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Summary
What do the configuration space of an animation skeleton, a subdivision surface and a panorama
have in common? All of these are examples of manifolds. The goal of this course is to present
an overview of manifold constructions which are useful for graphics applications, with a focus on
two-dimensional manifolds (surfaces).

Description
Many diverse applications in different areas of computer graphics, including geometric modeling,
rendering and animation, require dealing with sets which cannot be easily represented with a sin-
gle function on a simple domain in a Euclidean space: Examples include surfaces of nontrivial
topology, environment maps, reflection/transmission functions, light fields, configuration spaces
of animation skeletons, and others. In most cases these objects are described as collections of
functions defined on multiple simple domains, with the functions satisfying various constraints
(e.g., join smoothly). The unified mathematical view of many such structures is provided by the
theory of smooth manifolds. While the concept is standard in mathematics, it is not broadly known
in the graphics community and is often perceived as an impractical and complex abstraction. The
goal of this half-day course is to present the basic concepts and definitions of manifold theory,
demonstrate their computational nature and close connection to applications, and survey a variety
of computer graphics applications in which manifolds appear, with a focus on modeling of surfaces
and functions on surfaces.

Pre-requisites
The course will be mostly self-contained. The only mathematical prerequisites are basic calculus,
complex numbers, and vector and matrix algebra. General familiarity with graphics research is
helpful, but not required.

Intended audience
Intended Audience researchers from academia and industry interested in applying manifold-based
techniques in their work; practitioners interested in applying latest graphics research using mani-
fold ideas.

Speakers
Cindy Grimm, Dept. of Computer Science and Engineering at Washington University in St. Louis.
Denis Zorin, Media Research Laboratory, New York University
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Chapter 1

What is a manifold? [35min]

We begin with the intuition behind manifolds. This is followed by the traditional definition of
manifolds, where there exists a surface and the manifold is used to analyze, or reason about, that
existing surface. We provide two concrete examples of defining a manifold, the first on a mesh
and the second on a circle. For the circle manifold example we provide a C++ implementation
of the basic manifold elements. Next, we look at the problem of defining a manifold where there
is no existing surface. We call this the constructive approach because it allows us to construct a
manifold or surface from constituent elements.

We will usually use the word “surface” to mean a geometric shape, for example, the bunny
mesh. However, it should be noted that manifolds are not restricted to 2D surfaces, ı.,e., locally
planar, embedded in 3D, but are much more general. For example, a bi-directional distribution
function (BRDF) is a 4D manifold (two dimensions each for the incoming and outgoing directions)
embedded in 3D (if the outgoing light is given as an RGB triple). We will see more of these
examples later; for simplicity’s sake we will use geometric examples in the following sections.

1.1 Origins and basic ideas
The intuition behind manifolds is that it is easier to build a complicated surface by “gluing” to-
gether several simpler surfaces. By simpler surfaces we mean a mapping from a bit of the plane to
R3; think of a simple spline patch, or a polynomial function. This process works in both directions
— we can build a new surface as above, or parameterize (i.e., texture map) an existing surface by
defining simple mappings from the surface to the plane. This concept is not new; mathematicians
and cartographers have used this approach for several centuries.

Manifold and atlas concepts arise naturally in the context of creating a world atlas (see Fig-
ure 1.1). A cartographer draws each part of the world on a rectangular page. The world itself is a
complicated surface (a sphere) but each of the drawings is on a simpler surface (a rectangle in the
plane). The cartographer makes decisions about how much of the world to draw on each page, and
how to “flatten” that part of the world onto the page. Every part of the world shows up on at least
one page, and many places show up more than once. For example, the page for France includes
part of Spain, and the page for Spain contains part of France. When travelling from France to Spain
there is a time when one is located on both pages simultaneously; the two maps may not be identical
where they overlap but they contain enough information to establish a correspondence between the
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two pages.

Overlap

The world

Figure 1.1: Creating two pages of a world atlas.

A world atlas is an example of defining
simple mappings from an existing sur-
face; suppose we want to go the other
way, and build a complicated surface
from simple ones? Suppose you wanted
to describe the earth to someone; you
could hand them an atlas and they could
reconstruct what the earth looks like by
gluing the pages together where they
overlap. In fact, you could describe an
imaginary world by “making up” an at-
las of that world.

As a simpler version of this, consider making up an atlas of a park. Each page of the atlas is
some part of the park, for example, the swings, the pond, the grassy field, the boat dock, etc. Each
page is labeled with the part of the park it shows and contains a bit of the neighboring area, also
labeled. For example, the page containing the boat dock also shows a bit of the pond and the grassy
field. We now have an object that allows us to navigate around the park by tracing paths through
the pages.

Although this information is sufficient for navigating from one part of the park to another,
we still need one other piece of information to build the park; we need to know the geometry of
the park — how big is the pond, how much sand is around the swing set, etc. To do this, we
simply make a geometric model for each page in the atlas, then blend between the individual pages
where they overlap. This blending is the critical step; it’s unlikely that the model for the boat
dock on that page, for example, will exactly match the part of the boat dock on the pond page.
By carefully blending between these two geometric definitions, however, we can create a single
geometric model of the entire park.
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1.2 Traditional definition
In this section we formally define the concepts described in the preceding section, and introduce
the terms charts, transition functions, and overlap regions. Although we will mostly be talking
about 2D surfaces elsewhere in these notes 1 embedded 2 in 3D, it should be noted that this theory
applies to any Rm surface embedded in Rn, m < n. Unless otherwise stated, n = 2 and m = 3.

1.2.1 Manifold

1D
2D

Examples of  
T-junctions (not 
manifold)

A manifold M is a surface that is locally Euclidean, which means that
there is a neighborhood U around every point p ∈ M which can be
mapped to Rn without folding or creasing. Essentially, this means that,
at a small enough scale, the surface is locally planar, and there are no
T-junctions (see figure right).

Example: The manifold property on meshes

Any surface which is locally Euclidean is considered to be manifold.
Take, for example, a triangular mesh. These are the conditions [Loo00]
that are usually associated with a mesh (without boundary) being mani-
fold:

• There are exactly two faces adjacent to each edge.

• The faces around the vertex v can be flattened into the plane without
folding or tearing. More formally, the vertices wi adjacent to v can
be ordered w0, . . . ,wn−1 such that the triangles wi,v,w(i+1) mod n all exist.

Creating a locally Euclidean map for the 
faces, edges, and vertices of a mesh.

2D

P
3D P P

These two properties guarantee that the locally
Euclidean property holds (see figure right). To see
this, suppose you have a point P ∈ M. If P is a
point in a face, then the local planar map for P is
just the face translated and rotated so that it lies in
the plane. If P is on an edge, then translate and
rotate the two faces adjacent to the edge so they
both lie in the plane, (i.e., place the edge in the
plane and then “unfold” the faces until they lie in
the plane). If P is a vertex, place v at the origin
and the wi at (cos i2π

n ,sin i2π

n ).

1The 2D refers to the dimensionality of the surface — at a small enough scale, every region of the surface looks
like a plane, and planes are two dimensional.

2We allow embedded surfaces to be self-intersecting as long as the intersection regions are well-separated.
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1.2.2 Atlas and charts
If a surface is manifold then we know that we can create locally Euclidean mappings at every point;
the actual set we create is called an atlas, and each individual mapping is called a chart. The charts
are just the pages in the world atlas example. For an atlas to be complete, every point in the surface
must be covered by some chart.

More formally, a chart on a manifold M consists of the following:

• The region Uc ⊂ M the chart covers (the domain of the chart). Uc is a connected, open disk
in M.

• The region c ⊂ Rn that the chart maps to (the co-domain, or range of the chart). c is a
connected, open disk in the plane.

• The actual function, αc : Uc → c, that takes points in Uc to the plane. The function αc must
be a bijection. I.e., the mapping αc can stretch, but not fold or tear, the region Uc when
mapping it to the plane.

• The transition functions, αi ◦α
−1
j , must be Ck smooth, for some k, wherever this makes

sense. Essentially, if two charts overlap the same part of M, then there is some part of the
co-domain of chart j that gets mapped to the co-domain of chart i, and vice-versa. This map
must be Ck smooth, for some k. This defines the continuity of the atlas.

An atlas A = {Uc,c,αc}c is a collection of charts that covers the manifold M; i.e. every point
P ∈ M appears in at least one chart’s domain (P ∈Uc for some c).

The term “chart” technically refers to the combination of the function αc, its domain, and its
co-domain, with the individual elements referred to by name. However, in the interests of brevity,
the term chart will often be used to refer to the individual elements, provided the context is clear.

A note on continuity: For many of the atlases we build here, the transition functions will have
C∞ continuity. This is the ideal case. However, some constructions will only be Ck. If M is a
geometric object embedded in some space, then it also makes sense to talk about the continuity of
the αc functions. In this case, the continuity of the transition functions can be defined in terms of
the continuity of the chart functions. If M is a purely topological construct, such as a collection
of vertices, edges, and faces without any associated geometry, then it doesn’t make sense to talk
about the continuity of the αc functions.

Example: Atlas on a mesh

Continuing the mesh example from above, we can create an atlas over a mesh by creating one chart
for each face, edge, and vertex in the mesh, with the mappings as shown in Figure 1.2. We will
assume for the purposes of this example that we have an actual embedding of the mesh (i.e., the
vertices have a location in 3D), and the edges and faces have geometry constructed in the usual
way.

The face chart, because it takes the face in 3D to the plane using just a translation and rotation,
is a C∞ map. The edge mapping, however, has a discontinuity in the derivative along the edge
because the two faces are mapped using different transformations. Therefore it has C0 continuity.

11



Similarly for the vertex charts, which have discontinuities at the vertex and the edges. The tran-
sition functions, too, have discontinuities. For example, an edge chart (v1,v2) overlaps with two
triangular wedges in each of the charts for v1 and v2. The transition function is discontinuous along
the line between the two edges.

Therefore, the entire atlas is C0. This is not surprising, since an embedded mesh is a C0 surface.
To see this more clearly, let’s build the chart functions αc using barycentric coordinates. Let

P0,P1,P2 be the 3D vertex locations for a face f in the mesh. The barycentric coordinates for a
point P in f are then:

area(p0, p1, p2) = 0.5||(p1− p0)× (p2− p0)|| (1.1)

β0(P) =
area(P,P1,P2)
area(P0,P1,P2)

(1.2)

β1(P) =
area(P,P2,P0)
area(P0,P1,P2)

(1.3)

β2(P) = 1− (β0 +β1) (1.4)
P = ∑

i=0,1,2
βiPi (1.5)

If (p0, p1, p2) are the face vertices in 2D, then α f (P) is just:

α f (P) = ∑
i=0,1,2

βi(P)pi (1.6)

For the face chart, this function is clearly C∞.
For the edge chart, we map two faces to the plane; each of these faces defines a different

mapping (α f 1(P),α f 2(P)). Clearly, within each face the mapping is C∞; however, what happens
along the edge? In this case we can either map the point to the plane using α f 1 or α f 2. To show that
the edge chart mapping is C0 we must show that α f 1(P) = α f 2(P) when P is on the edge. Along
the edge, the barycentric coordinates for each function will be β0 ∈ [0,1],β1 = 1− β0,β2 = 0.
Therefore, we’ll get the same reconstructed point in the plane regardless of which face function we
use.

The vertex chart behaves in a similar way, except that there are n possible functions, each of
which must agree along the boundary with its two neighbors.

The inverse functions are defined similarly, except we calculate the barycentric coordinates in
the plane:

area(p0, p1, p2) = 0.5||(p1− p0)× (p2− p0)|| (1.7)
βi(p) = area(p, pi+1, pi+2)/area(p0, p1, p2) (1.8)

α
−1
f (p) = ∑

0,1,2
βi(p)Pi (1.9)

It is simple to show that every point on the mesh lies in at least one chart. In fact, most points
will lie in several charts — for example, a point in a face will lie in that face chart, the three edge
charts covering that face, as well as the three vertex charts. This overlapping is what lets us move
easily from one chart to another, and hence over the entire manifold.
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Figure 1.2: Chart functions on the mesh.

1.2.3 Transition functions and overlap regions
Overlap regions are created whenever two charts overlap the same part of M (see Figure 1.3). The
overlap regions themselves are open sets in M, and in our case will usually be just one connected
region, although there is nothing that prevents the charts from overlapping in multiple, disjoint
regions.

M

2α
1α

1
0
−α

1
2
−α

01ψ
12ψ

02ψ

Figure 1.3: Three charts of a world
atlas.

More formally, the overlap region Ui j ⊂ M is defined
to be Ui

⋂
U j, where i and j are charts in A. We can carry

this overlap region information into the chart co-domain by
mapping Ui j into i and j, creating the two planar regions
ui j ⊂ i and u ji ⊂ j. In the world atlas example, this is the
part of Spain that shows up on the France map, and vice-
versa.

The transition function ψi j : ui j → u ji is the “glue” that
takes the overlapping part of chart i to chart j. Even if
we’ve “lost” M, we can still navigate around the charts
using these transition functions — as we move out of chart
i we can move into any chart j that overlaps i in that region.

The transition functions between the face charts and
all other charts are C∞ smooth. Similarly for the edge-to-
edge transition functions, since they overlap only in one
triangle, and that triangle map is smooth (this is despite the fact that the edge charts themselves are
not smooth). The non-trivial vertex-to-vertex transition functions, however, have a discontinuity
along the edge that joins them. Similarly, edge-to-vertex charts where the vertex is adjacent to the
edge also have a discontinuity.

If we have an existing atlas A, then the transition functions are defined as follows:

ψi j = α j ◦α
−1
i (1.10)

I.e.,, map from chart i up to M, then back down to chart j.
We are now ready to formally define all of the components of an atlas (see Figure 1.3):
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A vertex chart overlaps 
with n face, 2n edge, and 
n vertex charts.

Vertex chart overlap
Edge chart overlap

An edge chart overlaps 
with two face, four edge, 
and four vertex charts.

A face chart overlaps with three 
edge and three vertex charts.

Figure 1.4: Chart overlaps on the mesh.

• A finite set of N nonempty charts {αc}1≤c≤N , each of which is an invertible, Ck map: αc :
Uc ⊂ M → c ⊂Rn.

• A set of subsets, ui j ⊂ i where i, j = 1, . . . ,N; the subset uii must be all of i. Note that ui j
need not be a connected set; nor need it be nonempty, except in the case i = j.

• A set Ψ = {ψi j|i, j = 1, . . . ,N} of N2 functions called transition functions. For each (i, j),
the map ψi j : ui j → u ji, where ui j ⊂ i and u ji ⊂ j, is defined to be α j ◦α

−1
i . Note that because

ui j may not be connected, ψi j may be described by a set of functions, one for each connected
component of ui j.

Example: Transition functions on a mesh

In the mesh atlas defined above, we created a chart for each element in the mesh. These charts
overlap if and only if their corresponding elements are adjacent. All of the other overlap regions
will be empty (refer to Figure 1.4):

• A face chart overlaps with the three edge and the three vertex charts corresponding to the
face’s elements. The overlap region in this case is the entire face, i.e., U f .

• An edge chart overlaps with two face, four vertex, and four edge charts.

– The two face charts correspond to the two adjacent faces; the overlap region is again
the face (U f ).

– The four vertex charts correspond to the two vertices adjacent to the edge, and the two
opposite vertices of the adjacent faces. The overlap region for the two vertices adjacent
to the edge is the entire edge chart (Ue) because the two faces adjacent to the edge will
also both be in the vertex chart. The overlap region for the other two vertices is just the
face.

– The four edge charts correspond to the other edges of the two adjacent faces. The
overlap regions in this case are the face that is shared by the two edges.

14



• A vertex chart overlaps with the 4n charts corresponding to n faces, edges, and vertices
adjacent to the vertex. The face chart overlaps are U f , the interior edge chart overlaps are
Ue, the exterior ones are the face shared by Uv and Ue, and the vertex chart overlaps are Ue
for the edge shared by the two vertices.

The transition functions are built by calculating the barycentric coordinates in the first chart,
then mapping up to the mesh, calculating the barycentric coordinates there, and then mapping to
the second chart. Because the triangle in the mesh is the same for both chart maps (Pi

k = P j
k ), the

barycentric coordinates simply carry through:

ψi j(p) = α j(α−1
i (p)) (1.11)

= α j(α−1
i ( ∑

k∈0,1,2
βk(p)pi

k)) (1.12)

= α j( ∑
k∈0,1,2

βk(p)Pi
k) (1.13)

= α j( ∑
k∈0,1,2

βk(p)P j
k ) (1.14)

= ∑
k∈0,1,2

βk(p)p j
k (1.15)

This is an example, therefore, of being able to “throw away” the original mesh while still being
able to navigate from chart to chart.

In Section 3.1 we will show how to build a Ck atlas on a topological mesh (no geometry) using
a variation of these barycentric maps. Essentially, we “fix” the transition functions where they are
discontinuous, by blending between the function on either half.

Section 3.3 defines a C∞ atlas on a topological mesh. In this approach, charts are only created
for the vertices, and the overlap regions are always empty or consist of two triangular wedges (the
shared edge).

1.2.4 Example: Defining an atlas on a circle manifold
Note that a complete version of this source code is available in the supplemental materials.

In this example we define an atlas on a circle. There are several methods for defining circles; we
choose one that makes it simple to define the charts, and does not carry any geometric information.
By geometric information, we mean a specific embedding of the circle, for example:

S1(θ) = (cosθ ,sinθ) (1.16)

which is a circle of radius 1 centered at the origin. Our definition is strictly topological — it has
the topology of the circle, but no associated geometry. This definition is made by taking the real
line and “wrapping” it back onto itself so that it becomes periodic. More specifically, we define
the point θ to be the same as any point θ + i2π for all integers i. Essentially, this means that the
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An embedding of a circle.

(1,0)

Atlas

)sin,(cos)(1 θθθ =S

/// Definition for S^1, an embedding of the circle
class Circle {
protected:
public:

Point2D operator()( const CirclePoint & in_circPt ) const {
return Point2D( cos( in_circPt.GetTheta() ), sin( in_circPt.GetTheta() )  );

}

Circle() { }
~Circle() { }

};

/** A point on the circle, represented as an angle value from [0 to 2 pi). If the angle is
*  bigger (or  smaller) it is shifted until it lies in the 0 to 2 pi range */

class CirclePoint {
protected:

double m_dTheta;

public:
double GetTheta() const { return m_dTheta; }

CirclePoint( const double in_dTheta ) : m_dTheta( in_dTheta ) 
{ 

while ( m_dTheta >= M_PI * 2.0 )  // Bring theta into the 0,2pi range
m_dTheta -= 2.0 * M_PI;

while ( m_dTheta < 0 ) 
m_dTheta += 2.0 * M_PI;

}

~CirclePoint() {}
};

Figure 1.5: Defining a circle.

interval [0,2π) is repeated again at [2π,4π), and so on. This isn’t actually all that different from
the circle equation defined above — S1(0) returns the same answer as S1(2π).

Figure 1.5 defines our circle in C++ code. Note that we always store a point on the circle (the
CirclePoint class) in the [0,2π) range. The CirclePoint class takes in any point on the real line and
converts it to a point in the [0,2π) range. We can always convert from a CirclePoint to a point on
an embedding of the circle if desired (the operator() function on the Circle class).

Now we are ready to define the chart-making process. Each chart will map a portion of the
[0,2π) range to the unit interval (−1/2,1/2). Note that the chart can overlap the ends of the
interval [0,2π). For example, a chart can cover the interval (3/2π,5/2π), which is equivalent to
[0,π/2)

⋃
(3/2π,2π). Since the point 0 and 2π are the same point, this is a continuous interval on

our circle.
To define the chart’s interval, the user specifies the left and right ends, in counter-clockwise

order, of the chart (see Figure 1.6). Note that, because our CirclePoint class takes in any point on
the real line, the user is free to express the desired interval using, e.g., (3/2π,5/2π). The mapping
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A point on the circle is 
given by θ in [0,2π).
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Define four charts by mapping ½ of [0,2π) to the unit segment (-1/2,1/2). Every point, except 0,+-π/2 and π, is covered by two charts.

Atlas atlas;

atlas.AddChart( 0.0,                     M_PI );
atlas.AddChart( M_PI / 2.0,          3.0 * M_PI / 2.0 );
atlas.AddChart( M_PI,                  2.0 * M_PI );
atlas.AddChart( 3.0 * M_PI / 2.0,  5.0 * M_PI / 2.0 );

Code fragment: Specify charts by giving 
left and right end points (counter-clockwise 
direction).

Figure 1.6: Defining an atlas with four charts on the circle. The user specifies the chart by giving
the left and right end points, in counter-clockwise order.

function we use is a translate followed by a scale. The translate takes the center of the chart to
the origin, the scale takes the left and right end points to −1/2 and 1/2, respectively. The inverse
function scales, then translates.

The Atlas class determines (given the left and right boundaries) what the scale and translation
values are for the new chart, creates it, then adds it to the chart list (see Figure 1.7).

The Chart class (see Figure 1.8) encapsulates the format of the α functions and defines the
domain and co-domain of the chart. The chart is defined on the interval (−0.5×0.5); the IsInside
function returns true if the point is inside this range, zero otherwise. The Covers function deter-
mines if the point is inside the chart’s domain; this is accomplished by calling the Alpha function
which returns a ChartPoint which can then be queried to see if the result was IsInside the chart.
We could explicitly calculate the domain of the chart by calling AlphaInv on ±0.5; the two re-
turned points are the left and right (in counter-clockwise order) end-points of the domain. The
Alpha function can not blindly perform the translate; it must first map the theta value so that its
Euclidean distance reflects its topological distance.

We define the transition functions using the α functions and their inverses (see Figure 1.9). For
this particular atlas the transition functions are simply a translation because the scales cancel out.
Because our chart functions are a translation plus a scale, the transition functions will also be of
that form. It is possible to explicitly calculate the transition functions; this is simply a composition
of the functions, with some care to ensure that any 2π shift (if there is one) is included properly.
Also, if the charts are allowed to be bigger than 1/2 of the circle it is possible for two charts to
overlap at their end points, in two disjoint regions. In this case the explicit transition function
would have an if statement in it, with two different functions, one of which is a shift of the other.
The transition function is still continuous because the functions map disjoint intervals.

We could explicitly define the overlap regions (ui j) as well; however, most of the time we only
need overlap information for a specific ChartPoint. In this case, we apply the transition function
and check that the result is inside the second chart.

17



As an aside: Any code that operates on the circle must deal with the fact that 0 and 2π are the
same point. The C++ classes described above can be used to encapsulate this wrapping by always
providing the user with a consistent interface (−0.5,0.5) to the portion of the circle they wish to
operate on.
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1.3 Constructive manifold definition
Traditional definition is analytic — given an existing surface, show that it is a manifold and build
an atlas. Suppose we don’t have a surface, but are trying to build one? Can we do so? The answer
is yes; we call this approach the constructive manifold one. Essentially, we want to build an atlas
without using the α functions. I.e., start with disks (the charts), and how those charts overlap (the
overlap regions and transition functions) then “glue” the charts together where they overlap. If we
do this properly, the result will be a manifold.

Gluing charts together results in a structure which is topologically a manifold, but it doesn’t
have any geometry associated with it. Since we’re usually interested in having a surface we can
draw, we need to add geometry to the manifold structure. This is accomplished by defining geom-
etry for each chart, then blending the result together. This two-step process is actually helpful —
it lets us separate the topology problem from the geometric one.

We first formally define the gluing theorem, and what conditions need to hold in order for the
result to be a manifold. Second, we define how to add geometry to constructive manifold. Finally,
we continue our circle example from before, only this time we’ll build a circle manifold directly
from the charts and transition functions.

1.3.1 Manifold construction theorem
The following is a formal definition of constructing a manifold from a proto-atlas. The proto-atlas
is a collection of charts where we have no α functions — the charts are just disks. Since we have
no α functions, we must define the overlap regions and transition functions directly. Formally, we
define the following:

• A finite set, A, of charts. Each chart c ∈ A is an open disk in Rn (for the circle example we
use the unit segment (−1/2,1/2)). A is called a proto-atlas. A point in the chart is written
as [c ∈ A,s ∈ c].

• A set of subsets, ui j ⊂ ci, where ci and c j are charts in A and where uii = ci. These are the
overlap regions. ui j may be empty (in which case u ji will also be empty).

• A set of functions Ψ called transition functions. A transition function, ψi j ∈ Ψ, is a C∞ map
ψi j : ui j → u ji where ui j ⊂ ci and u ji ⊂ c j.

There is a relation ∼ defined on Y = tc∈Ac (where t denotes disjoint union) such that if x ∈ ci,
y ∈ c j, then x ∼ y iff ψi j(x) = y. This is the glue function — it identifies points in the charts that
should be the “same”.

There are three conditions on the transition functions that ensure that, after gluing, the result
is a manifold. We require that the transition functions be symmetric (ψi j = ψ

−1
ji ), that ψii is the

identity for all i, and that they satisfy the cocycle condition, i.e., that ψi j ◦ψki = ψk j wherever this
makes sense. These requirements ensure that the relation ∼ is an equivalence relation [GH95].
The quotient of Y by ∼ is then (under certain technical conditions3) guaranteed to be a manifold
of class C∞. Some observations about this manifold:

3The technical conditions have to do with being Hausdorff: consider two copies of the real line, U1 and U2, and the
maps ψ12 : U1−{0} −→U2−{0} : x 7→ x, ψ21 = ψ

−1
12 , ψ11(x) = x and ψ22(x) = x. These satisfy all the requirements
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• A point p on the manifold consists of a list of all of the chart points that are equivalent under
∼. I.e., given a point si in a chart ci, the corresponding manifold point p is a list of tuples
p =< .. . , [c j,s j], . . . > such that si ∼ s j.

• νc is a function that extracts the point for chart c from the manifold point p. If p =< .. . , [c∈
A,s ∈ c], . . . > is a manifold point, then νc(p) = s. If the manifold point does not contain the
chart c, then νc(p) returns the empty set. ν−1

c maps a chart point to a manifold point.

The ν functions are exactly the α functions from the previous section.

1.3.2 Example: Constructing a circle manifold
The challenge in creating a manifold with a particular topology is ensuring that the glued-together
result actually has the desired topology. The simplest way to do this is to “cheat” and use charts
from an atlas that has the desired topology. In this case, we’ll use the atlas defined in Section 1.2.4.

Each chart in our proto-atlas is defined to be the unit interval (−1/2,1/2). We define four
charts, c0, . . . ,c3. Charts ci and ci+2 do not overlap (all indices taken mod 4). Charts ci and ci+1
overlap — the right half of ci, (0,1/2), overlaps with the left half of ci+1, (−1/2,0). The transition
function is a shift by 1/2; φci,ci+1(t) = t−1/2. Similarly, the left half of ci overlaps with the right
half of ci−1. Figure 1.10 shows the elements of this proto-atlas.

Our Manifold class is simply the ProtoAtlas class with the understanding that the transition
functions create equivalent points. A point on the manifold is simply a list of tuples, one for each
chart that overlaps the point (see Figure 1.11). A ManifoldPoint is constructed from a ChartPoint
by looping over all of the charts, looking for valid transitions.

1.3.3 Embedding a manifold
We now show how to embed the manifold using embedding functions defined on each chart. Essen-
tially, we define an embedding function for each chart and then blend between the individual chart
embeddings. This is, in some sense, a generalization of spline embeddings where the geometry we
blend is not control points but entire functions.

In addition to creating an embedding function for each chart, we also create a blend function.
This determines how much influence the chart has over the embedding. We begin by defining a
blend function on each chart and then promoting it to a function on the entire manifold by setting it
to zero everywhere else. To maintain continuity, the blend function, and all of its derivatives, must
be zero by the boundary of the chart. We usually use something like a B-spline basis function,
centered on the chart and with support exactly equal to the chart. Let p be a point on the manifold,
Ec : c →R2 be the embedding function for chart c and B̂c : c →R be the blend function for chart
c. Then the embedding function for the manifold is:

of the description above, but the quotient space, “the line with two origins,” is not actually a manifold, since the two
copies of the point “0” cannot be separated by open sets.
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Bc(p) = B̂c(νc(p))/ ∑
c∈A

B̂c(νc(p)) (1.17)

E(p) = ∑
c∈A

Bc(p)Ec(νc(p)) (1.18)

Or equivalently:

E(ν−1
c ([c,sc])) =

∑c j∈A B̂c j(ψcc j(sc))Ec j(ψcc j(sc))

∑c j∈A B̂c j(ψcc j(sc))
(1.19)

where B̂c is defined to be zero if p does not contain the chart c or if ψcc j is empty. The division by
the sum of the blend functions is a normalization step, and ensures that the blend functions form a
partition of unity. To ensure that the denominator is non-zero, we require that the support of each
of the chart blend functions cover the chart. For the remainder of these notes we will distinguish
between the pre-normalized and normalized blend functions by calling the latter normalized blend
functions.

The continuity of the embedded manifold is the minimum continuity of its constituent parts
(transition functions, blend functions, and embedding functions).

Note that the individual chart embeddings can be of any form (spline, radial-basis function,
etc.). They do not need to be homogeneous. Also, the influence of any given chart embedding can
be increased by scaling its corresponding proto-blend function.

1.3.4 Example: Embedding a circle manifold
Once the manifold is constructed we need to embed it. This involves making blend and embedding
functions for each of the four charts.

The proto-blend function we use is a cubic B-spline centered at the origin and dropping to zero
at ±1/2 (see Figure 1.12). We use the same blend function for all four charts. Figure 1.12 also
shows the shape of the normalized blend function. This is found by taking a point on the blend
function and dividing by the sum of all overlapping charts (Eq. 1.18). Notice that the normalized
blend function peaks in the center at one — this is because, for this atlas, there’s only one chart
covering the manifold at that point.

The embed function for each chart in this example is a degree two polynomial (see Figure 1.13).
Each chart is set to a different polynomial which is a parabolic approximation to the circle.

The embedding is a blended combination of the individual chart functions (see Figure 1.14).
This example shows how to construct a circle manifold without using the original [0,2π) man-

ifold. It is possible to combine the two models. In this case, the ProtoAtlas in the Manifold class
is replaced by the Atlas class. The ManifoldPoint class is expanded to include a CirclePoint. The
CirclePoint is the θ value corresponding to α−1 of the ChartPoints. Note that all of the ChartPoints
should return the same CirclePoint.
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/**
* A collection of charts.
*/

class Atlas {
protected:

std::vector<const Chart *> m_aopCharts;

public:
int NCharts() const { return m_aopCharts.size(); }
const Chart &GetChart( const int in_i ) const
{ 

return *m_aopCharts[in_i]; 
}

ChartPoint Transition( const ChartPoint &in_cpt, 
const Chart &out_chart ) const;

const Chart *AddChart( const CirclePoint &in_circptLeft, 
const CirclePoint &in_circptRight );

Atlas( ) { }
~Atlas();

};

const Chart *Atlas::AddChart( const CirclePoint &in_circptLeft, 
const CirclePoint &in_circptRight )

{
double dThetaMid = 0.0;
double dScale = 1.0;

// Does not cross 0, 2pi boundary
if ( in_circptLeft.GetTheta() < in_circptRight.GetTheta() ) {

dThetaMid = 0.5 * ( in_circptLeft.GetTheta() + in_circptRight.GetTheta() );
dScale = 0.5 / (in_circptRight.GetTheta() - dThetaMid);

} else {
// Add 2pi to right end point
dThetaMid = 0.5 * ( in_circptLeft.GetTheta() + in_circptRight.GetTheta() + 2.0*M_PI );
dScale = 0.5 / (in_circptRight.GetTheta() + 2.0 * M_PI - dThetaMid);

}

if ( dThetaMid >= 2.0 * M_PI )  dThetaMid -= 2.0 * M_PI;

if ( fabs( dScale ) < 1e-16 )  return false;

const Chart *opChart = new Chart( m_aopCharts.size(), dThetaMid, dScale );
m_aopCharts.push_back( opChart );

return opChart;
}

Figure 1.7: The Atlas class. Given the left and right end points, the Atlas class calculates the scale
and translate for the Chart.

/**
* A mapping from a subset of the circle to the line. The domain
* of the chart (what part of the circle is covered by the chart)
* is determined by m_dThetaCenter and m_dScale. The co-domain, or
* range, of the chart is always (-0.5,0.5).
*
* Each chart has a unique ID, supplied by the Atlas class. 
*/

class Chart {
protected:

const int m_iId;
const double m_dThetaCenter;
const double m_dScale;

public:
int ChartId() const { return m_iId; }

bool IsInside( const double in_dT ) const;
bool Covers( const CirclePoint &in_circpt ) const;

ChartPoint Alpha( const CirclePoint &in_circpt ) const;

CirclePoint AlphaInv( const double in_dT ) const;

bool operator==( const Chart &in_chart ) const;
bool operator!=( const Chart &in_chart ) const { return !( *this == in_chart ); }

Chart( const int in_iId, const double in_dTheta, const double in_dScale );
~Chart() { }

};

CirclePoint Chart::AlphaInv( const double in_dT ) const
{

const double dTheta = in_dT / m_dScale + m_dThetaCenter;

// Converts to 0,2pi range
return CirclePoint( dTheta );

}

ChartPoint Chart::Alpha( const CirclePoint &in_circpt ) const
{

const double dTheta = in_circpt.GetTheta();
double dThetaShift = dTheta;

// Find the value for theta (+- 2 PI) that is 
// closest to my chart center
if ( fabs( dTheta - m_dThetaCenter ) <= M_PI ) {

dThetaShift = dTheta;
} else if ( fabs( (dTheta + 2.0 * M_PI) - m_dThetaCenter ) <= M_PI ) {

dThetaShift = dTheta + 2.0 * M_PI;
} else if ( fabs( (dTheta - 2.0 * M_PI) - m_dThetaCenter ) <= M_PI ) {

dThetaShift = dTheta - 2.0 * M_PI;
} else {

assert( false );
}

const double dT = (dThetaShift - m_dThetaCenter) * m_dScale;

return ChartPoint( this, dT );
}

-1/2 1/2
θLθR

tc →)(θα

θα →− )(1 tc

Figure 1.8: The Chart class contains functions to determine if a point is in the co-domain (IsInside)
or domain (Covers) and functions to map to and from the circle using a translate followed by a
scale. Note that this is the lowest-order function we can use and still be able to create a chart for
any given circle arc.
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// Defined as alpha( alpha^{-1} (pt )
ChartPoint
Atlas::Transition( const ChartPoint &in_cpt, 

const Chart &out_chart ) const
{

if ( in_cpt.IsValid() == false ) 
// return an invalid chart point
return ChartPoint( & out_chart );

const CirclePoint circPt = in_cpt.AlphaInv();

return out_chart.Alpha( circPt );
}

Figure 1.9: Transition functions for our atlas.
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// Explicitly defined
ChartPoint
ProtoAtlas::Transition( const ChartPoint &in_cpt, 

const Chart &out_chart ) const
{

const int iCIn = in_cpt.GetChart().ChartId();
const int iCOut = out_chart.ChartId();

// Self
if ( iCIn == iCOut ) return in_cpt;
// Don't overlap
if ( iCIn == (iCOut+2)%4 ) return ChartPoint( &out_chart );

if ( iCOut == (iCIn+1)%4 ) {
if ( in_cpt.GetPoint() <= 0.0 ) return ChartPoint( &out_chart );
return ChartPoint( &out_chart, in_cpt.GetPoint() - 0.5 );

}
if ( iCIn == (iCOut+1)%4 ) {

if ( in_cpt.GetPoint() >= 0.0 ) return ChartPoint( &out_chart );
return ChartPoint( &out_chart, in_cpt.GetPoint() + 0.5 );

}
assert(false);
return ChartPoint( &out_chart );

}

-1/2 1/2

// The particular proto-atlas we use (four charts)
class ProtoAtlas {
protected:

Atlas m_atlas;

public:
int NCharts() const { return m_atlas.NCharts(); }
const Chart &GetChart( const int in_i ) const { 

return m_atlas.GetChart( in_i ); }

ChartPoint Transition( const ChartPoint &in_cpt, 
const Chart &out_chart ) const;

ProtoAtlas( );
~ProtoAtlas() {}

};

ProtoAtlas::ProtoAtlas( )
{

// Build four charts
m_atlas.AddChart( 0.0, M_PI );
m_atlas.AddChart( M_PI / 2.0, 3.0 * M_PI / 2.0 );
m_atlas.AddChart( M_PI, 2.0 * M_PI );
m_atlas.AddChart( 3.0 * M_PI / 2.0, 5.0 * M_PI / 2.0 );

}

Figure 1.10: Defining a proto atlas using four charts.
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/** A point on the manifold is  a list of ChartPoints. */
class ManifoldPoint {
protected:

const Manifold         *m_opManifold;
std::vector<ChartPoint> m_acpt;

public:
const Manifold &GetManifold() const { return *m_opManifold; }
int NOverlaps() const { return m_acpt.size(); }
const Chart &GetChart( const int in_i ) const;
const ChartPoint &GetChartPoint( const int in_i ) const;
bool HasChart( const Chart &in_chart ) const;
bool IsValid() const;

ManifoldPoint( const Manifold *in_opManifold, 
const ChartPoint &in_cpt );

~ManifoldPoint() { }
};

/** A point in a chart. Contains a pointer to the chart the point lives in, 
* and the point (in R^1) itself. */

class ChartPoint {
protected:

const Chart  *m_opChart;
double m_dT;

public:
const Chart &GetChart() const { return *m_opChart; }
double GetPoint() const { return m_dT; }
bool IsValid() const { return m_opChart->IsInside( m_dT ); }
bool operator==( const ChartPoint &in_cpt ) const;

ChartPoint( const Chart *in_opChart, const double in_dT = 1e30 );
~ChartPoint() { m_opChart = NULL; }

};

ManifoldPoint::ManifoldPoint( const Manifold *in_opManifold, const ChartPoint &in_cpt )
: m_opManifold( in_opManifold )
{

for ( int iC = 0; iC < m_opManifold->NCharts(); iC++ ) {
const ChartPoint cpt = m_opManifold->Transition( in_cpt, m_opManifold->GetChart(iC) );
if ( cpt.IsValid() )

m_acpt.push_back( cpt );
}

}

Figure 1.11: A point on the manifold.

double BlendFunction::operator ()( const double in_dT ) const
{

// Set to zero outside of this chart
if ( fabs( in_dT ) >= 0.5 )   return 0.0;

if ( in_dT < -0.25 ) {
const double dT = ( in_dT - (-0.5) ) / 0.25;
return ( 1.0 * pow(dT, 3) ) / 6.0;

} else if ( in_dT < 0.0 ) {
const double dT = (in_dT - (-0.25)) / 0.25;
return ( -3.0 * pow(dT, 3) + 3.0 * pow(dT,2)  + 3.0 * pow(dT,1) + 1.0 * pow( dT, 0) ) / 6.0;

} else if ( in_dT < 0.25 ) {
const double dT = (in_dT - 0.0) / 0.25;
return ( 3.0 * pow(dT, 3) - 6.0 * pow(dT,2) + 0.0 * pow(dT,1) + 4.0 * pow( dT, 0) ) / 6.0;

} else {
const double dT = (in_dT - 0.25) / 0.25;
return ( -1.0 * pow(dT, 3) + 3.0 * pow(dT,2) - 3.0 * pow(dT,1) + 1.0 * pow( dT, 0) ) / 6.0;

}

return 0.0;
}

-1/2 1/2cB̂ Proto blend function

cB
-1/2 1/2

1

Normalized blend function

/** A blendding function. 
*
* Format: spline basis function.
*  Hard-coded to be a c^2 blend function */

class BlendFunction {
public:

double operator()(const double in_dT) const;

BlendFunction( ) { }
~BlendFunction() { }

};

Figure 1.12: The blend function.
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/** A polynomial embedding function. */
class EmbedFunction {
protected:

std::vector<Point2D> m_aptCoefs;

public:
int NCoefs() const { return m_aptCoefs.size(); }
const Point2D &GetCoef( const int in_i ) const { return m_aptCoefs[in_i]; }
Point2D &SetCoef( const int in_i ) { return m_aptCoefs[in_i]; }

Point2D operator()( const double in_dT ) const;

EmbedFunction( const int in_iDegree ) : m_aptCoefs( in_iDegree, Point2D(0.0, 0.0) ) {  }
~EmbedFunction() { }

};

EmbedManifold embed;

embed.AddCharts( 3 );

EmbedFunction &ec0 = embed.GetEmbedFunc( 0 );
EmbedFunction &ec1 = embed.GetEmbedFunc( 1 );
EmbedFunction &ec2 = embed.GetEmbedFunc( 2 );
EmbedFunction &ec3 = embed.GetEmbedFunc( 3 );

// (- s, 1 - s^2)
ec0.SetCoef( 0 ) = Point2D(  0.0,  1.0 );
ec0.SetCoef( 1 ) = Point2D( -1.0,  0.0 );
ec0.SetCoef( 2 ) = Point2D(  0.0, -1.0 );

// (-1.0 + s^2, -s)
ec1.SetCoef( 0 ) = Point2D( -1.0,  0.0 );
ec1.SetCoef( 1 ) = Point2D(  0.0, -1.0 );
ec1.SetCoef( 2 ) = Point2D(  1.0,  0.0 );

// ( s, -1 + s^2)
ec2.SetCoef( 0 ) = Point2D(  0.0, -1.0 );
ec2.SetCoef( 1 ) = Point2D(  1.0,  0.0 );
ec2.SetCoef( 2 ) = Point2D(  0.0,  1.0 );

// ( 1.0 - s^2, s)
ec3.SetCoef( 0 ) = Point2D(  1.0, 0.0 );
ec3.SetCoef( 1 ) = Point2D(  0.0, 1.0 );
ec3.SetCoef( 2 ) = Point2D( -1.0, 0.0 );
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Point2D 
EmbedFunction::operator ()( const double in_dT ) 
const
{

double dT = 1.0;
Point2D pt(0.0, 0.0);

for ( int i = 0; i < m_aptCoefs.size(); i++ ) {
pt.SetX() += m_aptCoefs[i].GetX() * dT;
pt.SetY() += m_aptCoefs[i].GetY() * dT;

dT *= in_dT;
}

return pt;
}

Figure 1.13: The individual embed functions.
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/** An embedding of the manifold. */
class EmbedManifold {
protected:

Manifold  m_manifold;

std::vector<EmbedFunction *> m_aopEmbed;
std::vector<BlendFunction *>   m_aopBlend;

public:
int NCharts() const { return m_manifold.NCharts(); }
const Chart &GetChart( const int in_iId ) const { return m_manifold.GetChart( in_iId ); }
const Manifold &GetManifold() const { return m_manifold; }
Point2D operator()( const ManifoldPoint &in_mpt ) const;

EmbedFunction &GetEmbedFunc( const int in_i ) { return *m_aopEmbed[in_i]; }

void AddCharts( const int in_iNCoefs );

~EmbedManifold();
};

Point2D EmbedManifold::operator()( const ManifoldPoint &in_mpt ) const
{

Point2D pt(0,0);
double dBlendSum = 0.0;
for ( int i = 0; i < in_mpt.NOverlaps(); i++ ) {

const Chart &chart = in_mpt.GetChart( i );
const double dBlend = (*m_aopBlend[chart.ChartId()])( in_mpt.GetChartPoint( i ).GetPoint() );
const Point2D ptEmbed = (*m_aopEmbed[chart.ChartId()])( in_mpt.GetChartPoint( i ).GetPoint() );
pt.SetX() = pt.GetX() + dBlend * ptEmbed.GetX();
pt.SetY() += dBlend * ptEmbed.GetY();

dBlendSum += dBlend;
}

if ( fabs( dBlendSum ) < 1e-16 ) {
assert(false);

}

pt.SetX() /= dBlendSum;
pt.SetY() /= dBlendSum;

return pt;
}

// Walk around the manifold, printing out the blended result
// If we take the middle section of each chart in turn, we'll
// cover the manifold
for ( iC = 0; iC < embed.NCharts(); iC++ ) {

for ( double dT = -0.25; dT < 0.25; dT += 0.1 ) {
const ManifoldPoint mpt( &embed.GetManifold(), 

ChartPoint( &embed.GetChart(iC), dT ) 
);

const Point2D ptEmbed = embed( mpt );
std::cout << "  X " << ptEmbed.GetX() << 

" Y " << ptEmbed.GetY() << "\n";
}

}
std::cout << "\n";

Figure 1.14: The full embedding.
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Chapter 2

Advantages of using manifolds [15 min]

2.1 Conceptual advantages
There is a large body of work describing functions over planar domains. These functions range
from spline surfaces for surface modeling, to radial basis functions for implicit surfaces, to locally
planar embeddings for function approximation, to wavelets for radiosity, to Fourier transforms
for image processing. Most of these techniques work best when the desired function is relatively
simple, has no sharp discontinuities, and when the domain shape is well-behaved, for example, a
unit square.

Because most of the functions we want to represent are fairly complicated, a great deal of re-
search and effort is spent on various methods for segmenting these complex functions into simpler
ones. The difficulty comes in then guaranteeing that the individual functions, when joined back
together, still have a set of desired properties. For example, there are many papers describing how
to piece together spline surfaces so that the boundaries share some degree of continuity. Similarly,
there are a variety of techniques for joining together (smoothly) existing motion capture sequences
into longer ones.

Manifolds provide a natural mechanism for reducing complex function modeling problems into
more manageable pieces, and guaranteeing that the resulting combination has desirable properties
such as continuity. The segmentation problem is phrased as what charts to place where — unlike
traditional approaches, we do not need a true segmentation because charts can overlap 1. This
overlap is what gives manifolds their power. Embedding functions for each chart can be handled
separately — there is no need for additional, complicated boundary conditions. Ideally, the tran-
sitions and overlap regions are defined at segmentation time, but even if they’re not it may still be
possible to construct a manifold from the desired overlap properties (Section 6.3.2).

Once a segmentation is defined, it is a simple matter to fit an embedding function for each chart
by simply fitting to any data that lies inside of the chart’s domain. Next, blend functions need to
be defined for each chart — here some knowledge of the data is useful, as the blend functions
can be constructed to represent any uncertainty in the embedding function. Finally, the result
is reconstructed by using the blend functions and the overlap information to blend between the
individual chart embedding functions.

1A manifold can be built from charts that do not overlap but cover the surface, so manifolds, in that sense, subsume
segmentation approaches [GS05].
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If the manifold is defined with analytic transition, blend, and embedding function, then the
result is analytic everywhere. There are no seams because there is always some chart inside of
which the calculation is performed. Once a set of charts is defined it is trivial to introduce a new
chart that is a subset of an original one — if the original domain is still around, we can also add
new charts that overlap existing ones.

2.2 Example: Adding charts to circle manifold
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Figure 2.1: Adding another chart to the embedding.

Continuing the circle exam-
ple from earlier, if we define
the atlas as mappings to and
from the circle then adding
more charts to the atlas is
simply a matter of updat-
ing the atlas and adding in
a new embedding function.
Figure 2.1 demonstrates this
process. Note that the new
normalized blend function
will not peak at one because
there are always more than
one non-zero blend function
overlapping at every point. This implies that the final embedding will not interpolate the new
embedding.
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Chapter 3

Building manifolds from meshes [45 min]

Overview: these techniques begin with a mesh and use the mesh topology to define the manifold.
They then embed the manifold, using the mesh geometry to define the embedding.

3.1 Approach of Grimm and Hughes ’95

Figure 3.1: The sketch, or generator, mesh, and the resulting manifold mesh. In this fitting exam-
ple, the meshes are fit in sequence, providing a hierarchical fit.

Grimm and Hughes [GH95] described the first constructive manifold for surface modeling. The
user specified the desired surface using a sketch mesh. Charts were created for each element of
the mesh (vertex, edge, face). The transition functions were Ck and somewhat ad-hoc. There were
multiple blend functions specified per chart — the geometry associated with each blend function
was simply a point. The sketch mesh provided both the topology of the manifold (via the chart
overlaps) and the geometry (essentially placing the geometry on the subdivision surface of the
sketch mesh).
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The manifold construction process required that there be exactly four faces adjacent to each
interior vertex (this simplified the transition functions). To create such a mesh from the sketch
mesh, they take the dual of the first level of Catmull-Clark subdivision of the sketch mesh. This
implies that there are three meshes (see Figure 3.1) — the sketch mesh, the first-level subdivision of
the sketch mesh (generator mesh), and the dual of this, called the manifold mesh. The topology of
the second two meshes is dictated by the sketch mesh, but the user is free to change the geometry
of the generator and manifold meshes. This provides the user with a coarse and fine geometric
control.

3.1.1 Chart and transition functions

Face chart

Vertex chart

Face overlaps Edge overlaps

Edge chart

Vertex 
overlaps

Face overlaps

Edge 
overlaps

Vertex 
overlaps

Figure 3.2: Charts and overlap regions for Grimm and
Hughes.

There is one chart created for each
vertex, edge, and face in the mani-
fold mesh. Each vertex chart is a unit
square, centered at the origin. The face
charts are n-sided polygons, centered
at the origin, with edge lengths of 0.8.
The edge charts are diamonds — the
top and bottom triangles shapes are de-
termined by the number of sides of the
adjacent faces. Note that the face charts
are “shrunk” slightly; this is to make the
transition functions Ck.

The chart overlaps (Figure 3.2) are
dictated by the adjacency relationships
in the manifold mesh. The face-vertex
overlaps are found by chopping each
n-sided face chart into n quadrilater-
als. Each quadrilateral overlaps with
the one quadrant of the vertex chart for
that corner. Because the face charts are
shrunk slightly, there will be a cross-
shaped band in the vertex chart where
there are no face overlaps.

The edge-vertex overlaps are found
by taking the left (or right) half of the
edge chart and mapping it to the corre-
sponding triangular wedge in the vertex
chart.

The edge-face overlaps are formed
by taking a triangular wedge of the face
chart and mapping it to the top (or bot-
tom) of the edge diamond. Again, there will be a gap in the edge chart between the two face
overlap regions.
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Figure 3.3: Transition functions for Grimm and
Hughes.

The difficulty in this approach lay in
creating transition functions that satisfied
the co-cycle condition and that were Ck.
To solve this problem, the face charts were
shrunk slightly, leaving a gap. The face-
edge and face-vertex transition functions
are then defined using simple transforma-
tions (rigid body in the edge case, a pro-
jective transform in the vertex case). See
Figure 3.3. The edge-vertex map is then
found by taking the composition of the
edge-to-face and the face-to-vertex transi-
tions. There are actually two compositions
— one for the top half, and one for the
bottom half. The transition function must
agree on each half; in the gap, the func-
tion is a blend from one composition to the
other. This blend function b(t) is Ck, which
is why this is a Ck manifold.

3.1.2 Blend and embedding func-
tions
The blend and embedding functions orig-
inally presented by Grimm and Hughes
were excessively complicated. Subsequent
work [GLC02] replaced these with one
spline patch per chart. The blend functions
for the vertex charts were a single Ck B-
spline basis function centered at the origin
and reaching 0 at (±1/2,±1/2). The edge
functions were similar, except that a projec-
tive transform was first applied to take the diamond shape of the chart to a square. The face blend
functions were a radial version of a 1D B-spline curve — essentially, the curve is “spun” around
the origin to create a circular bump.
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The embedding functions were just Ck spline functions. Again, the edge chart embedding
functions used a projective transform to take the chart to the unit square. The face chart spline
function was chosen to be large enough to cover the entire chart. Note that, although the face em-
bedding function extends beyond the domain of the face chart, this isn’t really a problem because
the non-overlapping part of the function will never be included in the final embedding. Example
embeddings are shown in Figure 3.4.

Figure 3.4: Example embeddings. Sketch and final meshes can be found at www.cs.wustl.edu/
∼ cmg.
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3.2 Approach of Garcia and Navau 2000
Navau and Garcia [NG00, NG00] present an alternative manifold construction that uses subdivision
to both isolate the extraordinary vertices and to create the charts via the characteristic map of the
vertex.

After several levels of subdivision, most of the mesh consists of four-sided faces that meet four
at a vertex. These regular regions can easily be mapped to the plane by taking all of the faces
to unit squares. In this part of the mesh, the embedding function will be exactly the uniform B-
Spline function. In the irregular regions (around vertices of degree not equal to four) they define a
mapping to the plane that is Ck, and affine.

3.2.1 Chart and transition functions

Figure 3.5: An isolated, irregular vertex sur-
rounded by regular vertices.

The process begins by taking the Catmull-Clark
subdivision of the input mesh S times, where S
must be at least 3. At this point, the mesh con-
sists of mostly regular regions with isolated irreg-
ular vertices (see Figure 3.5). The irregular ver-
tices in the subdivided mesh arise from both irregu-
lar vertices and non four-sided faces in the original
mesh.

A chart is created for every (approximately)
n× n region in the subdivided mesh, where n is a
user-defined parameter with n≥ 2 (see Figure 3.6).
Note that S has to be big enough to ensure that each
chart, or n× n region, contains (at most) one ir-
regular vertex. If n is even, then this process cre-
ates a chart for each vertex in the mesh, with the
chart consisting of the vertex and the n/2 face lay-
ers around the vertex. If n is odd, this process creates a chart for each face in the mesh, with the
chart containing the face and the n/2 face layers around it.

For regular parts of the mesh the (approximately) n× n region is an actual n× n grid and can
simply be mapped to the plane as such (see Figure 3.7).

For the irregular vertices, a modified version of the characteristic map is created, which Garcia
and Navau call the Ck continuous star. This embedding is created by joining pairs of vertices with
Ck curves; notice that the curves do not intersect at a single point in the middle (see Figure 3.6).
Also, the curves are straight everywhere except at the bend point in the center. Each chart will
overlap some part of this curved grid, but some of the boundaries of the chart will not necessarily
line up with the curved grid edges.

For any chart that contains an irregular vertex (but is not centered on one) the union of the n/2
faces around the vertex does not result in a grid. To get around this problem, they define the chart
by “dragging” the outside continuous star curve in the non-regular direction (see Figure 3.6). The
curve warping is invertible, so it is possible to map from the shaded region back to a unit square.
This is because two sides of the chart are straight lines, and the other two sides are formed by

32



shifted copies of the continuous star curves.

Figure 3.6: Top: Choosing a neighborhood of two. Bottom
Choosing a neighborhood of three. Right: Defining a chart by
dragging a curve of the grid.

For the chart centered at an
irregular vertex, they define one
chart in each direction, for a to-
tal of s charts if the vertex has va-
lence s.

Transition functions are de-
fined by aligning the charts. For
two regular charts, this is sim-
ply the rotation plus translation
that aligns the charts where they
share faces (see Figure 3.8). For
two irregular regions, the appro-
priate Ck continuous star is cho-
sen, then both charts are placed
on the star. At this point, the
transition function is simply the
identity. For a regular and an ir-
regular region, the regular region
is mapped to the continuous star
(see Figure 3.8).

Figure 3.7: Chart co-domain for regular charts (left) and irregular ones (right).
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Figure 3.8: Transition functions for regular regions (left) and irregular with regular (right).

3.2.2 Blend functions
All of the charts are squares, or
can be mapped to squares. Each chart has a Ck B-spline basis function placed on it, with the
support exactly covering the square.

3.2.3 Embedding functions
The embedding functions in this case are simply points; hence, in regular regions, the construction
process reproduces B-spline surfaces. Example embeddings are shown in Figure 3.9.
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Increasing number of face 
layers and increasing 
curve continuity

Figure 3.9: Example embeddings. Unless otherwise noted, the number of face layers is two and
the curve continuity is one.

3.2.4 Ck regular stars
The vertices for the star are placed as follows, where g is the degree of the vertex:

γ = 2π/g (3.1)
i, j ∈ 1, . . . ,2n+1 (3.2)
m ∈ 0, . . . ,g−1 (3.3)

V m
0,0 = (0,0) (3.4)

V m
i,0 = (icos(γm), isin(γm)) (3.5)

V m
( i, j) = V m

i,0 +V m+σ( j)
| j|,0 (3.6)
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The star is formed by adding curves that join the segments (V m−1
1,0 ,V m−1

2,0 ) and (V m+1
1,0 ,V m+1

2,0 )
with Gk continuity (the remaining curves stay straight lines). The g new central vertices are then
defined by taking the mid-point of the curve segment.

3.2.5 Comments
The Navau and Garcia approach is a hybrid of the constructive and analytic approach. They use
the Ck continuous star locally to define the transition functions as compositions of chart maps to
and from the star. This gets around the co-cycle problem encountered in Grimm and Hughes.

One of the motivations of the Navau and Garcia approach is that it produced fewer charts than
the Grimm and Hughes one; this is true only if the desired number of face layers is small (two).
Otherwise, the number of Catmull-Clark subdivisions needed to isolate the extraordinary vertices
is more than is needed in the Grimm and Hughes approach.

3.3 Approach of Ying and Zorin
In this section we describe the approach of Ying and Zorin [YZ04], which shares many features
with the two previously describe approaches but focuses on achieving high-order smoothness and
visual quality of surfaces. Since this approach makes no assumptions about the connectivity of the
mesh (e.g., valence four vertices) and only produces charts for the vertices, it also results in far
fewer charts than the two preceding ones.

The most distinctive feature of this approach is that the surfaces may have any prescribed degree
of smoothness, including C∞, with explicit nonsingular parameterizations of the same smoothness.
It is widely recognized that C2-continuity is important for visual quality, as it insures smooth nor-
mal variation. Higher degrees of smoothness are useful for numerical purposes: For example,
for C3-continuous surfaces the variation of curvature functionals are well-defined everywhere, and
Ck-continuity makes it possible to use high-order quadratures to ensure rapid convergence (theo-
retically at super-algebraic rates for C∞-surfaces).

Furthermmore the surfaces are at least 3-flexible, i.e. can have arbitrary prescribed derivatives
of order up to three at control vertices. This property ensures that a surface does not have artificial
flat spots.

Finally, the surfaces combine these mathematical properties with good visual quality, by using
subdivision surfaces as a “guide” for the overall shape.

This construction, similarly to the previous constructions, starts with a mesh. In [YZ04] the
construction is developed for meshes consisting of quadrilaterals, although this is not critical: The
construction can be carried out in a similar way using triangle meshes.

The foundation of this approach is the conformal structure associated with the mesh M that is
used as the manifold domain 1.

A collection of embedding functions E l
i : ci → R3, defines the geometry locally on each chart;

then, a partition of unity is used to define the global embedding. On M, the complete surface is

1For this it is necessary to assume that the mesh has no self-intersections. This assumption is not crucial (the domain
can be constructed in a more abstract manner) but simplifies explanations. It has no implications for implementation.
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defined by ∑i(B̂iE l
i )◦αi. However, in practice we use the equivalent embedding function (Eq. 1.19)

that uses the transition functions, not the chart maps. It is evaluated on individual charts ci via

E(x ∈ i) = ∑
j:x∈ui j

B̂ j(ψi j(x))E l
j(ψi j(x)) (3.7)

where ψii is assumed to be identity, and uii is the whole chart ci.
Note that the complexity of evaluation of this expression is determined by three factors: com-

plexity of transition maps ψi j, blend functions B̂ j, and embedding functions E l
j. The transition

maps can be expressed in complex form as zα (up to a rotation), the blend functions are piecewise
exponential and C∞, and the embedding functions are polynomials of degrees proportional to the
valence of vertices corresponding to the charts.

Another important observation is that the surface E(x) is C∞ if all components are C∞.

3.3.1 Charts and transition maps
The basis of the chart construction is the conformal atlas for meshes. The conformal atlas has
already been used in several graphics applications, most recently in [GY03]. While many vari-
ations can be found in the literature (e.g., [DCDS97] in the context of parametrization), a com-
plete description of the specific structure is not easily available. Charts are defined per vertex.
Each chart domain is a curved star shape Di, shown in Figure 3.10. The overlap region between
the images of two charts in the control mesh is two faces of the mesh. The chart construction
proceeds in two steps: First, the faces adjacent to a given vertex are mapped piecewise bilin-
early to the plane (maps Li to domains Si). Then a transformation σi is applied to each wedge
of the regular star Si; σi squeezes it so that it becomes a conformal image of square. The maps
σi have simple explicit expressions for each wedge. As illustrated in Figure 3.11 for the shown
choice of coordinate system, these maps are compositions of a linear map lki , defined as matrix
diag(cos(π/4)/cos(π/ki),sin(π/4)/sin(π/ki)), where ki is the valence of Di, and a simple map
gki , which performs the standard identification of the plane with complex numbers z = x + iy, and
can be written as z4/ki . The chart maps αi are compositions σi ◦Li.

This atlas has an important property: All transition maps are conformal, in particular, C∞. In
fact, the transition maps, for a certain choice of the coordinate systems, can be written as zk1/k2 .
The fact that transition maps have simple expressions is very important; it allows us to define the
geometry in an efficiently computable way. We can also replace z4/ki with more general functions
of the form |z|p(z/|z|)4/ki for p > 0, which are again C∞-continuous. In the examples in Sec-
tion 3.3.4, p = log2(1/λki) is used where λki is the second largest eigenvalue of the Catmull-Clark
subdivision matrix at valence ki, to improve the quality of the geometry fit described below.
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σ1

L1

S1 S2

D1 D2

L2

σ2

transition map

Figure 3.10: Construction of the charts. The maps Li, i = 1,2 are piecewise bilinear; the maps σi
are constructed on individual wedges as shown in Figure 3.11.

lk z4/k

linear conformal

Figure 3.11: On each wedge, the map σi is a composition of a linear map and the map z4/ki .

3.3.2 Blending functions

0

1

1

Figure 3.12: Red: The
function η(t) used in the
construction of the parti-
tion of unity. Black: A
Hermite spline which is
close to the shape of η(t).

The blending functions are a crucial element of this construction: The
quality of surface is defined not only by the quality of the embedding
functions but also by how well they are blended.

The partition of unity is built from identical pieces defined ini-
tially on the standard square [0,1] as a product of two identical one-
dimensional functions η(u)η(v). The function η is defined as follows
[BK01]:

η(t) =


1 : 0 ≤ t ≤ δ

h((t−δ )/a)
h((t−δ )/a)+h(1−(t−δ )/a) : δ < t < 1−δ

0 : 1−δ ≤ t ≤ 1

where δ > 0, a = 1−2δ and h(s)= exp(2exp(−1/s)/(s−1)). The re-
sulting function is quite close in appearance to a Hermite spline (Fig-
ure 3.12).

The parameter δ is chosen to be nonzero for the following rea-
son: When δ = 0, the transition maps has unbounded derivatives at
the boundary of the overlapping charts. While it is possible that the
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composition of the transition map and the partition of unity has bounded derivatives if the partition
of unity has sufficiently fast decay, it is easier to choose the partition of unity to be constant near
the boundary. In [YZ04] δ = 1/8 is used.

Once the function is defined on the square, the blend function is computed on the whole chart as
follows. First, a rotation by π/4 combined with the map g−1

k = zk/4 remaps η(u)η(v) to a single
wedge. The function is defined by rotational symmetry on the rest of the chart. The resulting
function is C∞ on the whole chart.

If only Ck surfaces for some finite k are desired, a suitably spline function of degree k +1 can
be used instead of η(t).

3.3.3 Embedding functions
The geometry is defined using polynomials. The basic idea is to apply several subdivision steps
to define the overall coarse shape of the surface, and use polynomials in the chart to fit this shape
in the least squares sense. As the fit is linear and the control points of refined subdivision mesh
depend linearly on the control points of the original mesh, the transformation matrix converting
control points to the polynomial coefficients can be precomputed. Thus, in practice the process is
reduced to assembling a vector of control points and multiplying them by a matrix.

Every control point of the refined mesh after two Catmull-Clark subdivision steps can be as-
signed to the points with bilinear coordinates (i/4, j/4) in each sector of the star Sk. For each
vertex v, these points are remapped in Sk to the chart domain Dk by using the map σi. There are
m = 12k + 1 points inside Dk which is denoted x0, . . .xm−1. 3D limit positions are computed for
these points in the same order, and denote them s0, . . . ,sm−1. The goal is to define an embedding
function E such that the differences E(xi)− si are minimized in the least squares sense.

In the fitting process, the monomials of total degree≤ d = bmin(14,k+1)c are used as the basis
functions. The choice of 14 as the maximal degree is empirical: Using higher-order polynomials
results in lower quality surfaces for high valences. These monomials are denoted p0, . . . , pn−1
where n = (d + 1)(d + 2)/2 is the number of monomials used in the fitting. A least-squares fit
is used to solve for the basis coefficients a j, such that E = ∑

n−1
j=0 a j p j. Let a be the vector of

coefficients a j, s be the vector of values si and U be the m×n matrix of monomial values p j(xi) at
points xi. Then the least squares fit minimizing ‖Va− s‖2 is given by

a = V +s

where (·)+ denotes pseudoinverse. The n×m matrix U+ only depends on the valence k since xi
and p j depend only on k. Therefore, it can be precomputed once and used for all charts with the
same valence.

Flexibility of the surface at vertices in the center of the charts is easy to show, as one can
construct specific control point configurations yielding various low-degree polynomials in a direct
form.

If only Ck smoothness is needed, one can use tensor-product splines of fixed bidegree k + 1
instead of polynomials; the nature of the fitting process does not change.
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3.3.4 Examples
Figure 3.13 shows the quality of the surface generated by this method (a striped reflection map is
used on a part of the surface).

On the left is a detailed comparison of the surfaces with Catmull-Clark surfaces near valence
5, 8 and 12 vertices. The quality is close, except in the immediate neighborhood of the vertex,
where reflection lines show lack of C2-continuity of Catmull-Clark. On the right, the plots for the
principal curvature directions and Gaussian and mean curvatures are shown.

Figure 3.14 shows the chart parameterization of the surfaces. On the left, a uniformly spaced
checkerboard demonstrates that the manifold chart surface parameterization is smooth at the ex-
traordinary vertex, while the natural parameterization of Catmull-Clark surface is singular there.
The plot on the right shows the sum of the magnitudes of the derivatives of the parametrization on
a chart, to demonstrate the variation. Starting from fourth derivatives the behavior is dominated by
the behavior of the derivatives of the partition of unity functions.

Figure 3.15 shows several examples of surfaces obtained from various control meshes. In
all cases, overall quality is quite similar to Catmull-Clark surfaces; as expected, with smoother
reflection lines near extraordinary vertices as in Figure 3.13.

manifoldCatmull-Clark

5

8

12

Figure 3.13: Left: Comparison of surface behavior near extraordinary points for valence 5, 8
and 12. Right: Principal curvature directions, Gaussian curvature and mean curvature around
extraordinary vertices.
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manifold Catmull-Clark

1.3

1.5

0.17

1.4

2.0

5.7

Figure 3.14: Left: Comparison of parameterization. Right: Maps of the total derivative magnitudes
under chart maps parameterization for the first, second and third derivatives.

Figure 3.15: Several examples of surfaces produced using the approach of Ying and Zorin [YZ04].

3.4 Manifold splines (Gu et. al.)
This manifold approach combines some of the features of the mesh-based approaches previously
described with the parameterization approaches of Chapter 5. The basic idea is to start with an
affine atlas over the mesh (this requires “punching holes” in the mesh at the singular points). The
mesh structure can then be flattened (locally) into the plane. To produce charts, Gu takes advantage
of the properties of triangular B-splines, which are defined on an arbitrary triangular domain (see
Figure 3.16). Triangular B-splines that have the same (within an affine transformation) triangular
domain and control point location will have the same geometry. Therefore, charts that are defined
on the same part of the mesh will have the same shape where they overlap.

Unfortunately, after this construction process the vertices where the singular points were re-
moved will not have matching geometry (or any geometry) over them. To get around this, that
area of the surface is removed and a new patch is added in using traditional spline hole-filling
techniques.
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Figure 3.16: Defining overlapping patches using a mesh. Each patch is a Triangular B-spline which
shares some of its domain with neighboring patches.
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Chapter 4

Building manifolds from canonical surfaces
[25 min]

In this approach, we begin with a canonical surface of the appropriate topology (sphere, n-holed
tori) and build a constructive manifold from an atlas on the manifold. This is very similar in spirit
to the circle example presented earlier.

We first discuss why this approach might be preferable over starting with a sketch mesh. We
then provide example manifolds for the closed genus (sphere, 1-holed torus, and n-holed torus).
We separate the 1-holed torus from the n-holed because it has a simpler representation than the
hyperbolic disk used for the n-holed case.

4.1 Advantages of simple domains
One advantage of defining charts on a simple domain is that the transition functions are “free”
— the biggest challenge in mesh-based approaches is creating transition functions that meet the
proto-atlas conditions. If we define the transition functions as compositions of the chart maps then
we are guaranteed to satisfy the reflexive, symmetric, and co-cycle conditions. Also, if the chart
maps are C∞ then the transition functions will be as well. All of the atlases defined in this section
are C∞.

Another use of these domains is parameterization of non-planar meshes without cutting them
into planar pieces. There is a large body of work focused on defining criteria for where to place the
cut lines; only recently has anyone focused on matching the domain topology to the mesh [PH03,
GGS03]. The problem with cutting meshes is that it introduces seams in the texturing. Suppose we
instead map the mesh to a simple domain (such as the sphere) and then define a set of charts that
overlap and cover the sphere. This set of charts are the desired texture maps, and the overlaps (plus
blend functions) provide a built-in mechanism for seamlessly migrating from one texture map to
another.

A third advantage is establishing correspondences between meshes of the same topology. In
this case, we establish, for each mesh, a mapping from the mesh to the correct topology. This
automatically induces a correspondence between all of the meshes.
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Figure 4.2: Defining a mapping between a subset of the sphere and a disk in the plane. Left:
Mapping the circle to an ellipse using a projective transform M−1

w . Right: Mapping the ellipse to a
disk on the sphere using the inverse of a stereographic projection M−1

D .

4.2 The sphere
The canonical sphere we use is the implicit one:

(x,y,z) : x2 + y2 + z2 = 1 (4.1)

A single chart on 
the sphere

Defining chart connectivity

The sphere 
with six charts

Figure 4.1: Building charts
for the sphere. We use a cube
to define the adjacency rela-
tionships between the charts.

The chart mappings take the (x,y,z) point to the plane. There
are many possible parameterizations of the sphere; we describe
two here [Gri02]. The first is a fixed parameterization that bal-
ances maximizing the overlap regions with keeping the number of
charts small. It is very similar in spirit to the circle example pre-
sented earlier. We use the latitude-longitude map to project part
of the sphere (one projection for each axis). This approach has
the advantage of partitioning the sphere along the great arcs (see
Figure 4.1). The second parameterization approach consists of a
stereographic projection followed by a projective transform (given
by a 3× 3 matrix) to adjust the size of the chart [Gri05] (see Fig-
ure 4.2). This lets us place a chart anywhere, and of any size, on
the sphere.

4.2.1 Fixed atlas
We decided to use six copies of the latitude-longitude equation for
our fixed atlas, one at each pole (see Figure 4.1). Each chart covers
almost a half of the sphere. Six charts is the best compromise be-
tween maximizing overlap, minimizing distortion in the parame-
terizations, keeping the number of charts small, and maintaining
symmetry. Also, we can use great arcs to partition the manifold
into six equal regions (see Figure 4.1). Because we use the latitude-longitude equations the great
arcs map to easily defined arcs in the chart co-domains.
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θ = uπ, φ = v
3π

4
− 3π

8
(4.2)

α
−1
0 (u,v) =

(
cos(θ)cos(φ),sin(θ)cos(φ),sin(φ)

)
(4.3)

α
−1
1 (u,v) =

(
cos(θ +π)cos(φ),sin(θ +π)cos(φ),sin(φ)

)
(4.4)

α
−1
2 (u,v) =

(
sin(θ)cos(φ),sin(φ),cos(θ)cos(φ)

)
(4.5)

α
−1
3 (u,v) =

(
sin(θ +π)cos(φ),sin(φ),cos(θ +π)cos(φ)

)
(4.6)

α
−1
4 (u,v) =

(
sin(φ),cos(θ)cos(φ),sin(θ)cos(φ)

)
(4.7)

α
−1
5 (u,v) =

(
sin(φ),cos(θ +π)cos(φ),sin(θ +π)cos(φ)

)
(4.8)

The inverse of these functions can be calculated using the appropriate arctan functions. We give
the functions in pseudo C code (atan2 returns the arc tangent in the range ±π for the input (y,x)).

α0(x,y,z) =
(

atan2(y,x)
π

,(arcsin(z)+
3π

8
)

4
3π

)
(4.9)

α1(x,y,z) =
(

1+ atan2(y,x)
π

,(arcsin(z)+
3π

8
)

4
3π

)
(4.10)

The transition functions are built by taking ψi j = α j ◦α
−1
i ; for example:

φ20(u,v) =

(
atan2(sin(6πv−3π

8 ),sin(uπ)cos(6πv−3π

8 ))
π

, (4.11)

(arcsin(cos(uπ)cos(
6πv−3π

8
))+

3π

8
)

4
3π

)
(4.12)

The overlap regions U0,1,U1,0, U2,3,U3,2, U4,5,U5,4, and their corresponding transition func-
tions, are empty.

To produce a partition of the sphere manifold we use six great circles, which are the white lines
on the sphere in Figure 4.1. This produces a slightly “bowed” rectangle with straight sides in each
chart. Because we are using the latitude-longitude equations, each partition boundary is a straight
line in some chart. We chose the chart equations so that the straight lines are always the vertical
ones, i.e., the chart partitions are identical for all charts. The start and stop points are determined
by where the arcs intersect. The equations for the vertical lines are:

(0.25, t ∈ (±
4sin−1(

√
1/3)

3π
+1/2)) (4.13)

(0.75, t ∈ (±
4sin−1(

√
1/3)

3π
+1/2)) (4.14)

To find the upper and lower boundaries of the partition region we map the straight line from the
overlapping chart into the current one using the appropriate transition function.
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4.2.2 Embeddings of the fixed atlas

Original mesh

Mesh in 1-1 correspondence with 
manifold

Base

Ear

Tail

Embedded manifold

Spline

RBF

Create bijection

Create embedding

Texture map

Figure 4.3: The bunny mesh is first embedded in the sphere, creating a bijection between the
mesh and the manifold. On the right are two possible embeddings, one defined using splines
(approximating) the other using RBFs (interpolating). The embeddings are colored by Gaussian
curvature; blue is near-zero curvature, red is positive curvature scaled by two, and green is negative
curvature, also scaled by two.

One advantage of manifolds is that it is a simple matter to replace the embedding function with
a different one. Figure 4.3 shows the result of two different embedding functions, spline and radial
basis function (RBF), on the same manifold. The bunny mesh is first embedded in the sphere to
create a correspondence between the manifold and the mesh. Next, each chart is fit to the part of
the mesh that lies in the domain of the chart. The RBF embedding is guaranteed to interpolate the
original mesh vertices, since the embedding function for each chart does. The spline embedding
function is approximating, but has lower overall curvature.

To create a mesh for displaying the embedded manifold we need to tessellate the domain. The
charts provide a natural mechanism for creating an initial tessellation. We grid the interior of each
chart, using the projection of great arcs to define the starting and stopping points (shown in white
in Figure 4.1). We then apply an adaptive re-triangulation routine, stopping when the triangles
approximate the surface within some user-defined tolerance.

The charts can also be used to texture map the surface. We can either create texture maps
which exactly partition the surface, or we can let the texture maps overlap, and alpha blend (using
the chart blend functions). The transition functions provide an automatic method for determining
what the pixel correspondences are.
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4.2.3 Stereographic projections
The chart function αc is built by taking MW (MD(x,y,z)), where MW is a projective or affine trans-
form, MD is a stereographic projection, which is defined by the point P on the sphere around which
the projection is centered. It is radially symmetric, invertible except for the point opposite the cen-
ter of projection, and the distortion is minimal for small portions of the sphere. The generalized
form first rotates the sphere to bring the point P to the north pole, then projects the north pole to the
origin, flattening out the sphere around it. A point (Qx,Qy,Qz) is mapped to the plane as follows:

θ0 = tan−1(Py/Px) φ0 = sin−1(Pz) (4.15)

θ = tan−1(Qy/Qx) φ = sin−1(Qz) (4.16)

k =
2

1+ sinφ0 sinφ + cosφ0 cosφ cos(θ −θ0)
(4.17)

MD(Q) =
(
k
(

cosφsin(θ −θ0)
)
,

k
(

cosφ0 sinφ − sinφ0 cosφ cos(θ −θ0)
))

(4.18)

Note that if Qx = Qy = 0 we define θ = 0. The inverse M−1
D (s, t) is:

r =
√

s2 + t2 c = 2tan−1(r/2) (4.19)

φ = sin−1(coscsinφ0 +(t/r)sinccosφ0) (4.20)

θ = θ0 + tan−1
(

ssinc
r cosφ0 cosc− t sinφ0 sinc

)
(4.21)

M−1
D (s, t) =

(
cosθ cosφ ,sinθ cosφ ,sinφ

)
(4.22)

4.2.4 Embeddings using stereographic projection
To create a surface using the stereographic projection, we begin with a sketch mesh which is
embedded in the sphere, as above. Next, we create one chart for each element in the sketch mesh;
the chart is centered (MD) on the element (vertex, edge mid-point, or face centroid) and the scale
(MW ) adjusted so that the chart covers the area around the element [Gri05].

In this approach, the transition functions are “free” — they’re simply defined by mapping up
to the sphere (α−1

c ) and then back down again (αc′). This means that we can add a chart anywhere,
and at any relationship to any existing charts. We use this fact to add additional detail anywhere
on the surface (see Figure 4.4) by simply defining a new bit of detail mesh.
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Figure 4.4: The bunny, with additions in blue, made by creating a chart for each mesh element.
Bottom right: The sketch and detail mesh for the bunny embedded on the sphere.

4.3 The torus
Just like the circle, there are two ways to represent a torus [Gri02]. The first is as an embedding
equation

T (θ ,φ) =
(
(
3
2

+ cos(θ))cos(φ),(
3
2

+ sin(θ))cos(φ),sin(θ)
)

(4.23)

the second is as a range of (repeating) θ and φ values. The two are equivalent (Figure 4.5).
By repeating values, we mean the plane tiled by τ = [0,2π)× [0,2π). In this model, the points
(s + 2πi, t + 2π j), i, j integers, are all the “same” point. More formally, the torus is the quotient
space of τ with points identified in this manner [GG83].

Just like the sphere, we can define two types of charts and atlases. The first is a fixed atlas, the
second lets us place charts anywhere. In both cases, the chart function is a translation followed by
a scale.

4.3.1 Fixed atlas charts
In the fixed atlas we create nine charts, each of which covers 2/3 of the chart domain. The center
of each chart is staggered so that the charts overlaps are all equal. Numbering with chart zero in
the lower left corner and two in the lower right corner we have:

α
−1
c (s, t) = T

(
(
(c mod 3)

3
+2s/3)2π,(

(c/3)
3

+2t/3)2π
)

(4.24)
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(0,0)
τ0,0

(2π,2π)
τ1,0

τ1,−1τ0,−1τ−1,−1

τ−1,0

τ−1,1 τ1,1τ0,1

Green faces are 
duplicates of  cyan 
faces. Cyan faces 
are stored explicitly.

Heavy lines are 
stored edges.
Circles are stored 
vertex locations.

Tiled plane

(0,0)

(2π,2π)

3D embedding of τ Mesh embedded in τ

Figure 4.5: The torus domain is the plane tiled by copies of τ . Moving across the right edge
“wraps” back to the left edge, and similarly for the top and bottom edges. By “gluing” the edges
together and adding geometry, we get the standard 3D torus. Middle: We explicitly store the 2D
locations for elements that cross the boundary.

The inverse of this function is straightforward but requires some care with the bounds. We give the
definition in pseudo C code:

r = ||(x,y)||−1 (4.25)
θ = atan2(z,r) (4.26)
φ = atan2(y,x) (4.27)

u =
{

θ

2π

θ

2π
< 0

θ

2π
+1 otherwise

(4.28)

v =

{
φ

2π

φ

2π
< 0

φ

2π
+1 otherwise

(4.29)

s =

{
(u+1− (c mod 3)

3 ) (c mod 3) = 2,u < 1
2

(u− (c mod 3)
3 ) otherwise

(4.30)

t =

{
(v+1− (c/3)

3 ) c
3 = 2,u < .5

(u− (c/3)
3 ) otherwise

(4.31)

The torus transition functions are all translations by (±1
4 ,±1

4).
To produce a partition of the torus we take the interior [1

4 , 3
4)× [1

4 , 3
4) of each chart. This tiles

the domain of the torus.

4.3.2 Arbitrary chart placement
Like the sphere case, we place the chart by providing a center point P and then scale and rotate the
coverage of the chart using a projective transform MW .
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Figure 4.6: Defining a torus.

τ
1−

wM wM
P

Q00

Q11

Q10

Q01

DM

1−
DM

c

MD(P)

MD is a translation from P to the origin. 

Figure 4.7: A chart is determined by a point
P (location) and a projective transform (size
and orientation). When evaluating the chart
function, the given point Q must first be
mapped to the appropriate copy of τ before
applying the translation and projective trans-
form.

MD is simply a translation of a given point
P ∈ τ to the origin. Theoretically, MD is actually
a translation (Px − 2πi,Py − 2π j), simultaneously
applied to all copies of Uc ⊂ τi j. Obviously, this is
somewhat impractical to implement. By insuring
that P is in τ , and restricting the size of the chart to
be at most P±π , we ensure that the domain of the
chart Uc overlaps at most four copies of τ (includ-
ing τ itself).

Suppose we are given a point Q in τ . We can-
not simply apply the translation Q′ = Q−P to the
point – we also need to try the copies of τ that Uc
overlaps. The correct copy Qi j = Q + (2iπ,2 jπ)
is the one for which (Qi j −P)x,y < π . For exam-
ple, suppose P is located in the upper right corner
of τ . If Q is in the lower left corner of τ then we
want to map Q to Q+(2π,2π) before applying the
translation (see Figure 4.7).

When inverting MD, we apply the inverse trans-
lation, then map the translated point to τ by apply-
ing the appropriate (2πi,2π j) translation.
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Figure 4.8: A hand-made copy of the dragon. The sketch mesh (left) was made by picking points
on the original dragon mesh. The sketch mesh is embedded in the tiled plane (left middle) after
which charts are made for each mesh element and the result set to approximate the subdivision
surface of the sketch mesh (right).

4.4 Multiple-holed tori

Figure 4.9: Left: An 8-sided polygon with edges and
vertex corners labeled. Right: A sketch of a 2-holed
torus with the loops and vertex corners labeled.

The n-holed torus domain is built on the
hyperbolic disk. There is a theorem from
topology that says any n-holed tori can be
built by taking a 4n-sided polygon and as-
sociating pairs of edges (see Figure 4.9).
For a 1-holed torus, this corresponds to tak-
ing a square (τ = [0,2π)× [0,2π)) and as-
sociating the left edge with the right edge,
and the top edge with the bottom edge. An-
other way to visualize this is to place copies
of τ next to the original square (see Fig-
ure 4.6). In this way, we can tile the en-
tire plane. The advantage of this tiling is
that we can operate in any region on the
plane and do the mapping back to the orig-
inal copy of τ afterwards.

The n-holed domain is very similar to the torus case, except τ is a 4n-sided polygon that tiles
the hyperbolic disk (see Figure 4.10). The transformations that take τ to its copies are Linear
Fractional Transforms (LFTs) and have the form:

T (z) =
[

a b
c d

]
z =

az+b
cz+d

(4.32)

where the numbers a,b,c, and d are complex. As in the toroidal case, it is possible to enumerate
the infinite set of LFTs that produce all of the copies of τ [FR93, WP97]; for practical purposes,
we only keep the transformations that produce the copies of τ which are adjacent to τ .

The reason we use a hyperbolic disk is that we can build a 4n-sided polygon so that the tiled
copies, when placed together around a vertex, cover 360 degrees — each corner has an angle of
2π/(4n). This is clearly not possible in the Euclidean plane, except for the case when n is 1 and
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τ

τ
τ
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Green faces 
are duplicates 
of (stored) 
cyan faces 
that cross the 
boundary

Stored vertex 
locations are 
dots
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Figure 4.10: From left to right: a) τ and its adjacent copies for a 2−holed torus. There are eight
copies around each vertex. b) A 3D mesh showing the cut lines. The point in the center will map
to the vertices of the polygon; if you were to cut along the lines shown then unfold the pieces back,
you would get the flattened mesh on the right (c). The back of the vase maps to the center of the
disk.

the corners have an angle of π/2.
Details of the construction of the 4n-sided polygon can be found in a recent paper [GH03];

we summarize here why this construction produces an n-holed torus. Essentially, pairs of edges
are glued together to create loops; it takes two loops to create a hole in the torus. In the 1-holed
case, the two vertical edges form one loop and the two horizontal edges the other. To “glue” the
edges together, we place a copy of τ so that the left edge of the copy and the right edge of τ

match up. Moving horizontally then results in moving continuously around the torus. The n-sided
polygon case is similar, except that laying out copies of τ so that the edges line up correctly is
more complicated:

• Each hole is represented by a group of four consecutive edges.

• The first pair of associated edges corresponds to a around the hole, the second a loop that
goes through the hole.

• All of the vertices of the polygon correspond to a single point on the final surface. Each loop
begins and ends at this point.

Details on constructing edges and triangles in the hyperbolic disk can be found in Appendix A.
Vertices, edges and faces are kept identically to the torus case. Geometric construction of edges
and faces is performed in the Klein-Beltrami model [Wei] which is an invertible mapping that
takes lines in the hyperbolic disk to straight lines in the plane. Once transformed, geometric
constructions are performed in the usual linear fashion.
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4.4.1 Fixed atlas chart mappings
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Figure 4.11: From left to right: The inside chart,
an example edge chart, and the vertex chart. The
edge chart is split in two, with the left half mapped
to the lower left edge, the right half mapped to the
lower right edge. Each wedge of the vertex chart
is mapped to a different corner.

Grimm and Hugues [GH03] proposed a set
of charts for the hyperbolic disk that cover
the 4n-sided polygon with a small number of
charts, one for the vertex, one for the interior,
and 2n for the edges (see Figure 4.11). Each
chart is a LFT from the disk to the unit square.
If we restrict the domain to just τ (and not
the copies of τ) then the edge charts have two
LFTs — one of which takes the top half of the
chart to an edge by a rotation followed by a
translation, the other of which takes the bot-
tom half to the associated edge using a flip,
rotation and translation. Similarly, the ver-
tex chart has 4n transformations, one for each
wedge of the chart.

Because each chart α mapping is a LFT,
and LFTs combine like matrices, the transition functions are also LFTs. The overlap regions in
this case are somewhat complicated (Figure 4.12) but the transition function on each region is
simply a LFT.

4.4.2 Arbitrary chart placement

Inside-edge Vertex-edge

Inside-vertex Vertex-inside

Edge-inside

Edge-edge Edge-vertex

Figure 4.12: The overlap regions Ui j for the dif-
ferent cases.

To place a chart at an arbitrary point P in the
domain, we create a LFT that takes the point
to the origin:

P = r(cosθ + isinθ) (4.33)

T (P) =
[

cos−θ + isin−θ 0
0 1

][
1 −r
−r 1

]
(4.34)

We follow this with a projective transform to
control the size and orientation of the chart.

4.4.3 Embeddings
Figure 4.13 shows several example embed-
dings using a spline function on each chart.
(Top left is initial configuration.) To create a
mesh, the domain must be tessellated. We tes-
sellate by taking the edge charts and placing a
grid on the interior. The boundaries of these grids form the pattern shown in Figure 4.13; we then
tessellate the interior of the inside and the vertex charts as shown, matching the radial divisions to
the number of edge grid divisions.

53



Figure 4.13: Left: Example embeddings using a spline function for each chart. Right: Tessellating
the domain by tessellating the individual charts.

4.5 Implementation
The implementation is very similar to the circle example shown earlier. One difference is that we
determine all of the chart overlaps when creating a new chart and store only the non-empty ones;
this greatly reduces the computation cost for a manifold point, because we only need to check the
non-empty transitions.

One of the advantages of manifolds is that the objects we build are analytic — the derivatives
exist and are well-defined. To support derivatives of the transition, blend, and embedding functions,
we turn to an automatic C++ template approach called FAD [SB]. FAD overloads mathematical
operators so that the derivative is calculated simultaneously with the value of the function. By
overloading twice, second derivatives are also calculated, etc. Any C++ function can be calculated
in this way, including functions with if statements and for loops. We have found that calculating
the derivatives in this manner is as fast, or faster, then hand-coding the derivatives, with equivalent
accuracy and substantially less debugging time.

4.5.1 Representing meshes on arbitrary topologies
How do we represent meshes embedded in arbitrary domains? In traditional Euclidean geometry
i.e., a mesh in R3, it suffices to store the topology information of the mesh, and the geometric
information just at the vertices. The geometric information of the edges and faces1 is constructed
from the vertex information:

G(v) = (x,y,z) (4.35)
G({v1,v2}) = (1− t)G(v1)+ tG(v2), t ∈ (0,1) (4.36)

G({vi}) = ∑
i

βivi, ∑βi = 1,0 ≤ βi ≤ 1 (4.37)

In non-Euclidean geometries, there is more than one way to construct an edge’s or face’s geom-
etry. We therefore augment the basic mesh structure with additional geometric construction infor-
mation where needed. Essentially, we use a default geometric construction for the edge or face;

1We extend barycentric coordinates to n-sided faces, n > 3, by introducing a vertex in the middle [Lev01].
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if this default construction is not the correct one, we explicitly store the correct geometrical con-
struction, which then over-rides the default one.

The sphere domain is the unit sphere, (x,y,z) : x2 + y2 + z2 = 1. Note that we do not need a
parameterized definition of the sphere domain — the charts will provide us with a local parame-
terization.

To embed a mesh on the sphere we map vertices to points on the sphere, edges to great circle
arcs, and faces to spherical triangles. For each edge there are two possible circle arcs; the de-
fault choice is the shorter circle arc. There are many possible methods for mapping triangles to
spheres [PH03], we use the Gnomonic map which takes triangle edges to great circle arcs and is
invertible. Essentially, the face vertices are placed on the sphere and the planar triangle is then
projected onto the sphere by casting a ray from the origin through the triangle to the sphere.

The torus domain (Figure 4.6) is the plane tiled by τ = [0,2π)× [0,2π). In this model, the
points (s + 2πi, t + 2π j), i, j integers, are all the “same” point. More formally, the torus is the
quotient space of τ with points identified in this manner [GG83].

For implementation purposes, we always store individual points in τ , translating by (−2πi,−2π j)
if the point moves out of τ to τi j. The default construction for an edge or face is the linear one
(Eq. 4.37). For any edge or face that crosses the boundary of τ , we explicitly store the points that
result in the correct geometric construction (see Figure 4.6). We always choose the copy of the
points such that the mid-point or centroid lies in τ . This implies that all of our edges and faces will
lie in

⋃
i, j∈[−1,1] τi j, i.e., τ and the 8 copies of τ that are adjacent to τ .

Details on constructing edges and triangles in the hyperbolic disk can be found in Appendix A.
Vertices, edges and faces are kept identically to the torus case. Geometric construction of edges
and faces is performed in the Klein-Beltrami model [Wei] which is an invertible mapping that
takes lines in the hyperbolic disk to straight lines in the plane. Once transformed, geometric
constructions are performed in the usual linear fashion (Eq. 4.37).
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Chapter 5

Surface parameterization and manifolds

Parameterization algorithms aim to map a surface or a part of a surface to the plane. Local para-
meterization algorithms usually deal with surface domains which can be continuously deformed to
planar domains, and a single continuous mapping is constructed. A comprehensive survey of local
parametrization methods can be found in [FH05].To obtain a global parameterization of a com-
plete surface, one needs to cut it into one or several domains which can be deformed into planar
domains.

Parameterization algorithms are applied to surfaces represented in different ways: meshes,
parametric and implicit surfaces. For meshes, there is no parametrization defined, and the main
goal is to find one. For parametric surfaces, the goal is typically to improve the existing parame-
trization.

Our goal here is not to discuss the parametrization algorithms in detail: We only aim to present
several techniques in a unified context, providing a manifold-based description of the ideas of
these techniques. Thus we do not discuss important algorithmic details related to specific surface
representations.

Most parametrization algorithms are designed for meshes, and computed parametrizations are
linear on each triangle. However, smoothness of parametrizations is often an important goal of
these algorithms. Strictly speaking such parametrizations cannot be smooth. However, smoothness
in this case can be given a precise meaning, e.g. by considering a smooth interpolant for mesh
vertices and parametric coordinates. Thus we will discuss surfaces in general, without specifying
whether we are dealing with meshes or not.

Two approaches to global parametrization are possible: use overlapping domains covering the
complete surface or use patches that share only boundaries. The examples of overlapping domain
approach include lapped textures [PFH00], and subdivision surface texturing and parametrization
[DKT98, YHBZ01, BMZ04].

The overlapping domain approach has important advantages but is not broadly used, partially
for the reason that most work on global parametrization focuses on conversion of meshes to another
surface representation (splines, subdivision surfaces or semiregular meshes). In these cases, one-
to-one correspondence with domains is necessary, and significant effort has to be made to ensure
that global parametrization is smooth across patch boundaries.

The manifold point of view is the most suitable for the systematic understanding of the prop-
erties of both global parametrization approaches.
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The relationship between the overlapping domain approach and manifolds is clear: As long
as every point of a smooth surface is covered by a domain, and the map of each domain to its
parametrization domain is smooth, then the collection of these maps and domains form a smooth
manifold atlas because the transition functions are automatically smooth. Hence approaches of this
type are essentially constructions of a manifold structure.

We consider the second disjoint patch approach in more detail, as the connection to manifolds
is less obvious there, although it is crucial for understanding the behavior of these methods.

smooth global parametrization 

nonsmooth global parametrization 

Figure 5.1: Smooth and nonsmooth global
parametrizations; each patch may be parame-
trized smoothly, but parametrizations may be
incompatible.

Most of the global parametrization approaches
proposed in the past serve one of two goals: ei-
ther creation of a texture atlas (e.g. [PFH00,
LPRM02]), or converting a mesh to a semi-
regular representation: spline patches [KL96,
EH96], subdivision- and wavelet-based multires-
olution surfaces, [EDD+95, LSS+98], normal
meshes [GVSS00] displaced subdivision surfaces
[LMH00] and polycube maps [THCM04]. A tech-
nique of the latter type was developed for genus
0 surfaces [GGS03, PH03]. Approaches intended
primarily for texture mapping often do not ensure
even the continuity of parametrization between
patches.

Surface partition into patches can be obtained
in many different ways. For example, one can cre-
ate a curve network on the surface and parametrize
each patch bounded by the curves separately. In
this case, one can easily prevent parameterization
discontinuities by making sure that the domains
for each have a standard shape, and the mappings
agree on the boundaries. At the same time, an im-
portant problem remains: it is desirable to have
smooth global parametrization. Intuitively, a glob-
ally smooth parametrization means that the isopa-
rameter lines for adjacent parametric patches match smoothly. (Figure 5.1). We show how this
intuition can be made precise using manifold concepts.

Before we proceed with our discussion we note that in most cases parametrization algorithms
are developed for surfaces represented by meshes. If a mesh is sampled from a smooth surface,
it is still intuitively clear how a smooth parametrization differs from a nonsmooth one. We will
discuss what smoothness means for meshes below; to introduce the basic ideas it is convenient to
assume that a smooth surface rather than a mesh is being parametrized.

5.1 Affine atlases and global parametrizations
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Figure 5.2: Affine atlas.

First we consider the simplest case of C0 global
parametrizations, and show how it is related to
the notion of affine atlases. Suppose for simplic-
ity we parameterize a surface using quadrilateral
patches (the case of triangular patches is similar).
Then each disjoint quadrilateral patch on the sur-
face Pi is mapped to a quadrilateral domain Di in
the plane with a map pi; we assume these do-
mains to be squares as this allows one to define
parametric lines precisely: these are the images
of lines in the parametric domain parallel to the
sides of the square. However, one can use arbi-
trary shaped boundaries as long as these can be
matched for different domains Di. Let li j = Pi∩Pj
be the common boundary of two patches. If a
point x ∈ li j maps to a point with coordinate ui

along the edge pi(li j) in the square Di, and to the
point with coordinate u j along the edge p j(li j in
D j, to ensure parametric line continuity we need
ui = u j. Note that these means that we can apply
rigid transformations Ti and Tj to the squares, so
that Tj(p j(li j)) = Ti(pi(li j)), and glue the squares
together to form a domain Di j over which Pi ∪Pj
is parametrized with a continuous parametrization.
So if we set Ui j = interior(Pi ∪ Pj), the overlap-
ping charts Ui j domains form an atlas on the sur-
face, with transition maps being rigid transforma-
tions. This atlas is not a proper manifold atlas for
the whole surface M: patch corners are not in the
interior points of any charts, so they are not present
in the atlas. This is an atlas for the surface M with
corner patch points excluded, which we call punc-
tured M.

This manifold structure is quite remarkable in that the transition functions are as simple as
they can possibly get: The transition maps are rigid transforms of the plane. Usually, this type of
manifold structure is referred to as an affine atlas (strictly speaking, for an affine atlas the transition
maps can be any nondegenerate affine maps, a slightly more general concept).

Affine atlases are also a convenient way to capture the idea of Ck global parameterization.
Suppose a surface is Ck and a partition into quadrilateral patches is specified. We would like the
parametric lines to be smooth across the patch boundaries, i.e. we want the joint maps obtained as
above to be smooth.

Although parametric lines in this case are smooth across parameterization boundaries, the para-
metric line tangent field may have (and would typically have) singularities at the patch corners; this
can be avoided only if four patches meet at a corner. Singularities cannot be avoided on the whole
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surface for any closed surface other than a torus.
Another important way to look at affine atlases is to observe that it is possible to use an affine

atlas to define a C∞ (in fact affine) structure on a punctured mesh with planar faces. Indeed, any
two adjacent faces can be unfolded into the plane by a rotation around the common edge, which
defines a natural chart map; clearly transition maps are just rigid transformations in this case. This
is an example of a situation for which surface smoothness (C0) is very different from the manifold
structure smoothness (C∞). One can view the punctured mesh as a non-smooth embedding of an
infinitely smooth manifold into three-dimensional space.

Taking advantage of the fact that all transition maps are rigid transformations one can see that
one can measure local distances on the affine atlas in a natural way: if two points are in one
chart, the standard straight-line distance can be used. For a curve (Figure 5.3) the distance can
be measured by splitting it into pieces contained in individual charts. Clearly, this partition is
nonunique, but thanks to the invariance of distance under transition maps, the result is does not
depend on the sequence of charts used.

12

3
4

5

12

43

1

5

Figure 5.3: Measuring the length of a curve
using affine charts; the sequence of charts
may be selected in different ways, but the re-
sult is the same.

We observe that the affine atlas is compatible
with the conformal atlas described in Section 3.3,
so the conformal atlas can be viewed as a way to
extend the C∞ structure from the punctured mesh to
the whole mesh. However, the transition functions
are no longer affine for the conformal atlas.

Affine atlases, splines and subdivision surfaces.
Affine atlases are also closely related to paramet-
ric surfaces constructed from spline patches and to
subdivision surfaces.

Indeed, each patch is defined as a smooth func-
tion on a rectangular or triangular domain, and geo-
metric continuity conditions ensure that an affine
chart map can be constructed by a simple linear
transformation for any pair of adjacent patches.
Note that the direction of the map that defines the
spline (from the parametric domain to the surface)
is the opposite to the direction of a chart map, so in
addition we need to assume that the spline map is one-to-one.

The same is true for subdivision surfaces: the part of the surface corresponding to two adjacent
faces has a natural smooth parametrization over these faces. Both punctured spline surfaces and
subdivision surfaces have affine atlases and can be regarded as smooth functions on the charts of
these atlases.

5.2 Parametrization on coarse meshes
One of the common ways to construct global parametrizations is to construct a coarse mesh and
use this mesh as a domain for the surface. Early work in this direction e.g. [KL96] and [EDD+95],
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Figure 5.4: Comparison of MAPS (a), Normal Meshes (b), and globally smooth parametrization
of [KLS03]. Images courtesy A. Khodakovsky, N. Litke and P. Shröder.

did not consider smoothness of parametrization explicitly.
A method for improving global parametrization smoothness is a part of the MAPS method

[LSS+98]. First, a non-smooth parametrization is constructed. As a second stage, the parame-
trization is smoothed. For smoothing the parametrization, a superset of the affine atlas is used: in
addition to the affine charts, piecewise linear vertex charts are added. This atlas, in contrast to the
affine atlas, is not even smooth, but makes it possible to optimize parametrization near patch cor-
ners. It is not surprising however, that parametrization is not smooth near these points (Figure 5.4).

Displaced subdivision surfaces [LMH00] avoids the need to optimize a nonsmooth parame-
trization by using an intermediate surface which is known to be smooth. The coarse mesh over
which the surface is reparametrized is taken to be fine enough so that the subdivision surface asso-
ciated with it is close to the original surface. Then the reparametrization is done by projection of
the original surface to the subdivision surface and then remapping to the coarse mesh that serves
as the domain.

Again, we can see why the resulting parametrizations are smooth: projection from one smooth
surface to another in 3D is a smooth operation, and as we have discussed above, natural para-
metrization of the subdivision surface over the original mesh is smooth with respect to the affine
atlas.

An interesting method for parametrization is [GVSS00], which, while not handling smoothness
explicitly, nevertheless produces very smooth parametrizations. The reasons for this are still not
fully understood.

One of the most recent global parametrization methods is described in [KLS03]. This method is
similar to MAPS in that an initial parametrization is constructed and then optimized, but a different
atlas is used: no vertex charts are added to the affine atlas. Slightly expanded charts, consisting of
a triangle with three flaps are used instead of two-face charts. To optimize the parametrization near
vertices, the algorithm uses a parametric domain distance between points to compute functionals
requiring a metric, such as the Laplacian. The distance that is used in algorithm coincides with the
affine atlas distance in almost all cases.
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5.3 Vector-field construction
An interesting and very promising approach is described in [GY03]. and other works of these
authors, and considered from a different point of view in [GGT04]. While this approach cannot
really be regarded as a complete disjoint-patch parametrization construction, it is one of the most
promising approaches for ensuring global parameterization smoothness. This approach has an
additional distinctive feature: the embedding functions mapping the parametrization domains to
the surface are conformal. A related approach is described in [HAT+00]. Here we discuss the
concepts underlying this approach from a somewhat different point of view: rather than starting
with general algebraic topology framework, we start with conditions on the parametrization we
want to construct.

The central idea of [GY03] is to construct parameterizations using one-forms defined on the
surface, i.e. vector fields on the surface. To see how vector fields are related to global smooth
parameterization let us consider the gradients of local parameterization.

We assume that a smooth global parametrization is already constructed and there is an affine
atlas associated with it. Suppose coordinates (xi,yi) = pi map a patch Pi to the square [0,1]2. If
patches Pi and Pj share a boundary, there is a rigid transformation T mapping [0,1]2 to [1,2]× [0,1]
such that if we replace the coordinates p j with T p j, then the coordinate functions mapping Pi∪Pj
to [0,2]× [0,1] are smooth. The transformation T chooses a match between xi and one of x j, y j,
−xi and −y j. These matches are done on a pairwise basis between adjacent patches, and there
is in general no guarantee that a global match exists for a given global parametrization. Suppose
however, that it does exist. This means that we can rename and reflect coordinates on each patch
in such a way that the parametric lines of a coordinate xi match the parametric lines of x j for any
adjacent patch Pj, and same is true for yi. In this case, the pair of vector fields defined by x and
y coordinates of all local parametrizations are smooth. Note that x and y cannot be defined to
be everywhere smooth for closed surfaces: as we transition from one patch to the next, we need
to shift the range of the coordinates always in the same direction; we inevitably have to return
back to the original square, going around the surface, and a discontinuity has to appear. These
discontinuities do not affect the smoothness of gradient fields, as for any patch boundary where
there is a jump in a globally defined xi a constant shift applied locally on one side eliminates such
discontinuity.

We see that a class of global smooth parameterizations induces a pair of vector fields (ω,ω∗) on
the surface. This suggests that one can go in the opposite direction and construct a parameterization
starting with suitably defined vector fields. This prompts the question: what conditions should be
satisfied by such fields?

Not any vector field on a surface is a gradient of a function: it has to satisfy certain conditions,
specifically, if we go around a closed loop on the surface and integrate the field, we should get zero.
Indeed, if the field has the form gradφ for a function φ then integrating it along a curve connecting
points x1 and x2 just gives φ(x2)−φ(x1), so if x1 = x2, the result should be zero. Vector fields with
these properties are called gradient fields.

In the language of differential forms gradient fields are called closed one-forms (actually, one-
forms are linear functions on vector fields, but this distinction is not relevant in our case and a
natural identification exists). In the limit at a point the closedness condition in local coordinates
can be expressed as
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curlω = 0, curlω∗ = 0. (5.1)

If we want the mapping to the plane to be conformal, i.e. angle preserving, we want the pair
of fields corresponding to x and y to be orthogonal and have the same length at each point, the
usual conditions on derivatives of coordinates of a conformal map. In local coordinates (s, t) in the
tangent plane, these two conditions lead to

ωs =−ω
∗
t , ωt = ω

∗
s . (5.2)

it is easy to see that (ω ·ω∗) = 0 and |ω| = |ω∗|. Using the fact that curlω∗ = −∂tωs + ∂tωs in
local coordinates, we immediately obtain

∂sωs +∂tωt = 0, ∂sω
∗
s +∂tω

∗
t = 0. (5.3)

i.e. that the fields should also be divergence-free. In the language of forms, this property is
referred to as harmonicity. This is the second condition on the vector fields used in [GY03].

x0
3

1 2

ω

ω∗

Figure 5.5: Determining point coordinates
using a pair of gradient vector fields. x0 is
aribtrarily picked to be the origin. The field is
integrated along a curve connecting it to point
0, 1 or 3, i.e. the integrals

∫
(ω(s) ·t(s))ds and∫

(ω∗(s) · t(s))ds are computed where t(s) is
the unit tangent to the curve. E.g. for point
1 the increase in ω is increasing, and For
3, ω remains zero, as ω is perpendicular to
the curve. The result does not depend on the
choice of curve, because the field is potential.

We can start with just one field ω , satisfying
Equations 5.1 and 5.2 and reconstruct uniquely the
other field from the conditions (5.2).

A remarkable fact about harmonic vector fields
is that for a given surface they form a finite-
dimensional vector space; this means that there is
a finite number of such fields ωi, such that any
other field ω can be written as a linear combina-
tion ∑i ciωi, where ci do not depend on the point.
The number of basis fields is equal to 2g, double
the genus of the surface g.

To choose a particular vector field from the
space of harmonic fields, one simply requires it to
integrate to a set of fixed values on a specially cho-
sen collection of 2g loops on the surface We will
not discuss the choice of loops in detail, as it is not
of primary importance for understanding the idea
of the construction (see [GY03] for details).

Once a field is uniquely defined, the only re-
maining step is to recover a collection of patches.
The simplest case is the torus: in this case, the vec-
tor fields have no singularities. Suppose we choose
a set of domains on the torus, each topologically
equivalent to a disk. Then, for each of these do-
mains, we can start with an arbitrary point p0 in
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Figure 5.6: Conformal charts near a singular point: the line passing through the point separates
two domains. Each is mapped to the plane in such a way that intervals (0,1) and (0,6) are glued
together; the domains are identified through a line in the interior of each domain.

the domain, assign to it some planar coordinates. For any point p, we can choose a path connect-
ing p0 and p and integrate the vector fields ω and ω∗ along the path to obtain x and y coordinates.
Since the vector field does not have any singularities, and thanks to closedness property, the result
of the integration does not depend on the path. (Figure 5.5).

Intuitively, this is equivalent to drawing parametric lines on the chosen domain, following the
field lines. Furthermore, resulting coordinates will be automatically smooth for transitions from
patch to patch. One can also easily see that the atlas for punctured surface defined by using pairs
of adjacent patches as charts is affine. If we merge two patches Pi and Pj into one and compute
coordinates on the joined patch by integrating the fields, we will obtain coordinates that differ from
coordinates on individual patches by fixed constants (because of the path invariance property).

For surfaces of higher genus, the situation is more complicated: however, the above remains
true, as long as all singularities of the field are on patch boundaries and a sufficient number of
patches are used near singularities, to avoid fold-overs.

We note that in [GY03], rather than using a collection of planar domains to parametrize disjoint
patches, an atlas of modular spaces is considered. This concept is much less intuitive. The idea
is that the surface is split into a collection of patches, each of which is mapped periodically on to
the plane; a periodically repeating curved rectangle is used as the domain. Different domains are
glued together through singular points and lines connecting these points (Figure 5.6).

We refer to the paper for details as this construction. [GGT04] also contains a discussion of
global mappings obtained using harmonic one-forms on surfaces.
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Chapter 6

Overview of applications in graphics and
vision [25 min]

6.1 Functions on spheres for rendering

Figure 6.1: A col-
ored cube is first pro-
jected onto an enclos-
ing sphere. The sphere
is then projected to the
plane using an ortho-
graphic camera.

Environment mapping can be phrased as atlas construction on a sphere.
The goal here is to find an atlas who’s charts cover the sphere with a
relatively even sampling rate while still having simple α functions. By
even sampling rates we mean that a step of size δ in the chart should
always result in a geodesic of length Cδ for some constant C.

There are four existing atlases in the literature; we cover these four
and also introduce a novel fifth one.

The first atlas is simply the latitude-longitude map (Equation 4.10).
The inverse function requires inverse hyperbolic functions, which may
make it unsuitable for a hardware implementation. The real drawback to
this approach is the uneven sampling — the poles are sampled far more
densely than the equator.

The second atlas is created by rendering the sphere with an ortho-
graphic camera (Figure 6.1). This isn’t a true atlas because the chart does
not cover the sphere. Typically this approach is only used to reconstruct
images with the same view vector as the original projection. The sampling
rate for this approach is also bad outside of the view direction.

The third atlas is a cube. In this case there are six charts, one for each
side of the cube. The sampling rate for this approach varies at most by 3

√
3. To calculate the chart

maps, place the sphere inside of the cube then intersect a ray through the sphere point with the
cube. This approach has the simplest α maps because the cube sides are parallel to the x,y,z axes,
so the intersection calculation can be simplified.

The fourth atlas uses two parabolic maps, one for each hemisphere [HS98]. This produces a
more even sampling (see Figure 6.2) although there is a fair amount of wasted area in the tex-
ture map. The α functions, however, are fairly simple — a combination of multiplications and
additions.
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Figure 6.3: Partitioning the
sphere into six maps. The
boundaries of the regions are
great circle arcs. Left: The
white bands are the great arcs
that mark the sphere parti-
tions. Right: The white area
of the chart corresponds to
the part of the chart that cov-
ers one of the colored re-
gions on the sphere on the left
(the chart itself covers approx-
imately 1/2 of the sphere).

We can also use a version of the sphere atlas described in Sec-
tion 4.2 as an environment map. The centers of each chart form a
partition of the sphere (see Figure 6.3). The map from the center
of the chart to the unit square is:

s′ = 1/2−
tan−1(cot(πs)/

√
(2))

2sin−1(2/
√

(3))
(6.1)

d = sin−1 1√
2+ cot(πs)

(6.2)

t ′ =
−3π +6πt +8d

16d
(6.3)

This flattens out to, e.g.,

d = cot(tan−1(x,y)) (6.4)

s = 1/2− tan−1(
d√
2
)2sin−1(1/

√
3) (6.5)

t = (1+
sin−1(z)

csc−1(
√

2+d)
)/2 (6.6)

Determining which chart to use is simply a matter of checking
the dot product of the vector with the normals of the six planes
which form the twelve great arcs.

The sampling for this atlas is nearly uniform, and exactly fills
the texture space, but it is more computationally expensive than
the other techniques. An example of this technique versus cube
mapping for Debevec’s Grace Cathedral environment map is show
in Figure 6.4.

6.2 Solving equations on surfaces
There are a handful of applications in computer graphics that require the capability to run sim-
ulations on the surface of an object. For example, reaction-diffusion textures [Tur91], texture
synthesis [Tur01, WL01], Fluid simulation [Sta03], and surface deformation [JP99] (which can be
phrased as a boundary-value problem).
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6.2.1 Fluid flow

Figure 6.5: Defining adjacency relationships be-
tween faces of the subdivision surface.

Jos Stam recently presented a paper on
simulating fluid flow on a subdivision sur-
face [Sta03]. Fluid flow simulations are of-
ten run on a grid, with each pass of the sim-
ulation performing an update that requires
the grid vertex and the grid vertex’s neigh-
bors in order to compute finite differences.
The bulk of Stam’s paper involved defining
this grid connectivity across the entire sur-
face.

Stam used Catmull-Clark subdivision
to produce the surface. This imparted a nat-
ural set of grids on the surface, one for each
face (after one level of subdivision the faces
were all four-sided). Defining the neigh-
bors of each grid required a somewhat ad-
hoc approach. Essentially, the edge of each
grid matched exactly the edge of another grid (Figure 6.5); the trick was figuring out their relative
orientations. Once the edges were aligned, the grid could be “extended” into its neighbor face. The
corner overlap was handled by picking one of the kitty-corner faces; for four-valence vertices this
was well-defined, but not for other valences.

Figure 6.6: Fluid flow on
a complex surface.

In essence, Stam created a set of C0 overlap regions and transition
functions from the Catmull-Clark adjacency relationships, with one
chart per face. This atlas is well-defined everywhere except at the non
valence-four vertices.

Using the faces as charts introduced problems because the cur-
vature of each face patch varied. To address this problem, Stam al-
tered the fluid-flow simulation routine to take into account the local
curvature (see Figure 6.7). Note that he did not change the parame-
terization, but instead altered the simulation code, a potentially more
computationally-expensive approach.

Comments: If a surface is build using the manifold approach, then
there is no need to compute an ad-hoc one because it already exists,
and, presumably, will be at least a Ck atlas. The simulation can be
performed in each chart, with the simulation values transfered between charts using the transi-
tion functions. Moreover, the parameterization issue could be handled in a more graceful manner
by re-parameterizing each chart [WK91] to account for the distortion. The re-parameterization
essentially creates a new chart, and hence new transition functions, .
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6.3 Building manifolds from data
There is a large class of problems that can be phrased as follows: Suppose you are given samples
from some data set, for example, images of an object under different lighting conditions, points
from a surface, or motion capture sequences. These samples are typically high-dimensional, for
example, images are typically W ×H×3, and each frame of a motion-capture sequence has around
20-30 joints, each with 3 degrees of freedom. Although the samples are high-dimensional, you
believe that there exists some low-dimensional manifold that the samples lie on. For example,
the reflectance properties of many surfaces can be approximated with a combination of a diffuse
reflectance and a specular one. Motion-capture of a walking cycle has one degree of freedom
to represent the (circular) point in the cycle, and two degrees of freedom to represent where the
character is. The goal is to learn this low-dimensional manifold from the high-dimensional data
— hence it’s name, manifold learning.

A complete description of manifold learning techniques is beyond the scope of this paper.
Some example techniques are: Principal Components Analysis (PCA), Independent Components
Analysis (ICA), Support Vector Machines (SVM), iso-map, Gaussian Process model (GP), and
Local Linear Embedding (LLE). All of these techniques take in a set of data points with dimension
D, and learn a manifold of dimension d ≤≤ D embedded in the space ℜD. They differ mostly
on what kind of shape of manifold they can learn. PCA and ICA are limited to learning planar
manifolds. SVMs first warp the space (similar to a free-form definition) and then learn a planar
manifold. Iso-map and LLE both require that local distance calculations (usually Euclidean) be-
tween neighboring points are a good approximation of the geodesics on the surface; they can not
handle manifolds that self-intersect.

In the next few sections we will describe several problems in graphics that have solutions of
this form.

6.3.1 Image panoramas as manifolds

Camera rotated
Camera path

Camera

Panoramic 
image built from 
pixel at center 
of each image

Cylindrical panoramic 
image built from 
mapping  each image 
to the cylinder

Figure 6.9: Two camera paths that produce an
image manifold. Left: A planar manifold cre-
ated by horizontally panning a slit (one ver-
tical line of pixels) camera across the scene.
Right: A cylindrical manifold created by ro-
tating the camera around its optical axis.

In this section we describe how the image stitching
problem can be reformulated as a manifold con-
struction problem [PH97]. In image stitching the
user takes a sequence of images and then “stitches”
them into a single image. The classic version of
this is the panorama image (see Figure 6.8). There
are two camera motions whose individual images
(theoretically) combine together to produce a sin-
gle, continuous image. The first case is a camera
rotation, where the camera is rotated around its op-
tical axis (see right of Figure 6.9). Each image
pixel is mapped to the cylinder by intersecting the
corresponding camera ray with the cylinder. In this
case the manifold is a cylinder (with boundary) and
the images are the charts, with the α function de-
fined by the ray intersection.
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The second camera motion is a translation.
In this scenario, the images are single-pixel wide
“slit” images, where the slit is perpendicular to the
line of travel (also called a push-broom camera).
The images are glued together into a single, planar image. If the geometry is sufficiently far away
to be considered at the same depth (i.e., no parallax effects) then the entire image can be used
instead of a single line of pixels. These types of images are typically created by planes or satellites
flying over terrain; the goal is to produce a single, coherent image of the terrain underneath the
plane. In the slit image case the manifold is a portion of the plane, the images are charts, and the α

functions are simply translations. If we assume no parallax, then we can allow any translation in
the film plane and rotations around the look vector; in this case the α functions may also contain
rotations and scales (zooming in).

The manifold reconstruction problem can now be stated as follows: Assign a color to each
manifold pixel P, and a mapping function α to each chart image, such that αc(P) is the same color
for all charts c that overlap P.

Cylindrical manifolds: McMillan [MB95], in his classic paper on plenoptic modeling, de-
scribed how to initially align the images by calculating a translation that best aligned two over-
lapping images. This corresponds exactly to finding the transition functions between charts then
using knowledge of the domain (cylinder) to construct α functions to a specific cylinder which are
consistent with the transition functions.

Planar manifolds: This is a well-explored area, and usually consists of searching for fast meth-
ods for determining the alignment of the images [PH97]. A Multiperspective Panorama [WFH+97]
is an unusual planar manifold construction in that the image was designed to later be filmed by a
different camera panning over the planar image.

Once the α functions are determined, the manifold image is constructed by combining the
source images [PH97]. This can be phrased as building blend functions for each chart; the embed-
ding functions are the images themselves. There is a trade-off here between blurring and visible
seams. If the blend functions have very steep regions then there is less blurring, but more risk of
seems if φi j(rgb) 6= rgb. Similarly, if the blend functions fall of gracefully then the risk of seams
goes down, but there tends to be more blurring. Often, the blend function shapes are determined
in part by a confidence value that favors, for example, the center of an image over the boundary.

6.3.2 Facial animation
In this application the input is a sequence of images of a human face making a series of expressions.
The goal is to learn a small number of parameters (in this case, three) which can be used as “sliders”
to create or find expressions. There are several researchers who have approached this problem; we
focus here on a technique [Bra03] by Matthew Brand that first builds chart, then builds a manifold
from those charts.

Soft partition

Learned manifold

Good Bad

Chart agreement property
Good

Bad

Local approximation property

Figure 6.10: Learning a 1D manifold embedded in a 2D
space.

The first step is to group the input
data into a soft partition — the par-
tition is soft because a given data
point can lie in more than one par-
tition (the chart overlap property).
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Each of these groups represents a
potential chart embedding; the goal
is to find groups of data points that
can be approximated by a simple
embedding such as a plane. More-
over, charts that share points should
have similar embeddings. These
properties are illustrated in Fig-
ure 6.10.

Once the chart groupings are es-
tablished, we can ask the question:
Is there a way to place the ranges
of each chart into Rd such that the
relationships between the chart em-
beddings are maintained. I.e., if a
data point p∈RD lies in two charts c1,c2 ⊂Rd , then αc1(p) should be equal to αc2(p). In essence,
every point p in the data set should map to the subspace Rd so that their neighbors have roughly
the same geometric relationship in Rd as they did in RD (see Figure 6.11).

Representing the charts

The partition is represented by a Gaussian Mixture Model (GMM). A GMM is simply a sum of
Gaussians, G j : RD → R, where each Gaussian is represented by a mean µ j and a variance σ j.
We can think of each Gaussian as representing the domain of a chart, with G j(pi) representing
the likelihood of pi belonging to the chart j. The eigenvectors of the variance σ j define a coor-
dinate system; the eigenvalues represent the distribution of points along those eigenvectors — the
bigger the eigenvalue, the bigger the spread of points. For example, if there were two dominant
eigenvalues, then the Gaussian is “‘pancaked” into two dimensions, i.e., it looks planar.

To determine values for µ j and σ j we need some criteria to minimize. The first criterion
is that the Gaussians do a decent job of modeling the data points. The second criterion is that
the Gaussians have roughly the desired projection dimension d, i.e., that they have d dominant
eigenvalues. The third criterion is that neighboring Gaussians have similar eigenvectors, which
can be phrased as a cross-entropy constraint.

Building the manifold

The next step is to build the manifold by piecing together the chart ranges. This can be phrased
as: Find a rigid-body transformation R for each chart that takes the center (µ j) to Rd so that
the dominant eigenvectors line up with the coordinate axis of Rd . (We can think of these rigid
body transforms as being the α function for each chart.) Given a point p in the data set, each of
these transforms takes p to Rd by multiplying Rp, then dropping the extra dimensions. Our chart
agreement property says that, if a point p is shared by two charts i and j, then Ri p and R j p should
agree. This can be formulated as a least-squares problem.

We’ll also need to fix the projection of one point in order to anchor the manifold.
Figure 6.12 shows this process applied to a facial animation data set.
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6.3.3 BRDFs
Bi-Directional Reflectance Distribution Functions (BRDF’s) are a key element of the rendering
pipeline. BRDFs map from four-dimensional space (incoming light direction, outgoing radiance,
both over the upper hemisphere) to color, represented as either an RBG triple or sampled over
the spectrum. One of the challenges in representing BRDFs is that they are very high-frequency,
especially around the highlight area. There have been several analytical approaches proposed for
BRDFs, ranging from spherical harmonics [WAT92] to wavelets [SS95, LF97]. Unfortunately,
these basis function approaches have difficulty dealing with the need for very disparate sampling
rates — accurate modeling of the high-frequency areas usually results in over-sampling of the
remainder of the BRDF.

Figure 6.13: Left: Traditional parameterization of
the BRDF. Right: An alternative utilizing the half an-
gle.

One approach to the sampling problem
is to use a parameterization where the sam-
ples are better correlated [Rus98] (see Fig-
ure 6.13). In this model, instead of keep-
ing θ ,φ angles for the in and out direction,
keep the θ ,φ angles of the half-angle be-
tween the in and out direction, and the an-
gles between the in direction and the half
vector (the half vector is not unique).

In addition to parameterizing the BRDF
function itself, consider parameterizing the
space of BRDFs [MPBM03]. Matusik et.
al. present a novel BRDF construction sys-
tem based on samples. They sampled 130 different materials with approximately 20-80 million
samples per material. Rather than fit an analytical model to this data, they applied a dimension
reduction technique very similar to the one discussed in Section 6.3.2. In essence, they were
searching for a lower-dimensional manifold that would serve as a parameter space for the BRDFs.
They found one — at 10 dimensions, the error between the lower-dimensional manifold and the
full data set dropped dramatically.

Note that in this approach, the BRDF is calculated using a table look-up — the lower-dimensional
manifold is still embedded in the high-dimensional space.
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Figure 6.2: Two parabolic maps.
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Figure 6.4: Comparing cube mapping (left) to “continuous” cube mapping (right).

Figure 6.7: Re-parameterizing the charts. Each example shows the original paramterization (left)
and the modified one (right).

Figure 6.8: A panorama created by stitching together several images. Image courtesy of [PH97].
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Figure 6.11: Figure and caption courtesy of [Bra03]. 400 points inR3 representing aR2 manifold.
The manifold is sampled regularly, but with noise. Right: The same data set is shown with lines
to visualize the manifold structure. Coordinate axes of a random selection of charts are shown as
bold lines. Upper right is Local Linear Embedding, bottom right is charting.

Figure 6.12: A 3D manifold created from a sequence of video. Each row corresponds to taking
equal steps in one of the three coordinate axes. The actual images are constructed by taking a
weighted sum of nearby data points (hence the blurriness).
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Appendix A

The Geometry of the Poincaré Disk

Here we provide the necessary equations for performing geometric operations in the Poincaré disk.
These equations are a straightforward application of trigonometry and algebra to the theory of the
Poincaré disk; the interested reader is encourages to visit one of the many excellent websites for
more information [NHo].
Line segments: The primary differences between Euclidean geometry and hyperbolic are 1) line
segments are circle arcs and 2) the parallel postulate does not hold. The line segment between
two points p and q is an arc of the circle that passes through p and q and meets the unit circle
perpendicularly (see Figure A.1). To calculate this center:

t =
−1+ pxqx + pyqy

2(pyqx− pxqy)

c = p+
p−q

2
+

t(qy− py, px−qx)
r = ||p− c||

p

q

e1

e2

c

r

l
v

Figure A.1: Line
segments in the
Poincaré disk.

The start angle of the circle arc is:

αp = tan−1 ((cy− py)/(cx− px)
)

and similarly for q. If p and q lie on a line that passes through the origin, then
the circle is located at infinity with an infinite radius. For practical reasons
we represent this case as a Euclidean line segment.
Line segment length: This can be calculated in may ways; we use one that
involves ratios of Euclidean lengths. Let e1 and e2 be the points where the
circle meets the unit circle:

||q− p|| =
||e2− p||||e1−q||
||e2−q||||e1− p||

(A.1)

The points e1 and e2 are found by taking the intersection of two circles, the circle containing p,q
and the unit circle. Let c1,r1 and c2,r2 be the center points and radii of two circles. The two circles
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do not interect if the distance between their centers is greater than their radii or if one circle is
entirely inside of the other.

l = ||c1− c2|| t = (r2
1 − r2

2 + l2)/(2l) (A.2)

t⊥ =
√

r2
1 − t2 =

√
r2

2 − (l− t)2 (A.3)

ei = c1 +(t/l)(c1− c2)± t⊥(c1− c2)⊥ (A.4)

If |t| > r1 or |l− t| > r2 then one circle is inside the other. If p and q lie on a diameter line, then
the points e1 and e2 are the intersection of the diameter line and the unit circle.
Angles: The angle at p1 p2 p3 is the angle between the tangets of the two circle arcs that meet at
p2. If α12 is the angle for p2 in circle arc p1 p2 and similarly for the α23:

6 p1 p2 p3 = (−sinα12,cosα12) · (−sinα23,cosα23) (A.5)

Intersecting two line segments: There are three possible cases: two circle arcs, two line segments,
and one circle arc and one line segment. We have already defined how to intersect two circles; the
intersection point (if any) will be the one that lies inside the unit circle. The remaining cases are
straightforward.
Polygons: The inside-outside test for polygons is the same as for Euclidean polygons. We take
any point pb at infinity, i.e, any point on the boundary of the unit disk, and count the number of
polygon edges ppb intersects. If the count is even, the point is outside, otherwise it is inside.

Intersecting two polygons is exactly the same, algorithmically, as intersecting two Euclidean
polygons, except edge intersection is as described above. Note that all of the polygons in this paper
will be convex, in the sense that any two points in the interior can be connected by a line segment
that does not cross the polygon boundary.

A.1 Barycentric coordinates for n-holed tori
Given a triangle and a point in the Poincaré disk we compute the barycentric coordinates by trans-
forming the triangle and point to the Klein-Beltrami (KB) model [Wei], where lines are the chords
of the disk. We compute Euclidean barycentric coordinates for the transformed point and triangle,
then map back. The forward map is

θ0 = tan−1(Py/Px) φ0 = sin−1(Pz) (A.6)

θ = tan−1(Qy/Qx) φ = sin−1(Qz) (A.7)

k =
2

1+ sinφ0 sinφ + cosφ0 cosφ cos(θ −θ0)
(A.8)

MD(Q) =
(
k
(

cosφsin(θ −θ0)
)
,

k
(

cosφ0 sinφ − sinφ0 cosφ cos(θ −θ0)
))

(A.9)
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with the projection point being (0,0,2):

kb(s, t) = (2s/(1+ s2 + t2),2t/(1+ s2 + t2)) (A.10)
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