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Siggraph 2014 Studio Course

Abstract

3D Printing has entered the mainstream. Multiple low cost desktop 3D printers are currently avail-
able from various vendors, and open source projects let hobbyists build their own. This course
addresses the problem of creating 3D models for 3D printing. As is the case for 3D printers,
low-cost homemade 3D scanners are now within reach of students and hobbyists with a modest
budget. This course provides the students with the necessary mathematics, software, and practical
details to leverage projector-camera systems to build their own desktop 3D scanner. An example-
driven approach is used throughout, with each new concept illustrated using a practical scanner
implemented with off-the-shelf parts. First, the mathematics of triangulation is explained using
the intersection of parametric and implicit representations of lines and planes in 3D. The particular
case of ray-plane triangulation is illustrated using a scanner built with a single camera and a mod-
ified laser pointer. Camera calibration is explained at this stage to convert image measurements
to geometric quantities. The mathematics of rigid-body transformations are covered through this
example. Next, the details of projector calibration are explained through the development of a
classic structured light scanning system using a single camera and projector pair. A minimal post-
processing pipeline is described to convert the point-based representations produced by these
scanners to watertight meshes. Key topics covered in this section include: surface representations,
file formats, data structures, polygonal meshes, and basic smoothing and gap-filling operations.
The course concludes with the description of some commercially available low cost desktop 3D
scanners.

Prerequisites

Attendees should have a basic undergraduate-level understanding of linear algebra. While exe-
cutables are provided for beginners, attendees with prior knowledge of Matlab, C/C++, and Java
programming will be able to directly examine and modify the provided source code.
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Chapter 1

Introduction

3D Printing has become a popular subject these days. More and more low cost desktop 3D printers
are introduced, and open source projects let hobbyists build their own. Without models, a 3D
printer is not really useful. Professionals have access to complete CAD software or modelers
that costs thousands and need extensive training. They can also acquire a scene/object using 3D
scanners. This course addresses the problem of creating 3D models for 3D printing by copying
and modifying existing objects. As is the case for desktop 3D printers this course teaches the
mathematical foundations of the various methods used to build 3D scanners, and includes specific
instructions to build several low-cost homemade 3D scanners which can produce models of equal
or better quality as many commercial products currently in the market.

These course notes are organized into three primary sections, spanning theoretical concepts,
practical construction details, and algorithms for constructing high-quality 3D models. Chapters 1
and 2 survey the field and present the unifying concept of triangulation. Chapters 3–5 document
the construction of projector-camera systems, slit-based 3D scanners, and 3D scanners based on
structured lighting. The post-processing processes for generating polygon meshes from point
clouds are covered in Chapter 6.

Revised course notes, updated software, recent publications, and similar do-it-yourself projects
are maintained on the course website at http://mesh.brown.edu/desktop3dscan.

1.1 3D Scanning Technology

Metrology is an ancient and diverse field, bridging the gap between mathematics and engineering.
Efforts at measurement standardization were first undertaken by the Indus Valley Civilization as
early as 2600–1900 BCE. Even with only crude units, such as the length of human appendages, the
development of geometry revolutionized the ability to measure distance accurately. Around 240
BCE, Eratosthenes estimated the circumference of the Earth from knowledge of the elevation angle
of the Sun during the summer solstice in Alexandria and Syene. Mathematics and standardization
efforts continued to mature through the Renaissance (1300–1600 CE) and into the Scientific Rev-
olution (1550–1700 CE). However, it was the Industrial Revolution (1750–1850 CE) which drove
metrology to the forefront. As automatized methods of mass production became commonplace,
advanced measurement technologies ensured interchangeable parts were just that–accurate copies
of the original.

Through these historical developments, measurement tools varied with mathematical knowl-
edge and practical needs. Early methods required direct contact with a surface (e.g., callipers
and rulers). The pantograph, invented in 1603 by Christoph Scheiner, uses a special mechani-
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Introduction 3D Scanning Technology

Figure 1.1: Contact-based shape measurement. (Left) A sketch of Sorenson’s engraving panto-
graph patented in 1867. (Right) A modern coordinate measuring machining (from Flickr user
hyperbolation). In both devices, deflection of a probe tip is used to estimate object shape, either
for transferring engravings or for recovering 3D models, respectively.

cal linkage so movement of a stylus (in contact with the surface) can be precisely duplicated by
a drawing pen. The modern coordinate measuring machine (CMM) functions in much the same
manner, recording the displacement of a probe tip as it slides across a solid surface (see Figure 1.1).
While effective, such contact-based methods can harm fragile objects and require long periods of
time to build an accurate 3D model. Non-contact scanners address these limitations by observing,
and possibly controlling, the interaction of light with the object.

1.1.1 Passive Methods

Non-contact optical scanners can be categorized by the degree to which controlled illumination is
required. Passive scanners do not require direct control of any illumination source, instead relying
entirely on ambient light. Stereoscopic imaging is one of the most widely used passive 3D imaging
systems, both in biology and engineering. Mirroring the human visual system, stereoscopy esti-
mates the position of a 3D scene point by triangulation [LN04]; first, the 2D projection of a given
point is identified in each camera. Using known calibration objects, the imaging properties of each
camera are estimated, ultimately allowing a single 3D line to be drawn from each camera’s center
of projection through the 3D point. The intersection of these two lines is then used to recover the
depth of the point.

Trinocular [VF92] and multi-view stereo [HZ04] systems have been introduced to improve the
accuracy and reliability of conventional stereoscopic systems. However, all such passive triangu-
lation methods require correspondences to be found among the various viewpoints. Even for stereo
vision, the development of matching algorithms remains an open and challenging problem in the
field [SCD∗06]. Today, real-time stereoscopic and multi-view systems are emerging, however cer-
tain challenges continue to limit their widespread adoption [MPL04]. Foremost, flat or periodic
textures prevent robust matching. While machine learning methods and prior knowledge are
being advanced to solve such problems, multi-view 3D scanning remains somewhat outside the
domain of hobbyists primarily concerned with accurate, reliable 3D measurement.

Many alternative passive methods have been proposed to sidestep the correspondence prob-
lem, often times relying on more robust computer vision algorithms. Under controlled conditions,
such as a known or constant background, the external boundaries of foreground objects can be
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Introduction 3D Scanning Technology

reliably identified. As a result, numerous shape-from-silhouette algorithms have emerged. Lau-
rentini [Lau94] considers the case of a finite number of cameras observing a scene. The visual hull
is defined as the union of the generalized viewing cones defined by each camera’s center of pro-
jection and the detected silhouette boundaries. Recently, free-viewpoint video [CTMS03] systems
have applied this algorithm to allow dynamic adjustment of viewpoint [MBR∗00, SH03]. Cipolla
and Giblin [CG00] consider a differential formulation of the problem, reconstructing depth by
observing the visual motion of occluding contours (such as silhouettes) as a camera is perturbed.

Optical imaging systems require a sufficiently large aperture so that enough light is gathered
during the available exposure time [Hec01]. Correspondingly, the captured imagery will demon-
strate a limited depth of field; only objects close to the plane of focus will appear in sharp contrast,
with distant objects blurred together. This effect can be exploited to recover depth, by increasing
the aperture diameter to further reduce the depth of field. Nayar and Nakagawa [NN94] estimate
shape-from-focus, collecting a focal stack by translating a single element (either the lens, sensor,
or object). A focus measure operator [WN98] is then used to identify the plane of best focus, and
its corresponding distance from the camera.

Other passive imaging systems further exploit the depth of field by modifying the shape of
the aperture. Such modifications are performed so that the point spread function (PSF) becomes
invertible and strongly depth-dependent. Levin et al. [LFDF07] and Farid [Far97] use such coded
apertures to estimate intensity and depth from defocused images. Greengard et al. [GSP06] modify
the aperture to produce a PSF whose rotation is a function of scene depth. In a similar vein,
shadow moiré is produced by placing a high-frequency grating between the scene and the camera.
The resulting interference patterns exhibit a series of depth-dependent fringes.

While the preceding discussion focused on optical modifications for 3D reconstruction from
2D images, numerous model-based approaches have also emerged. When shape is known a priori,
then coarse image measurements can be used to infer object translation, rotation, and deforma-
tion. Such methods have been applied to human motion tracking [KM00, OSS∗00, dAST∗08], vehi-
cle recognition [Sul95, FWM98], and human-computer interaction [RWLB01]. Additionally, user-
assisted model construction has been demonstrated using manual labeling of geometric primi-
tives [Deb97].

1.1.2 Active Methods

Active optical scanners overcome the correspondence problem using controlled illumination. In
comparison to non-contact and passive methods, active illumination is often more sensitive to sur-
face material properties. Strongly reflective or translucent objects often violate assumptions made
by active optical scanners, requiring additional measures to acquire such problematic subjects.
For a detailed history of active methods, we refer the reader to the survey article by Blais [Bla04].
In this section we discuss some key milestones along the way to the scanners we consider in this
course.

Many active systems attempt to solve the correspondence problem by replacing one of the
cameras, in a passive stereoscopic system, with a controllable illumination source. During the
1970s, single-point laser scanning emerged. In this scheme, a series of fixed and rotating mirrors
are used to raster scan a single laser spot across a surface. A digital camera records the motion of
this “flying spot”. The 2D projection of the spot defines, with appropriate calibration knowledge, a
line connecting the spot and the camera’s center of projection. The depth is recovered by intersect-
ing this line with the line passing from the laser source to the spot, given by the known deflection
of the mirrors. As a result, such single-point scanners can be seen as the optical equivalent of
coordinate measuring machines.
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Introduction 3D Scanning Technology

Figure 1.2: Active methods for 3D scanning. (Left) Conceptual diagram of a 3D slit scanner, con-
sisting of a mechanically translated laser stripe. (Right) A Cyberware scanner, applying laser
striping for whole body scanning (from Flickr user NIOSH).

As with CMMs, single-point scanning is a painstakingly slow process. With the development
of low-cost, high-quality CCD arrays in the 1980s, slit scanners emerged as a powerful alterna-
tive. In this design, a laser projector creates a single planar sheet of light. This “slit” is then
mechanically-swept across the surface. As before, the known deflection of the laser source defines
a 3D plane. The depth is recovered by the intersection of this plane with the set of lines passing
through the 3D stripe on the surface and the camera’s center of projection.

Effectively removing one dimension of the raster scan, slit scanners remain a popular solution
for rapid shape acquisition. A variety of commercial products use swept-plane laser scanning,
including the Polhemus FastSCAN [Pol], the NextEngine [Nex], the SLP 3D laser scanning probes
from Laser Design [Las], and the HandyScan line of products [Cre]. While effective, slit scanners
remain difficult to use if moving objects are present in the scene. In addition, because of the
necessary separation between the light source and camera, certain occluded regions cannot be
reconstructed. This limitation, while shared by many 3D scanners, requires multiple scans to be
merged—further increasing the data acquisition time.

A digital “structured light” projector can be used to eliminate the mechanical motion required
to translate the laser stripe across the surface. Naı̈vely, the projector could be used to display a
single column (or row) of white pixels translating against a black background to replicate the per-
formance of a slit scanner. However, a simple swept-plane sequence does not fully exploit the pro-
jector, which is typically capable of displaying arbitrary 24-bit color images. Structured lighting
sequences have been developed which allow the projector-camera correspondences to be assigned
in relatively few frames. In general, the identity of each plane can be encoded spatially (i.e., within
a single frame) or temporally (i.e., across multiple frames), or with a combination of both spatial
and temporal encodings. There are benefits and drawbacks to each strategy. For instance, purely
spatial encodings allow a single static pattern to be used for reconstruction, enabling dynamic
scenes to be captured. Alternatively, purely temporal encodings are more likely to benefit from
redundancy, reducing reconstruction artifacts. We refer the reader to a comprehensive assessment
of such codes by Salvi et al. [SPB04].

Both slit scanners and structured lighting are ill-suited for scanning dynamic scenes. In addi-
tion, due to separation of the light source and camera, certain occluded regions will not be recov-
ered. In contrast, time-of-flight rangefinders estimate the distance to a surface from a single center
of projection. These devices exploit the finite speed of light. A single pulse of light is emitted.
The elapsed time, between emitting and receiving a pulse, is used to recover the object distance
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Introduction 3D Scanners studied in this Course

Figure 1.3: Desktop 3D Scanners based on Laser Plane Triangulation. From left to right: MakerBot
Digitizer, Matterform Photon, and NextEngine 3D Scanner HD.

(since the speed of light is known). Several economical time-of-flight depth cameras are now com-
mercially available, including Canesta’s CANESTAVISION [HARN06] and 3DV’s Z-Cam [IY01].
However, the depth resolution and accuracy of such systems (for static scenes) remain below that
of slit scanners and structured lighting.

Active imaging is a broad field; a wide variety of additional schemes have been proposed,
typically trading system complexity for shape accuracy. As with model-based approaches in pas-
sive imaging, several active systems achieve robust reconstruction by making certain simplifying
assumptions about the topological and optical properties of the surface. Woodham [Woo89] intro-
duces photometric stereo, allowing smooth surfaces to be recovered by observing their shading
under at least three (spatially disparate) point light sources. Hernández et al. [HVB∗07] further
demonstrate a real-time photometric stereo system using three colored light sources. Similarly, the
complex digital projector required for structured lighting can be replaced by one or more printed
gratings placed next to the projector and camera. Like shadow moiré, such projection moiré sys-
tems create depth-dependent fringes. However, certain ambiguities remain in the reconstruction
unless the surface is assumed to be smooth.

Active and passive 3D scanning methods continue to evolve, with recent progress reported
annually at various computer graphics and vision conferences, including 3-D Digital Imaging and
Modeling (3DIM), SIGGRAPH, Eurographics, CVPR, ECCV, and ICCV. Similar advances are also
published in the applied optics communities, typically through various SPIE and OSA journals.

1.2 3D Scanners studied in this Course

This course is grounded in the unifying concept of triangulation. At their core, stereoscopic imag-
ing, slit scanning, and structured lighting all attempt to recover the shape of 3D objects in the same
manner. First, the correspondence problem is solved, either by a passive matching algorithm or
by an active “space-labeling” approach (e.g., projecting known lines, planes, or other patterns).
After establishing correspondences across two or more views (e.g., between a pair of cameras or
a single projector-camera pair), triangulation recovers the scene depth. In stereoscopic and multi-
view systems, a point is reconstructed by intersecting two or more corresponding lines. In slit
scanning and structured lighting systems, a point is recovered by intersecting corresponding lines
and planes.

To elucidate the principles of such triangulation-based scanners, this course describes how
to construct a classic turntable-based slit scanner, and a structured lighting system. The course
also covers methods to register and merge multiple scans, to reconstruct polygon mesh surfaces
from multi-scan registered point clouds, and to optimize the reconstructed meshes for various
purposes. In all 3D scanner designs, the methods used to calibrate the systems are integral part of
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Introduction 3D Scanners studied in this Course

Figure 1.4: Industrial 3D Scanners based on Structured Lighting. From left to right: Breuckmann
SmartScan, ATOS CompactScan, and Geomagic Capture.

the design, since they have to be carefully constructed to produce accurate and precise results.
We first study the slit scanner, where a laser line projector iluminates an abject, and a camera

captures an image of some or all the illuminated object points. Figure 1.3 shows some commercial
desktop 3D scanners based on this method. Image processing techniques are used to detect the
pixels corresponding to illuminated points visible by the camera. Ray-plane triangulation equa-
tions are used to reconstruct 3D points belonging to the intersection of the plane of laser light and
the object. To recover denser sets of 3D points, the laser projector has to be moved while the cam-
era remains static with respect to the object, and the process has to be repeated until a satisfactory
number of points has been reconstructed. Alternatively, the object is placed on a linear stage or a
turntable, the laser projector is kept static with respect to the camera. The linear stage or turntable
is iteratively moved to a new position where an image is captured by the camera. As in the first
case, a large number of images must be captured to generate a dense point cloud. In both cases
tracking and estimating the motion with precision is required. Computer-controlled motorized
linear stages or turntables are normally used for this purpoose. In chapter 4 we describe how to
build a low cost turntable-based slit scanner.

Since slit-based scanning systems are line scan systems, they require capturing and processing
large numbers of images to produce dense area scans. Structured lighting systems can be used
to significantly reduce the number of images (typically by two or more orders of magnitude)
required to generate dense 3D scans. Figure 1.4 show some examples of commercial 3D scanners
based on structured lighting. In Chapter 5 we describe how to build a low cost structured lighting
system using a single LED pico-projector and one or more digital cameras. Many good HD USB
web-cameras exist today which can be used for this purpose, but many other options exist today
ranging from high end DSLRs to smartphone cameras.

By providing example data sets, open source software, and detailed implementation notes, we
hope to enable beginners and hobbyists to replicate our results. We believe the process of building
your own 3D scanner to complement your 3D printer will be enjoyable and instructive. Along the
way, you’ll likely learn a great deal about the practical use of projector-camera systems, hopefully
in a manner that supports your own research.
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Chapter 2

The Mathematics of Triangulation

This course is primarily concerned with the estimation of 3D shape by illuminating the world with
certain known patterns, and observing the illuminated objects with cameras. In this chapter we
derive models describing this image formation process, leading to the development of reconstruc-
tion equations allowing the recovery of 3D shape by geometric triangulation.

We start by introducing the basic concepts in a coordinate-free fashion, using elementary al-
gebra and the language of analytic geometry (e.g., points, vectors, lines, rays, and planes). Co-
ordinates are introduced later, along with relative coordinate systems, to quantify the process of
image formation in cameras and projectors.

2.1 Perspective Projection and the Pinhole Model

A simple and popular geometric model for a camera or a projector is the pinhole model, composed
of a plane and a point external to the plane (see Figure 2.1). We refer to the plane as the image
plane, and to the point as the center of projection. In a camera, every 3D point (other than the
center of projection) determines a unique line passing through the center of projection. If this line
is not parallel to the image plane, then it must intersect the image plane in a single image point.
In mathematics, this mapping from 3D points to 2D image points is referred to as a perspective
projection. Except for the fact that light traverses this line in the opposite direction, the geometry
of a projector can be described with the same model. That is, given a 2D image point in the
projector’s image plane, there must exist a unique line containing this point and the center of
projection (since the center of projection cannot belong to the image plane). In summary, light
travels away from a projector (or towards a camera) along the line connecting the 3D scene point
with its 2D perspective projection onto the image plane.

2.2 Geometric Representations

Since light moves along straight lines (in a homogeneous medium such as air), we derive 3D recon-
struction equations from geometric constructions involving the intersection of lines and planes, or
the approximate intersection of pairs of lines (two lines in 3D may not intersect). Our derivations
only draw upon elementary algebra and analytic geometry in 3D (e.g., we operate on points, vec-
tors, lines, rays, and planes). We use lower case letters to denote points p and vectors v. All the
vectors will be taken as column vectors with real-valued coordinates v ∈ IR3, which we can also
regard as matrices with three rows and one column v ∈ IR3×1. The length of a vector v is a scalar
‖v‖ ∈ IR. We use matrix multiplication notation for the inner product vt1v2 ∈ IR of two vectors v1
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Figure 2.1: Perspective projection under the pinhole model.

and v2, which is also a scalar. Here vt1 ∈ IR1×3 is a row vector, or a 1×3 matrix, resulting from trans-
posing the column vector v1. The value of the inner product of the two vectors v1 and v2 is equal to
‖v1‖‖v2‖ cos(α), where α is the angle formed by the two vectors (0 ≤ α ≤ 180◦). The 3×N matrix
resulting from concatenating N vectors v1, . . . , vN as columns is denoted [v1| · · · |vN ] ∈ IR3×N . The
vector product v1 × v2 ∈ IR3 of the two vectors v1 and v2 is a vector perpendicular to both v1 and
v2, of length ‖v1 × v2‖ = ‖v1‖ ‖v2‖ sin(α), and direction determined by the right hand rule (i.e.,
such that the determinant of the matrix [v1|v2|v1 × v2] is non-negative). In particular, two vectors
v1 and v2 are linearly dependent ( i.e., one is a scalar multiple of the other), if and only if the vector
product v1 × v2 is equal to zero.

2.2.1 Points and Vectors

Since vectors form a vector space, they can be multiplied by scalars and added to each other.
Points, on the other hand, do not form a vector space. But vectors and points are related: a point
plus a vector p+ v is another point, and the difference between two points q − p is a vector. If p is
a point, λ is a scalar, and v is a vector, then q = p + λv is another point. In this expression, λv is a
vector of length |λ| ‖v‖. Multiplying a point by a scalar λp is not defined, but an affine combination
of N points λ1p1 + · · ·+ λNpN , with λ1 + · · ·+ λN = 1, is well defined:

λ1p1 + · · ·+ λNpN = p1 + λ2(p2 − p1) + · · ·+ λN (pN − p1) .

2.2.2 Parametric Representation of Lines and Rays

A line L can be described by specifying one of its points q and a direction vector v (see Figure 2.2).
Any other point p on the line L can be described as the result of adding a scalar multiple λv, of the
direction vector v, to the point q (λ can be positive, negative, or zero):

L = {p = q + λv : λ ∈ IR} . (2.1)

This is the parametric representation of a line, where the scalar λ is the parameter. Note that this
representation is not unique, since q can be replaced by any other point on the line L, and v

8



The Mathematics of Triangulation Geometric Representations

lineq

v

vqp λ+=

rayq

v

vqp λ+=

lineq

v

vqp λ+=

rayq

v

vqp λ+=

Figure 2.2: Parametric representation of lines and rays.

2211 vvqp λλ ++=

1v

2v
q

p

P

n

q
p

0)( =− qpntP

parametric implicit

2211 vvqp λλ ++=

1v

2v
q

p

P

n

q
p

0)( =− qpntP

parametric implicit

Figure 2.3: Parametric and implicit representations of planes.

can be replaced by any non-zero scalar multiple of v. However, for each choice of q and v, the
correspondence between parameters λ ∈ IR and points p on the line L is one-to-one.

A ray is half of a line. While in a line the parameter λ can take any value, in a ray it is only
allowed to take non-negative values.

R = {p = q + λv : λ ≥ 0}

In this case, if the point q is changed, a different ray results. Since it is unique, the point q is called
the origin of the ray. The direction vector v can be replaced by any positive scalar multiple, but not
by a negative scalar multiple. Replacing the direction vector v by a negative scalar multiple results
in the opposite ray. By convention in projectors, light traverses rays along the direction determined
by the direction vector. Conversely in cameras, light traverses rays in the direction opposite to the
direction vector (i.e., in the direction of decreasing λ).

2.2.3 Parametric Representation of Planes

Similar to how lines are represented in parametric form, a plane P can be described in parametric
form by specifying one of its points q and two linearly independent direction vectors v1 and v2
(see Figure 2.3). Any other point p on the plane P can be described as the result of adding scalar
multiples λ1v1 and λ2v2 of the two vectors to the point q, as follows.

P = {p = q + λ1v1 + λ2v2 : λ1, λ2 ∈ IR}
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As in the case of lines, this representation is not unique. The point q can be replaced by any other
point in the plane, and the vectors v1 and v2 can be replaced by any other two linearly independent
linear combinations of v1 and v2.

2.2.4 Implicit Representation of Planes

A plane P can also be described in implicit form as the set of zeros of a linear equation in three
variables. Geometrically, the plane can be described by one of its points q and a normal vector n.
A point p belongs to the plane P if and only if the vectors p− q and n are orthogonal, such that

P = {p : nt(p− q) = 0} . (2.2)

Again, this representation is not unique. The point q can be replaced by any other point in the
plane, and the normal vector n by any non-zero scalar multiple λn.

To convert from the parametric to the implicit representation, we can take the normal vector
n = v1 × v2 as the vector product of the two basis vectors v1 and v2. To convert from implicit to
parametric, we need to find two linearly independent vectors v1 and v2 orthogonal to the normal
vector n. In fact, it is sufficient to find one vector v1 orthogonal to n. The second vector can be
defined as v2 = n× v1. In both cases, the same point q from one representation can be used in the
other.

2.2.5 Implicit Representation of Lines

A line L can also be described in implicit form as the intersection of two planes, both represented
in implicit form, such that

L = {p : nt1(p− q) = nt2(p− q) = 0}, (2.3)

where the two normal vectors n1 and n2 are linearly independent (if n1 an n2 are linearly depen-
dent, rather than a line, the two equations describe the same plane). Note that when n1 and n2
are linearly independent, the two implicit representations for the planes can be defined with re-
spect to a common point belonging to both planes, rather than to two different points. Since a
line can be described as the intersection of many different pairs of planes, this representation is
not unique. The point q can be replaced by any other point belonging to the intersection of the
two planes, and the two normal vectors can be replaced by any other pair of linearly independent
linear combinations of the two vectors.

To convert from the parametric representation of Equation 2.1 to the implicit representation
of Equation 2.3, one needs to find two linearly independent vectors n1 and n2 orthogonal to the
direction vector v. One way to do so is to first find one non-zero vector n1 orthogonal to v, and
then take n2 as the vector product n2 = v× n1 of v and n1. To convert from implicit to parametric,
one needs to find a non-zero vector v orthogonal to both normal vectors n1 and n2. The vector
product v = n1 × n2 is one such vector, and any other is a scalar multiple of it.

2.3 Reconstruction by Triangulation

As will be discussed in Chapters ?? and 5, it is common for projected illumination patterns to con-
tain identifiable lines or points. Under the pinhole projector model, a projected line creates a plane
of light (the unique plane containing the line on the image plane and the center of projection), and
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Figure 2.4: Triangulation by line-plane intersection.

a projected point creates a ray of light (the unique line containing the image point and the center
of projection).

While the intersection of a ray of light with the object being scanned can be considered as
a single illuminated point, the intersection of a plane of light with the object generally contains
many illuminated curved segments (see Figure 1.2). Each of these segments is composed of many
illuminated points. A single illuminated point, visible to the camera, defines a camera ray. For
now, we assume that the locations and orientations of projector and camera are known with re-
spect to the global coordinate system (with procedures for estimating these quantities covered in
Chapter 3). Under this assumption, the equations of projected planes and rays, as well as the
equations of camera rays corresponding to illuminated points, are defined by parameters which
can be measured. From these measurements, the location of illuminated points can be recovered
by intersecting the planes or rays of light with the camera rays corresponding to the illuminated
points. Through such procedures the depth ambiguity introduced by pinhole projection can be
eliminated, allowing recovery of a 3D surface model.

2.3.1 Line-Plane Intersection

Computing the intersection of a line and a plane is straightforward when the line is represented
in parametric form

L = {p = qL + λv : λ ∈ IR},
and the plane is represented in implicit form

P = {p : nt(p− qP ) = 0} .

Note that the line and the plane may not intersect, in which case we say that the line and the
plane are parallel. This is the case if the vectors v and n are orthogonal ntv = 0. The vectors v
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and n are also orthogonal when the line L is contained in the plane P . Whether or not the point
qL belongs to the plane P differentiates one case from the other. If the vectors v and n are not
orthogonal ntv 6= 0, then the intersection of the line and the plane contains exactly one point p.
Since this point belongs to the line, it can be written as p = qL+λv, for a value λ which we need to
determine. Since the point also belongs to the plane, the value λ must satisfy the linear equation

nt(p− qp) = nt(λv + qL − qp) = 0 ,

or equivalently

λ =
nt(qP − qL)

ntv
. (2.4)

Since we have assumed that the line and the plane are not parallel (i.e., by checking that ntv 6= 0
beforehand), this expression is well defined. A geometric interpretation of line-plane intersection
is provided in Figure 2.4.

2.3.2 Line-Line Intersection

We consider here the intersection of two arbitrary lines L1 and L2, as shown in Figure 2.5.

L1 = {p = q1 + λ1v1 : λ1 ∈ IR} and L2 = {p = q2 + λ2v2 : λ2 ∈ IR}

Let us first identify the special cases. The vectors v1 and v2 can be linearly dependent (i.e., if
one is a scalar multiple of the other) or linearly independent.

The two lines are parallel if the vectors v1 and v2 are linearly dependent. If, in addition, the
vector q2 − q1 can also be written as a scalar multiple of v1 or v2, then the lines are identical. Of
course, if the lines are parallel but not identical, they do not intersect.

If v1 and v2 are linearly independent, the two lines may or may not intersect. If the two lines
intersect, the intersection contains a single point. The necessary and sufficient condition for two
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lines to intersect, when v1 and v2 are linearly independent, is that scalar values λ1 and λ2 exist so
that

q1 + λ1v1 = q2 + λ2v2,

or equivalently so that the vector q2 − q1 is linearly dependent on v1 and v2.
Since two lines may not intersect, we define the approximate intersection as the point which is

closest to the two lines. More precisely, whether two lines intersect or not, we define the approxi-
mate intersection as the point p which minimizes the sum of the square distances to both lines

φ(p, λ1, λ2) = ‖q1 + λ1v1 − p‖2 + ‖q2 + λ2v2 − p‖2 .

As before, we assume v1 and v2 are linearly independent, such the approximate intersection is a
unique point.

To prove that the previous statement is true, and to determine the value of p, we follow an
algebraic approach. The function φ(p, λ1, λ2) is a quadratic non-negative definite function of five
variables, the three coordinates of the point p and the two scalars λ1 and λ2.

We first reduce the problem to the minimization of a different quadratic non-negative definite
function of only two variables λ1 and λ2. Let p1 = q1 + λ1v1 be a point on the line L1, and let
p2 = q2 + λ2v2 be a point on the line L2. Define the midpoint p12, of the line segment joining p1
and p2, as

p12 = p1 +
1

2
(p2 − p1) = p2 +

1

2
(p1 − p2) .

A necessary condition for the minimizer (p, λ1, λ2) of φ is that the partial derivatives of φ, with
respect to the five variables, all vanish at the minimizer. In particular, the three derivatives with
respect to the coordinates of the point p must vanish

∂φ

∂p
= (p− p1) + (p− p2) = 0 ,

or equivalently, it is necessary for the minimizer point p to be the midpoint p12 of the segment
joining p1 and p2 (see Figure 2.6).

As a result, the problem reduces to the minimization of the square distance from a point p1 on
line L1 to a point p2 on line L2. Practically, we must now minimize the quadratic non-negative
definite function of two variables

ψ(λ1, λ2) = 2φ(p12, λ1, λ2) = ‖(q2 + λ2v2)− (q1 + λ1v1)‖2 .

13
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Note that it is still necessary for the two partial derivatives of ψ, with respect to λ1 and λ2, to be
equal to zero at the minimum, as follows.

∂ψ

∂λ1
= vt1(λ1v1 − λ2v2 + q1 − q2) = λ1‖v1‖2 − λ2vt1v2 + vt1(q1 − q2) = 0

∂ψ

∂λ2
= vt2(λ2v2 − λ1v1 + q2 − q1) = λ2‖v2‖2 − λ2vt2v1 + vt2(q2 − q1) = 0

These provide two linear equations in λ1 and λ2, which can be concisely expressed in matrix form
as (

‖v1‖2 −vt1v2
−vt2v1 ‖v2‖2

)(
λ1
λ2

)
=

(
vt1(q2 − q1)
vt2(q1 − q2)

)
.

It follows from the linear independence of v1 and v2 that the 2 × 2 matrix on the left hand side is
non-singular. As a result, the unique solution to the linear system is given by(

λ1
λ2

)
=

(
‖v1‖2 −vt1v2
−vt2v1 ‖v2‖2

)−1(
vt1(q2 − q1)
vt2(q1 − q2)

)
or equivalently (

λ1
λ2

)
=

1

‖v1‖2‖v2‖2 − (vt1v2)
2

(
‖v2‖2 vt1v2
vt2v1 ‖v1‖2

)(
vt1(q2 − q1)
vt2(q1 − q2)

)
. (2.5)

In conclusion, the approximate intersection p can be obtained from the value of either λ1 or λ2
provided by these expressions.

2.4 Coordinate Systems

So far we have presented a coordinate-free description of triangulation. In practice, however,
image measurements are recorded in discrete pixel units. In this section we incorporate such co-
ordinates into our prior equations, as well as document the various coordinate systems involved.

2.4.1 Image Coordinates and the Pinhole Camera

Consider a pinhole model with center of projection o and image plane P = {p = q + u1v1 + u2v2 :
u1, u2 ∈ IR}. Any 3D point p, not necessarily on the image plane, has coordinates (p1, p2, p3)t

relative to the origin of the world coordinate system. On the image plane, the point q and vectors
v1 and v2 define a local coordinate system. The image coordinates of a point p = q+u1v1+u2v2 are
the parameters u1 and u2, which can be written as a 3D vector u = (u1, u2, 1). Using this notation
point p is expressed as p1p2

p3

 = [v1|v2|q]

u1u2
1

 .
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Figure 2.7: The ideal pinhole camera.

2.4.2 The Ideal Pinhole Camera

In the ideal pinhole camera shown in Figure 2.7, the center of projection o is at the origin of the world
coordinate system, with coordinates (0, 0, 0)t, and the point q and the vectors v1 and v2 are defined
as

[v1|v2|q] =

1 0 0
0 1 0
0 0 1

 .

Note that not every 3D point has a projection on the image plane. Points without a projection are
contained in a plane parallel to the image passing through the center of projection. An arbitrary
3D point p with coordinates (p1, p2, p3)t belongs to this plane if p3 = 0, otherwise it projects onto
an image point with the following coordinates.

u1 = p1/p3

u2 = p2/p3

There are other descriptions for the relation between the coordinates of a point and the image co-
ordinates of its projection; for example, the projection of a 3D point p with coordinates (p1, p2, p3)t

has image coordinates u = (u1, u2, 1) if, for some scalar λ 6= 0, we can write

λ

u1u2
1

 =

p1p2
p3

 . (2.6)

2.4.3 The General Pinhole Camera

The center of a general pinhole camera is not necessarily placed at the origin of the world coor-
dinate system and may be arbitrarily oriented. However, it does have a camera coordinate system
attached to the camera, in addition to the world coordinate system (see Figure 2.8). A 3D point p has
world coordinates described by the vector pW = (p1W , p

2
W , p

3
W )t and camera coordinates described

by the vector pC = (p1C , p
2
C , p

3
C)t. These two vectors are related by a rigid body transformation

specified by a translation vector T ∈ IR3 and a rotation matrix R ∈ IR3×3, such that

pC = RpW + T .

15



The Mathematics of Triangulation Coordinate Systems

WΧ

CΧ

1 2

3
1

2 3 u
p world 

coordinate 
systemcamera 

coordinate 
system

TRXWC +=Χ

WΧ

CΧ

1 2

3
1

2 3 u
p world 

coordinate 
systemcamera 

coordinate 
system

TRXWC +=Χ

Figure 2.8: The general pinhole model.

In camera coordinates, the relation between the 3D point coordinates and the 2D image coordi-
nates of the projection is described by the ideal pinhole camera projection (i.e., Equation 2.6), with
λu = pC . In world coordinates this relation becomes

λu = RpW + T . (2.7)

The parameters (R, T ), which are referred to as the extrinsic parameters of the camera, describe the
location and orientation of the camera with respect to the world coordinate system.

Equation 2.7 assumes that the unit of measurement of lengths on the image plane is the same
as for world coordinates, that the distance from the center of projection to the image plane is equal
to one unit of length, and that the origin of the image coordinate system has image coordinates
u1 = 0 and u2 = 0. None of these assumptions hold in practice. For example, lengths on the image
plane are measured in pixel units, and in meters or inches for world coordinates, the distance from
the center of projection to the image plane can be arbitrary, and the origin of the image coordinates
is usually on the upper left corner of the image. In addition, the image plane may be tilted with
respect to the ideal image plane. To compensate for these limitations of the current model, a matrix
K ∈ IR3×3 is introduced in the projection equations to describe intrinsic parameters as follows.

λu = K(RpW + T ) (2.8)

The matrix K has the following form

K =

f s1 f sθ o1

0 f s2 o2

0 0 1

 ,

where f is the focal length (i.e., the distance between the center of projection and the image plane).
The parameters s1 and s2 are the first and second coordinate scale parameters, respectively. Note
that such scale parameters are required since some cameras have non-square pixels. The param-
eter sθ is used to compensate for a tilted image plane. Finally, (o1, o2)t are the image coordinates
of the intersection of the vertical line in camera coordinates with the image plane. This point is
called the image center or principal point. Note that all intrinsic parameters embodied in K are in-
dependent of the camera pose. They describe physical properties related to the mechanical and
optical design of the camera. Since in general they do not change, the matrix K can be estimated
once through a calibration procedure and stored (as will be described in the following chapter).
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Afterwards, image plane measurements in pixel units can immediately be “normalized”, by mul-
tiplying the measured image coordinate vector by K−1, so that the relation between a 3D point in
world coordinates and 2D image coordinates is described by Equation 2.7.

Real cameras also display non-linear lens distortion, which is also considered intrinsic. Lens
distortion compensation must be performed prior to the normalization described above. We will
discuss appropriate lens distortion models in Chapter 3.

2.4.4 Lines from Image Points

As shown in Figure 2.9, an image point with coordinates u = (u1, u2, 1)t defines a unique line
containing this point and the center of projection. The challenge is to find the parametric equation
of this line, as L = {p = q + λ v : λ ∈ IR}. Since this line must contain the center of projection, the
projection of all the points it spans must have the same image coordinates. If pW is the vector of
world coordinates for a point contained in this line, then world coordinates and image coordinates
are related by Equation 2.7 such that λu = RpW + T . Since R is a rotation matrix, we have
R−1 = Rt and we can rewrite the projection equation as

pW = (−RtT ) + λ (Rtu) .

In conclusion, the line we are looking for is described by the point q with world coordinates qW =
−RtT , which is the center of projection, and the vector v with world coordinates vW = Rtu.

2.4.5 Planes from Image Lines

A straight line on the image plane can be described in either parametric or implicit form, both
expressed in image coordinates. Let us first consider the implicit case. A line on the image plane
is described by one implicit equation of the image coordinates

L = {u : ltu = l1u1 + l2u2 + l3 = 0} ,

where l = (l1, l2, l3)t is a vector with l1 6= 0 or l2 6= 0. Using active illumination, projector patterns
containing vertical and horizontal lines are common. Thus, the implicit equation of an horizontal
line is

LH = {u : ltu = u2 − ν = 0} ,
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where ν is the second coordinate of a point on the line. In this case we can take l = (0, 1,−ν)t.
Similarly, the implicit equation of a vertical line is

LV = {u : ltu = u1 − ν = 0} ,

where ν is now the first coordinate of a point on the line. In this case we can take l = (1, 0,−ν)t.
There is a unique plane P containing this line L and the center of projection. For each image point
with image coordinates u on the line L, the line containing this point and the center of projection
is contained in P . Let p be a point on the plane P with world coordinates pW projecting onto an
image point with image coordinates u. Since these two vectors of coordinates satisfy Equation 2.7,
for which λu = RpW + T , and the vector u satisfies the implicit equation defining the line L, we
have

0 = λltu = lt(RpW + T ) = (Rtl)t (pW − (−RtT )) .

In conclusion, the implicit representation of plane P , corresponding to Equation 2.2 for which
P = {p : nt(p− q) = 0}, can be obtained with n being the vector with world coordinates nW = Rtl
and q the point with world coordinates qW = −RtT , which is the center of projection.
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Chapter 3

Camera and Projector Calibration

Triangulation is a deceptively simple concept, simply involving the pairwise intersection of 3D
lines and planes. Practically, however, one must carefully calibrate the various cameras and pro-
jectors so the equations of these geometric primitives can be recovered from image measurements.
In this chapter we lead the reader through the construction and calibration of a basic projector-
camera system. Through this example, we examine how freely-available calibration packages,
emerging from the computer vision community, can be leveraged in your own projects. While
touching on the basic concepts of the underlying algorithms, our primarily goal is to help begin-
ners overcome the “calibration hurdle”.

In Section 3.1 we describe how to select, control, and calibrate a digital camera suitable for
3D scanning. The general pinhole camera model presented in Chapter 2 is extended to address
lens distortion. A simple calibration procedure using printed checkerboard patterns is presented,
following the established method of Zhang [Zha00]. Typical calibration results, obtained for the
cameras used in Chapters 4 and 5, are provided as a reference.

Well-documented, freely-available camera calibration tools have been known for several years
now, but projector calibration received broader attention just recently with the increasing interest
in building white-light scanners. In Section 3.2, we describe an open-source Projector-Camera Cal-
ibration tool [MT12] which extends the printed checkerboard method to calibrated both projector
and camera. We conclude by reviewing calibration results for the structured light projector used
in Chapter 5.

3.1 Camera Calibration

In this section we describe both the theory and practice of camera calibration. We begin by briefly
considering which cameras are best suited for building your own 3D scanner. We then present the
widely-used calibration method originally proposed by Zhang [Zha00]. Finally, we provide step-
by-step directions on how to use a freely-available MATLAB-based implementation of Zhang’s
method.

3.1.1 Camera selection and interfaces

Selection of the “best” camera depends on your budget, project goals, and preferred develop-
ment environment. Probably the most confusing part for the inexperienced user is the variety of
camera buses available raging from the traditional IEEE 1394 FireWire, the more common USB
2.0 and 3.0, to Camera Link and GigE Vision buses. Selection of the right bus must begin con-
sidering the throughput requirement for the application, the chosen bus must be able to transfer
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Figure 3.1: Vision camera buses comparison (Source: National Instruments white paper. [ Na13]).

images at the required framerate. Other aspects to consider are camera cable length, effective cost,
and whether hardware synchronization triggers will be used. These characteristics are compared
graphically in Figure 3.1. We refer the user interested in learning more about vision camera buses
to [ Na13]. Besides camera buses, other aspects to consider when choosing a camera are their sen-
sor specifications (size, resolution, color or grayscale) and whether they have a fixed lens or a lens
mount. When choosing lenses the focal length must be considered, which determines—together
with sensor size—the effective field of view of the camera. In this course we recommend standard
USB cameras because they are low cost and they do not require special hardware or software,
this come at a price of a low throughput and limited control and customization. Specifically, we
will use a Logitech C920 which can capture images with a resolution of 1920×1080, Figure 3.2(a).
Although more expensive, we also recommend cameras from Point Grey Research. The camera
interface provided by this vendor is particularly useful if you plan on developing more advanced
scanners than those presented here, and particularly if you need access to raw sensor data. As a
point of reference, we have tested a Point Grey GRAS-20S4M/C Grasshopper, Figure 3.2(b), at a
resolution of 1600×1200 up to 30 Hz [Poi].

At the time of writing, the accompanying software for this course was primarily written in
MATLAB. If readers wish to collect their own data sets using our software, we recommend ob-
taining a camera supported by the Image Acquisition Toolbox for MATLAB [Mat]. Note that this
toolbox supports products from a variety of vendors, as well as any DCAM-compatible FireWire
camera or webcam with a Windows Driver Model (WDM) or Video for Windows (VFW) driver.
For FireWire cameras the toolbox uses the CMU DCAM driver [CMU]. Alternatively, we encour-
age users to write their own image acquisition tools using standard libraries as OpenCV [Ope]
or SimpleCV [Sim]. OpenCV has a variety of ready-to-use computer vision algorithms—such as
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(a) Logitech HD Pro Webcam C920 (b) Point Grey Grasshopper IEEE-1394b (with-
out lens)

Figure 3.2: Recommended cameras for course projects.

camera calibration—optimized for several platforms, including Windows, Mac OS X, Linux, and
Android; which can be accessed in C++, Java, and Python. SimpleCV is a high-level framework,
with a faster learning curve, for developing computer vision software in Python.

3.1.2 Calibration Methods and Software

Camera Calibration Methods

Camera calibration requires estimating the parameters of the general pinhole model presented
in Section 2.4.3. This includes the intrinsic parameters, being focal length, principal point, and
the scale factors, as well as the extrinsic parameters, defined by a rotation matrix and translation
vector mapping between the world and camera coordinate systems. In total, 11 parameters (5
intrinsic and 6 extrinsic) must be estimated from a calibration sequence. In practice, a lens distor-
tion model must be estimated as well. We recommend the reader review [HZ04, MSKS05] for an
in-depth description of camera models and calibration methods.

At a basic level, camera calibration requires recording a sequence of images of a calibration
object, composed of a unique set of distinguishable features with known 3D displacements. Thus,
each image of the calibration object provides a set of 2D-to-3D correspondences, mapping image
coordinates to scene points. Naı̈vely, one would simply need to optimize over the set of 11 camera
model parameters so that the set of 2D-to-3D correspondences are correctly predicted (i.e., the
projection of each known 3D model feature is close to its measured image coordinates).

Many methods have been proposed over the years to solve for the camera parameters given
such correspondences. In particular, the factorized approach originally proposed Zhang [Zha00]
is widely-adopted in most community-developed tools. In this method, a planar checkerboard
pattern is observed in two or more orientations (see Figure 3.3). From this sequence, the intrinsic
parameters can be separately solved. Afterwards, a single view of a checkerboard can be used to
solve for the extrinsic parameters. Given the relative ease of printing 2D patterns, this method is
commonly used in computer graphics and vision publications.
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Figure 3.3: Camera calibration images containing a checkerboard with different orientations
throughout the scene.

Recommended Software

A comprehensive list of calibration software is maintained by Bouguet on the toolbox website1.
We recommend course attendees use the MATLAB toolbox. Otherwise, OpenCV replicates many
of its functionalities, while supporting multiple platforms. A CALTag [AHH10] checkerboard and
software is yet another alternative. CALTag patterns are designed to provide features even if some
checkerboard regions are occluded, we wil use this feature in Section 4.2 to calibrate a turntable.

Although calibrating a small number of cameras using these tools is straightforward, calibrat-
ing a large network of cameras is a relatively challenging problem. If your projects lead you in this
direction, we suggest to consider the self-calibration toolbox [SMP05], or a new toolbox based on
a feature-descriptor pattern [LHKP13] instead. The former, rather than using multiple views of a
planar calibration object, detects a standard laser point being translated through the working vol-
ume and correspondences between the cameras are automatically determined from the tracked
projection of the pointer in each image. The latter, creates a pattern using multiple SIFT/SURF
features at different scales which can be automatically detected. In contrast with the checkerboard
approach, features can be uniquely identified—similar to CALTag cells—even when partial views
of the pattern are available due to limited intersection of the multiple cameras field of view.

3.1.3 Calibration Procedure

In this section we describe, step-by-step, how to calibrate your camera using the Camera Cal-
ibration Toolbox for MATLAB. We also recommend reviewing the detailed documentation and
examples provided on the toolbox website. Specifically, new users should work through the first
calibration example and familiarize themselves with the description of model parameters (which
differ slightly from the notation used in these notes).

Begin by installing the toolbox, available for download at the software website1. Next, con-
struct a checkerboard target. Note that the toolbox comes with a sample checkerboard image;
print this image and affix it to a rigid object, such as piece of cardboard or textbook cover. Record
a series of 10–20 images of the checkerboard, varying its position and pose between exposures.
Try to collect images where the checkerboard is visible throughout the image, and specially, the
checkerboard must cover a large region in each image.

Using the toolbox is relatively straightforward. Begin by adding the toolbox to your MATLAB

path by selecting “File→ Set Path...”. Next, change the current working directory to one contain-
ing your calibration images (or one of our test sequences). Type calib at the MATLAB prompt

1 http://www.vision.caltech.edu/bouguetj/calib_doc/
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(a) Tangential Component (b) Radial Component

Figure 3.4: Camera calibration distortion model. Sample distortion model of the Logitech C920
Webcam used in the Laser Stripe Scanner of Chapter 4. The plots show the center of distortion ×
at the principal point, and the amount of distortion in pixel units increasing towards the border.

to start. Since we are only using a few images, select “Standard (all the images are stored in
memory)” when prompted. To load the images, select “Image names” and press return, then “j”
(JPEG images). Now select “Extract grid corners”, pass through the prompts without entering any
options, and then follow the on-screen directions. The default checkerboard has 30mm×30mm
squares but the actual dimensions vary from printer to printer, you should measure your own
checkerboard and use those values instead. Always skip any prompts that appear, unless you
are more familiar with the toolbox options. Once you have finished selecting corners, choose
“Calibration”, which will run one pass though the calibration algorithm. Next, choose “Analyze
error”. Left-click on any outliers you observe, then right-click to continue. Repeat the corner
selection and calibration steps for any remaining outliers (this is a manually-assisted form of bun-
dle adjustment). Once you have an evenly-distributed set of reprojection errors, select “Recomp.
corners” and finally “Calibration”. To save your intrinsic calibration, select “Save”.

From the previous step you now have an estimate of how pixels can be converted into normal-
ized coordinates (and subsequently optical rays in world coordinates, originating at the camera
center). Note that this procedure estimates both the intrinsic and extrinsic parameters, as well
as the parameters of a lens distortion model. Typical calibration results, illustrating the lens dis-
tortion model is shown in Figure 3.4. The actual result of the calibration is displayed below as
reference.

Logitech C920 Webcam sample calibration result:

Focal Length: fc = [ 1642.17076 1642.83775 ]
+/- [ 2.91675 1.85405 ]

Principal point: cc = [ 1176.14705 714.90826 ]
+/- [ 2.63232 3.58792 ]

Skew: alpha_c = [ 0.00000 ] +/- [ 0.00000 ]
=> angle of pixel axes = 90.0000 +/- 0.0000 degrees

Distortion:
kc = [ 0.09059 -0.16979 -0.00796 -0.00078 0.00000 ]
+/- [ 0.00333 0.01042 0.00051 0.00065 0.00000 ]

Pixel error: err = [ 0.25706 0.27527 ]
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Figure 3.5: Recommended projectors for course projects: (Left) Dell M110 DLP Pico Projector,
(Right) Optoma PK320 Pico Pocket Projector.

3.2 Projector Calibration

We now turn our attention to projector calibration. Following the conclusions of Chapter 2, we
model the projector as an inverse camera (i.e., one in which light travels in the opposite direction
from usual). Under this model, calibration proceeds in a similar manner as with cameras, where
correspondences between 3D points world coordinates and projector pixel locations are used to
estimate the pinhole model parameters. For camera calibration, we use checkerboard corners as
reference world points of known coordinates which are localized in several images to establish
pixel correspondences. In the projector case, we will project a known pattern onto a checkerboard
and to record a set of images for each checkerboard pose. The projected pattern is later decoded
from the camera images and used to convert from camera coordinates to projector pixel locations.
This way, checkerboard corners are identified in the camera images and, with the help of the pro-
jected pattern, their locations in projector coordinates are inferred. Finally, projector-checkerboard
correspondences are used to calibrate the projector parameters as it is done for cameras. This cali-
bration method is described with detail in [MT12] and implemented as an opensource calibration
and scanning tool2. We will use this software for projector and camera calibration when working
with structured light scanners in Chapter 5. A step-by-step guide of calibration process is given
below in Section 3.2.2.

3.2.1 Projector Selection and Interfaces

Almost any digital projector can be used in your 3D scanning projects, since the operating system
will simply treat it as an additional display. However, we recommend at least a VGA projector,
capable of displaying a 640×480 image. For building a structured lighting system select a camera
with equal (or higher) resolution than the projector. Otherwise, the recovered model will be lim-
ited to the camera resolution. Additionally, those with DVI or HDMI interfaces are preferred for
their relative lack of analogue to digital conversion artifacts.

The technologies used in consumer projectors have matured rapidly over the last decade. Early
projectors used an LCD-based spatial light modulator and a metal halide lamp, whereas recent
models incorporate a digital micromirror device (DMD) and LED lighting. Commercial offer-
ings vary greatly, spanning large units for conference venues to embedded projectors for mobile
phones. A variety of technical specifications must be considered when choosing the “best” projec-
tor for your 3D scanning projects. Variations in throw distance (i.e., where focused images can be
formed), projector artifacts (i.e., pixelization and distortion), and cost are key factors.

Digital projectors have a tiered pricing model, with brighter projectors costing significantly

2http://mesh.brown.edu/scanning/software.html
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Figure 3.6: TI DLP .45in Pico Projectors diamond pixel configuration.

more than dimmer ones. At the time of writing, a portable projector with output resolution of
1280×800 and 100–500 lumens of brightness can be purchased for around $300–$500 USD. Exam-
ples are the Optoma and Dell Pico projectors shown in Figure 3.5 commonly used by students
because of their convenient small size and high contrast.

When considering projectors it is important to distinguish between their “native” and “out-
put” resolutions. Native resolution refers to the number of pixels in the projection device (i.e.
number of micromirrors in DLPs arrays), whereas, the output resolution is the screen size re-
ported to the operating system. Ideally, we want both to be the same so that images sent by the
operating are displayed by the projector at the same resolution. However, many portable pro-
jectors use Texas Instruments DLP Pico DMDs where projector pixels are rotated 45◦ as shown
in Figure 3.6. In this configuration the pixel density in the horizontal and vertical directions are
different and images generated by the computer are resampled to match the DMD elements. We
have used pico projectors in structured-light scanners successfully but the native resolution has to
be considered to decide the maximum resolution of the projected patterns.

While your system will treat the projector as a second display, your development environment
may or may not easily support fullscreen display. For instance, MATLAB does not natively support
fullscreen display (i.e., without window borders or menus). One solution is to use Java display
functions integrated in MATLAB. Code for this approach is available online3. Unfortunately, we
found that this approach only works for the primary display. Another common approach is to
split image acquisition and data processing in two separate programs and use standard software
(i.e. as provided by camera manufacturers) to capture and save images, and to program your
scanning tool to read images from a permanent storage. This approach is used by the Camera Cal-
ibration Toolbox [Bou]. Finally, for users working outside of MATLAB, we recommend controlling
projectors through OpenGL.

3.2.2 Calibration Software and Procedure

Projector calibration has received increasing attention, in part driven by the emergence of low-
cost digital projectors. As mentioned at several points, a projector is simply the “inverse” of a
camera, wherein points on an image plane are mapped to outgoing light rays passing through
the center of projection. As in Section 3.1.2, a lens distortion model can augment the basic general
pinhole model presented in Chapter 2. In this section we will use the Projector-Camera Calibration
software [MT] to calibrate both projector and camera, intrinsic and extrinsic parameters, including
radial distortion coefficients. This software is built for Windows, Linux, and Mac OS X, and source
code is available too.

Begin by downloading the software [MT] for your platform and setting up your projector and

3http://www.mathworks.com/matlabcentral/fileexchange/11112
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Figure 3.7: Sample setup of a structured light scanner. A projector and camera are placed at similar
height with a horizontal translation in stereo configuration. In this particular case, the camera is
much forward than the projector to compensate between their different field of view.

camera in the scanning position. Once calibrated, projector and camera have to remain at fix posi-
tions, and their lens settings unchanged (e.g. focus, zoom) for the calibration to remain valid. The
general recommendation is to place them with some horizontal displacement, too much displace-
ment will provide little overlap between projector and camera images, too few displacement will
produce a lot of uncertainty for triangulation, try to find some intermediate position, see Figure 3.7
as example. A checkerboard pattern is required for calibration.

Run the software and click the “Capture...” button to open a preview window, Figure 3.8.
Select your projector screen and your camera using the combo boxes, then check “Preview” to
activate the projector. Click “Prev” and “Next” buttons to navigate the projected pattern sequence
as desired. Use the camera live view to make sure camera and projector view points are correct.
Note that only cameras supported by OpenCV will be recognized by the software; if your camera
happens to not be in this group, you can still use the tool for calibration but you will have to
project and capture the images with an external software, and use the tool only for calibration.
Refer to the software website for more details.

Place the calibration checkerboard in the scene in such a way that all its cells are visible in the
camera and illuminated by the projector. Uncheck “Preview” and press “Capture”. The software
will project and capture a sequence of images. The checkerboard has to remain static at this time.
The image output folder can be changed prior beginning, but it must not be changed after the first
capture. Repeat the capture procedure several times to collect sequences with the checkerboard at
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Figure 3.8: Projector-Camera Calibration software main screen and capture window.

different positions and orientations. Close the capture window to return to the main screen.
The main screen will display a list with the different sequences captured, which can be browsed

to see any of the images. If images were captured with an external tool, or with this tool but at a
different time, you can select their location by clicking “Change dir..”. Count the internal number
of corners of your checkerboard and fill the boxes labeled as “Corners”, also measure them in
millimeters, or your unit of choice, and enter their dimensions in the “Size” boxes. Now you are
ready for calibration, click “Calibrate”. The program will automatically detect the checkerboard
corners, decode the projected sequences, and run the calibration. The final result will be displayed
as text and saved to a file. The main screen contains other parameters and buttons that can be used
to debug errors or to change the default decoding options, they will not be covered here but feel
free to read the documentation and modify them to improve your results.
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Chapter 4

The Laser Slit 3D Scanner

In this chapter we describe how to build the “classic” desktop Laser Slit 3D Scanner consisting of
a single digital camera, a laser line projector, and a manual or motorized turntable. Specifically,
we will describe how to setup the scanner using inexpensive elements, and we will describe its
operating principle and the mathematics that allow to compute the 3D shape of an object being
scanned.

4.1 Description

The Laser Slit 3D Scanner is an “active line scanner”, meaning that it uses active illumination—the
laser line projected onto a scene—and that it recovers a single line of points from each captured
frame. Active illumination permits to scan objects more or less independently of their surface
color or texture, which is an important advantage over passive methods which have difficulty
in recovering constant color regions. On the other hand, a single line is captured at each time
and it is necessary to move either the scanner or the object to acquire additional points and incre-
mentally build a 3D model. In our case, we decided to put the target object onto an inexpensive
turntable which is rotated manually in order to create a 360◦ model. Some users may prefer to
use a computerized turntable controlled by a stepper motor for more automation or may want to
do other variations to the suggested setup. The mathematics and methods discussed here will be
applicable with little or no modification to many of these variations.

The scanner is setup as shown in Figure 4.1. The camera is fixed on a side, elevated from the
turntable plane, and looking down to the turntable center. The optimal orientation and distance
depends on the camera field-of-view and the size of scanning volume. The general guideline is
that most of the turntable surface must be visible when there is no object on it, and the bottom
and top of the object being scanned must be visible too when sitting on the turntable. It is not rec-
ommended to put the camera farther than required because the image regions looking at neither
the turntable nor the target object will not be used by the scanner. The Laser Line Generator must
be placed on a side of the camera and with similar orientation, it is recommended that it passes
through the turntable center point and be orthogonal to the turntable plane. Figure 4.2 shows
the materials we have used in our setup: a 650nm AixiZ 38◦ Line Generator, a Logitech HD Pro
Webcam C920, and a manually controlled turntable.

We will set the world coordinate system at the turntable center of rotation, with the xy-plane
on the turntable and the z-axis pointing up, see Figure 4.1. Prior to scanning, we need to calibrate
the camera intrinsic parameters and the location of both the camera and light plane generated
by the laser in respect to the world coordinate system. The turntable center of rotation must
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Figure 4.1: Laser Slit 3D Scanner setup

Figure 4.2: Materials: (Left) 650nm AixiZ 38◦ Line Generator. (Center) Logitech HD Pro Webcam
C920. (Right) Manual turntable.

be calibrated too. At scanning time, the light plane generated by the laser is invisible in the air
but we can see some of its points when the light hits a surface, they will have the color of the
projected light (red in our case). These points can be detected in an image captured by the camera
and its 3D location is found as the intersection of a ray beginning at the camera center, passing
through the corresponding image pixel, and the plane of light (known), Figure 4.3. The location
of the points recovered from each image must be rotated through the z-axis to undo the current
turntable rotation angle.

4.2 Turntable calibration

A computer controlled turntable will provide us with the current rotation angle that corresponds
to the stepper motor current rotation. Sometimes, as in the case of a manual turntable, that in-
formation is not available and the rotation must be computed from the current image. We will
do so with the help of a CALTag checkerboard [AHH10] pasted flat on the turntable surface. The
CALTag checkerboard assigns a unique code to each checkerboard cell which is used to identify
the visible cells in an image even when a region of the checkerboard is occluded. We need this
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Figure 4.3: Laser Slit 3D Scanner setup

property because the target object sitting on top the turntable will occlude a large region of the
CALTag. The corners of the visible checkerboard cells is a set of points rotating together with the
turntable and will allow us to compute a rotation angle for each captured image.

Figure 4.4: (Left) A CALTag checkerboard pasted on the turntable surface helps to recover the
current rotation angle. (Right) Sample CALTag pattern.

At this point we assume the camera is calibrated and a set of images of the turntable at different
rotations was captured. In addition, a set of 3D points on the turntable plane was identified in each
image. Points coordinates are in reference to a known coordinate system chosen by the user. We
will show how to find the unknown center of rotation and the rotation angle of the turntable for
each image. In the current example, we align the coordinate system with the checkerboard and
we identify the checkerboard and turntable planes with the plane z = 0.
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4.2.1 Camera extrinsics

The first step is to find the pose of the camera for each image in reference to the known coordinate
system. At this point we will compute a rotation matrix R and a translation vector T for each
image independently of the others, such that a point p in the reference system projects to a pixel
u, that is

λu = K(Rp+ T ) (4.1)

R =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 , T =

TxTy
Tz

 (4.2)

where u, p, and K are known. Point p = [px, py, 0]T is in the checkerboard plane and u =
[ux, uy, 1]T is expressed in homogenous coordinates. We define ũ = K−1u and rewrite Equation
4.1 as follows

[0, 0, 0]T = ũ× (λũ) = ũ× (Rp+ T ) (4.3)

ũ×

r11px + r12py + Tx
r21px + r22py + Ty
r31px + r32py + Tz

 =

0
0
0

 (4.4)

 −(r21px + r22py + Ty) + ũy(r31px + r32py + Tz)
(r11px + r12py + Tx) − ũx(r31px + r32py + Tz)

−ũy(r11px + r12py + Tx) + ũx(r21px + r22py + Ty)

 =

0
0
0

 . (4.5)

Equation 4.5 provides 3 equations but only 2 of them are linearly independent. We select the first
two equations and we group the unknowns in a vector X = [r11, r21, r31, r12, r22, r32, Tx, Ty, Tz]

T[
0 −px +ũypx 0 −py +ũypy 0 −1 +ũy
px 0 −ũxpx py 0 −ũxpy 1 0 −ũx

]
X =

[
0
0

]
. (4.6)

Until now we have considered a single point p; in general, we will have a set of points {pi|i :
1 . . . n} for each image. Note that the number n of points visible will change from image to image.
We use all the points to build a single system of the form AX = 0 where A ∈ R2n×9 contains 2
rows as in Equation 4.6 for each point pi stacked together, and we solve

X̂ = argmin
X
||AX||, s.t. ||X|| = 1 (4.7)

We constrain the norm of X in order to get a non-trivial solution. Vector X has 8 degrees of
freedom, thus, matrix A must be rank 8 so that a unique solution exists. Therefore, we need at
least 4 non-collinear points in order to get a meaningful result. After solving for X̂ we need to
rebuild R as a rotation matrix.

r̂1 = [r11, r21, r31]
T , r̂2 = [r21, r22, r23]

T , T̂ = [Tx, Ty, Tz]
T , s =

2

||r̂1||+ ||r̂2||
(4.8)

r1 = s r̂1, r3 = r1 × s r̂2, r2 = r3 × r1 (4.9)

R =
[
r1 r2 r3

]
, T = s T̂ (4.10)

Figure 4.5 shows the supplied software running the camera extrinsics computation as described
here.
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Figure 4.5: Screenshot of the supplied software running camera extrinsics computation. (Left)
Image being processed: identified CALTag corners displayed in green. (Right) 3D view: CALTag
corners shown in green below, cameras displayed above with their z-axis on red, the reference
coordinate system was set at the origin of the checkerboard.

4.2.2 Center of rotation and rotation angle

In the previous section we showed how to estimate Rk and Tk for each of the N cameras inde-
pendently. Now, we will use the fact that the turntable rotates in a plane and has a single de-
gree of freedom to improve the computed camera poses. We begin finding the center of rotation
q = [qx, qy, 0]T in the turntable plane which must satisfy the projection equations as any other
point

λkũk = Rkq + Tk (4.11)

By definition of rotation center its position remains unchanged before and after the rotation, this
observation allow us to define Q ≡ λkũk, ∀k, and write

Rkq + Tk = Q (4.12)
R1 −I
R2 −I
...

...
RN −I


[
q
Q

]
=


−T1
−T2

...
−TN

 ⇒ AX = b (4.13)

X̂ = argmin
X
||AX − b|| (4.14)

In order to fix qz = 0, we skip the third column in the rotation matrices reducing A to 5 columns
and changing X = [qx, qy, Qx, Qy, Qz]

T .
Let be αi the rotation angle of the turntable in image i, then for every 1 ≤ k < j ≤ N , we

should have

RTkRj =

cos(αj − αk) − sin(αj − αk) 0
sin(αj − αk) cos(αj − αk) 0

0 0 1

 (4.15)
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The turntable position in the first image is designated as the origin: α1 = 0. We get an approximate
value for each other αk by reading the values cosαk and sinαk from RT1Rk and setting

αk = tan−1
(

sinαk
cosαk

)
(4.16)

Figure 4.6 shows the center of rotation obtained with this method drawn on top of an input
image and its corresponding 3D view.

Figure 4.6: Center of rotation. (Left) Camera image: center of rotation drawn on top. (Right) 3D
view: world coordinate system at the center of the rotation.

4.2.3 Global optimization

The final step in turntable calibration is to refine the values of all the parameters using a global
optimization. The goal is to minimize the reprojection error of the detected points in the images

E(qx, qy, R1, o1, α2, . . . , αN ) =

N∑
k=1

∑
i∈Jk

||uik −Π(KR1Rαk
(pi − ok))||2 (4.17)

where

Rαk
=

cos(αk) − sin(αk) 0
sin(αk) cos(αk) 0

0 0 1

 , ok = RTαk
(o1 − q) + q, ∀k > 1, (4.18)

and
Π(x, y, z) = (x/z, y/z) (4.19)

Jk is the subset of checkerboard corners visible in image k, α1 = 0, and uik is the pixel location
corresponding to pi in image k. We begin the optimization with the values q, R1, o1 = −RT1 T1, and
αk found in the previous sections which are close to the optimal solution.

4.3 Image Laser Detection

In this section we show how to detect the laser slit in the captured images. A common approach
to detection is to compare an image where the laser is seen with a reference image captured while
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the laser is off. That approach is appropriate for a scanner setup where the camera and the object
remains static while the laser changes location. Detection is done by subtracting the intensity in
the new image with the reference intensity and searching the pixels where a significance change
is observed. This method works independently of the laser color, would work even when color
images are not available, it is computationally efficient, and most importantly, it is tuned to the
current scene and illumination, because a new reference image is captured for each new scanning.
However, the method is not applicable if a reference image is not available, or as in the case of the
turntable where we would need as many reference images as turntable positions.

Figure 4.7: The plot shows the red channel intensity along the line in the image highlighted in
yelow. The maximum value does not corresponds to the laser line.

In our scanner we will apply a laser detection algorithm that considers the laser color and it
does work with a single image. In our case we used a red laser and we could expect to examine the
image red channel and find a maximum at the laser location. This is not always true even if there
are no other red points in the scene. For instance, Figure 4.7 shows a typical input image, without
any red color visible besides the laser line, but the highlighted line contains many pixels with red
intensity above the value at the laser location, indicated with a blue line in the plot. The reason is
that red color is not the one with a high value in the red channel—white has high intensities in all
channels. The property of red color is that it only has a high intensity in the red channel. Based on
this observation we will perform the detection in a “channel difference image” defined as

Idiff = Ir −
Ig + Ib

2
(4.20)

where Ir, Ig, and Ib are the image red, green, and blue channels respectively. Figure 4.8 shows
Idiff for the sample image. Now, there is a clear peak at the laser location.

Our detection algorithm involves computing the channel difference image with Equation 4.20
and finding its maximum row by row. In general, we hope to find a single or no laser slit point in
each row because we have oriented the laser line generator vertically. However, in rare occasions
may appear more than one laser slit per line due to object discontinuities. For simplicity, we will
consider only the one with maximum intensity.
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Figure 4.8: Channel difference. The image and plot show a clear peak at the laser line location.

Laser line generators made with a cylinder lens produce a Gaussian light distribution. In
practice, cheap lenses have a profile not so well defined and the observed maximum will vary
randomly in a range close to the line center, Figure 4.9. In order to compensate and make the
estimation more stable from row to row, it is recommended to apply Gaussian smoothing in the
horizontal direction prior to searching the maximum.

Figure 4.9: Laser line intensity plot of several image rows of similar color: (Left) there is no clear
maximum at the peak center, (Right) the maximum is well localized after smoothing.

Figure 4.10 shows the result of the single image laser stripe detection described to the sample
image.

4.4 Background detection

It is desirable to detect and exclude the background from the scanning process. Doing so saves
computation on unwanted image regions, reduces detection errors, and produces a 3D model only
with the object of interest. A pixel imaging a point on the turntable or the object sitting on top of
it will be considered as foreground, all the other pixels are considered background. The set of
foreground and background pixels are disjoint and the union of them contains the whole image.
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Figure 4.10: Laser detection result: (Left) detected points overlapped in red to input image, (Right)
detection result mask.

Additionally, a pixel location could be background in one image and foreground on a different
one. Our goal is to compute the intersection of all images background pixels, that is, identify the
pixel locations that are never foreground and we would like exclude from further processing.

By definition, a pixel location that is always background will have constant intensity. In reality,
a background pixel will have little intensity variations due to the image sensor noise and small
illumination changes. We can check this property by calculating the intensity variance of each
pixel in the whole image set and label as background those with small variances.

Figure 4.11 (Left and Middle) verifies the constant property of background pixels visually.
The background in the mean image is seen sharp, whereas, foreground pixels are blurred due to
their changing intensities. Background pixels are close to zero (black) in the variance image. The
detection result is displayed as a binary mask in Figure 4.11 (Right), foreground is shown in white.

Figure 4.11: Background detection: (Left) mean intensity image, (Middle) variance intensity im-
age, (Right) background mask result.

4.5 Plane of light calibration

We need to calibrate the location of the plane of light generated by the laser. The calibration
consists in identifying some points we know belong to the plane and finding the best plane, in the
least squares sense, that matches them. The projection of the laser line onto the turntable provides
us with a set of such points, however, they are all in a straight line and define a pencil of planes
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rather a single one. An easy way to find additional points is to place a checkerboard plane onto
the turntable and capture images at several rotations, Figure 4.12.

Figure 4.12: Light plane calibration: an extra plane is placed onto the turntable and is rotated to
provide a set of non-collinear points.

The orientation of the camera with respect to the checkerboard plane is calculated with the
method from Section 4.2.1. The laser pixels are identified with the detection algorithm and they
are triangulated using ray-plane intersection providing a set of 3D points on the checkerboard
plane. We can choose to triangulate the laser points on the turntable plane too, which makes
possible to calibrate with a single image. It is recommendable to capture additional images to
have more samples of the light plane for a better calibration. In special, we would like samples at
different depths in the scanning volume. Checkerboard images captured for the camera intrinsic
calibration can be reused to calibrate the plane of light, this way no extra images are required. This
idea is illustrated in Figure 4.13.

4.6 3D model reconstruction

At this point the system is fully calibrated: camera internal parameters, camera pose, world coor-
dinate system, turntable rotation angle in each image, and the plane of light are all known. The last
step is to identify the laser slits corresponding to the target object, triangulate them by ray-plane
intersection with the light plane, and place the result in the world coordinate system by undoing
the turntable rotation at each image. To generate only points in the model only foreground pixels
are triangulated, and only the 3D points within the scanning volume are added to the model. The
scanning volume is easily defined as the rectangular region of the turntable checkerboard and ex-
tending vertically in the direction of the z-axis by a user given height. Figure 4.14 shows the result
output following the methods from this chapter and without any additional post-processing.
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Figure 4.13: Light plane calibration result. A checkerdboard plane was placed on the turntable
and images at several rotations were captured. Images are used first for camera calibration, and
later for calibration of the light plane (shown in orange).

Figure 4.14: Laser Slit 3D Scanner result: (Left) 3D model in the sample software, (Right) 3D model
output.
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Chapter 5

Structured Lighting

In this chapter we describe how to build a structured light scanner using one or more digital
cameras and a single projector. While the Laser Slit 3D Scanner implemented in the previous
chapter is widely used, it needs hundreds of images to build a complete model with acceptable
detail. It could be argued that the scanning process is inefficient, in the sense that only a very small
set of pixels illuminated by the laser contribute to the scan in each image, and the rest are mostly
ignored. On the contrary, a Structured Light Scanner replaces the projected laser line with a data
projector capable of displaying 2-dimensional patterns covering a much larger object region, and
generating a 3D model containing all the points being simultaneously illuminated by the projector
and visible from the cameras. More information is extracted from each image, thus, reducing the
number of images required and the total scanning time. A turntable is still useful, but only a few
rotations will be required to build a full model.

The structured light scanner builds on top of the theory and algorithms developed in the previ-
ous chapters. Reconstruction is now accomplished using ray-ray triangulation between projector
and camera pixels. The key concept here is that correspondences are established by decoding
certain structured light sequences. The methods described below are already implemented in the
Projector-Camera Calibration software introduced in Chapter 3. Here we will expand on how
projector columns and rows are coded in the patterns and later decoded from the camera images.

5.1 Structured Light Scanner

Structured light scanners became highly popular in the recent years, mainly because of the low
cost and wide availability of quality data projectors and cameras. The concept of structured light
refers to the idea of the scene being illuminated by specially designed patterns. A quick review of
the literature will reveal that many different patterns have been proposed using different coding
strategies. Salvi et al. [SFPL10] give several pattern classifications depending on whether they
make use of color, the number of images required, the type of encoding, and whether they encode
discrete or continuous quantities, a few examples are shown in Figure 5.1. We will focus only on
discrete binary patterns and a minor variant known as Gray code, both are shown in Figures 5.3
and 5.4.

5.1.1 Scanner Hardware

Our scanner is built with a single camera and a single data projector. This choice replicates passive
stereo scanners which observe a scene with a pair of cameras and build a 3D model by triangulat-
ing points visible in both of them. Identifying the exact position where points from the first view
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(a) De Bruijn color stripes (b) Color M–Array (c) Phase shifting

Figure 5.1: Patterns with different coding strategies.

appear in the second view is a difficult task in general, known as “establishing pixel correspon-
dences”. Here, we replace one camera by a projector to simplify this task. As with other systems,
several cameras and projectors could be added to extend the scanned area, or to provide more
accurate measurements, but we will not discuss those variants here, however, once understood
the concepts from this chapter, it should be more or less straightforward to generalized them to
other configurations.

We will use the Logitech C920 Webcam and an Optoma ML550 projector setup as in Figure 5.2.
The target object may be placed on a turntable and several scans can be aligned to build a 360◦

model by calibrating the turntable as in Section 4.2. It is advisable to mount the camera and
projector in a tripod because they must remain fixed at all times.

Figure 5.2: Structured light scanner sample setup: Optoma ML550 projector, Logitech C920 Web-
cam, target object on a turntable, and computer.

5.1.2 Structured Light Sequences

The primary benefit of introducing the projector is to eliminate the mechanical motion required in
the Laser Slit 3D Scanner. Assuming minimal lens distortion, the projector can be used to display
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Figure 5.3: Structured light illumination sequences. (Top row, left to right) The first four bit planes
of a binary encoding of the projector columns, ordered from most to least significant bit. (Bottom
row, left to right) The first four bit planes of a Gray code sequence encoding the projector columns.

a single column (or row) of white pixels translating against a black background; thus, as many
images as columns (or rows) in the projector would be required in order to assign the correspon-
dences, in our implementation, between camera pixels and projector columns (or rows). After
establishing the correspondences and calibrating the system, a 3D point cloud is reconstructed
using familiar ray-plane triangulation. However, a simple strategy like this does not fully exploit
the projector. Since we are free to project arbitrary 24-bit color images, one would expect there to
exist a sequence of coded patterns, besides a simple translation of a single stripe, that allow the
projector-camera correspondences to be assigned in relatively few frames. In general, the identity
of each plane can be encoded spatially (i.e., within a single frame) or temporally (i.e., across mul-
tiple frames), or with a combination of both spatial and temporal encodings. There are benefits
and drawbacks to each strategy. For instance, purely spatial encodings allow a single static pat-
tern to be used for reconstruction, enabling dynamic scenes to be captured. Alternatively, purely
temporal encodings are more likely to benefit from redundancy, reducing reconstruction artifacts.

In this chapter we will focus on purely temporal encodings. While such patterns are not well-
suited to scanning dynamic scenes, they have the benefit of being easy to decode and are robust
to surface texture variation, producing accurate reconstructions for static objects (with the normal
prohibition of transparent or other problematic materials). A simple binary structured light se-
quence was first proposed by Posdamer and Altschuler [PA82] in 1981. As shown in Figure 5.3,
the binary encoding consists of a sequence of binary images in which each frame is a single bit
plane of the binary representation of the integer indices for the projector columns (or rows). For
example, column 546 in our prototype has a binary representation of 1000100010 (ordered from
the most to the least significant bit). Similarly, column 546 of the binary structured light sequence
has an identical bit sequence, with each frame displaying the next bit.

Considering the projector-camera arrangement as a communication system, then a key ques-
tion immediately arises; what binary sequence is most robust to the known properties of the
channel noise process? At a basic level, we are concerned with assigning an accurate projector
column/row to camera pixel correspondence, otherwise triangulation artifacts will lead to large
reconstruction errors. Gray codes were first proposed as one alternative to the simple binary en-
coding by Inokuchi et al. [ISM84] in 1984. The reflected binary code was introduced by Frank Gray
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(a) binary structured light sequence

(b) Gray code structured light sequence

Figure 5.4: Comparison of binary (top) and Gray code (bottom) structured light sequences. Each
image represents the sequence of bit planes displayed during data acquisition. Image rows cor-
respond to the bit planes encoding the projector columns, assuming a projector resolution of
1024×768, ordered from most to least significant bit (from top to bottom).

BIN2GRAY(B)
1 n← length[B]
2 G[1]← B[1]
3 for i← 2 to n
4 do G[i]← B[i− 1] xor B[i]
5 return G

GRAY2BIN(G)
1 n← length[G]
2 B[1]← G[1]
3 for i← 2 to n
4 do B[i]← B[i− 1] xor G[i]
5 return B

Table 5.1: Pseudocode for converting between binary and Gray codes. (Left) BIN2GRAY accepts an
n-bit Boolean array, encoding a decimal integer, and returns the Gray code G. (Right) Conversion
from a Gray to a binary sequence is accomplished using GRAY2BIN.

in 1947 [Wik]. As shown in Figure 5.4, the Gray code can be obtained by reflecting, in a specific
manner, the individual bit-planes of the binary encoding. Pseudocode for converting between bi-
nary and Gray codes is provided in Table 5.1. For example, column 546 in our implementation has
a Gray code representation of 1100110011, as given by BIN2GRAY. The key property of the Gray
code is that two neighboring code words (e.g., neighboring columns in the projected sequence)
only differ by one bit (i.e., adjacent codes have a Hamming distance of one). As a result, the Gray
code structured light sequence tends to be more robust to decoding errors than a simple binary
encoding and binary codes should no be used in general.

5.2 Image Processing

The algorithms used to decode the structured light sequences described in the previous section
are relatively straightforward. For each camera, it must be determined whether a given pixel is
directly illuminated by the projector in each displayed image. If it is illuminated in any given
frame, then the corresponding code bit is set high, otherwise it is set low. The decimal integer
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(a) all-white image (b) decoded row indices (c) decoded column indices

Figure 5.5: Decoding structured light illumination sequences. (a) Camera image captured while
projecting an all white frame. Note the shadow cast on the background plane, prohibiting recon-
struction in this region. (b) Typical decoding results for a Gray code structured light sequence,
with projector row and camera pixel correspondences represented using a jet colormap in MAT-
LAB. Points that cannot be assigned a correspondence with a high confidence are shown in black.
(c) Similar decoding results for projector column correspondences.

index of the corresponding projector column (and/or row) can then be recovered by decoding
the received bit sequences for each camera pixel. A user-selected intensity threshold is used to
determine whether a given pixel is illuminated. For instance, dlog2we + 2 images could be used
to encode the projector columns, with the additional two images consisting of all-white and all-
black frames. The average intensity of the all-white and all-black frames could be used to assign a
per-pixel threshold; the individual bit planes of the projected sequence could then be decoded by
comparing the received intensity to the threshold.

In practice, a single fixed threshold results in decoding artifacts. For instance, certain points
on the surface may only receive indirect illumination scattered from directly-illuminated points.
In certain circumstances the scattered light may cause a bit error, in which an unilluminated point
appears illuminated due to scattered light. Depending on the specific structured light sequence,
such bit errors may produce significant reconstruction errors in the 3D point cloud. One solution
is to project each bit plane and its inverse. While 2dlog2we frames are now required to encode
the projector columns, the decoding process is less sensitive to scattered light, since a variable
per-pixel threshold can be used. Specifically, a bit is determined to be high or low depending on
whether a projected bit-plane or its inverse is brighter at a given pixel. Typical decoding results
are shown in Figure 5.5.

The provided software [MT] uses a Gray code sequence and its inverse, for both columns and
rows, plus the all-white and all-black images, but it implements a method called “Robust pixel
classification” [XA07] to decide if a pixel was white, black, or it is set as “unknown” if cannot
be decided. Robust pixel classification provides a set of rules designed to take into account that
indirect illumination may cause some pixels to appear brighter than they should be. The rules
require to separate each image into “global illumination“ and “direct illumination” components.
We call direct illumination the light which hits the scene “coming directly” from the projector, and
global illumination any other light contributions including the ambient light. Implementing the
robust classification is optional but we have found that the result improves without adding much
decoding overhead.
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As with any communication system, the design of structured light sequences must account
for anticipated artifacts introduced by the communication channel. In a typical projector-camera
system decoding artifacts are introduced from a wide variety of sources, including projector or
camera defocus, scattering of light from the surface, and temporal variation in the scene (e.g.,
varying ambient illumination or a moving object). We have provided a variety of data sets for
testing your decoding algorithms. In particular, the man sequence has been captured using both
binary and Gray code structured light sequences. Furthermore, both codes have been applied
when the projector is focused and defocused at the average depth of the sculpture. We encour-
age the reader to study the decoding artifacts produced under these non-ideal, yet commonly
encountered, circumstances.

5.3 Calibration

The structured light scanner uses the triangulation principle to reconstruct the scanned model.
In order to map pixel positions to world rays the system must be calibrated. In our case, we
need to find the intrinsic parameters of the camera and projector, and the relative rotation and
translation between them. If a turntable is used, the world coordinate system must be placed at
its center of rotation as in the previous chapter, which has to be calibrated, and the rotation and
translation from world coordinates to camera coordinates must be found. Without a turntable,
the world coordinate system may be placed at the camera (or projector) center and with the same
orientation. We will use the Projector-Camera Calibration software [MT] to calibrate everything
but the turntable, which must be calibrated as in Section 4.2.

5.4 Reconstruction

The decoded set of camera and projector correspondences can be used to reconstruct a 3D point
cloud. Several reconstruction schemes can be implemented using the sample sequences. The
projector column correspondences can be used to reconstruct a point cloud using ray-plane tri-
angulation. A second point cloud can be reconstructed using the projector row correspondences.
Finally, the projector pixel to camera pixel correspondences can be used to reconstruct the point
cloud using ray-ray triangulation (i.e., by finding the closest point to the optical rays defined by
the projector and camera pixels). A simple per-point RGB color can be assigned by sampling the
color of the all-white camera image for each 3D point. Reconstruction artifacts can be further re-
duced by comparing the reconstruction produced by each of these schemes. Typical results are
shown in Figures 5.6–5.9.

The provided software implements ray-ray triangulation between camera and projector pixels,
using the approximate intersection from Section 2.3.2. In order to remove errors, the minimum
distance between rays is also computed and compared with a user-set threshold, a small distance
is considered as intersection and a 3D point is created, otherwise the point is ignored. As usual,
if the dimensions of the scanning volume is available, or can be roughly estimated, only points
within the volume must be added to the model.
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Figure 5.6: Reconstruction of the chiquita Gray code sequence.

Figure 5.7: Reconstruction of the schooner Gray code sequence.

Figure 5.8: Reconstruction of the urn Gray code sequence.

Figure 5.9: Reconstruction of the drummer Gray code sequence.

5.5 Sample software

The structured light scanner produces a colored 3D point cloud. Only points that are both im-
aged by a camera and illuminated by the projector can be reconstructed. As a result, a complete
3D model of an object would typically require merging multiple scans obtained by moving the
scanning apparatus or object (e.g., by using a turntable). These issues are considered in Chapter 6.
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We encourage the reader to implement their own solution so that measurements from multiple
cameras, projectors, and 3D point clouds can be merged. As a reference the Projector-Camera
Calibration software described Chapter 3 implements both the calibration and scanning using a
structured light system.

Data acquisition for scanning is identical as how the calibration sequences were collected. A re-
construction for each individual sequence is performed by highlighting the sequence folder name
in the list on the left part of the main screen and clicking “Reconstruct”. Once the reconstruction
is complete a file save dialog will open asking a pointcloud file name. At the time of writing, the
software does not include a visualization of the result but the generated file can be opened using
a standard 3D viewer (e.g. Meshlab [mes]). The software can reconstruct as many scans of an ob-
ject as required but it will not merge them into a single model, each reconstruction will be stored
as a separate pointcloud and must be merged using a separate software. Optionally, the surface
normal at each point is estimated and added to the output creating an “oriented pointcloud” in-
stead. Normals are useful to create more interesting visualizations and they are usually required
by surface reconstruction tools.

(a) Software main screen (b) 3D model result

Figure 5.10: Scanning example using the Projector-Camera Calibration software.
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Chapter 6

Surfaces from Point Clouds

The objects scanned in the previous examples are solid, with a well-defined boundary surface
separating the inside from the outside. Since computers have a finite amount of memory and
operations need to be completed in a finite number of steps, algorithms can only be designed
to manipulate surfaces described by a finite number of parameters. Perhaps the simplest surface
representation with a finite number of parameters is produced by a finite sampling scheme, where
a process systematically chooses a set of points lying on the surface.

The triangulation-based 3D scanners described in previous chapters produce such a finite sam-
pling scheme. The so-called point cloud, a dense collection of surface samples, has become a pop-
ular representation in computer graphics. However, since point clouds do not constitute surfaces,
they cannot be used to determine which 3D points are inside or outside of the solid object. For
many applications, being able to make such a determination is critical. For example, without
closed bounded surfaces, volumes cannot be measured. Therefore, it is important to construct
so-called watertight surfaces from point clouds. In this chapter we consider these issues.

6.1 Representation and Visualization of Point Clouds

In addition to the 3D point locations, the 3D scanning methods described in previous chapters are
often able to estimate a color per point, as well as a surface normal vector. Some methods are able
to measure both color and surface normal, and some are able to estimate other parameters which
can be used to describe more complex material properties used to generate complex renderings.
In all these cases the data structure used to represent a point cloud in memory is a simple array.
A minimum of three values per point are needed to represent the point locations. Colors may
require one to three more values per point, and normals vectors three additional values per point.
Other properties may require more values, but in general it is the same number of parameters per
point that need to be stored. If M is the number of parameters per point and N is the number of
points, then point cloud can be represented in memory using an array of length NM .

6.1.1 File Formats

Storing and retrieving arrays from files is relatively simple, and storing the raw data either in
ASCII format or in binary format is a valid solution to the problem. However, these solutions may
be incompatible with many software packages. We want to mention two standards which have
support for storing point clouds with some auxiliary attributes.
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Storing Point Clouds as VRML Files

The Virtual Reality Modeling Language (VRML) is an ISO standard published in 1997. A VRML
file describes a scene graph comprising a variety of nodes. Among geometry nodes, PointSet
and IndexedFaceSet are used to store point clouds. The PointSet node was designed to store
point clouds, but in addition to the 3D coordinates of each point, only colors can be stored. No
other attributes can be stored in this node. In particular, normal vectors cannot be recorded. This
is a significant limitation, since normal vectors are important both for rendering point clouds and
for reconstructing watertight surfaces from point clouds.

The IndexedFaceSet node was designed to store polygon meshes with colors, normals,
and/or texture coordinates. In addition to vertex coordinates, colors and normal vectors can be
stored bound to vertices. Even though the IndexedFaceSet node was not designed to represent
point clouds, the standard allows for this node to have vertex coordinates and properties such as
colors and/or normals per vertex, but no faces. The standard does not specify how such a node
should be rendered in a VRML browser, but since they constitute valid VRML files, they can be
used to store point clouds.

The SFL File Format

The SFL file format was introduced with Pointshop3D [ZPKG02] to provide a versatile file format
to import and export point clouds with color, normal vectors, and a radius per vertex describing
the local sampling density. A SFL file is encoded in binary and features an extensible set of surfel
attributes, data compression, upward and downward compatibility, and transparent conversion
of surfel attributes, coordinate systems, and color spaces. Pointshop3D is a software system for in-
teractive editing of point-based surfaces, developed at the Computer Graphics Lab at ETH Zurich.

6.1.2 Visualization

A well-established technique to render dense point clouds is point splatting. Each point is re-
garded as an oriented disk in 3D, with the orientation determined by the surface normal evaluated
at each point, and the radius of the disk usually stored as an additional parameter per vertex. As
a result, each point is rendered as an ellipse. The color is determined by the color stored with the
point, the direction of the normal vector, and the illumination model. The radii are chosen so that
the ellipses overlap, resulting in the perception of a continuous surface being rendered.

6.2 Merging Point Clouds

The triangulation-based 3D scanning methods described in previous chapters are able to produce
dense point clouds. However, due to visibility constraints these point clouds may have large gaps
without samples. In order for a surface point to be reconstructed, it has to be illuminated by
a projector, and visible by a camera. In addition, the projected patterns needs to illuminate the
surface transversely for the camera to be able to capture a sufficient amount of reflected light. In
particular, only points on the front-facing side of the object can be reconstructed (i.e., on the same
side as the projector and camera). Some methods to overcome these limitations are discussed in
Chapter 7. However, to produce a complete representation, multiple scans taken from various
points of view must be integrated to produce a point cloud with sufficient sampling density over
the whole visible surface of the object being scanned.
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6.2.1 Computing Rigid Body Matching Transformations

The main challenge to merging multiple scans is that each scan is produced with respect to a
different coordinate system. As a result, the rigid body transformation needed to register one
scan with another must be estimated. In some cases the object is moved with respect to the scan-
ner under computer control. In those cases the transformations needed to register the scans are
known within a certain level of accuracy. This is the case when the object is placed on a computer-
controlled turntable or linear translation stage. However, when the object is repositioned by hand,
the matching transformations are not known and need to be estimated from point correspon-
dences.

We now consider the problem of computing the rigid body transformation q = Rp+T to align
two shapes from two sets of N points, {p1, . . . , pN} and {q1, . . . , qN}. That is, we are looking for a
rotation matrix R and a translation vector T so that

q1 = Rp1 + T . . . qN = RpN + T .

The two sets of points can be chosen interactively or automatically. In either case, being able to
compute the matching transformation in closed form is a fundamental operation.

This registration problem is, in general, not solvable due to measurement errors. A common
approach in such a case is to seek a least-squares solution. In this case, we desire a closed-form
solution for minimizing the mean squared error

φ(R, T ) =
1

N

N∑
i=1

‖Rpi + T − qi‖2 , (6.1)

over all rotation matrices R and translation vectors T . This yields a quadratic function of 12
components in R and T ; however, since R is restricted to be a valid rotation matrix, there exist ad-
ditional constraints on R. Since the variable T is unconstrained, a closed-form solution for T , as a
function ofR, can be found by solving the linear system of equations resulting from differentiating
the previous expression with respect to T .

1

2

∂φ

∂T
=

1

N

N∑
i=1

(Rpi + T − qi) = 0⇒ T = q −Rp

In this expression p and q are the geometric centroids of the two sets of matching points, given by

p =

(
1

N

N∑
i=1

pi

)
q =

(
1

N

N∑
i=1

qi

)
.

Substituting for T in Equation 6.1, we obtain the following equivalent error function which de-
pends only on R.

ψ(R) =
1

N

N∑
i=1

‖R(pi − p)− (qi − q)‖2 (6.2)

If we expand this expression we obtain

ψ(R) =
1

N

N∑
i=1

‖pi − p‖2 −
2

N

N∑
i=1

(qi − q)tR(pi − p) +
1

N

N∑
i=1

‖qi − q‖2 ,
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since ‖Rv‖2 = ‖v‖2 for any vector v. As the first and last terms do not depend on R, maximizing
this expression is equivalent to maximizing

η(R) =
1

N

N∑
i=1

(qi − q)tR(pi − p) = trace(RM) ,

where M is the 3× 3 matrix

M =
1

N

N∑
i=1

(pi − p)(qi − q)t .

Recall that, for any pair of matricesA andB of the same dimensions, trace(AtB) = trace(BAt). We
now consider the singular value decomposition (SVD)M = U∆V t, where U and V are orthogonal
3× 3 matrices, and ∆ is a diagonal 3× 3 matrix with elements δ1 ≥ δ2 ≥ δ3 ≥ 0. Substituting, we
find

trace(RM) = trace(RU∆V t) = trace((V tRU)∆) = trace(W∆) ,

where W = V tRU is orthogonal. If we expand this expression, we obtain

trace(W∆) = w11δ1 + w22δ2 + w33δ3 ≤ δ1 + δ2 + δ3 ,

where W = (wij). The last inequality is true because the components of an orthogonal matrix
cannot be larger than one. Note that the last inequality is an equality only if w11 = w22 = w33 = 1,
which is only the case whenW = I (the identity matrix). It follows that if V tU is a rotation matrix,
then R = V tU is the minimizer of our original problem. The matrix V tU is an orthogonal matrix,
but it may not have a negative determinant. In that case, an upper bound for trace(W∆), with W
restricted to have a negative determinant, is achieved for W = J , where

J =

1 0 0
0 1 0
0 0 −1

 .

In this case it follows that the solution to our problem is R = V tJU .

6.2.2 The Iterative Closest Point (ICP) Algorithm

The Iterative Closest Point (ICP) is an algorithm employed to match two surface representations,
such as points clouds or polygon meshes. This matching algorithm is used to reconstruct 3D
surfaces by registering and merging multiple scans. The algorithm is straightforward and can
be implemented in real-time. ICP iteratively estimates the transformation (i.e., translation and
rotation) between two geometric data sets. The algorithm takes as input two data sets, an initial
estimate for the transformation, and an additional criterion for stopping the iterations. The output
is an improved estimate of the matching transformation. The algorithm comprises the following
steps.

1. Select points from the first shape.

2. Associate points, by nearest neighbor, with those in the second shape.

3. Estimate the closed-form matching transformation using the method derived in the previous
section.
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4. Transform the points using the estimated parameters.

5. Repeat previous steps until the stopping criterion is met.

The algorithm can be generalized to solve the problem of registering multiple scans. Each scan has
an associated rigid body transformation which will register it with respect to the rest of the scans,
regarded as a single rigid object. An additional external loop must be added to the previous steps
to pick one transformation to be optimized with each pass, while the others are kept constant—
either going through each of the scans in sequence, or randomizing the choice.

6.3 Surface Reconstruction from Point Clouds

Watertight surfaces partition space into two disconnected regions so that every line segment join-
ing a point in one region to a point in the other must cross the dividing surface. In this section we
discuss methods to reconstruct watertight surfaces from point clouds.

6.3.1 Continuous Surfaces

In mathematics surfaces are represented in parametric or implicit form. A parametric surface
S = {x(u) : u ∈ U} is defined by a function x : U → IR3 on an open subset U of the plane.
An implicit surface is defined as a level set S = {p ∈ IR3 : f(p) = λ} of a continuous function
f : V → IR, where V is an open subset in 3D. These functions are most often smooth or piecewise
smooth. Implicit surfaces are called watertight because they partition space into the two discon-
nected sets of points, one where f(p) > λ and a second where f(p) < λ. Since the function f is
continuous, every line segment joining a point in one region to a point in the other must cross the
dividing surface. When the boundary surface of a solid object is described by an implicit equa-
tion, one of these two sets describes the inside of the object, and the other one the outside. Since
the implicit function can be evaluated at any point in 3D space, it is also referred to as a scalar
field. On the other hand, parametric surfaces may or may not be watertight. In general, it is diffi-
cult to determine whether a parametric surface is watertight or not. In addition, implicit surfaces
are preferred in many applications, such as reverse engineering and interactive shape design, be-
cause they bound a solid object which can be manufactured; for example, using rapid prototyping
technologies or numerically-controlled machine tools, such representations can define objects of
arbitrary topology. As a result, we focus our remaining discussion on implicit surfaces.

6.3.2 Discrete Surfaces

A discrete surface is defined by a finite number of parameters. We only consider here polygon
meshes, and in particular those polygon meshes representable as IndexedFaceSet nodes in
VRML files. Polygon meshes are composed of geometry and topological connectivity. The geome-
try includes vertex coordinates, normal vectors, and colors (and possibly texture coordinates). The
connectivity is represented in various ways. A popular representation used in many isosurface al-
gorithms is the polygon soup, where polygon faces are represented as loops of vertex coordinate
vectors. If two or more faces share a vertex, the vertex coordinates are repeated as many times as
needed. Another popular representation used in isosurface algorithms is the IndexedFaceSet
(IFS), describing polygon meshes with simply-connected faces. In this representation the geome-
try is stored as arrays of floating point numbers. In these notes we are primarily concerned with
the array coord of vertex coordinates, and to a lesser degree with the array normal of face nor-
mals. The connectivity is described by the total number V of vertices, and F faces, which are
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stored in the coordIndex array as a sequence of loops of vertex indices, demarcated by values of
−1.

6.3.3 Isosurfaces

An isosurface is a polygonal mesh surface representation produced by an isosurface algorithm.
An isosurface algorithm constructs a polygonal mesh approximation of a smooth implicit sur-
face S = {x : f(x) = 0} within a bounded three-dimensional volume, from samples of a defin-
ing function f(x) evaluated on the vertices of a volumetric grid. Marching Cubes [LC87] and
related algorithms operate on function values provided at the vertices of hexahedral grids. An-
other family of isosurface algorithms operate on functions evaluated at the vertices of tetrahedral
grids [DK91]. Usually, no additional information about the function is provided, and various in-
terpolation schemes are used to evaluate the function within grid cells, if necessary. The most
natural interpolation scheme for tetrahedral meshes is linear interpolation, which we also adopt
here.

6.3.4 Isosurface Construction Algorithms

An isosurface algorithm producing a polygon soup output must solve three key problems: (1)
determining the quantity and location of isosurface vertices within each cell, (2) determining how
these vertices are connected forming isosurface faces, and (3) determining globally consistent face
orientations. For isosurface algorithms producing IFS output, there is a fourth problem to solve:
identifying isosurface vertices lying on vertices and edges of the volumetric grid. For many vi-
sualization applications, the polygon soup representation is sufficient and acceptable, despite the
storage overhead. Isosurface vertices lying on vertices and edges of the volumetric grid are in-
dependently generated multiple times. The main advantage of this approach is that it is highly
parallelizable. But, since most of these boundary vertices are represented at least twice, it is not a
compact representation.

Researchers have proposed various solutions and design decisions (e.g., cell types, adaptive
grids, topological complexity, interpolant order) to address these four problems. The well-known
Marching Cubes (MC) algorithm uses a fixed hexahedral grid (i.e., cube cells) with linear interpo-
lation to find zero-crossings along the edges of the grid. These are the vertices of the isosurface
mesh. Second, polygonal faces are added connecting these vertices using a table. The crucial ob-
servation made with MC is that the possible connectivity of triangles in a cell can be computed
independently of the function samples and stored in a table. Out-of-core extensions, where se-
quential layers of the volume are processed one at a time, are straightforward.

Similar tetrahedral-based algorithms [DK91, GH95, TPG99], dubbed Marching Tetrahedra (MT),
have also been developed (again using linear interpolation). Although the cell is simpler, MT re-
quires maintaining a tetrahedral sampling grid. Out-of-core extensions require presorted traversal
schemes, such as in [CS97]. For an unsorted tetrahedral grid, hash tables are used to save and re-
trieve vertices lying on edges of the volumetric grid. As an example of an isosurface algorithm,
we discuss MT in more detail.

Marching Tetrahedra

MT operates on the following input data: (1) a tetrahedral grid and (2) one piecewise linear
function f(x), defined by its values at the grid vertices. Within the tetrahedron with vertices
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Figure 6.1: In isosurface algorithms, the sign of the function at the grid vertices determines the
topology and connectivity of the output polygonal mesh within each tetrahedron. Mesh vertices
are located on grid edges where the function changes sign.

x0, x1, x2, x3 ∈ IR3, the function is linear and can be described in terms of the barycentric coordi-
nates b = (b0, b1, b2, b3)

t of an arbitrary internal point x = b0 x0 + b1 x1 + b2 x2 + b3 x3 with respect
to the four vertices: f(x) = b0 f(x0) + b1 f(x1) + b2 f(x2) + b3 f(x3), where b0, b1, b2, b3 ≥ 0 and
b0 + b1 + b2 + b3 = 1. As illustrated in Figure 6.1, the sign of the function at the four grid vertices
determines the connectivity (e.g., triangle, quadrilateral, or empty) of the output polygonal mesh
within each tetrahedron. There are actually 16 = 24 cases, which modulo symmetries and sign
changes reduce to only three. Each grid edge, whose end vertex values change sign, corresponds
to an isosurface mesh vertex. The exact location of the vertex along the edge is determined by lin-
ear interpolation from the actual function values, but note that the 16 cases can be precomputed
and stored in a table indexed by a 4-bit integer i = (i3i2i1i0), where ij = 1 if f(xj) > 0 and ij = 0,
if f(xj) < 0. The full table is shown in Table 6.1. The cases f(xj) = 0 are singular and require spe-
cial treatment. For example, the index is i = (0100) = 4 for Figure 6.1(a), and i = (1100) = 12 for
Figure 6.1(b). Orientation for the isosurface faces, consistent with the orientation of the contain-
ing tetrahedron, can be obtained from connectivity alone (and are encoded in the look-up table as
shown in Table 6.1). For IFS output it is also necessary to stitch vertices as described above.

Algorithms to polygonize implicit surfaces [Blo88], where the implicit functions are provided
in analytic form, are closely related to isosurface algorithms. For example, Bloomenthal and Fergu-
son [BF95] extract non-manifold isosurfaces produced from trimming implicits and parameterics
using a tetrahedral isosurface algorithm. [WvO96] polygonize boolean combinations of skeletal
implicits (Boolean Compound Soft Objects), applying an iterative solver and face subdivision for
placing vertices along feature edges and points. Suffern and Balsys [SB03] present an algorithm
to polygonize surfaces defined by two implicit functions provided in analytic form; this same
algorithm can compute bi-iso-lines of pairs of implicits for rendering.

Isosurface Algorithms on Hexahedral Grids

An isosurface algorithm constructs a polygon mesh approximation of a level set of a scalar func-
tion defined in a finite 3D volume. The function f(p) is usually specified by its values fα = f(pα)
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i (i3i2i1i0) face
0 0000 [-1]
1 0001 [2,1,0,-1]
2 0010 [0,3,4,-1]
3 0011 [1,3,4,2,-1]
4 0100 [1,5,3,-1]
5 0101 [0,2,5,3,-1]
6 0110 [0,3,5,4,-1]
7 0111 [1,5,2,-1]
8 1000 [2,5,1,-1]
9 1001 [4,5,3,0,-1]

10 1010 [3,5,2,0,-1]
11 1011 [3,5,1,-1]
12 1100 [2,4,3,1,-1]
13 1101 [4,3,0,-1]
14 1110 [0,1,2,-1]
15 1111 [-1]

e edge
0 (0,1)
1 (0,2)
2 (0,3)
3 (1,2)
4 (1,3)
5 (2,3)

Table 6.1: Look-up tables for tetrahedral mesh isosurface evaluation. Note that consistent face
orientation is encoded within the table. Indices stored in the first table reference tetrahedron
edges, as indicated by the second table of vertex pairs (and further illustrated in Figure 6.1). In
this case, only edge indices {1, 2, 3, 4} have associated isosurface vertex coordinates, which are
shared with neighboring cells.

on a regular grid of three dimensional points

G = {pα : α = (α0, α1, α2) ∈ [[n0]]×[[n1]]×[[n2]]} ,

where [[nj ]] = {0, . . . , nj − 1}, and by a method to interpolate in between these values. The surface
is usually represented as a polygon mesh, and is specified by its isovalue f0. Furthermore, the
interpolation scheme is assumed to be linear along the edges of the grid, so that the isosurface
cuts each edge in no more than one point. If pα and pβ are grid points connected by an edge, and
fα > f0 > fβ , the location of the point pαβ where the isosurface intersects the edge is

pαβ =
fα − f0
fα − fβ

pβ +
fβ − f0
fβ − fα

pα . (6.3)

Marching Cubes

One of the most popular isosurface extraction algorithms is Marching Cubes [LC87]. In this algo-
rithm the points defined by the intersection of the isosurface with the edges of the grid are the
vertices of the polygon mesh. These vertices are connected forming polygon faces according to
the following procedure. Each set of eight neighboring grid points define a small cube called a cell

Cα = {pα+β : β ∈ {0, 1}3}.

Since the function value associated with each of the eight corners of a cell may be either above
or below the isovalue (isovalues equal to grid function values are called singular and should be
avoided), there are 28 = 256 possible configurations. A polygonization of the vertices within each
cell, for each one of these configurations, is stored in a static look-up table. When symmetries are
taken into account, the size of the table can be reduced significantly.
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6.3.5 Algorithms to Fit Implicit Surfaces to Point Clouds

Let U be a relatively open and simply-connected subset of IR3, and f : U → IR a smooth function.
The gradient ∇f is a vector field defined on U . Given an oriented point cloud, i.e., a finite set D
of point-vector pairs (p, n), where p is an interior point of U , and n is a unit length 3D vector, the
problem is to find a smooth function f so that f(p) ≈ 0 and ∇(p) ≈ n for every oriented point
(p, n) in the data set D. We call the zero iso-level set of such a function {p : f(p) = 0} a surface fit,
or surface reconstruction, for the data set D.

We are particularly interested in fitting isosurfaces to oriented point points. For the sake of
simplicity, we assume that the domain is the unit cube U = [0, 1]3, the typical domain of an iso-
surface defined on an hexahedral mesh, and the isolevel is zero, i.e., the isosurface to be fitted to
the data points is {p : f(p) = 0}, but of course, the argument applies in more general cases.

Figure 6.2: Early results of Vector Field Isosurface reconstruction from oriented point clouds introduced
in [ST05].

Figure 6.2 shows results of surface reconstruction from an oriented point cloud using the sim-
ple variational formulation presented in [ST05], where oriented data points are regarded as sam-
ples of the gradient vector field of an implicit function, which is estimated by minimizing this
energy function

E1(f) =
m∑
i=1

f(pi)
2 + λ1

m∑
i=1

‖∇f(pi)− ni‖2 + λ2

∫
V
‖Hf(x)‖2 dx , (6.4)

where f(x) is the implicit function being estimated, ∇f(x) is the gradient of f , Hf(x) is the Hes-
sian of f(x), (p1, n1), . . . , (pm, nm) are point-normal data pairs, V is a bounding volume, and λ1
and λ2 are regularization parameters. Minimizing this energy requires the solution of a simple
large and sparse least squares problem. The result is usually unique modulo an additive con-
stant. Given that, for rendering or post-processing, isosurfaces are extracted from scalar functions
defined over regular grids (e.g., via Marching Cubes), it is worth exploring representations of im-
plicit functions defined as a regular scalar fields. Finite difference discretization is used in [ST05],
with the volume integral resulting in a sum of gradient differences over the edges of the regular
grid, yet Equation 6.4 can be discretized in many other ways.
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Conclusion

As low-cost mobile projectors enter the market, we expect students and hobbyists to begin incor-
porating them into their own 3D scanning systems. Such projector-camera systems have already
received a great deal of attention in recent academic publications. Whether for novel human-
computer interaction or ad-hoc tiled displays, consumer digital projection is set to revolutionize
the way we interact with both physical and virtual assets.

This course was designed to lower the barrier of entry to novices interested in trying 3D scan-
ning in their own projects. Through the course notes, on-line materials, and open source software,
we have endeavored to eliminate the most difficult hurdles facing beginners. We encourage atten-
dees to email the authors with questions or links to their own 3D scanning projects that draw on
the course material. Revised course notes, updated software, recent publications, and similar do-
it-yourself projects are maintained on the course website at http://mesh.brown.edu/byo3d.
We encourage you to take a look and see what your fellow attendees have built for themselves!
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http://www.polhemus.com/?page=Scanning_Fastscan
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