

Daniel Moreno October 2012

Overview

Geometric calibration

- Camera intrinsics: K_{cam}
- Projector intrinsics: K_{proj}

 Projector-Camera extrinsics: Rotation and translation:

R,T

The simplest structured-light system consists of a camera and a data projector.

Application: 3D scanning

Camera calibration: well-known problem

Pinhole model + radial distortion

$$K = \begin{bmatrix} fx & s & cx \\ 0 & fy & cy \\ 0 & 0 & 1 \end{bmatrix}$$

$$x = K \cdot L(X; k_1, k_2, k_3, k_4)$$

X: 3D point k₁,...,k₄: distortion coefficients K: camera intrinsics x: projection of X into the image plane

If we have enough X↔x point correspondences we can solve for all the unknowns How do we find correspondences?

Object of known dimensions

Images from different viewpoints

BROWN

Projector calibration: ?

Use the pinhole model to describe the projector:

Projectors work as an inverse camera

$$K_{proj} = \begin{bmatrix} fx & s & cx \\ 0 & fy & cy \\ 0 & 0 & 1 \end{bmatrix}$$

$$x = K_{proj} \cdot L(X; k_1, k_2, k_3, k_4)$$

If we model the projector the same as our camera, we would like to calibrate the projector just as we do for the camera:

- We need correspondences between 3D world points and projector image plane points: X↔x
- The projector <u>cannot capture images</u>

Challenge: How do we find point correspondences?

Related works

There have been proposed several projector calibration methods*, they can be divided in three groups:

1. Rely on camera calibration

- First the camera is calibrated, then, camera calibration is used to find the 3D world coordinates of the projected pattern
- Inaccuracies in the camera calibration translates into errors in the projector calibration
- 2. Find projector correspondences using homographies between planes
 - Cannot model projector lens distortion because of the linearity of the transformation

3. Too difficult to perform

- Required special equipments or calibration artifacts
- Required color calibration
- · .

(*) See the paper for references

Existing methods were not accurate enough or not practical

Proposed method: overview

Features:

Simple to perform:

- no special equipment required
- reuse existing components

Accurate:

- there are no constrains for the mathematical model used to describe the projector
- we use the full pinhole model with radial distortion (as for cameras)

Robust:

- can handle small decoding errors

Proposed method: acquisition

Traditional camera calibration

- requires a planar checkerboard (easy to make with a printer)
- capture pictures of the checkerboard from several viewpoints

Structured-light system calibration

- use a planar checkerboard
- capture structured-light sequences of the checkerboard from several viewpoints

Proposed method: decoding

Decoding depends on the projected pattern

• The method does not rely on any specific pattern

Our implementation uses complementary gray code patterns

- Robust to light conditions and different object colors (notice that we used the standard B&W checkerboard)
- Does not required photometric calibration (as phase-shifting does)
- We prioritize calibration accuracy over acquisition speed
- Reasonable fast to project and capture: if the system is synchronized at 30fps, the 42 images used for each pose are acquired in 1.4 seconds

Our implementation decodes the pattern using "robust pixel classification"(*)

- High-frequency patterns are used to separate <u>direct</u> and <u>global</u> light components for each pixel
- Once direct and global components are known each pixel is classified as ON, OFF, or UNCERTAIN using a simple set of rules

Proposed method: projector calibration

Once the structured-light pattern is decoded we have a mapping between projector and camera pixels:

1) Each camera pixel is associated to a projector row and column, or set to UNCERTAIN

2) The map is not bijective: many camera pixels corresponds to the same projector pixel

3) Checkerboard corners are not located at integer pixel locations

Proposed method: projector calibration

Solution: local homographies

- 1. Surface is locally planar: actually the complete checkerboard is a plane
- 2. Radial distortion is negligible in a small neighborhood
- 3. Radial distortion is significant in the complete image:
 - a single global homography is not enough

Proposed method: projector calibration

Summary:

- 1. <u>Decode</u> the structured-light pattern: camera ↔ projector map
- 2. Find checkerboard corner locations in camera image coordinates
- 3. Compute a local homography H for each corner
- 4. <u>Translate each corner</u> from image coordinates x to projector coordinates x' applying the corresponding local homography H

$$x' = H \cdot x$$

5. Using the correspondences between the projector corner coordinates and 3D world corner locations, $X \leftrightarrow x'$, find projector intrinsic parameters

$$x'_{1} = K_{proj} \cdot L(R_{1}X + T_{1}; k_{1}, k_{2}, k_{3}, k_{4})$$

$$x'_{2} = K_{proj} \cdot L(R_{2}X + T_{2}; k_{1}, k_{2}, k_{3}, k_{4})$$

$$x'_{3} = K_{proj} \cdot L(R_{3}X + T_{3}; k_{1}, k_{2}, k_{3}, k_{4})$$

No difference with camera calibration!!

Camera calibration and system extrinsics

Camera intrinsics

Using the corner locations in image coordinates and their 3D world coordinates, we calibrate the camera as usual

- Note that no extra images are required

System extrinsics

Once projector and camera intrinsics are known we calibrate the extrinsics (R and T) parameters as is done for camera-camera systems

. . .

Using the previous correspondences, $x \leftrightarrow x'$, we fix the coordinate system at the camera and we solve for R and T:

$$\widetilde{x}_{1} = L^{-1}(K_{cam}^{-1} \cdot x_{1};k_{1},k_{2},k_{3},k_{4}) \quad x'_{1} = K_{proj} \cdot L(R \cdot \widetilde{x}_{1} + T;k'_{1},k'_{2},k'_{3},k'_{4})$$

$$\widetilde{x}_{2} = L^{-1}(K_{cam}^{-1} \cdot x_{2};k_{1},k_{2},k_{3},k_{4}) \quad x'_{2} = K_{proj} \cdot L(R \cdot \widetilde{x}_{2} + T;k'_{1},k'_{2},k'_{3},k'_{4})$$

$$\widetilde{x}_{3} = L^{-1}(K_{cam}^{-1} \cdot x_{3};k_{1},k_{2},k_{3},k_{4}) \quad x'_{3} = K_{proj} \cdot L(R \cdot \widetilde{x}_{3} + T;k'_{1},k'_{2},k'_{3},k'_{4})$$

. . .

Calibration software

Software

The proposed calibration method can be implemented fully automatic:

- The user provides a folder with all the images
- Press "calibrate" and the software automatically extracts the checkerboard corners, decode the structured-light pattern, and calibrates the system

Algorithm

- 1. Detect checkerboard corner locations for each plane orientation
- 2. Estimate global and direct light components
- 3. Decode structured-light patterns
- 4. Compute a local homography for each checkerboard corner
- 5. Translate corner locations into projector coordinates using local homographies
- 6. Calibrate camera intrinsics using image corner locations
- 7. Calibrate projector intrinsics using projector corner locations
- 8. Fix projector and camera intrinsics and calibrate system extrinsic parameters
- 9. Optionally, all the parameters, intrinsic and extrinsic, can be optimized together

Comparison with existing software:

procamcalib

- Projector-Camera Calibration Toolbox
- http://code.google.com/p/procamcalib/

Paper checkerboard used to find plane equation

Reprojection error comparison

Method	Camera	Projector
Proposed		0.1447
With global homography	0.3288	0.2176
Procamcalib		0.8671

- Only projector calibration is compared
- Same camera intrinsics is used for all methods
- Global homography means that a single homography is used to translate all corners

Results

Example of projector lens distortion

Distortion coefficients

k ₁	k ₂	k ₃	k ₄
-0.0888	0.3365	-0.0126	-0.0023

Non trivial distortion!

Results

Error distribution on a scanned 3D plane model:

Laser scanner comparison

3D Model

Model with small details reconstructed using SSD

Hausdorff distance

Conclusions

- It works ③
- No special setup or materials required
- Very similar to standard stereo camera calibration
- Reuse existing software components
 - Camera calibration software
 - Structured-light projection, capture, and decoding software
- Local homographies effectively handle projector lens distortion
- Adding projector distortion model improves calibration accuracy
- Well-calibrated structured-light systems have a precision comparable to some laser scanners

ADDITIONAL

Gray vs. binary codes

Binary Gray Bin Gray Dec

Direct/Global light components

$$L^{+} = L_{d} + \alpha L_{g} + b(1 - \alpha)L_{g} \qquad L^{-} = bL_{d} + (1 - \alpha)L_{g} + \alpha bL_{g}$$

$$L_{d} = \frac{L^{+} - L^{-}}{1 - b} \qquad L_{g} = 2\frac{L^{-} - bL^{+}}{1 - b^{2}}$$

$$\hat{L}^{+} = \max_{0 < i < K} I_{i}$$

$$\hat{L}^- = \min_{0 < i < K} I_i$$

Robust pixel classification

 $\begin{cases} L_d < m \rightarrow \text{UNCERTAIN} \\ L_d > L_g \land p > \overline{p} \rightarrow \text{ON} \\ L_d > L_g \land p < \overline{p} \rightarrow \text{OFF} \\ p < L_d \land \overline{p} > L_g \rightarrow \text{OFF} \\ p > L_g \land \overline{p} < L_d \rightarrow \text{ON} \\ otherwise \rightarrow \text{UNCERTAIN} \end{cases}$

ADDITIONAL

Triangulation

$$\lambda_1 u_1 = R_1 X + T_1$$
$$\lambda_2 u_2 = R_2 X + T_2$$

$$\hat{u}_1 \lambda_1 u_1 = \hat{u}_1 R_1 X + \hat{u}_1 T_1 = 0$$
$$\hat{u}_2 \lambda_2 u_2 = \hat{u}_2 R_2 X + \hat{u}_2 T_2 = 0$$

In homogeneous coordinates:

$$\begin{bmatrix} \hat{u}_1 R_1 & \hat{u}_1 T_1 \\ \hat{u}_2 R_2 & \hat{u}_2 T_2 \end{bmatrix} X = 0$$