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Abstract—Structured-light systems are simple and effective
tools to acquire 3D models. Built with off-the-shelf components,
a data projector and a camera, they are easy to deploy and
compare in precision with expensive laser scanners. But such
a high precision is only possible if camera and projector are
both accurately calibrated. Robust calibration methods are well
established for cameras but, while cameras and projectors can
both be described with the same mathematical model, it is not
clear how to adapt these methods to projectors. In consequence,
many of the proposed projector calibration techniques make
use of a simplified model, neglecting lens distortion, resulting
in loss of precision. In this paper, we present a novel method
to estimate the image coordinates of 3D points in the projector
image plane. The method relies on an uncalibrated camera and
makes use of local homographies to reach sub-pixel precision.
As a result, any camera model can be used to describe the
projector, including the extended pinhole model with radial
and tangential distortion coefficients, or even those with more
complex lens distortion models.

Keywords-structured-light; camera; projector; calibration;
local homography;

I. INTRODUCTION

Structured-light systems are the preferred choice for do-it-

yourself 3D scanning applications. They are easy to deploy,

only an off-the-shelf data projector and camera are required,

and they are very accurate when implemented carefully. A

projector-camera pair works as a stereo system, with the

advantage that a properly chosen projected pattern simplifies

the task of finding point correspondences. In such systems,

projectors are modeled as inverse cameras and all consid-

erations known for passive stereo systems may be applied

with almost no change. However, the calibration procedure

must be adapted to the fact that projectors cannot directly

measure the pixel coordinates of 3D points projected onto

the projector image plane as cameras do.

Viewpoint, zoom, focus, and other parameters ought to be

adjusted, both in projector and camera, to match each target

object size and scanning distance; invalidating any previous

calibration. Therefore, structured-light systems must be cali-

brated before each use in order to guaranteed the best result,

turning the calibration procedure simplicity as valuable as

its precision. In this paper, we present a new calibration

procedure for structured-light systems that is both very easy

to perform and highly accurate.

Figure 1. Structured-light system calibration

The key idea of our method is to estimate the coordinates

of the calibration points in the projector image plane using

local homographies. First, a dense set of correspondences

between projector and camera pixels is found by projecting

onto the calibration object identical pattern sequence as the

one later projected to scan the target, reusing most of the

software components written for the scanning application.

Second, the set of correspondences is used to compute a

group of local homographies that allow to find the projection

of any of the points in the calibration object onto the

projector image plane with sub-pixel precision. In the end,

the data projector is calibrated as a normal camera.

Our main contribution is a method for finding correspon-

dences between projector pixels and 3D world points. Once

those correspondences are known any calibration technique

available for passive stereo can be applied directly to the

structured-light system. Our method does not rely on the

camera calibration parameters to find the set of correspon-

dences. As a result, the projector calibration is not affected

in any way by the accuracy of the camera calibration.

We show, as a second contribution, that the proposed

calibration method can be implemented in such a way that no

user intervention is necessary after data acquisition, making

the procedure effective even for unexperienced users. To
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this purpose, we have made a calibration software package,

which we plan to make publicly available for anyone inter-

ested in structured-light applications to try. Concisely, our

software requires two actions:

1) Project a sequence of gray code patterns onto a

static planar checkerboard placed within the working

volume. Capture one image for each pattern and store

them all in the same directory. Repeat this step for

several checkerboard poses until properly cover all

the working volume. Use a separate directory for each

sequence.

2) Execute the calibration software and select the direc-

tory containing all the sequences. Enter the checker-

board dimensions. Click on “Calibrate” button. The

software will automatically decode all the sequences,

find corner locations, and calibrate both projector and

camera. The final calibration will be saved to a file for

later use.

A. Related Work

Many projector calibration procedures exist, however,

we have not found any satisfying the following two key

properties: easy-to-perform for the common user and high

precision to enable accurate 3D reconstructions. Several

methods ([1], [2], [3], [4], [5], and [6]) use a pre-calibrated

camera to find world coordinates in some calibration artifact,

which in turn they use to assign projector correspondences.

These methods might be simple to perform, but all of them

lack of accuracy in the projector parameters due to their

dependence on the camera calibration. The inaccuracies are

a direct consequence of their approach: even small camera

calibration errors could result into large world coordinate

errors. Their failure point is to estimate the projector pa-

rameters from those, far from accurate, world coordinates

decreasing the complete system precision.

A different approach is adopted in [7], [8], and [9] where,

neither a calibrated camera, nor a printed pattern is required.

Instead, they ask the user to move the projector to several

locations so that the calibration pattern—projected onto a

fix plane—changes its shape. We argue that moving the

projector might be inconvenient, or impossible in general

(e.g. a system mounted on a rig). Moreover, these methods

are not applicable if a metric reconstruction is mandatory

because their result is only up-to-scale.

Other authors have proposed algorithms ([10], [11], [12],

and [13]) where a projected pattern is iteratively adjusted

until they overlap a printed pattern. The overlap is measured

with help of an uncalibrated camera. Since both patterns

must be clearly identified, the classic black and white pattern

is replaced by color versions of it—a color camera is also

mandatory. In practice, switching to color patterns make

color calibration unavoidable—printed and camera colors

seldom match—imposing an extra requirement to the user.

Besides, this calibration scheme demands continuous input

from a camera to run, rendering impossible to separate the

capture stage from the calibration algorithm, which is a

common and useful practice in the field.

A common practice among projector calibration methods

([3], [7], [8], [10], and [12]) is to find one homography

transformation between a calibration plane and the projector

image plane. Despite the elegance of the concept, being

homographies linear operators, they cannot model non-linear

distortions as the ones introduced by projector lenses.

In [14], the authors claim to get very accurate results

with their method that involves projecting patterns on a

“flat aluminum board mounted on a high precision moving

mechanism”. Our complain is that such a special equipment

is not available to the common user, limiting its general

applicability. We disregard this method as non-practical.

Finally, Zhang and Huang [15], and others ([7], [16])

employ structured-light patterns similarly to us, however, in-

stead of computing projector point correspondences directly

from the images as captured by the camera, they create

new synthetic images from the projector’s viewpoint and

feed them to standard camera calibration tools. The inter-

mediate step of creating synthetic images at the projector’s

resolution, usually low, might discard important information

being undesirable. On the contrary, the method we propose

finds projector point correspondences from structured-light

patterns directly at the camera resolution. No synthetic

projector image is created.

The rest of the paper is organized as follows: Section II

explains the calibration method, Section III expands the

previous section with implementation details, Section IV

discusses the experiments done to verify the precision of

the method and presents a comparison with other calibration

software, finally Section V concludes our work.

II. METHOD

Our setup comprises one projector and one camera be-

having as a stereo pair. We describe them both using the

pinhole model extended with radial and tangential distortion,

an advantage over several methods ([3], [5], [6], [7], [8],

[9], and [12]), which fail to compensate for distortions

in the projected patterns. Moreover, we have seen in our

experiments that most projectors have noticeable distortions

outside their focus plane, distortions that affects the accuracy

of the final 3D models.

We took Zhang’s method [17] as inspiration in favor of

its simplicity and well-known accuracy. It uses a planar

checkerboard as calibration artifact, which is easy-to-make

for anyone with access to a printer. In Zhang’s camera

calibration, the user captures images of a checkerboard

of known dimensions at several orientations and the al-

gorithm calculates the camera calibration parameters using

the relation between the checkerboard corners in a camera

coordinate system and a world coordinate system attached

to the checkerboard plane.
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A. Projector and camera models

The proposed calibration method allows to choose any

parametric model to describe the projector and camera. Our

implementation uses the pinhole model extended with radial

and tangential distortion for both projector and camera. Let

be X ∈ R
3 a point in a world coordinate system with origin

at the camera center, and let u ∈ R
2 the pixel coordinates

of the image of X in the camera plane, then X and u are

related by the following equations:

X =

⎡
⎣ x

y
z

⎤
⎦ , ũ =

[
ũx

ũy

]
=

[
x/z
y/z

]
(1)

u = Kc · L(ũ) (2)

Kc =

⎡
⎣ fx γ ox

0 fy oy
0 0 1

⎤
⎦ (3)

L(ũ) =

[
ũ · (1 + k1r

2 + k2r
4) + Δt(ũ)

1

]
(4)

Δt(ũ) =

[
2k3ũxũy + k4(r

2 + 2ũ2
x)

k3(r
2 + 2ũ2

y) + 2k4ũxũy

]
(5)

r2 = ũ2
x + ũ2

y (6)

where Kc is known as camera intrinsic calibration, k1 and k2
as radial distortion coefficients, and k3 and k4 as tangential

distortion coefficients. Similarly, if R and T are a rotation

matrix and a translation vector that encode the pose of

the projector’s center of projection in the world coordinate

system defined above, and let v ∈ R
2 the pixel coordinates

of the image of X in the projector plane, then

X ′ =

⎡
⎣ x′

y′

z′

⎤
⎦ = R ·X + T, ṽ =

[
x′/z′

y′/z′

]
(7)

v = Kp · L(ṽ) (8)

where the projector is described by its intrinsic calibra-

tion Kp, and the pair (R, T ) is known as the stereo system

extrinsic calibration.

B. Data acquisition

Camera calibration involves collecting images of a planar

checkerboard. We have modified this acquisition step to

make possible to calibrate both camera and projector. The

new data acquisition is: for each plane orientation, instead

of capturing only one image, the user must project and cap-

ture a complete structured-light pattern sequence. Although

any structured-light pattern sequence would work, we have

used and recommend gray code sequences (Fig. 2) because

they are robust to decoding errors—in a calibration routine

avoiding all possible errors usually outweighs execution

Figure 2. Example of the calibration images: completely illuminated image
(left), projected gray code onto the checkerboard (right)

Figure 3. Decoded gray pattern example: pixels with the same color
correspond either to the same projector column (left) or same projector
row (right). Gray color means “uncertain”. Note that there are no uncertain
pixels in the checkerboard region.

speed. Someone might argue that capturing many images

for each checkerboard pose makes our method complex, but

the whole data acquisition task is identical to the standard

structured-light scanning task as would be executed later.

Furthermore, the only actual requirement for the user is

to keep the checkerboard static for a few seconds, time

necessary to project and capture a complete sequence.

C. Camera calibration

Intrinsic camera calibration refers to estimating the pa-

rameters in the chosen camera model. Following Zhang’s

method, we need to find the coordinates in the camera

image plane of all the checkerboard corners, for each of

the captured checkerboard orientations. Corner locations

are sought in a completely illuminated image, of each

checkerboard orientation, using a standard procedure. A

completely illuminated image is an image captured while

all data projector pixels are turned on—if no such image

is available, it could be created as the maximum of every

image in the sequence. The procedure continues as the usual

camera calibration, please review [17] for more details.

Our software expects the first image in every gray code

sequence to be a completely illuminated image that could

be used directly for camera calibration. It uses OpenCV’s

findChessboardCorners() function [18] to automatically find

checkerboard corner locations and, then, it refines them to

reach sub-pixel precision. Finally, a call to the function

calibrateCamera() returns the calibrated camera parameters.
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Figure 4. Projector corner locations are estimated with sub-pixel precision
using local homographies to each corner in the camera image

D. Projector calibration

Our projector and camera are described with the same

mathematical model, thus, we would like to follow identical

procedure to calibrate them both. But the projector is not a

camera. If the projector were a camera, it would be possible

to capture images from its viewpoint, to search checkerboard

corners in them, and to continue just as before. In reality

no such images exist, but we know a relation between

projector and camera pixels—extracted from structured-light

sequences—and we will show how to use this relation to

estimate checkerboard corner locations in projector pixel

coordinates. Moreover, being all the computations carried

on at the camera’s original resolution, corner coordinates

are localized with greater precision than if synthetic images

at the projector’s resolution were used.

The procedure to compute checkerboard corner coordi-

nates in the projector coordinate system can be decompose

in three steps: first, the structured-light sequence is decoded

and every camera pixel is associated with a projector row

and column, or set to “uncertain” (Fig. 3); second, a local

homography is estimated for each checkerboard corner in

the camera image; third and final, each of the corners is

converted (Fig. 4) from camera coordinates to projector

coordinates applying the local homography just found.

The structured-light decoding step depends on the pro-

jected pattern, in our case complementary gray codes for

rows and columns. Here, our method differs from [15]

where fringe patterns were proposed—our choice prioritize

decoding precision over acquisition speed. As pointed out

in [19], a subset of the gray code images—the ones where

the stripes look “thin”—may be regarded as exhibiting a

high frequency pattern. These high frequency patterns make

possible to split the intensity measured at each pixel in a

direct and a global component. Ideally, the amount of light

perceived at each camera pixel is product of exactly one

projector pixel being turned on or off, but in practice this

is rarely true. The intensity value reported by the camera

at one pixel is the sum of the amount of light emitted

by a projector pixel, called direct component, plus some

amount of light, known as global component, originated

at other sources (including reflections from other projector

pixels). Decoding errors in gray sequences are mostly caused

by failure on identifying these components, or completely

ignoring their existence. On the contrary, if each component

is correctly identified, a simple set of rules permits to

drastically reduce decoding errors (Fig. 3). The rules and

additional information on the topic are given in [20] under

the name of robust pixel classification.

The relation learned from structured-light patterns is not

bijective—it cannot be used right away to translate from

camera to projector coordinates. To overcome this issue we

propose the concept of local homography: a homography

that is valid only in a region of the plane. Instead of applying

a single global homography to translate all the checkerboard

corners into projector coordinates, we find one local ho-

mography for each of the checkerboard corners. Each local

homography is estimated within a small neighborhood of

the target corner and is valid only to translate that corner

into projector coordinates and no other corner. Local homo-

graphies allow to model non-linear distortions because each

corner is translated independently of the others. Additionally,

they are robust to small decoding errors because they are

overdetermined; they are estimated from a neighborhood

with more points than the minimum required.

A local homography is found for each checkerboard

corner considering all the correctly decoded points in a patch

of the camera image centered at the corner location. Let be

p the image pixel coordinates of a point in the patch under

consideration, and let be q the decoded projector pixel for

that point, then we find a homography Ĥ that minimizes:

Ĥ = argmin
H

∑
∀p
||q −Hp||2 (9)

H ∈ R
3×3, p = [x, y, 1]T , q = [col, row, 1]T (10)

The target corner p̄, located at the center of the patch, is

translated to q̄, given in projector coordinates, applying the

local homography Ĥ:

q̄ = Ĥ · p̄ (11)

The same strategy is repeated until all checkerboard

corners have been translated. Now, knowing the location of

all corners in the projector coordinate system, the projector

intrinsic calibration is found with identical procedure as for

the camera.

E. Stereo system calibration

Stereo calibration means finding the relative rotation and

translation between projector and camera. At this point, the

intrinsic parameters found before are kept fixed, the world

coordinates are identified with camera coordinates, and we

seek for the pose of the projector in world coordinates.

The physical dimensions of the calibration checkerboard
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are known. The checkerboard corner projections onto both

camera and projector image planes are also known—they

were found in the previous steps. The calibration of the

projector-camera stereo system, therefore, is identical to the

calibration of any other camera-camera system.

Our software calls OpenCV’s stereoCalibrate() function

with the previously found checkerboard corner coordinates

and their projections, the output is a rotation matrix R and

a translation vector T relating the projector-camera pair.

F. Algorithm

The complete calibration procedure can be summarized

in simple steps and implemented as a calibration algorithm:

1) Detect checkerboard corner locations for each plane

orientation in the completely illuminated images.

2) Estimate global and direct light components for each

set using gray code high frequency patterns.

3) Decode structured-light patterns into projector row

and column correspondences by means of robust pixel

classification, considering pixel global and direct com-

ponents from step 2.

4) Take small image patches centered at the checkerboard

corner coordinates from step 1 (e.g. a 47x47 pixels

square) and use all the correctly decoded pixels in

each patch to compute a local homography that con-

verts from camera to projector coordinates. Correspon-

dences were obtained in step 3.

5) Translate corner locations (step 1) from camera to

projector coordinates using patch local homographies

from step 4.

6) Fix a world coordinate system to the checkerboard

plane and use Zhang’s method to find camera intrinsics

using camera corner locations from step 1.

7) Fix a world coordinate system to the checkerboard

plane and use Zhang’s method to find projector intrin-

sics using projector corner locations from step 5.

8) Fix camera and projector intrinsics (steps 6 and 7)

and use world, camera, and projector corner locations

(steps 1 and 5) to estimate stereo extrinsic parameters.

9) Optionally, all the parameters, intrinsic and extrinsic,

can be bundle-adjusted together to minimize the total

reprojection error.

III. CALIBRATION SOFTWARE

We have implemented the algorithm in Section II-F into

a complete structured-light system calibration software. The

purpose is two-fold: first, to prove that our method can be

executed fully automatic provided the calibration images are

available; second, to facilitate the access to high quality 3D

scans for a broad range of users—we think that structured-

light systems are the key. Our experience says that cali-

brating structured-light systems accurately is a cumbersome

and time consuming task. In hopes of ease the task, we have

written a software (Fig. 5) with a Graphical User Interface

Figure 5. Calibration software main screen

(GUI) capable of calibrate such systems following a simple

procedure. The software is completely written in C++, uses

Qt [21] as a graphical interface library, and OpenCV [18]

library for the vision related tasks. This library selection

enables to build and run the software in common platforms

such as Microsoft Windows and GNU/Linux.

Checkerboard corner detection is done with OpenCV’s

findChessboardCorners() function, however, as reported

in [22], this function is very slow in combination with high-

resolution images. We worked with 12Mpx images and we

have observed this issue. Our solution is to downsample

the input images in order to accelerate the corner search,

and to consider the downsampled corner locations as an

approximate solution to the high resolution search. This

simple technique has proven to be fast yet effective: search

speed is independent of the camera resolution and results as

accurate as if no downsampling were performed—because

the refinement is executed at the original resolution.

Theoretically, direct and global light components should

be estimated from the highest frequency pattern projected.

In practice, doing so results in decoded images with visi-

ble artifacts. Thus, we skip the highest frequency and we

compute the direct and global components from the two

second highest patterns. Combining more than one pattern

gives better precision and skipping the last pattern removes

the artifacts due to limited projector resolution.

Let be S = {I1, · · · , Ik} the selected set of pattern

images, and let be p a valid pixel location, then the direct

and global components at p, Ld(p) and Lg(p), are found as

follows:

L+
p = max

0<i≤k
Ii(p), L−p = min

0<i≤k
Ii(p), (12)

Ld(p) =
L+
p − L−p
1− b

, Lg(p) = 2
L−p − b L+

p

1− b2
, (13)

where b ∈ [0, 1) is a user-set value modeling the amount

of light emitted by a turned-off projector pixel—we recom-
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mend the reader to study [19] for more details. We have

set b = 0.3 in our setup.

Finally, local homographies are estimated from fix size

image patches; we have, therefore, to select a proper patch

size for them. If the chosen size is too small, the algorithm

becomes very sensitive to decoding errors. On the contrary,

if the patch is too large, the algorithm is robust to errors, but

unable to cope with strong lens distortions. Experimentally,

we have found a patch size of 47x47 pixels to perform well

in our system; we have used this value in all our tests.

Nevertheless, a more rigorous analysis is required to decide

the optimum size given the system parameters.

IV. RESULTS

We have developed this calibration method to enable high

precision 3D scanning. In consequence, we think the best

calibration quality evaluation is to scan objects of known

geometry and to compare their 3D models with ground

truth data. Additionally, we think that an evaluation would

not be complete without a comparison with other avail-

able calibration methods. We have searched and found that

Samuel Audet’s ProCamCalib [10] and Projector-Camera

Calibration Toolbox (also procamcalib) [1] are publicly

available tools. We have tried both, but Audet’s tool current

version cannot be used with our camera, for that reason, we

will compare our method with Projector-Camera Calibration

Toolbox [1] only, from now on just “procamcalib”.

A. Test setup

Our test setup comprises a Mitsubishi XD300U DLP

data projector and a Canon EOS Rebel XSi camera. Pro-

jector’s resolution is 1024x768 and camera’s resolution is

4272x2848. They were placed one next to the other (Fig. 6).

Their focus length, zoom, and direction were adjusted prior

calibration accordingly to the scan target.

B. Reprojection error

Usually, the quality of camera calibration is evaluated

considering only reprojection errors. But, a minimum re-

projection error measured in the calibration images does

not ensure the best reconstruction accuracy of arbitrary

objects. In fact, in our experiments adding an additional

minimization step of the intrinsic and extrinsic parameters

altogether (Section II-F, step 9) overfitted the calibration

data producing slightly less accurate 3D models. All in

all, reprojection errors are indicators of calibration accuracy

and we report ours as a reference for comparison with

other methods. Table I shows the reprojection error of our

method and procamcalib; for further comparison, we have

also included a modified version of our method which uses

one global homography instead of local ones. In result,

using identical camera calibration, procamcalib reprojection

error is much higher than ours as consequence of its de-

pendency on the camera calibration to find world plane

Figure 6. System setup

Method Camera Projector

Proposed
0.3288

0.1447
Proposed with global homography 0.2176

procamcalib 0.8671

Table I
REPROJECTION ERROR

correspondences. The modified method is an improvement

over procamcalib, however, given the linearity of its global

homography, it fails to model projector lens distortion being

suboptimal.

C. Projector lens distortion

One of the main advantages of our method is that it allows

to model radial and tangential distortion in projector lenses

the same as in cameras. Opposite to what is said in other

papers (e.g. [9]), projector lenses have noticeable distortion,

specially near the edges. Table II shows an example of

the distortion coefficients estimated by our method; note

that k2 has a non-negligible value. The complete distortion

model (Fig. 7) shows that points close to the top-left corner

are displaced about 12 pixels from their ideal non-distorted

coordinates; at the bottom-center of the projected image,

where its principal point is located, there is no distortion

as expected. In conclusion, data projectors have non-trivial

lens distortions that cannot be ignored.

D. Ground truth data

To evaluate the quality of the calibration beyond its

reprojection errors, we scanned real objects and created 3D

models of them which could be compared with ground truth

data. Our first model corresponds to a plane of 200x250 mm,
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k1 k2 k3 k4

-0.0888 0.3365 -0.0126 -0.0023

Table II
PROJECTOR DISTORTION COEFFICIENTS: k1 AND k2 RADIAL

DISTORTION, k3 AND k4 TANGENTIAL DISTORTION

Figure 7. Projector distortion model: points are displaced about 12 pixels
near the top-left corner

for which we created one 3D model with each of both

calibrations in the previous section. The ground truth data

for these models are points sampled from an ideal plane.

The error distribution of the model reconstructed with our

calibration (Fig. 8 top) resembles a Gaussian distribution

where 95% of its samples are errors equal or less than

0.33 mm. On the other hand, the reconstruction made with

procamcalib’s calibration (Fig. 8 bottom) has an irregular

error distribution denoting calibration inaccuracy. The results

are summarized in Table III.

Our next model is a statue head scanned both with our

structured-light system and with a commercial laser scanner.

The laser scanner is a NextEngine Desktop Scanner 2020i.

Both 3D models are compared with the Hausdorff distance

and the result is shown as an image (Fig. 9). The color

scale denotes the distance between both meshes ranging

from 0 to 1 mm. The error reaches its maximum only in

Method Max. Error Mean Error Std. Dev.

Proposed 0.8546 0.000042 0.1821
procamcalib 1.6352 0.000105 0.2909

Table III
IDEAL AND RECONSTRUCTED PLANE COMPARISON

Figure 8. Plane error histogram: error between an ideal plane and a scanned
plane recontructed using the proposed calibration (top) and procamcalib
calibration (bottom)

Figure 9. Structured-light versus laser scanner: Hausdorff distance between
meshes from 0mm to 1mm

regions that were in shadow during scanning. In the face

region the error is 0.5 mm at most.

Finally, we scanned a statue from six different viewpoints

and, after manual alignment and merging, we created a

complete 3D model using Smooth Signed Distance (SSD)

surface reconstruction ([23], [24]). The final mesh preserves

(Fig. 10) even small details.

V. CONCLUSION

We have introduced a new method to calibrate projector-

camera systems that is simple to implement and more

accurate than previous methods because it uses a full pinhole

model—including radial and tangential lens distortions—to

describe both projector and camera behaviors and computes

sub-pixel resolution 3D point projections from uncalibrated
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Figure 10. SSD 3D model from 6 structured-light scans

camera images. We have developed a simple-to-use calibra-

tion software that we will make freely available for people

to experiment with.
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