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Abstract

This paper introduces a novel method for surface recon-
struction using the depth discontinuity information cap-
tured by a multi-flash camera while the object moves along
a known trajectory. Experimental results based on turntable
sequences are presented. By observing the visual motion
of depth discontinuities, surface points are accurately re-
constructed — including many located deep inside concavi-
ties. The method extends well-established differential and
global shape-from-silhouette surface reconstruction tech-
niques by incorporating the significant additional informa-
t!on encoded in the d_epth_ d_|scont|nU|t|es. The reconstruc- (a) Reconstruction results. Left: an input image captured by the
tion method uses an implicit form of the epipolar parame- multi-flash camera. Center: the estimated oriented point cloud
terization and directly estimates point locations and corre- rendered in Pointshop3D [22]. Right: implicit surface fills in gaps.
sponding surface normals on the surface of the object using —

a local temporal neighborhood of the depth discontinuities.
Outliers, which correspond to the ill-conditioned cases of
the reconstruction equations, are easily detected and re-
moved by back-projection. Gaps resulting from curvature-
dependent sampling and shallow concavities are filled by
fitting an implicit surface to the oriented point cloud’s point
locations and normal vectors.

1 Introduction (b) Experimental configuration: 8 Mpix 8-flash camera and com-
puter controlled turntable.
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Many methods have been proposed to reconstruct the sur-

face of an object from its occluding contours while it un- - o4 O \ ;
dergoes motion. Space carving and visual hull algorithms \/ ,
follow a global volumetric approach. The whole silhouette . B

of the object from a viewpoint defines a solid viewing cone
in 3D. The intersection of the viewing cones of an object
from all possible viewpoints is called the visual hull. In
practice the computed visual hull is an approximation ob-
tained from a few viewing cones, and it is a volume con-
taining the object [16, 13]. Although robust, the quality

of the results are somewhat limited, especially for complex (¢) Depth edge confidence () Epipolar slice of confidence
objects containing concavities and curved surfaces. An al- . _ )
ternative differential approach uses the local deformation of Figure 1. Method Overview.

the silhouettes as the camera moves relative to the object
to estimate the depth of the points [6, 21]. Related meth-

ods use a dual-space approach, where tangent planes to the object surface are represented as points in dual space, and

surface estimates can be obtained by examining neighbor-
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based only on a local region of camera motion, but are sub-
ject to singularities in degenerate cases. They also are not
capable of modeling surface contours that do not appear as
part of the object silhouette for any view e.g., structures pro-
tected by concavities.

More recently, algorithms have been proposed to combine
image texture and color information with silhouette infor-
mation [9, 11]. These methods use more information cap-
tured in the images, are capable of producing very accurate
results, even recovering shape in areas protected by concav-
ities, but at a high cost in algorithm complexity and running
time. They are also highly non-linear and subject to local
minima.

Our method extends the differential approach described
above, using the visual motion of contours relative to cam-
era motion. It uses, however, information about the motion
of all visible depth discontinuities which can be estimated
from image data, not just those occurring on the object sil-
houettes. This enables us to reconstruct structures protected
by concavities that do not appear as part of the object silhou-
ette in any view. Although silhouettes can be estimated in
many cases using passive illumination (blue screen), most
accurate estimation results from active illumination (back-
lighting). Our system uses active illumination to estimate
the depth discontinuities from image data. It utilizes a cam-
era with multiple flashes at known positions relative to the
camera center, similar to the camera used by Feris et al. [10]
to enhance dense stereo matching. In the experimental re-
sults presented in this paper, the location of the flashes with
respect to the camera were known only in a rough sense.
We plan to do a detailed error analysis in the near future.

1.1 Contributions

The method introduced in this paper integrates enhance-
ments to a number of known results in a novel way. Its
main features are its simplicity, and the fact that it can be
trivially parallelized. Contributions include:

e A refined method to estimate depth discontinuities
from images of an object undergoing motion along a
known trajectory, captured using the multi-flash non-
photorealistic camera proposed by Raskar et al. [19].
The output of this process is a space-time volume re-
sulting from stacking up the depth discontinuity im-
ages in the order of capture. We analyze the properties
of these images and discuss their relation to traditional
silhouettes obtained by foreground segmentation.

e An algorithm to estimate point locations and surface
normals from differential properties of smooth space-
time curves fitted to ridges in epipolar slices of the
space-time volume of depth discontinuities. This al-
gorithm extends Cipolla’s traditional method of depth
recovery [6] to the data encoded in depth discontinuity
edges not associated with silhouettes.

q(t) r(t+At)
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Figure 2: The tangent ray from the camera to the object slides
over the surface as the camera moves. Depth can be estimated
based on the apparent motion of the contour in the image plane
relative to the camera motion in space.

e Surface points which do not produce an observable
depth discontinuity cannot be estimated with this
method, resulting in an uneven distribution of sample
locations. We use Sibley’s oriented point cloud im-
plicit surface fitting method [20] to fill the resulting
sampling gaps.

The experimental data presented shows that the new recon-
struction method is simple, robust, and capable of recon-
structing structure not recoverable using silhouette informa-
tion alone. We review the results it is built upon in Sec-
tion 2. In Section 3 we describe the new algorithm. In Sec-
tion 4 we present experimental results, and our conclusions
in Section 5.

2 Foundations

This paper builds upon a number of known concepts and
results contributed by others. We describe them here.

2.1 Depth from visual motion of curves

The properties of surface shapes based on the apparent mo-
tion of their contours in images are well-studied [12, 6, 21].
In general, we represent a surface point p on a depth dis-
continuity edge as

p=q+Ir @

where q is the camera center, r is the camera ray vector
corresponding to a pixel [u,v], and I is the scaling factor
that determines the depth. Cipolla and Giblin [6] showed
that the parameter I can be obtained from the following
equation t
nq

I=—— )
where n is normal vector to the surface at the point p, and
f,q are derivatives in time as the the camera moves with re-
spect to the object and the camera ray r “slides over” the
object (Figure 2). This method assumes that the functions
q(t), r(t), and n(t), as well as their derivatives with re-
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Figure 3: (a) Multi-flash camera. (b) Sample image acquired with
flash located to the left of the camera’s center of projection. (c)
Depth edge confidence image produced by method in [19], with
darker pixels representing a higher likelihood of a depth edge. (d)
Approximate edge orientation corresponding to the flash with a
maximum depth edge response. Up, down, left, and right edge
orientations are shown in red, blue, purple, and green, respectively.

spect to t are known. The epipolar parameterization is used
in [6] to construct these curves from multiple silhouettes.
The main drawbacks to using Equation 2 to estimate depth
are: its dependence on usually noisy derivatives; and its ill-
conditioning close to frontier points, where n(t)'#(t) ~ 0.

2.2 Multi-Flash Photography

The non-photorealistic (NPR) camera introduced by Raskar
et al. [19] was designed to detect depth discontinuities in a
scene by using multiple point illumination sources. In gen-
eral, an NPR camera is composed of a single image sensor
and a set of flashes evenly distributed about the camera’s
center of projection, as shown in Figure 3(a). In order to dis-
tinguish depth edges from material edges, a single image is
taken for each flash position (typically, four to eight flashes
are used). If the separation of the flashes is small compared
with the distance to the scene, then a narrow shadow will be
observed adjacent to each depth discontinuity (see Figure

3(b)).

As presented in [19], a simple method exists to extract
both the position and orientation of the depth edges from
the multi-flash sequence. First, a maximum composite is

q(t+At)

G(t)
q(t At) q(® 1

Figure 4: The epipolar plane (dotted line) used for curve para-
meterization is spanned by the viewing ray, r, and the camera’s
velocity vector, g. The images are rectified such that the epipo-
lar lines correspond to scan lines in the image. Unless the camera
motion is linear, this plane is only an approximation for finite Dt,
since the neighboring camera centers are, in general, not contained
in the plane.

should be free of shadows created by the flashes. In order
to amplify the shadowed pixels in each flash image (and at-
tenuate texture edges), a ratio image is formed by dividing
(per pixel) each flash image by the maximum composite.
Afterwords, the depth edges can be detected by searching
for negative transitions along the direction from the flash to
the camera center (projected into the image plane) in each
ratio image. With a sufficient distribution of flash positions
and under some limiting assumptions on the baseline and
material properties of the surface [19], this procedure will
estimate a considerable subset of all depth discontinuities
in the scene. An intermediate output of this process is the
depth edge confidence image corresponding to the likeli-
hood of a pixel being located near a depth discontinuity (see
Figure 3(c)).

2.3 Camera Model

We use the standard pinhole camera model with projection
matrix

0 1 @)

where R is a 3x3 rotation matrix and T is a 3x1 transla-
tion vector relating the world coordinate frame to that of the
camera. K is a 3x3 matrix containing the camera’s intrinsic
projection parameters. We recover these parameters along
with 5 radial and tangential distortion coefficients using
Bouguet’s camera calibration toolbox [3]. We project im-
age points in homogeneous coordinates to vectors in world
space using the “inverse” projection matrix, P.

P=K[I 0][R T}

formed by taking the largest intensity observed in each pixel p_ R\ —R'T | K1 4

over the multi-flash sequence. In general, this composite — 10 1 0 “)
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2.4 Epipolar Parameterization

The epipolar parameterization for curved surfaces has been
extensively studied in the past [2, 12, 6, 21]. For two cam-
eras with centers g; and gy, an epipolar plane is defined as
the plane containing g1, g2, and a world point X being im-
aged. The epipolar planes slice the image planes, forming
a pencil of epipolar lines in each image, and each point in
one image corresponds to an epipolar line in the other. A
point x; along an apparent contour in one image is there-
fore matched to a point x in the second image by inter-
secting the epipolar line defined by 1,02, and x; with the
corresponding apparent contour in the second image. For a
continuous path of camera centers, q(t), an epipolar plane
at time t is spanned by the tangent vector q(t) to q(t) and
a viewing ray r(t) from q(t) to a world point p. So called
frontier points occur when the epipolar plane is identical
to the tangent plane of the surface. In these cases, the de-
nominator of Equation 2 approaches zero, causing unreli-
able depth estimates. Giblin and Weiss [12] have presented
an alternate expression for depth that avoids this mathemat-
ical instability, but in our experiments the depth estimates
remained unstable at frontier points. This is most likely due
to the imprecision of matching when the epipolar lines are
tangent to the surface contours.

We rectify each image so that the camera velocity at the time
of capture is parallel to the image x axis. By stacking the
images from a sequence and “slicing” across a single scan-
line, we have an approximation to the epipolar constraint
in local regions (Figure 4). We refer to these images con-
taining a scanline from each image as epipolar slices. By
tracking the motion of apparent contours in the slices, we
are in effect implicitly utilizing the epipolar constraint for
curve matching.

3 Algorithm
3.1 Data Capture and Pre-processing

We use a turntable and stationary 8 megapixel digital cam-
era to acquire data from 670 viewpoints in a circular path
around the object. For each turntable position, we cap-
ture four images using illumination from the top, left, right,
and bottom flashes of the camera, respectively. We exper-
imented with using all eight flash positions of the camera,
but found that it did not provide significant improvements
over using only four. The camera is assumed to be intrin-
sically calibrated, and its position and orientation with re-
spect to the turntable is determined using a calibration grid
placed on the table. Once the data has been captured, we
rectify each of the images to remove any radial distortion,
and to align the camera x axis with the direction of camera
motion (i.e. perpendicular to the turntable axis of rotation
and with zero translation in the x direction). Once the im-

@) ()

© (d)

Figure 5: (a) Epipolar slice with axis of rotation in blue and inset
region in red. (b) Estimated depth contours. (c) Subpixel depth
discontinuities shown in green. (d) Edge linking performance at
junctions. Each color represents a different edge chain.

ages are rectified, we then execute the algorithm described
below to compute images of depth discontinuity for each of
the camera positions. These discontinuity images are finally
converted into m epipolar slices, where m is the number of
scan rows in the images. The slice images are m x | pixels
in size, where m is the number of columns in the original
input images, and | is the number of camera positions cap-
tured. Our camera is high resolution, producing images of
size 3200 x 2400. The data capture and preprocessing steps
are by far the most time-consuming steps of the algorithm,
taking on the order of 5 hours per object. Downloading the
image data through the camera’s USB 1.0 port is the most
time consuming part.

3.2 Depth-Discontinuity Estimation

For this paper, we introduce several modifications to the
depth edge detection algorithm presented in [19]. The NPR
camera developed by Raskar et al. was originally used to
generate stylized non-photorealistic imagery. For such ap-
plications, pixel-level accuracy in the depth edges is suffi-
cient. In order to reconstruct surfaces, however, sub-pixel
accuracy is required (see Section 3.3). In addition, an es-
timate of the depth edge normal is required. At a course
level, the direction of the depth edge normal (oriented from
foreground to background) can be inferred from the flash
which produces the strongest depth edge at a given point.
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That is, if a certain flash has the largest negative transition
in the ratio image at a given point, then the depth edge nor-
mal, projected into the image plane, is opposite the direction
from the camera center to this flash. As an example, con-
sider the estimate of depth edge orientation generated using
four flashes in Figure 3(d).

3.3 Contour Tracking in Epipolar Slices

As previously discussed, the proposed reconstruction
method requires tracking the motion of apparent contours
in epipolar slices. This problem can be solved using a form
of edge following optimized for this task. In particular, we
decompose the contour tracking problem into three stages:
(1) subpixel edge detection, (2) edge linking, and (3) poly-
nomial curve fitting. Since the epipolar slices can be evalu-
ated independently, we accelerate contour tracking through
parallel processing.

As shown in Figure 5(a), the epipolar slices represent the
confidence that a certain pixel contains a depth discontinu-
ity for any given camera position. We begin by detecting the
pixel-level position of the depth discontinuities by applying
a two-level hysteresis threshold. Afterward, we estimate
the subpixel position of each depth discontinuity by fitting
a quadratic polynomial to the neighboring confidence val-
ues. Non-maximum suppression is applied to ensure that a
single subpixel position is assigned to each depth edge. The
output of the subpixel depth edge detection stage is illus-
trated in Figure 5(c).

As shown in Figure 5, the epipolar slices are complex and
typically contain many junctions, indicating points of bi-
tangency. These junctions emerge for a variety of reasons,
including when external silhouettes becomes internal con-
tours (and vice versa). Our edge linking algorithm follows
edges through such transitions. We initialize the tracking
process by finding the first detection to the left of the axis of
rotation in an epipolar slice. Next, we search for the closest
detection in the neighboring views within a small window
of about +5 columns. If any match is found, then we initiate
a track using a linear prediction based on these two obser-
vations. We proceed to search for new detections within
a neighborhood of the predicted edge position (generally
three views ahead/behind and £5 columns). The closest
detection (if any) to the prediction is added to the track and
neighboring detections are removed from future considera-
tion. Once three or more detections have been linked, we
predict the next position using a quadratic model. In gen-
eral, the prediction model is fit using a sliding window of
the last 15 detections. If a track ends, a new edge chain is
initiated using the first available detection either to the left
or right of the axis of rotation. This process continues un-
til all detections have been considered. While simple, this
tracking method consistently and accurately links depth dis-
continuities through junctions. For example, consider the
edge chains shown in Figure 5(d).

Once the subpixel detections have been linked, a quar-
tic polynomial is fit to each chain — providing an analytic
model for the motion of depth discontinuities as a function
of viewpoint. Typical results achieved using this method are
shown in Figure 5(b).

3.4 Oriented Point Cloud Generation

Once the curves in an epipolar slice have been extracted,
we are able to robustly and directly estimate the depth of
the points on the curve. For a given epipolar slice image,
we have constant v = vs and image axes corresponding to
u and t, where, for a given contour, u is function of t. We
therefore express Equation 1 as:

p(u(t),t) =q(t) + Ir(u(t),t) (®)

and Equation 2 as

t
_ 6
) >%{r<u<t> 7 ©
where d "
r .
.01 = I yuw . ™

We can obtain %(u(t)f[) directly from the inverse projec-
tion matrix (Equation 4) associated with camera position

q(t):

qr Pra(t)
U (u(t)) = [P2a(t) ®)
P371(t)

The contour path’s motion in the u direction, u(t), can
be obtained directly from the coefficients of the curve fit
to the contour path (Section 3.3) in the slice image. We
estimate the image normal m(u(t),t) by performing prin-
cipal component analysis (PCA) on a local region about
the point (u(t),vs) in the original depth edge image corre-
sponding to time t. To determine consistent normal orienta-
tions we compare with the coarse normal information given
by the flash with the maximum depth edge response (Sec-
tion 2.2). The surface normal n(u(t),t) in 3-D must then be
perpendicular to the viewing ray r(u(t),t), and contained
in the plane spanned by r(u(t),t) and the projection of the
n(u(t),t) onto the image plane, m(u(t),t).

n(ut).) = ) " < ru.0) < r0.0 @

Plugging back in to Equation 6, we can now recover the
depth of any point on the contour path, assuming known
camera motion ¢(t). Ours is the simple case of circular mo-
tion, so q(t) is well defined for all t.

Each curve in each slice is processed independently, and
sampled uniformly in t. This sampling in t causes the re-
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Figure 6: (a) A portion of the bust point cloud, generated with no
outlier rejection. An area of instability can be seen under the arm,
where the surface is nearly perpendicular with the axis of rotation.
(b) Outliers removed by back-projection validation using a small
set of segmented images.

constructed points to be sampled very densely in areas of
high curvature (since the viewing ray moves slowly over
these regions) and conversely, very sparsely in areas of very
low curvature, i.e. planes. The dense sampling in areas of
high curvature can be dealt with by using decimation as a
post-processing step, but the sparse areas provide more of a
challenge. We will address this in future work.

3.4.1 Outlier Detection

To deal with instability near frontier points, we perform the
simple validation proposed by Liang and Wong [15]. We
segment the object from the background in a small subset
(15 views) of the original input images. We then back-
project the reconstructed points into the images, making
sure that each point lies within the image foreground. For
the bust data set, 3.7% of points were removed in this way
(Figure 6).

3.5 Surface Reconstruction

Dense point sets have been previously used as surface rep-
resentations for rendering and interactive modeling appli-
cations [1, 22]. Most systems focus on uniformly sam-
pled data, however irregularly sampled point clouds such
as those generated by our method usually require hole fill-
ing. Diffusion-based hole filling methods for meshes [8]
and point clouds [18] have been developed. Other hole-
filling approaches instead produce an approximating sur-
face, frequently in the form of a polygonal mesh or an
implicit function. Methods that generate an implicit sur-
face frequently cope with gappy data and irregular sampling
patterns more gracefully [17] than mesh-based algorithms.
Two representative methods are those proposed by Carr et
al. [5] and Ohtake et al. [17]. Carr et al. fit implicits com-
posed of radial basis functions to dense range data, while
Ohtake et al. fit an implicit consisting of blended quadrat-

Figure 7: (a) The generated point cloud using our algorithm with
silhouette information only. (b) Reconstruction using all depth dis-
continuities. Notice increased detail in the eyes, hair, and neck
concavities.

ics defined on an adaptive octree. These methods produce
high quality surfaces, but are complex. Instead, we imple-
mented Sibley’s method [20], which reduces to solving a
linear least squares problem. Given an oriented point cloud
2 ={(p1,M),.-, (Pm,Nm)} sampled from a surface M, the
method computes an implicit surface M’ = {p|f(p) = 0}
where f : R® — R is a scalar function, such that ideally

f(pi) = n;, and f(pi) = 0. If p5 denotes the position of
a grid node, the problem reduces to the minimization of the
following quadratic energy

E= | f(p)-nillP+1 || f(pa)— f(ps)l?

i (a,b)

where (a,b) are edges of the grid, and I > 0 is a regular-
ization constant. The scalar field f is represented as a lin-
ear combination of basis functions (e.g., trilinear) defined
on a uniform Cartesian grid, f(p) = 4 fafa(p), where
fa = f(pa). The gradient is approximated with finite differ-
ences. Finally, a polygonal mesh is extracted using March-
ing Cubes for visualization purposes.

4 Experimental Results

Figure 10 shows the generated oriented point clouds and
surface fits for two objects of considerable complexity.
The point clouds were rendered in Pointshop3D [22] using
the splatting technique. The bust reconstruction contains
1,088,757 points, and the implicit surface reconstruction
was computed using a pair of stacked grids of size 1323.
The extracted polygonal mesh has 221,998 faces. The hand
reconstruction contains 584,721 points, fit using a grid of
size 1323, The extracted mesh contains 35,316 faces. In
both cases, the surface fitting algorithm has successfully
filled in the missing regions of the point cloud where the
objects have low surface curvature. The point cloud gen-
eration took on the order of 20 minutes for each dataset,
distributed over 16 processors. The surface fitting took on
the order of 15 minutes running on a single processor.
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Figure 8: A reconstruction of the bust using only 11 views over a
5.9 degree rotation of the turntable. (a) A viewpoint close to that
of the input images. (b) A viewing direction nearly orthogonal to
that of the input images.

In order to understand how much extra information we are
able to capture by using the interior depth discontinuities,
we captured a similar data set of the bust, but used fore-
ground segmentation to capture the silhouette of the object
only. Figure 7 shows the results. Using silhouette informa-
tion only does not allow us to capture nearly as much detail
in areas of concavity such as the eyes and hair.

Although our current algorithm achieves accurate results by
using information from a dense set of viewpoints over a
wide variation of views, significant information can be ex-
tracted using only local information from a relatively small
number of viewpoints. Figure 8 shows a set of reconstructed
points using information from 11 very similar views taken
over a 5.9 degree rotation of the turntable.

As a preliminary estimate of algorithm accuracy, we gen-
erated a set of synthetic 1024 x 768 depth edge images of
the Stanford bunny (69,451 face) mesh. We then extract
curves from the epipolar slices and construct an oriented
point cloud as described in Section 3. Figure 9 shows the
results, with the point cloud colored according to (a) dis-
tance to mesh, and (b) normal error. Position errors are nor-
malized by the extent of the bounding box. Mean position
error is 0.11%, with a standard deviation of 9.40e-4. The
median position error is more than ten times smaller than
the mean, indicating that some outliers remain, even after
back-projection filtering (Section 3.4.1). The mean normal
error is 0.1714 radians, with a standard deviation of 0.2838.
The median error is 0.1043 radians. In the future, we will
compare our reconstructions of real data with results pro-
duced using a laser scanner.

5 Conclusions and Future Work

We have presented a novel method for surface reconstruc-
tion using depth discontinuity images generated by a multi-

Figure 9: Synthetic results, showing 399,862 points recon-
structed. (a) Points colored according to position error, red indi-
cating higher error. The mean value is 0.1% of the bounding box.
(b) Points colored according to normal error. The mean normal
error is 0.17 radians.

flash camera. The method accurately reconstructs points
on objects with complex features, including those located
within concavities and not part of the object silhouette from
any vantage point. The depth estimation procedure is di-
rect and does not require solving any non-linear optimiza-
tion problems. The generated oriented point clouds tend to
have gaps in areas of very low curvature, but we demon-
strate a surface fitting algorithm that is able to bridge the
gaps in most cases. Our future work will involve a more
robust hole-filling solution, either as a post-processing step,
or as a re-sampling of the epipolar slice curves. We will
also further examine the trade-off between reconstruction
accuracy and the density and disparity of the set of input
images.
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