch, R., Ferley, E., Cani, M.-P., and Gascuel, J.-
D. 2004. Non-realistic haptic feedback for virtual sculp-
ture. Tech. Rep. RR-5090, INRIA, U.R. Rhone-Alpes,
january. Projet EVASION, theme 3.

Bloomenthal, J., Bajaj, C., Blinn, J., Cani, M.-P.,
Rockwood, A., Wyvill, B., and Wyvill, G. 1997.
Introduction to Implicit Surfaces. Morgan Kaufman.

Cani, M.-P., and Desbrun, M. 1997. Animation of de-
formable models using implicit surfaces. IEEE Trans-
actions on Visualization and Computer Graphics 3, 1
(Mar.), 39–50. Published under the name Marie-Paule
Cani-Gascuel.

Colgate, J. E., Stanley, M. C., and Brown, J. M.,
1995. Issues in the haptic display of tool use. IROS’95.

Dewaele, G., and Cani, M.-P. 2004. Interactive global
and local deformations for virtual clay. Graphical Models
66 (sep), 352–369. A preliminary version of this paper
appeared in the proceedings of Pacifics Graphics’2003.

Dewaele, G., and Cani, M.-P. 2004. Virtual clay for
direct hand manipulation. In Eurographics ’04 (short pa-
pers).

Druon, S., A.Crosnier, and Brigandat, L. 2003. Ef-
ficient cellular automata for 2d / 3d free-form modeling.
WSCG 11 (Feb.).

Ferley, E., Cani, M.-P., and Gascuel, J.-D. 2000.
Practical volumetric sculpting. the Visual Computer 16,
8 (dec), 469–480. A preliminary version of this paper
appeared in Implicit Surfaces’99, Bordeaux, France, sept
1999.

Ferley, E., Cani, M.-P., and Gascuel, J.-D. 2002.
Resolution adaptive volume sculpting. Graphical Models
(GMOD) 63 (march), 459–478. Special Issue on Volume
Modelling.

Frisken, S. F., Perry, R. N., Rockwood, A. P., and
Jones, T. R. 2000. Adaptively sampled distance fields:
A general representation of shape for computer graphics.
Proceedings of SIGGRAPH 2000 (July), 249–254. ISBN
1-58113-208-5.

Galyean, T., and Hughes, J. 1991. Sculpting: An interac-
tive volumetric modeling technique. Computer Graphics
25, 4 (July), 267–274. Proceedings of SIGGRAPH’91 (Las
Vegas, Nevada, July 1991).

Gillespie, R. B., and Cutkosky, M. R., 1996. Stable
user-specific haptic rendering of the virtual wall. Pro-
ceedings of the 1996 ASME International Mechanical En-
gineering Congress and Exhibition, DSC-Vol. 58.

Huang, C., Qu, H., and Kaufman, A. 1998. Volume
rendering with haptic interaction. In Proceedings of the
Third PHANTOM Users Group Workshop, vol. 3, 14–18.

Massie, T. H., and Salisbury, J. K., 1994. The phantom
haptic interface : A device for probing virtual objects.
Proceedings of ASME’94.

McDonnell, K., and Qin, H. 2002. Dynamic sculpting
and animation of free-form subdivision solids. The Visual
Computer 18, 2, 81–96.

McDonnell, K. T., Qin, H., and Wlodarczyk, R. A.
2001. Virtual clay: A real-time sculpting system with
haptic toolkits. 2001 ACM Symposium on Interactive 3D
Graphics (March), 179–190. ISBN 1-58113-292-1.

Nealen, A., Mueller, M., Keiser, R., Boxerman, E.,
and Carlson, M. 2005. Physically-based deformable
models in computer graphics. In State of the Art Report,
Eurographics 2005, 71–94.

Perry, R. N., and Frisken, S. F. 2001. Kizamu: A sys-
tem for sculpting digital characters. Proceedings of SIG-
GRAPH 2001 , 47–56.

Raviv, A., and Elber, G. 2000. Three-dimensional
freeform sculpting via zero sets of scalar trivariate func-
tions. Computer-Aided Design 32, 8-9 (August), 513–526.
ISSN 0010-4485.

Wang, S. W., and Kaufman, A. E. 1995. Volume sculpt-
ing. 1995 Symposium on Interactive 3D Graphics (April),
151–156. ISBN 0-89791-736-7.

Wyvill, B., McPheeters, C., and Wyvill, G. 1986.
Data structure for soft objects. Visual Computer 4, 2
(Aug.), 227–234.

83

MAKING DIGITAL SHAPES BY HAND

Steven Schkolne
steven@schkolne.com
California Institute of the Arts

SIGGRAPH Courses 2006
Interactive Shape Editing

INTRODUCTION

We do many things with our hands, but when it comes to making digital shapes, we tend to use
the mouse and the keyboard. The hand is the human’s most versatile means of acting on the
material world, yet we use a small fraction of its potential when we model using conventional
interfaces. This presentation explores interfaces which translate properties of the hand into op-
erations on digital geometry. In particular we focus on looking beyond the mouse to alternate
forms of user input.

What does the hand offer? One might answer this question from an emotional point of view
Hands are part of the body, they create a heightened sense of connection with a design space
when richly connected to its constituents. There is a sense within our culture that the manual
tradition is important, and vanishing. Objects carry a particular value when they absorb human
touch during formation, and reflect that human touch in their completed form.

Alternately, we can view the hand from a technical perspective. The hand’s skeleton has about
27 continuous degrees of freedom, and placed at the end of an arm there is a huge parameter
space which can be expressed by the human hand. Mouse input is a continuous stream of two-
dimensional coordinates punctuated by discrete events (clicks, double-clicks, and the like). Is
there not a better interface which would allow users to control more simultaneous degrees of
freedom?

There is a certain integration of mind and body that takes place when we intentionally move
our bodies. A professional baseball player can reliably hit a baseball moving at a high velocity.
Computing the bat position and velocity, as any first-year physics student can attest, is a non-
trivial set of calculations. The player does this in a split second. Current modeling interfaces
break 3-dimensional shape modeling into a series of disjoint displacements that users compute
using high-level cognition. Can we not use the motor cortex as a kind of parallel processor, to
facilitate the creation of models?

The ultimate challenge in shape creation is conceptual — linking motion and model conception
into a paradigm that facilitates the creation of sophisticated forms.

84

CONTROL MAPS: BETWEEN THE BODY AND THE MODEL

As Axel Mulder [Mulder �998] notes in his dissertation on sound control, many simultaneously
sensed parameters do not necessarily afford rich control. Mulder considers controlling sound
with a CyberGlove. This glove detects �8 DOF of the human hand. Consider an interface where
joint angles are mapped to properties of sound — the angle of the first finger joint is pitch, the
thumb controls volume, etc., for several simultaneous sounds. While a performer technically
has control of many parameters, there is a mental difficulty in realistically controlling them.

In digital interface design, input devices offer a general, abstract access to parameters. The
relationship between an input device and a digital model is a control map. A control map (also
known as transfer function) is a mathematical relationship established between body/input de-
vice position and model state.

We will consider three classes of interface, each with a distinct flavor of control map.

MATERIAL — The model consists of atomic units which are arranged and manipulated by
the user. Input directly manipulates this structure. The virtual clay interface presented by Ma-
rie-Paule Cani, earlier in this course, is an example. In this interface, a 2-dimensional mouse
controls a sculpting tool which, on a monitor, affects the shape of a 3-dimensional virtual clay
model. In material interfaces, there is a continuous map between motion of the input device and
deformations of the model.

Many systems implemented in the virtual world are also material [Deering �995, Keefe 200�].
In these interfaces, 3-dimensional direct manipulation creates shapes. Shapes made of discrete
entities can also be made in this manner. Block-based systems (such as a child’s toy blocks, or
[Frazer �980]) present a number of physical objects which are manually arranged to make a
form.

MARK INTERPRETATION — Continuous paths in two or three dimensions are mapped to
3-dimensional geometry. These paths either add to, or modify an existing shape. In Takeo Ig-
arashi’s Teddy interface, also presented earlier in the course, strokes are used as input to an
algorithm which produces 3-dimensional form.

In these methods, hand motions are captured, but do not directly affect form. Hand motion
creates strokes which are inputs to functions which produce 3-dimensional geometry. The ef-
fectiveness of the control map is highly dependent on the design of these functions.

THINKING THROUGH STRUCTURE — In these interfaces, parameters of an underlying
data structure are exposed to the user. The user edits parameters (often continuously), and views
the resulting change in the data structure. In the subdivision modeling described by Denis
Zorin, users pull control vertices. These modifications of single points cause a surface to de-
form. Before the information age, engineers used technical diagrams to numerically describe
processes which, after manufacture, resulted in a three-dimensional form.

MATERIAL METAPHORS

We will consider material interfaces based on input devices ranging from mice to cameras. The
mouse-driven ZBrush toolsuite allows modelers to add details to subdivision surfaces in a ma-
terial manner. Dragging the mouse cursor across an area causes a region to be deformed along
the surface normal (or other vector). By changing the method of calculating the deformation
vector, users can tune the creation of detail.

85

The Free-Form modeler, which utilizes the Phantom haptic device, adds a sense of touch to this
process. The user is able to specify the normal vector of the deformation interactively by rotat-
ing the phantom around its pentip. The user can also more accurately depress the form due to
the force feedback. This is especially useful for creating features which trace surface curvature
lines.

Sensed material interfaces detect physical objects and use this information to update a digital
structure. The earliest known work is that of John Frazer et al., which was realized in the early
�980’s [Frazer �980, Frazer �994]. These innovative physical/digital interfaces comprised of an
array of cubic blocks. Each cube was the same size, and wired to a computer that detected the
spatial configuration of the blocks (based on block topology). Frazer came from the architec-
tural tradition, and was interested in designing tools to allow the quick evaluation of building
programs. In some implementations, computations occurring on the CPU, such as the results of
thermal analysis, were displayed on a screen as the user interacted.

One limitation of this approach is that the blocks themselves are not visually sophisticated.
Anderson et al. developed a system [Anderson 2000] that displays a stylized rendition of the
physical model on a 2d display. This sensed-block approach cannot create detailed geometry,
as the resolution of the form is bounded by the resolution of the building blocks.

The SandScape system [Piper 2002] uses particles of sand as its building block. The user cre-
ates a form in a small sand box. A camera detects the shape, while a projector displays informa-
tion on the sand surface. This increases model resolution, although users are limited to height
fields, such as landscape models.

Note the phantom keeps the pen in front of a flat screen. There is a mapping from the 3-dimen-
sional input space to the 2-dimensional display surface across some distance. While the input
control map is between 3-dimensional spaces, and the haptic display is 3d, the visual display is
lower-dimensional and across some distance. Thus it is not quite as immediate as the physical
carving of clay where the mapping to the surface is direct.

While Free-Form offers haptic feedback & 6-DOF deformation, it does not allow users to fully
grasp objects. Haptic devices that control the human skeleton to such a degree that grasping
can be enforced are (sadly, but inevitably) bulky and awkward. There is another paradigm,
one where instead of simulating material we use the material properties that already exist in
nature.

These sensed blocks are manipulated in Frazer’s interface.

The phantom input device controls the deformation of the onscreen
model. Through haptic feedback, the user can feel the surface as it is
deformed.

The grooves in this character’s skin were formed by ZBrush

86

These physical, tangible interfaces have many advantages. They are bimanual and multiuser,
and they mimic the physical world, so interaction is immediate. The hand manipulates many
degrees of freedom simultaneously. However, they are limited in the types of models they can
create. As we will see elsewhere in this presentation, there is typically a trade-off between the
simplicity of a metaphor and the sophistication of the results it produces.

MARK-INTERPRETATION

Tracing interfaces, based on the act of making a stroke, have their roots in traditional drawing.
Computers interpret these strokes in a variety of manners to create shapes.

The Teddy interface [Igarashi �999], described earlier in this course, creates 3-dimensional
information from 2-dimensional strokes.

A user manipulates a landscape visualization with the SandScape
interface.

In Teddy, the control map is not a mathematical surface representation but a set of algorithms
which takes 2d strokes as input. It is very challenging to make these algorithms so clear that a
child can understand them (which is the case with Teddy).

Systems which interpret marks are a rare augmentation of material with algorithmic properties.
The current challenge with this style of interface is to make the algorithms capable of very pre-
cise, expert-class surface modifications.

SURFACE DRAWING

As a case study we look at the surface drawing system, which I built with Michael Pruett and
Peter Schröder [Schkolne �999, 200�, 2003]. In this system, which utilizes 6-DOF electro-
magnetic trackers and a stereoscopic display, hand motions create 3-dimensional shapes in free
space. This direct creation is material, although the strokes are merged to one another to form a
coherent surface. This last step of mark interpretation makes it easier for users to build coherent
surfaces.

The Teddy system converts strokes, shown in red, into 3d geometry.

87

The path of the hand in space is rendered as a geometric object. The
curvature of the hand defines the curvature of the stroke: a large amount
of data is specified in each sweep of the hand.

Surface drawing is very hand-centric. The produced marks directly reflect the curvature of the
hand as it bends. The resulting shapes reflect this organic nature. This interface also has limita-
tions, and by studying it we can understand the shortcomings of transparent (so-called ‘natural’)
control maps.

The images below show an implementation of this interaction. The second row shows strokes
merging together to form a larger continuous surface due to a stroke-merging algorithm.

Two strokes automatically merge to make a continuous surface.

The hand paints a stroke in space.

The tangent plane can be used as a variable to control a smoothing operation (where the surface
moves closer to a flat surface whose normal is dictated by the hand’s normal) and a deform
operation (where the surface moves in the direction of the hand’s normal).

Deform: The surface is slightly altered by rubbing the hand over it.

Smooth: A surface is polished by rubbing the hand over it.

88

Objects are moved with sensed tongs. The act of closing the tongs is a natural signal to begin
moving a virtual object with the tongs themselves. Two sets of tongs used together stretch an
object, increasing or decreasing its scale.

RESULTS

The shapes that can be produced with the system have an intrinsic roughness to them. This is
a reflection of the wavering of the body, combined with sampling error introduced by sensors.
Note how well the organic qualities of the leaves and petals below are modeled by this shaki-
ness. While the final roughness can be removed by known methods [Desbrun 1999], it is more
difficult to add such a meaningful roughness to surfaces. Although this process is non-haptic,
the element of touch has significance. While not volumetric, surface drawing has many of the
tactile elements of clay sculpture.

The two versions of a head model (above, at right) show the effects of the smoothing operation.
Shown at left is an early model of the head. At right, the smooth/deform tool has been used to
correct the proportions of the face and smooth the head’s surface.

There is a level of spatial understanding which is unique to 3-dimensional interfaces. The im-
ages below are of the same shape. It is difficult to see this as one shape through 2d views.
Working directly in three dimensions allows one to create highly artificial structures that are
not easily made with 2d tools.

A variety of shapes created with the surface drawing system.

These three-dimensional digital tongs contain a 6-DOF sensor in their
base. A contact switch detects when they are closed. These tongs are used
to move and stretch shapes in the surface drawing system.

Three views of an interwoven form

89

Users responded enthusiastically to this system, making assessments such as the following:

I was completely amazed at how quickly I interpreted and understood the canvas and
model to be existing in space. It was immediate.

To see abstract images pour like water from my fingertips is sensational... Even more
amazing is to see what touch looks like!

We can clearly see the emotional connection that such an interface enables. However, we must
note the difference between enthusiasm and incorporation of a method into professional prac-
tice. It is one thing to feel connected to a form, and another to actually have a fine degree of
control over a surface. Interfaces such as surface drawing are rich examples of bodily interfaces,
yet they miss something crucial: the data-centric, structural view of digital models. The opti-
mal modeling interfaces mixes the physical (motor cortex) thought of surface drawing with the
data-driven (frontal lobe) analysis required by interfaces that expose their data structures more
directly.

An artist created this shape in 20 minutes, after 10 minutes of training.

The gesture drawings shown above were created by an experienced user. Even for a user new to
3-dimensional interfaces, it is easy to produce a quick gestural rendering of a person.

one-minute gesture drawings

THINKING THROUGH STRUCTURE

The key component that is missing from both the material and mark-interpreting interfaces
presented above is a close relationship between the user and the underlying data structure.
The majority of these works aim to liberate users from having to worry about data structures.
However, these material interfaces are not very popular commercially. Even the methods that
do not require specialized hardware have failed to become standards for digital modeling. Why
is this the case?

I believe the root of this to be the utility of data structures. There is a level of control that can
be achieved by being close to the data. In the most useful systems, users actually think in terms
of a data structure that they are presented with. This is as unintuitive as it is powerful. This type
of control is rarely afforded by material input mappings. In structural interfaces, networks of
control points, curves, and interpolating surfaces/volumes are used to control objects. Users
will put in a large amount of work for a high quality result, even if the interface is unpleasant

90

A subdivision model is controlled by placing vertices in a control mesh
which is subdivided to produce a continuous surface.

and counter-intuitive. Traditional Computer-Aided Design (CAD) has long been criticized as
unintuitive. In many of these systems, users place points on screen space planes which weight
basis functions to form a 3d object. For example, the curve below is created by five coplanar
control points which are interpolated by a spline. In typical CAD interfaces there are several
steps to create curves, as users must specify three dimensions with a 2d input device.

Perhaps the first system to allow the direct input of 3d spatial data, 3-Draw [Sachs 1991] tries
to make the process more straightforward by using a 3d stylus to place control points in space.
3-Draw can build points with constraints and interpolating curves. While it is similar to other
stylus-based systems (such as HoloSketch [Deering �995]) in outward appearance, its control
map is fundamentally different. HoloSketch is a material interface where the path of the stylus
creates strokes directly in 3-dimensional space. There is a continuous relationship between
hand and form. In 3-Draw, users place points, and the form is decided by spline basis functions.
More recently, Wesche and Seidel [Wesche 200�] have presented further developments 3d in-
terfaces for the creation of spline surfaces.

The 2d metaphors required by mouse-based CAD applications are sometimes an advantage, not
a limitation. Planes are essential constructs in engineering applications where the tools used for
manufacture work in terms of planes and sweep directions. However, for freeform modeling
this is more of a limitation than a feature.

CONCLUSION

We have covered a variety of input devices and output scenarios, in the hopes that the reader
(and the author!) will begin to understand the control maps that tie the input to the output.
Between mind and model, the hand plays a crucial role in delivering input to this control map.
We have seen how some maps provide a level of direct control. These come closest to replicat-
ing the sense of touch. While haptics is a nice addition, it is the link between hand motion and
model deformation which most strongly establishes this connection.

Other interfaces place a level of interpretation between user action and the resulting change in
the model. In these interfaces, the challenge is to allow the hand to most readily manipulate and/
or create elements (such as strokes or control vertices) of geometric data structures. A flexible,
versatile, intuitive structure that can be richly manipulated by the hand has yet to be discovered.
Currently, we see either rich structures which can only be manipulated awkwardly, or overly
simple structures which can be richly manipulated. Satisfying both goals simultaneously is a
major challenge for modeling interface research.

A curve and its control points

91

REFERENCES
[ANDERSON 2000] David Anderson, James L. Frankel, Joe Marks, Aseem Agarwala, Paul Beardsley, Jessica Hodgins,
Darren Leigh, Kathy Ryall, Eddie Sullivan, and Jonathan S. Yedidia, Tangible Interaction + Graphical Interpretation: A
New Approach to 3D Modeling, Proceedings of SIGGRAPH 2000, 393-402.

[ANGUS �995] I. G. Angus and H. A. Sowizral, Embedding the 2D Interaction Metaphor in a Real 3D Virtual Environ-
ment, SPIE Proceedings Vol 2409: Proceedings of Stereoscopic Displays and Virtual Reality Systems, 282-293, �995.

[BALAKRISHNAN �999] Ravin Balakrishnan and Ken Hinckley, The Role of Kinesthetic Reference Frames in Two-
Handed Input Performance, Proceedings of UIST �999, �7�-�78.

[BRODY �999] Bill Brody and Chris Hartman, BLUI, a Body Language User Interface for 3d Gestural Drawing, SPIE
Proceedings Vol 3644: Human Vision and Electronic Imaging IV, �999.

[CRUZ-NEIRA �992] Carolina Cruz-Neira, Daniel J. Sandin, Thomas A. DeFanti, Robert V. Kenyon, and John C.
Hart, The CAVE: Audio Visual Experience Automatic Virtual Environment. Communications of the ACM, 35:6, 67-
62, June �992.

[DEERING �995] Michael F. Deering, HoloSketch: A Virtual Reality Sketching/Animation Tool, ACM Transactions
on Computer-Human Interaction, 2:3, 220-238, September �995.

[DESBRUN �999] Mathieu Desbrun, Mark Meyer, Peter Schröder, and Alan H. Barr, Implicit Fairing of Irregular
Meshes Using Diffusion and Curvature Flow, Proceedings of SIGGRAPH �999, 3�7-324.

[DEWAELE 2004] Guillaume Dewaele and Marie-Paule Cani, Virtual clay for direct hand manipulation. In Eurograph-
ics ‘04 (short papers).

[FEINER �993] Steven Feiner, Blaire MacIntyre, Marcus Haupt, and Eliot Solomon, Windows on the World: 2D Win-
dows for 3D Augmented Reality, Proceedings of UIST �993, �45-�55.

[FITZMAURICE �996] George W. Fitzmaurice, Graspable User Interfaces, PhD Thesis, University of Toronto, �996.

[FRAZER �980] J. H. Frazer, J. M. Frazer, and P. A. Frazer. Intelligent Physical Three-Dimensional Modelling System,
Proceedings of Computer Graphics 80, 359–370.

[FRAZER �994] J. H. Frazer, An Evolutionary Architecture, Architectural Association, London, �994.

[FREEFORM] FreeForm, software application, http://sensable.com.

[FRÖHLICH 2000] Bernd Fröhlich and John Plate, The Cubic Mouse: A New Device for Three-Dimensional Input.
Proceedings of CHI 2000, 526-52�.

[GALYEAN �99�] Tinsley A. Galyean and John F. Hughes. Sculpting: An Interactive Volumetric Modeling Technique,
Proceedings of SIGGRAPH �99�, 267-274.

[GORBET �998] Matthew G. Gorbet, Maggie Orth, and Hiroshi Ishii. Triangles: Tangible Interface for Manipulation
and Exploration of Digital Information Topography, Proceedings of CHI �998, 49–56.

[GUIARD �987] Yves Guiard, Asymmetric Division of Labor in Human Skilled Bimanual Action: The Kinematic
Chain as a Model, Journal of Motor Behavior, �9:4, 486-5�7, �987.

[HINCKLEY �994] Ken Hinckley, Randy Pausch, John C Goble, and Neal F Kassell, Passive Real-World Interface
Props for Neurosurgical Visualization. Proceedings of CHI �994, 452-458.

[IGARASHI �999] Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka, Teddy: A Sketching Interface for 3D
Freeform Design, Proceedings of SIGGRAPH �999, 409-4�6.

[JACOB �994] Robert J. K. Jacob, Linda E. Sibert, Daniel C. McFarlane, and M. Preston Mullen, Jr., Integrality and
Separability of Input Devices, ACM Transactions on Computer-Human Interaction, �:�, 3-26, �994.

[KEEFE 200�] Dan F. Keefe, Daniel Acevedo Feliz, Tomer Moscovich, David H. Laidlaw, and Joseph J. LaViola, Jr.,
CavePainting: A Fully Immersive 3D Artistic Medium and Interactive Experience, Proceedings of the 200� Symposium
on Interactive 3D Graphics, 85-93.

[KRUEGER 1983] Myron Krueger, Artificial Reality, Addison-Wesley, 1983.

92

[KRÜGER �994] Wolfgang Krüger and Bernd Fröhlich. The Responsive Workbench, IEEE Computer Graphics and
Applications, �2-�5, May �994.

[LLAMAS 2003] Ignacio Llamas, Byungmoon Kim, Joshua Gargus, Jarek Rossignac and Chris D. Shaw, Twister: A
Space-Warp Operator for the Two-Handed Editing of 3D Shapes, Proceedings of Siggraph 2003.

[LIANG �993] Jiandong Liang and Mark Green, JDCAD: A Highly Interactive 3D Modeling System, 3rd International
Conference on CAD and Computer Graphics, Beijing, China, 2�7-222, August �993.

[MCDONNELL 200�] Kevin T. McDonnel, Hong Qin, and Robert A. Wlodarczyk, Virtual Clay: A Real-Time Sculpt-
ing System with Haptic Toolkits, 200� Symposium on Interactive 3D Graphics, �79-�90.

[MINE �997] Mark Mine, Frederick Brooks, Carlo Sequin, Moving Objects in Space: Exploiting Proprioception In
Virtual-Environment Interaction, Proceedings of SIGGRAPH �997.

[MULDER �998] Axel Mulder, Design of Virtual Three-Dimensional Instruments for Sound Control. PhD Thesis,
Simon Fraser University. �998.

[PIERCE �997] Jeffrey S. Pierce, Andrew Forsberg, Matthew Conway, Seung Hong, and Robert Zeleznik, Image Plane
Interaction Techniques in 3D Immersive Environments., �997 Symposium on Interactive 3D Graphics, 39-43.

[PIERCE �999] Jeffrey S. Pierce, Brian C. Stearns, amd Randy Pausch, Voodoo Dolls: Seamless Interaction at Multiple
Scales in Virtual Environments, �999 Symposium on Interactive 3D Graphics, �4�-�45.

[PIPER 2002] Ben Piper, Carlo Ratti, and Hiroshi Ishii, Illuminating Clay: A 3-D Tangible Interface for Landscape
Analysis, Proceedings of CHI 2002, 355-362.

[POUPYREV �997] Ivan Poupyrev, Mark Billinghurst, Suzanne Weghorst, and Tadao Ichikawa. Go-Go Interaction
Technique: Non-Linear Mapping for Direct Manipulation in VR, Proceedings of UIST �996, 79-80, �996.

[SACHS �99�] Emanuel Sachs, Andrew Roberts, David Stoops, 3-Draw: A Tool for Designing 3D Shapes, IEEE Com-
puter Graphics & Applications, Nov. �99�, �8-26.

[SCHKOLNE �999] Steven Schkolne, Surface Drawing: The Perceptual Construction of Aesthetic Form, M.S. Thesis,
Caltech, �999.

[SCHKOLNE 200�] Steven Schkolne, Michael Pruett, and Peter Schröder, Surface Drawing: Creating Organic 3d
Shapes with the Hand and Tangible Tools, Proceedings of CHI 200�, 26�-268.

[SCHKOLNE 2003] Steven Schkolne, 3d Interfaces for Spatial Construction, PhD thesis, Caltech, 2003.

[SHNEIDERMAN �983] Ben Shneiderman, Direct Manipulation: A Step Beyond Programming Languages, IEEE
Computer, �6:8, 57–69, August �983.

[SEDERBERG �986] T. W. Sederberg and S. R Parry, Free-Form Deformation of Solid Geometric Models, Proceed-
ings of SIGGRAPH �986, �5�-�60.

[SHAW �994] Chris Shaw and Mark Green, Two-Handed Polygonal Surface Design, Proceedings of UIST �994, 205-
2�2.

[ULLMER �997] Brygg Ullmer, and Hiroshi Ishii, The metaDESK: Models and Prototypes for Tangible User Inter-
faces, Proceedings of UIST �997, 223-232.

[UNDERKOFFLER 1999] John Underkoffler, Brygg Ullmer, and Hiroshi Ishii, Emancipated Pixels: Real-World
Graphics in the Luminous Room, Proceedings of SIGGRAPH �999, 385-392.

[WESCHE 200�] Gerold Wesche and Hans-Peter Seidel, FreeDrawer: A Free-Form Sketching System on the Respon-
sive Workbench, Proceedings of the 200� ACM Symposium on Virtual Reality Software and Technology, �67-�74.

[WESCHE 2003] Gerold Wesche, The ToolFinger: Supporting Complex Direct Manipulation in Virtual Environments,
Proceedings of the ACM/Eurographics Workshop on Virtual environments 2003, 39-45.

[ZBRUSH] ZBrush, software application, http://pixologic.com.

[ZELEZNIK �996] Robert C. Zeleznik, Kenneth P. Herndon, and John F. Hughes, SKETCH: An Interface for Sketch-
ing 3D Scenes, Proceedings of SIGGRAPH �996, �63–�70.

93

	Summary
	Presenters
	Abstract
	Agenda & Contenst
	Industrial Motivation for Interactive Shape Modeling (Singh)
	Space Deformations and their Application to Shape Modeling (Angelidis)
	Modeling with Multiresolution Subdivision Surfaces (Zorin)
	Mesh Editing based on Discrete Laplace and Poisson Models (Alexa)
	Designing with Distance Fields (Frisken)
	Towards Virtual Clay (Cani)
	Making Digital Shapes by Hand (Schkolne)

