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Vector field design on surfaces is necessary for many graphics applications: example-based texture synthesis, nonphotorealistic

rendering, and fluid simulation. For these applications, singularities contained in the input vector field often cause visual artifacts.

In this article, we present a vector field design system that allows the user to create a wide variety of vector fields with control

over vector field topology, such as the number and location of singularities. Our system combines basis vector fields to make an

initial vector field that meets user specifications.

The initial vector field often contains unwanted singularities. Such singularities cannot always be eliminated due to the

Poincaré-Hopf index theorem. To reduce the visual artifacts caused by these singularities, our system allows the user to move a

singularity to a more favorable location or to cancel a pair of singularities. These operations offer topological guarantees for the

vector field in that they only affect user-specified singularities. We develop efficient implementations of these operations based on

Conley index theory. Our system also provides other editing operations so that the user may change the topological and geometric

characteristics of the vector field.

To create continuous vector fields on curved surfaces represented as meshes, we make use of the ideas of geodesic polar maps
and parallel transport to interpolate vector values defined at the vertices of the mesh. We also use geodesic polar maps and

parallel transport to create basis vector fields on surfaces that meet the user specifications. These techniques enable our vector

field design system to work for both planar domains and curved surfaces.

We demonstrate our vector field design system for several applications: example-based texture synthesis, painterly rendering

of images, and pencil sketch illustrations of smooth surfaces.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Geometric
algorithms, languages, and systems

General Terms: Algorithms

Additional Key Words and Phrases: Vector field design, topology, surfaces, computational geometry, nonphotorealistic rendering,

texture synthesis

This research is funded by NSF grants DMS-0138420 and DMS-0107396.

Authors’ addresses: E. Zhang, (at time of submission) College of Computing and GVU Center, Georgia Institute of Technology,

801 Atlantic Drive, Atlanta, GA 30332-0280; (current) School of Electrical Engineering and Computer Science, Oregon State

University, 2111 Kelley Engineering Center, Corvallis, OR 97331; email: zhange@eecs.oregonstate.edu; K. Mischaikow, (at time

of submission) Center for Dynamical Systems and Nonlinear Studies, School of Mathematics, Georgia Institute of Technology,

801 Atlantic Drive, Atlanta, GA 30332-0280; (current) Department of Mathematics, Hill Center—Busch Campus, Rutgers, The

State University of New Jersey, Piscataway, NJ 08854-8019; email: mischaik@math.rutgers,edu; G. Turk, College of Computing

and GVU Center, Georgia Institute of Technology, 801 Atlantic Drive, Atlanta, GA 30332-0280; email: turk@cc.gatech.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided

that copies are not made or distributed for profit or direct commercial advantage and that copies show this notice on the first

page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute

to lists, or to use any component of this work in other works requires prior specific permission and/or a fee. Permissions may be

requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481,

or permissions@acm.org.

c© 2006 ACM 0730-0301/06/1000-1294 $5.00

ACM Transactions on Graphics, Vol. 25, No. 4, October 2006, Pages 1294–1326.



Vector Field Design on Surfaces • 1295

1. INTRODUCTION

Many graphics applications require an input vector field. For instance, example-based texture synthesis
makes use of a vector field to define local texture orientation and scale [Praun et al. 2000; Turk 2001;
Wei and Levoy 2001]. In nonphotorealistic rendering, vector fields are used to guide the orientation
of brush strokes [Hertzmann 1998] and hatches [Hertzmann and Zorin 2000]. In fluid simulation,
the external force is a vector field which need not correspond to any physical phenomenon and can
exist on synthetic 3D surfaces [Stam 2003]. A vector field design system enables these applications
to achieve many different visual effects by using different input fields. It can also be used to create
datasets for testing the efficiency and correctness of a vector field visualization technique [van Wijk
2002, 2003].

Vector field design refers to creating a continuous vector field on a 3D surface based on user specifi-
cations or application-dependent requirements. It is different from vector field simplification, which is
used to reduce the complexity of large and noisy datasets while maintaining their major features. In
vector field design, both adding and removing features may be required.

There are several challenges when it comes to designing vector fields. First, a design system should
enable the user to create a wide variety of vector fields with relatively little effort. Most existing
design systems generate some subclasses, such as curl-free and divergence-free vector fields. This limits
their potential applications. Second, the user often needs control over vector field topology, such as the
number and location of the singularities. As pointed out in Praun et al. [2000] and Hertzmann and Zorin
[2000], this is necessary for applications such as example-based texture synthesis and nonphotorealistic
rendering, in which unwanted singularities often cause visual artifacts. Figure 1 illustrates this with
an example from texture synthesis, in which a sink (dot) in the middle of the bunny’s tail (left) causes
the synthesis pattern to break up (right).

In addition, many applications of vector field design are based on 3D mesh surfaces, such as texture
synthesis, fluid simulation, and artistic illustration of surfaces. A typical mesh consists of vertices, edges,
and triangles. In order to control vector field topology on a mesh, we need continuous vector fields for
which we can perform particle tracing that follows the flow in a consistent manner. However, surface
normal and tangent planes are discontinuous at the vertices and across the edges, and the definition of
vector field continuity from smooth surfaces does not apply. Furthermore, the popular piecewise linear
representation [Tricoche et al. 2001] produces continuous vector fields only when the mesh represents
a planar domain. Stam [2003] uses subdivision surfaces to ensure vector field continuity. However, it is
difficult to extract and control vector field topology with this representation because of its complexity.
Also, subdivision surfaces often incur higher computational costs than polygonal meshes.

In this article, we present a vector field design system for surfaces. This system employs a three-stage
pipeline: initialization, analysis, and editing. In the initialization stage, the user can quickly create a
vector field by using basis flow fields. Next, the system performs geometric and topological analysis on
the initial field and provides visual feedback to the user. In the third stage, the user makes controlled
editing operations to the current vector field, such as moving a singularity (singularity movement) or
cancelling a pair of singularities (singularity pair cancellation). This process of iterative analysis and
editing is repeated until the user is satisfied with the result.

Our system enables the user to create a wide variety of vector fields (curl-free, divergence-free, and
generic) by using basis fields of different kinds. It also provides control over vector field topology, such
as the number and location of singularities. We provide efficient algorithms for both singularity pair
cancellation and singularity movement based on ideas from Conley index theory, which is more general
and powerful than the well-known Poincaré index theory. To enable these operations to work for generic
vector fields, as opposed to only curl-free vector fields, we use flow rotations and reflections to handle
the numerical instabilities associated with regions of a high curl and regions near a saddle.
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Fig. 1. This figure highlights the need for control over vector field topology in texture synthesis. The input vector field contains

a singularity at the center of the bunny’s tail (left), and it causes the synthesis patterns to break up (right).

Fig. 2. Example vector fields created by our design system. The field shown in the right was used to guide texture synthesis

(Figure 22, upper-right).

We have also developed a novel piecewise interpolation scheme for meshes that guarantees the cre-
ation of continuous vector fields based on values defined at the vertices. This scheme supports efficient
analysis and editing. In addition, we will describe a new way to build basis vector fields on surfaces
from user specifications. The ideas behind both the interpolation scheme and construction of surface
basis fields are based on the concepts of geodesic polar maps and parallel transport from classical dif-
ferential geometry. Figure 2 shows some vector fields created using our system. The dots correspond to
singularities, and the curves indicate their connectivity.

The remainder of the article is organized as follows. We first review the relevant background on vector
fields in Section 2. Then, in Section 3 we review existing vector field design systems and simplification
techniques. We present our design system for planar domains in Sections 4 and 5, and its adaptation
to 3D mesh surfaces in Section 6. Section 7 provides some results of applying our system to various
graphics applications, such as painterly rendering, pencil sketches of surfaces, and texture synthesis.
Finally, we summarize our contributions and discuss some possible future work in Section 8.

2. BACKGROUND ON VECTOR FIELDS

In this section, we review some basic facts about vector fields. A vector field V for a manifold surface S
is a smooth vector-valued function that associates to every point p ∈ S a tangent vector V (p). A vector
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Fig. 3. This figure illustrates three vector fields that are curl-free (left), divergence-free (right), and neither (middle). Singular-

ities are depicted as colored dots, and principle directions for saddles are drawn as crosses. Furthermore, incoming separatrices

for saddles are shown in green while outgoing separatrices are shown in red. The vector field in the middle contains a periodic

orbit that separates the flow inside from the flow outside. The visualization technique is based on that of van Wijk [2002].

field defines a system of differential equations: dp
dt = V (p). With appropriate restrictions on V , for each

point p0 ∈ S, there exists a solution p : R → S with the property that p(0) = p0 [Hale and Kocak 1991;
Hirsch and Smale 1974]. As we will be interested in studying multiple solutions simultaneously, it is
useful to introduce the notion of the flow induced by V that is a continuous function ϕ : R×S → S with
the property that ϕ(t, p0) = p(t). The set {p(t) | t ∈ R} = ϕ(R, p0) is called the trajectory through p0.
Uniqueness of solutions to ordinary differential equations guarantees that the set of trajectories forms
an equivalence relationship on S. In particular, if q0 belongs to the trajectory of p0, then p0 belongs
to the trajectory of q0. This implies that S can be decomposed into the set of all trajectories. Some
trajectories are of particular significance, such as singularities.

A singularity p0 ∈ S is a point such that V (p0) = 0. Observe that the trajectory through a singularity
consists of a single point. For many of our calculations, we will want to use a singularity classification
based on the local linearization of the vector field. For simplicity, let V be a vector field defined for
some planar domain D ⊂ R2 = {(x, y) | x, y ∈ R} such that V (x, y) = (F (x, y) G(x, y)). The local

linearization at a point p0 is: V ∗(p) = V (p0) + DV(p0)(p − p0), where DV =
(

∂F
∂x

∂F
∂ y

∂G
∂x

∂G
∂ y

)
is the Jacobian

of V . A singularity p0 is linear if DV(p0) has a full rank. For the remainder of this article, we will
assume that p0 is a linear singularity. Results from linear algebra state that the two eigenvalues of
DV(p0) are either both real numbers or a pair of conjugate complex numbers. In the first case, p0 is a
source if both eigenvalues are positive, a sink if both are negative, or a saddle if one is positive and the
other is negative. In the second case, p0 is either a center if the real part of both eigenvalues is zero, or
a focus otherwise.

Other trajectories of particular importance are separatrices and periodic orbits. A separatrix is a
trajectory for which the limit as t → ∞ or t → −∞ of the solution function p(t) is a saddle. For
planar vector fields, the vector field topology is determined by the set of singularities, separatrices,
and periodic orbits. Figure 3 illustrates these special trajectories with three vector fields. Singu-
larities are highlighted by the colored dots: sources (green), sinks (red), centers (cyan or magenta,
depending on the orientations), and saddles (yellow). Furthermore, incoming and outgoing separa-
trices are colored in green and red, respectively. The vector field in the middle contains a periodic
orbit.
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Two useful analytic characterizations of a vector field are its curl and divergence. Divergence mea-
sures the difference between the amount of flow leaving and approaching the measurement point. For
instance, the divergence is positive for a source and negative for a sink. Curl measures the amount
of flow that circles around the measurement point. The distributions of curl and divergence in the
domain can help us understand the geometric structure of the trajectories. The two extreme cases are
curl-free vector fields, in which the curl is zero everywhere, and divergence-free vector fields, in which
the divergence is zero everywhere. It should be noted that a typical vector field is neither curl-free
nor divergence-free. Figure 3 shows three vector fields of different analytical behaviors. The vector
field shown in the left is curl-free. In this case the typical singularities are sources, sinks, and saddles.
Furthermore, the separatrices divide the domain into a number of combinatorial quadrilaterals called
basins. The boundary of each basin consists of a source, a sink, and one or two saddles in between
them. Inside each basin, all the trajectories leave the same source and approach the same sink. The
vector field in the right is divergence-free, in which the typical singularities are centers and saddles.
The separatrices divide the domain into a number of bounded regions. Inside each region is a family of
periodic orbits that circle around the same center. A generic vector field is shown in the middle, which
is neither curl-free nor divergence-free and may contain periodic orbits.

2.1 Topological Descriptions of Vector Fields

The vector field design problem requires that the user be able to control the trajectories of a vector field
both locally and globally. Doing so requires the introduction of a topological characterization of vector
fields. In this section, we review a well-known topological descriptor, the Poincaré index, and a more
general characteristic, the Conley index.

A singularity p0 is isolated if there exists an open neighborhood U of p0 with the property that p0

is the unique singularity in the interior of U . An isolated singularity p0 can be characterized by its
Poincaré index, which is defined in terms of the winding number for the Gauss map.

Definition 2.1. Let V be a vector field defined on some planar domain D, and let D0 ⊂ D be the zero
set for V . The Gauss map α : D \ D0 → S1 is defined as α(x) = V (x)

|V (x)| .

For a simple closed curve � ⊂ D \ D0, the Gauss map α induces a continuous map α|�. If we travel
along � in the positive direction once, the image under α|� necessarily covers the unit circle S1 an
integer number of times counting orientation. This integer is the winding number of V along �. The
Poincaré index of an isolated singularity p0 is the winding number of any simply connected curve
that encloses p0 and contains no other singularities, either in its interior or on the boundary. Denote
this number as κ(V ; p0). The Poincaré index is +1 for sources, sinks, centers, and foci. It is −1 for
saddles, and 0 for regular points. The Poincaré-Hopf theorem links the topology of a vector field to
that of the underlying domain in the following way. Let S be a closed orientable manifold with a
Euler characteristic E. Furthermore, let V be a continuous vector field defined on S with only isolated
singularities p1, . . . , pn. Then

∑n
i=1 κ(V ; pi) = E. An immediate corollary of the Poincaré-Hopf theorem

is that given a particular vector field V , if we want to remove a singularity of a positive or negative
Poincaré index, then we must simultaneously remove a singularity of the opposite sign. In fact, for a
two-manifold, a zero total Poincaré index for a region R guarantees that it is possible to replace the
vector field inside R with a singularity-free vector field.

The Poincaré index is a powerful tool for describing singularities. However, it does not distinguish
between sources and sinks, nor does it provide information about periodic orbits and separatrices.
Figure 4 illustrates this with a number of examples. First, the Poincaré indices for the disk in cases (b)
and (d) are both one. When simplifying the vector field inside the disk such that only one singularity
remains, the Poincaré index alone cannot predict whether the singularity is a source or sink. Second,
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Fig. 4. Seven basic scenarios of isolating blocks and their associated Conley indices. The Conley index can be used to distinguish

between sources and sinks (b) and (d), and it provides information on periodic orbits (e), (f), (g). By comparison, the Poincaré

indices are the same for cases (b) and (d), and for (e)–(g). Cases (a), (b) and (e) are of particular interest, since they are used in

topological editing operations (Section 5.3).

the Poincaré indices for the ring-shaped region in (e)–(g) are zero. Yet, the three vector fields have
very different characteristics. For example, when vector fields inside the region are singularity-free,
the vector fields in (f) and (g) necessarily contain a periodic orbit, while the vector field in (e) does not.
The design of vector fields requires the imposition of additional quantitative information, including the
location of the singularities, periodic orbits, and separatrices, and control of the smoothness and/or
curvature of the vector field. In this work, we have chosen to control singularities for vector fields
defined on two-manifolds for which the Poincaré index is insufficient, since it does not distinguish
between sources and sinks. In addition, we wish to set up a framework that has the potential of being
extended to control separatrices and periodic orbits. For these reasons, we borrow basic ideas from
Conley index theory and provide implementations for our topological editing operations (Section 5.3)
according to this theory.

The Conley index is defined in the context of arbitrary vector fields that produce continuous flows.
It possesses the continuation properties of the Poincaré index, while being able to distinguish between
sinks and sources. It provides sufficient conditions on whether two singularities can cancel. More impor-
tantly, it can be used to identify periodic orbits and separatrices, and to indicate whether two periodic
orbits can be cancelled.

The following concept is the starting point for Conley index theory. Given a region N ⊂ S, let ∂N
denote the boundary of N . A compact set N is an isolating neighborhood if for every p ∈ ∂N , ϕ(R, p) �⊂ N ,
that is, the trajectory of any point on ∂N leaves eventually either in forward or backward time. The set
of boundary points which leave or enter N immediately can be characterized, respectively, by

N− := {p ∈ ∂N | ϕ([0, t), p) �⊂ N , ∀t > 0} , N+ := {p ∈ ∂N | ϕ((t, 0], p) �⊂ N , ∀t < 0}. (1)

A compact set N is an isolating block if for each boundary point, there is either a forward or backward
trajectory that immediately leaves the region, that is, ∂N = N− ∪ N+. Observe that an isolating block
is a special case of an isolating neighborhood.
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Given an isolating block N for a vector field V , its Conley index is defined to be the relative homology
[Kaczynski et al. 2004] of N with respect to N−, that is, CH∗(N ) := H∗(N , N−). Here, CH∗(N ) =
{CHk(N ) | k = 0, 1, 2, . . . } is a collection of groups. When the domain of the vector field is a surface,
CHk(N ) = 0 for k ≥ 3 (see Conley [1978], Mischaikow [2002], Mischaikow and Mrozek [2002] for
further details and references). For the purposes of this article, the computation of this index is fairly
simple, since our isolating block N will always take the form of a polygonal region and N− will be a
finite number of disjoint sets consisting of the boundary edges of N . Idealized isolating blocks and their
associated Conley indices are indicated in Figure 4. Cases (a) and (e) have the trivial Conley index,
and (b), (c), and (d) have the Conley index of a source, saddle, and sink, respectively. Of particular
interest are cases (a), (b), and (e). We construct regions of these types for topological editing operations
(Section 5.3).

3. PREVIOUS WORK

Vector field analysis and visualization have been well-studied, and a good survey is available in Hauser
et al. [2002]. On the other hand, vector field design is far less explored. We will review existing design
systems for planar domains and 3D surfaces. In addition, because our system allows the user to perform
vector field simplification both geometrically and topologically, we also review existing simplification
techniques.

3.1 Existing Vector Field Design Systems

There has been some prior work in creating vector fields on surfaces. In all the instances that we know,
such systems have been created in a quick manner to generate vector fields for a particular application,
such as texture synthesis [Praun et al. 2000; Turk 2001; Wei and Levoy 2001] and fluid simulation [Stam
2003], or for testing a vector field visualization technique [van Wijk 2003]. Furthermore, the details of
these design systems have not been published.

There are several approaches for creating a surface vector field. In the first approach, a 3D vector
field is specified and projected onto the surface [van Wijk 2003]. This is similar to performing texture
synthesis on surfaces through solid textures. While it is simple and fast, achieving control in this method
is hard. In the second approach, the user specifies desired vector values at a few locations on the surface,
and the system performs relaxation to obtain a global surface vector field [Turk 2001; Wei and Levoy
2001]. This can be seen as a diffusion process in which the desired values are smoothly propagated
from seed points to the rest of the surface. In the third approach, the user again specifies the vector
values at a few places on the surface. Then, a global vector field is constructed by interpolating these
locations using Gaussian radial basis functions over the surface [Praun et al. 2000]. Another way of
creating surface vector fields is to parameterize the surface and define vector fields in the parametric
domain [Stam 2003]. These design systems do not provide control over vector field topology, such as the
number and location of the singularities.

For planar domains, vector field design systems based on topological information have been de-
veloped. Van Wijk develops such a design system to demonstrate his image-based flow visualization
technique [2002]. In this system, the user specifies the desired singularity locations and types. The
system converts each specification into a simple vector field and combines them into a global field using
radial basis functions. The idea of using basis vector fields is inspired by the work of Wejchert and
Haumann [1991]. However, the vector fields created in this manner often have more singularities than
the user intended. The system does not provide a way of removing undesired singularities, and there-
fore lacks control over vector field topology. Rockwood and Bunderwala [2001] propose a technique that
uses geometric algebra to create a vector field based on user-specified singularity locations and types
(source, saddle, etc). The user can interactively create a vector field by adding desired singularities or

ACM Transactions on Graphics, Vol. 25, No. 4, October 2006.



Vector Field Design on Surfaces • 1301

removing and editing the user-specified singularities. This system also lacks control over vector field
topology, since unspecified singularities may appear. Theisel [2002] proposes a 2D vector field design
system in which the user has complete control over vector field topology. To do so, the user needs to
specify the topological skeleton of the desired vector field, and the system creates a field to match the
skeleton. However, specifying the topological skeleton for a complicated vector field can be cumbersome.
Both of the aforementioned topology-based design systems [Rockwood and Bunderwala 2001; Theisel
2002] require a planar parameterization, and it is not obvious how they should be generalized to 3D
surfaces.

All of the preceding systems have certain traits that we wish to incorporate into our design system.
In fact, we will borrow techniques from existing systems to serve our purposes at various stages. This
will become clear in Sections 4, 5, and 6.

3.2 Vector Field Topology

In their pioneering work, Helman and Hesselink [1991] visualize a vector field by extracting and dis-
playing its topological skeleton, which consists of the singularities and their connectivity. They propose
an efficient method for extracting the topological skeleton for continuous vector fields that are defined
in either a plane or volume. This work has inspired a great deal of interest in understanding and
visualizing vector fields through topological analysis. There has been considerable work in the visu-
alization community on vector field topology, and we only mention a few relevant publications here.
Scheuermann et al. [1998] use Clifford algebra to study the nonlinear singularities in a vector field and
propose an efficient algorithm for merging nearby linear singularities into a higher-order singularity.
More recently, Polthier and Preuß have used Hodge decomposition to locate singularities of different
types in a vector field [2003]. Wischgoll and Scheuermann [2001] propose an efficient algorithm for
extracting the periodic orbits in a planar flow.

3.3 Vector Field Simplification

Vector field simplification has been well-researched by the scientific visualization community. Most
of the datasets that come from scientific simulation are difficult to analyze due to noise in the data.
Vector field simplification refers to reducing the complexity of a vector field while maintaining its major
features. A simplification technique can be either topology-based (TB) or nontopology-based (NTB).

NTB methods are performed either globally or locally. Existing NTB techniques, such as those
of Polthier and Preuß [2003], Westermann et al. [2000], and Tong et al. [2003], are often based on
performing Laplacian smoothing on the potential of a vector field, which is a scalar field. For example,
Tong et al. [2003] decompose a vector field into three components: curl-free, divergence-free, and har-
monic. Each component is individually smoothed and the results are summed. Vector-based smoothing
is performed only on the harmonic part, while potential-based smoothing applies to the divergence-free
and curl-free components. Smoothing operations reduce the vector field complexity and are most likely
to remove a large percentage of the singularities.

TB methods simplify vector field topology explicitly. According to the Poincaré-Hopf theorem, it is
possible to eliminate a pair of singularities with opposite Poincaré indices at the same time. This idea
has been formulated into an operation called singularity pair cancellation, which forms the foundation
of many existing TB methods. A class of TB methods perform pair cancellation on scalar fields defined
on surfaces [Edelsbrunner et al. 2002, 2003] by changing the values of the scalar function near the
singularity pair. This is equivalent to simplifying the gradient vector field of the scalar function. Ni
et al. [2004] allow the user to design fair Morse functions over a mesh surface, which is equivalent to
designing gradient vector fields. In their work, the user specifies the desired number and configuration
of the critical points of the function, and the system performs multigrid relaxation to determine a Morse
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function that meets the requirements. Another class of TB methods perform cancellation on a vector
field directly. For instance, Tricoche et al. [2001] first locate a region surrounding the singularity pair,
and then perform a nonlinear optimization on the vector values at interior vertices so that the Poincaré
indices are zero for every triangle inside the region. All of the aforementioned TB methods are based
on Morse theory, for example, gradient vector fields.

Our system provides both an NTB method (Section 5.2) and a TB method (Section 5.3.1), and the
implementations of our methods are rather different from existing techniques. For instance, our sin-
gularity pair cancellation algorithm is based on Conley index theory, which allows us to work with
arbitrary vector fields. Furthermore, existing topological analysis and simplification techniques are
limited to planar and volume domains because it is not clear how to represent a continuous vector
field on a mesh surface. We describe a piecewise interpolation scheme in Section 6 that overcomes this
problem, which allows vector field analysis and editing to be adapted to meshes.

4. DESIGN FOR PLANAR DOMAINS

Our planar vector field design system consists of three stages: initialization, analysis, and editing.
During the initialization stage, the user quickly creates a vector field with a set of specifications. Vector
field topology is not a concern at this point. Next, the system performs both geometric and topological
analysis of the current vector field and provides visual feedback to the user. In the editing stage, the user
modifies the vector field through a set of predefined editing operations. The user may perform many
editing operations before accepting the result. The initialization and analysis stages are relatively
straightforward, and we describe them in Sections 4.1 and 4.2, respectively. The editing stage is at the
core of our design system, and we will describe this in Section 5.

4.1 Initialization

The first stage allows the user to easily create an initial vector field, without being concerned about
its topology. There have been two ways of creating such a field: relaxation [Turk 2001; Wei and Levoy
2001], and using basis vector fields [Praun et al. 2000; van Wijk 2002]. We adopt van Wijk’s basis
vector approach [2002] because we are impressed by its intuitive nature and simplicity. In this ap-
proach, every user-specified constraint is employed to create a basis vector field that is defined in the
plane. An initial vector field is then constructed as a weighted sum of these basis vector fields. We
will refer to each user-specified constraint as a design element, which can be either singular or reg-
ular. A design element has a center location and a set of control parameters which will be described
next.

A singular element corresponds to a vector field that has a singularity of certain type at a desired
location. For instance, if the user desires an isotropic source at location p0 = (x0, y0) with strength
k > 0, the system will create the following vector field for any point p = (x, y) in the plane:

V (p) = e−d‖p−p0‖2

(
k 0
0 k

) (
x − x0

y − y0

)
, (2)

where d is a decay constant that is used to control the amount of influence of the basis vector field.
Other isotropic singular elements include a sink, saddle, counter-clockwise center, and clockwise center,

whose matrices are the following:
(

−k 0
0 −k

)
,

(
k 0
0 −k

)
,

(
0 −k
k 0

)
,

(
0 k

−k 0

)
, respectively. The system

allows the user to modify the scale, orientation, and center location of an existing singular element,
as well as to remove it altogether. Modifications to singular elements will result in more complicated
matrices (details can be found in van Wijk [2002]).
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Fig. 5. An initial vector field can be created using singular elements (left, colored boxes), and regular elements (right, colored

arrows). The centers of the colored boxes are the locations of the desired singularities. Notice there are unspecified singularities

in both examples.

A regular element assigns a particular nonzero vector value V0 at a desired location p0. Again, the
system creates a basis vector field as follows:

V (p) = e−d‖p−p0‖2

V0 (3)

The resulting vector field is interactively updated and displayed as the user continues to make adjust-
ments to the sets of regular and singular elements. Figure 5 shows two vector fields that were generated
using singular elements (left) and regular elements (right). In practice, both types of specifications can
be combined to create an initial vector field. Notice that summing the basis vector fields may cause
additional (perhaps unwanted) singularities to appear, that is, the ones that are not at the centers of
any box in this figure. They can be handled through the topological editing operations that we will
describe in Section 5.

4.2 Analysis

Our system performs the following analysis on a given vector field: computing curl and divergence,
locating singularities and determining their types, and tracing separatrices.

The initial vector field created in the first stage is difficult to analyze because of its complicated
formulae (Eqs. (2) and (3)). Furthermore, analytical formulae are not available for 3D surfaces that
lack a global parameterization. To perform analysis in a fast and efficient manner and to be able to
generalize the method to surfaces, we follow the approach by Helman and Hesselink [1991] and use a
piecewise approximation in which the underlying domain is tessellated by a triangular mesh. The vector
values are sampled at vertices according to the analytic formula and linearly interpolated on the edges
and inside the triangles. To be more specific, for a given planar triangular mesh, our system represents
a vector field V by assigning vector values {W1, W2, . . . , Wn} at the mesh vertices {v1, v2, . . . , vn}. For a
point p = (x, y) inside a triangle T = {vT1

, vT2
, vT3

} whose barycentric coordinates are (α1, α2, α3), we
have

V (p) =
3∑

j=1

α j WTj , (4)

or under some local coordinate system of T , V (p) = MT

(
x
y

)
+

(
e
f

)
, where MT =

(
a b
c d

)
is the

Jacobian. This representation does not require an analytical formula and is compatible with many
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graphics applications that use vector fields. Furthermore, Eq. (4) can be adapted to represent a contin-
uous surface vector field (Section 6.2.1).

For each triangle, our system computes the following information: the divergence and curl, Poincaré
index, the location of the singularity inside (if any), and the incoming and outgoing directions if the
triangle contains a saddle. The details of computing these quantities using piecewise linear represen-
tation can be found in Tricoche [2002]. We also compute the topological skeleton of the vector field,
which is done by following the approach of Helman and Hesselink [1991]. Starting from every saddle
point, we follow the flow forward in its outgoing directions until the flow is stopped at a singularity or
hits the boundary. To trace the trajectories away from a saddle, we use a Runge-Kutta algorithm with
adaptive stepsize control [Cash and Karp 1990]. This gives us the two outgoing separatrices. Similarly,
we obtain the two incoming separatrices by following the flow backward along the incoming directions
of the saddle. Figures 3 and 5 show the topological skeletons of the corresponding vector fields.

5. EDITING

Vector field editing is at the heart of our design system. The set of useful editing operations is application-
dependent. For instance, in texture synthesis and nonphotorealistic rendering, the user often needs to
remove unwanted singularities or to move them to less visible regions. Fluid simulation may require
adjusting the amount of curl and divergence of an external force. Furthermore, noisy datasets often
contain a large number of singularities and rather complex behaviors. Simplifying the flow while main-
taining its major features is a necessary task for any vector field design system. We provide the following
operations.

(1) Matrix actions on flows: flow rotations and reflections;

(2) flow smoothing within a user-defined region; and

(3) topological editing operations of singularity pair cancellation and singularity movement.

Matrix actions can be used to adjust flow characteristics, such as curl and divergence. Flow smoothing
is an efficient vector field simplification operation that can also simplify vector field topology.

Topological editing operations are used to provide explicit control over the number and location of
singularities in the vector field. Most existing singularity pair cancellation algorithms assume that
there is a connecting orbit between the singularity pair, as in the case of a source/saddle or sink/saddle
cancellation. When the pair involves a center or a focus of a high curl, however, the connecting or-
bit either does not exist or cannot be computed in a numerically stable fashion. Consequently, these
techniques do not address such cases. A similar issue comes up in singularity movement, where it is
necessary to compute the trajectory that connects the singularity to its new desired location under the
current flow. Such a trajectory does not always exist when the singularity is a saddle or center. As we
will describe later in Sections 5.3.1 and 5.3.2, matrix actions can also be used to modify the types of
singularities such that the aforementioned connecting orbits exist and can be computed easily in the
modified field. This is essential to overcome the numerical instabilities associated with regions of high
curls and regions near saddles.

Because we use a piecewise linear approximation, all editing operations affect the vector values at
vertices only. These values are then extended to a continuous vector field defined on the whole mesh
surface through a piecewise interpolation scheme.

5.1 Matrix Actions on Flows

Any 2×2 matrix M =
(

a b
c d

)
induces a vector field operator as follows: (M (V ))(p) =

(
a b
c d

)
V (p). When M

has a full rank, it does not change the number or location of singularities in the vector field. Furthermore,
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Fig. 6. In this figure, a vector field (left) is first rotated by π
2

(middle), then reflected with respect to the X -axis (right).

M maintains the Poincaré index if det(M ) > 0, and negates it if det(M ) < 0. For any θ ∈ R, Rθ =(
cos(θ ) − sin(θ )
sin(θ ) cos(θ )

)
is a flow rotation operator and Fθ =

(
cos(θ ) − sin(θ )

− sin(θ ) − cos(θ )

)
is a flow reflection operator. The

actions of Rθs and Fθs are of particular interest to us.
For any θ and vector field V , it is straightforward to verify that

(curl(Rθ (V )))2 + (div(Rθ (V )))2 = (curl(V ))2 + (div(V ))2. (5)

This implies that for any point p in the domain, there are appropriate rotations of V such that
curl(Rθ (V ))(p) = 0 or div(Rθ (V ))(p) = 0. Furthermore, a curl-free vector field can be rotated into a
divergence-free vector field, and vice versa, with a π

2
rotation. Topologically speaking, flow rotations do

not alter the number, location, or Poincaré index of the singularities (det(Rθ ) = 1 > 0). Any singularity
with a Poincaré index of +1 can be converted into a source with an appropriate rotation. A saddle re-
mains a saddle under flow rotations. However, its incoming and outgoing directions are rotated, possibly
by different amounts. These topological properties make flow rotations essential for singularity pair
cancellation (Section 5.3.1) and singularity movement operations (Section 5.3.2), especially in regions
of high curls.

Fθ induces a reflection on the values of V with respect to the axis sin( θ
2
)X + cos( θ

2
)Y = 0. It is

straightforward to verify that F 2
θ = Id. For planar domains, flow reflections do not alter the number or

location of the singularities in V . Since det(Fθ ) = −1 < 0, they negate the sign of the Poincaré indices.
Just as flow rotations can convert a singularity with a Poincaré index of +1 into a source, they can
turn any saddle into a source with an appropriate choice of reflection axis. This makes flow reflections
crucial for our singularity movement operations on saddles (Section 5.3.2).

Figure 6 shows the effect of applying flow rotations and reflections to a planar vector field. The actions
are R0 = Id (left), R π

2
(middle), and F π

2
(right). Notice that in all instances, the number and location of

singularities do not change. Flow rotations maintain the Poincaré indices, while flow reflections negate
their signs.

The concepts of flow rotations and reflections are not new. Theisel and Weinkauf [2002] define four
types of operations for feature matching between vector fields. These operations include rotations and
negative scalings (including reflections). However, we believe that it is a novel idea to use flow rotations
and reflections to overcome the numerical difficulties associated with regions of high curl and regions
near saddles.
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5.2 Flow Smoothing

We now describe our implementation of flow smoothing, which is a nontopology-based vector field
simplification operation. This operation is carried out in two stages. First, the user specifies a simply
connected region by drawing a loop in the domain. Next, the flow inside the region is replaced by a
“simpler” flow. The key is to let the user decide the region for smoothing. Once the region is determined,
a number of known smoothing techniques, such as those of Westermann et al. [2000], Polthier and Preuß
[2003], and Tong et al. [2003], can be used to replace the flow inside. In particular, Tong et al. [2003]
compute a Hodge-Helmholtz decomposition of the original vector field. Smoothing is performed on the
potentials of curl-free and divergence-free parts. However, smoothing the harmonic component still
requires vector-valued smoothing. We choose to perform smoothing on the vector values directly, which
is faster because it avoids the costs of performing decomposition and the two additional potential-based
smoothings. Furthermore, vector-valued smoothing tends to remove high-frequency noise from the data,
as well as reducing the number of singularities in the vector field. This is supported by our numerical
tests. For remeshing purposes, Alliez et al. [2003] employ a similar component-based approach to smooth
curvature tensor fields.

Given a vector field V and user-specified region R, we replace V with another vector field V inside
R. This is achieved by solving the vector-valued Laplace equation inside R, with V being fixed on ∂ R.

Let V (p) =
(

F (p)

G(p)

)
. The values of V inside R are given by(�2 F = 0

�2G = 0

)
. (6)

In practice, the user-specified region R is part of the underlying mesh that is used to represent the
planar domain. To solve Eq. (6) on this discrete mesh, we fix the values at the boundary vertices of R,
that is, F = F, G = G. The values of F and G for an interior vertex vi are determined by(

F (vi)

G(vi)

)
=

∑
j∈J

ωij

(
F (vj )

G(vj )

)
. (7)

Here, J is the set of index j s such that (vi, vj ) is an edge in the mesh. The weights ωijs are defined
according to the mean-value coordinates of Floater [2003], since this method guarantees ωij to be non-
negative. This leads to a pair of sparse linear systems which we solve through an implicit biconjugate
solver.

In Figure 7, a complicated vector field with many singularities (left) is converted into a vector field with
only one singularity (right) through smoothing. The boundary of the user-specified region is highlighted
with a white loop. Notice that the vector field is not altered outside the user-specified region. Later,
we make use of flow smoothing to perform singularity pair cancellation (Section 5.3.1) and singularity
movement (Section 5.3.2).

5.3 Topological Editing Operations

Our system provides two topological editing operations: singularity pair cancellation, and singularity
movement. The former refers to removing a pair of (unwanted) singularities with opposite Poincaré in-
dices, while the latter is used to move a singularity to a more desirable location. Both operations provide
topological guarantees in that they only affect the intended singularities, and our implementation is
based on Conley index theory.

5.3.1 Singularity Pair Cancellation. As discussed in Section 2.1, singularity elimination must be
performed for a pair of singularities with opposite Poincaré indices. This operation is therefore called
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Fig. 7. Flow smoothing inside a user-specified region (bounded by the white loop). Notice the vector field outside the region is

unchanged.

singularity pair cancellation. There have been several pair cancellation methods for simplifying scalar
fields on surfaces [Edelsbrunner et al. 2002, 2003]. These techniques achieve singularity pair cancel-
lation for the gradient field by modifying the scalar values in a region near the singularity pair. It is
not clear how these techniques can be used for generic vector fields, which need not correspond to any
scalar functions.

Tricoche et al. [2001] propose a pair cancellation technique for vector fields by allowing a saddle
to be cancelled with either a source or a sink. To achieve this, they first find a narrow neighborhood
that encloses the singularity pair and their connecting orbit. Then, an iterative nonlinear optimization
is performed on the vector values at interior vertices of this region so that the Poincaré index for
every triangle is zero. There are a number of issues with this approach. From a theoretical viewpoint,
any simplification technique based on the Poincaré index cannot be applied to the cancellation of a
repeller/attractor pair in which one of the entities is a periodic orbit (Section 2.1). From a numerical
point of view, this technique is not robust in handling pair cancellations that involve a center or focus
with high curl. Furthermore, the nonlinear optimization technique is computationally expensive and
does not guarantee that a solution can be found.

In this work, we propose a new pair cancellation technique based on Conley index theory which pro-
vides theoretical guarantees for any attractor/repeller pair, including objects other than singularities.
We will only consider the case of a source/saddle pair cancellation. If the singularity with a positive
Poincaré index is not a source, we can always find an appropriate rotation to turn it into a source,
while the saddle does not change its type. Our algorithm consists of two stages. First, the system de-
termines an isolating block R with trivial Conley index such that R encloses the singularity pair in
its interior. Second, the flow inside R is replaced with a new, singularity-free vector field. Figure 8
provides an illustration of the idea. Later, we use a similar two-stage approach for moving a singularity
(Section 5.3.2).

Let s+ and s− be the source and saddle, respectively. When there is a unique connecting separatrix
between them, we can construct an isolating block R containing s+ and s−, on which the cancellation
can be performed [Mischaikow and Mrozek 2002]. We need the following definition:

Definition 5.1. For a given vector field V , let ϕ denote the flow induced by V . For a region Q in the
domain, we define its images under the forward and reverse flow as


(Q) = ϕ(Q , [0, ∞)) 
−1(Q) = ϕ(Q , (−∞, 0]). (8)
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Fig. 8. An illustration of our two-step algorithm for singularity pair cancellation between a source s+ and saddle s−. In the left,

an isolating block R is found to enclose both singularities, and its boundary consists of two segments: inflow (red) and outflow

(green). The vector field inside R is replaced with a flow that has no singularities (right).

Fig. 9. Our construction of an isolating block R for singularity pair cancellation. In the left, a region R+ is generated by following

the flow forward from a neighborhood of s+. Similarly, a region R− is obtained by following the reverse flow from a neighborhood

of s−. When there is a unique connecting orbit between s+ and s−, R = R+ ∩ R− is an isolating block with trivial Conley index.

In the right, two valid regions R1 and R2 are obtained by using different sizes of neighborhoods of s−. R2 is preferred, since it

is larger and tends to result in smoother flows after the cancellation.

To find the isolating block R, we begin with the isolating neighborhoods M and N of s+ and s−,
respectively. In general, R = 
(M )

⋂

−1(N ) is an isolating neighborhood. If there exists a unique

separatrix going from s+ to s−, then the Conley index of R is trivial and it is possible to replace the
vector field inside R with one that is singularity free [Mischaikow and Mrozek 2002] (Figure 9, left).

Next, we describe a practical algorithm for computing R over a domain represented by a trian-
gular mesh. Let M and N be sets of triangles that enclose s+ and s−, respectively. Here, 
(M ) is
obtained by performing region growing from M and following the flow forward. Similarly, 
−1(N ) is
obtained by performing region growing from N and following the flow backward. We need the following
definition:

Definition 5.2. Given a vector field V and polygonal region R, a boundary edge e is an exit for the
forward flow with respect to V if maxp∈e(Np · Vp) > 0. Here, Np is the outward normal to the region at
point p. Similarly, e is an exit for the backward flow with respect to V if minp∈e(Np · Vp) < 0.
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If V is a piecewise linear vector field on a boundary edge e = (v1, v2) with a constant outward normal
Ne, the tests for exit edges reduce to determining the signs at the vertices. Here, e is an exit edge for
the forward flow with respect to V if max(V (v1) · Ne, V (v2) · Ne) > 0. Similarly, e is an exit edge for the
backward flow with respect to V if min(V (v1) · Ne, V (v2) · Ne) < 0.

Let M be the triangle that contains s+. Starting from M , we construct 
(M ) by adding one triangle
at a time and keeping track of the behavior of the flow on boundary edges of 
(M ). A new triangle can
be added only by crossing an exit edge. The region growing process continues until there are no more
exit edges, that is, the flow enters 
(M ) everywhere on its boundary.


−1(N ) is constructed in a similar fashion by starting from N and following the flow backward.
However, the choice of N is a delicate issue, and affects the shape of 
−1(N ) and subsequently, R. Due
to the limited resolution of the underlying mesh, R needs to be as large as possible, so long as its Conley
index remains trivial. We perform a linear search on the length of the outgoing separatrices of s− such
that the covering triangles form N . Figure 9 shows the effect of following these separatrices to varying
lengths. Here, R+ = 
(M ) and R− = 
−1(N ).

To replace the flow inside R, we use flow smoothing. As described earlier, this operation tends to
simplify the vector field topology, and our numerical results indicate that flow smoothing is efficient for
singularity pair cancellation, as long as the region R has a reasonable shape. The following pseudocode
illustrates our algorithm for cancelling a source/saddle pair, where the source s+ has a zero curl.

(1) PairCancellation(V, s+, s−)

(2) Let M be the triangle containing s+, and we use region growing to find 
(M ).

(3) Let γ = 1, dγ = 0.5, and Vworking = V .

(4) Let S1 and S2 be the two outgoing separatrices at s−.

(5) while γ > 0 and dγ > δ (δ is a user-specified constant)

(6) Let S1,γ ⊂ S1 be the portion starting from s− such that length(S1,γ ) = γ length(S1). Define S2,γ similarly.

(7) Let N be the minimal set of triangles that contain S1,γ and S2,γ , and we compute 
−1(N ) using region
growing.

(8) R = 
(M ) ∩ 
−1(N ).

(9) if R does not satisfy the necessary Conley conditions,

(10) γ = γ − dγ , dγ = dγ /2.

(11) else
(12) perform smoothing in R.

(13) if the resulting flow contains any singularity inside R,

(14) undo smoothing.

(15) γ = γ − dγ , dγ = dγ /2.

(16) else
(17) update Vworking with the smoothed flow.

(18) γ = γ + dγ , dγ = dγ /2.

(19) end if
(20) end if
(21) end while

In Line (9), in order to meet Conley conditions, R must be simply connected, contain no singularities
other than s+ and s−, and have a trivial Conley index. The purpose of the binary search on γ is to
determine an optimal length along the outgoing separatrices such that the region R has a reasonable
shape. When γ = 0, R is a narrow region that covers both the singularity pair and their connecting
orbit, and has a trivial Conley index. When γ → 1, R tends to have a nice shape. However, it may cover
other singularities, such as the sinks that are linked to s− through the outgoing separatrices, and the
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Fig. 10. We use flow rotations to help overcome the numerical difficulties associated with high curls in a vector field. Here,

a center/saddle cancellation is performed on a vector field (upper-left) to obtain a new one (lower-left). The vector field is first

rotated by π
2

(upper-right), followed by a pair cancellation (lower-right), before a compensating rotation is performed (lower-left).

Conley index of R is no longer trivial. The binary search process balances between the two factors, and
tends to converge very quickly, since region growing and smoothing are very fast. In addition, when dγ

is small enough, γ and γ + dγ often correspond to the same set of triangles N , and the computation
can simply be avoided.

Flow rotations are crucial for the success of pair cancellation operations. If the original vector field has
a high curl around s+, as in the case of a divergence-free flow, the connecting orbit between singularities
may not even exist. Figure 10 demonstrates how our system cancels a center and saddle pair (upper-
left). The flow is first rotated by π

2
to become a curl-free vector field (upper-right) in which the center

has changed to a source, and there is now a connecting orbit between the source and saddle. Next, the
source and saddle are cancelled. Finally, a compensating rotation of −π

2
is performed (lower-left).

5.3.2 Singularity Movement. Moving a singularity to a new location provides the user with control
over the position of the singularities in a vector field. To our knowledge, this is the first time such an
operation has been proposed and an algorithm presented. Through flow reflections and rotations, the
problem of moving a singularity is reduced to moving a source. Similar to singularity pair cancellation,
our algorithm for moving a source is based on Conley index theory and is carried out in two stages.
First, we compute an isolating block R such that it encloses the connecting orbit for the current location
sold and desired new location snew under the current vector field V . By construction, R has the Conley
index of a source and does not contain any other singularities, either in its interior or on its boundary
(Figure 4(b)). Next, the vector field inside R is modified to contain only one singularity at snew (Figure 11).

Let R = 
(M )
⋂


−1(N ), where M is a small neighborhood of sold and N is a neighborhood of snew.
To ensure snew is in the interior of R, another point s′ is located such that it is on the forward trajectory
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Fig. 11. Moving a source from sold to snew. An isolating block R is found to enclose both sold and snew such that R has the

Conley index of a source. Then a small region R ′ is found to enclose snew, and appropriate vector values are assigned to ∂ R ′ such

that it forces a source at snew. For region R \ R ′, flow smoothing produces a new vector field without any singularity.

from snew under V . Let us consider the trajectory J of s′ under the flow R π
2
(V ). Here, J serves the same

purpose as the outgoing separatrices of the saddle in pair cancellation. Let N be the largest segment
on J that makes R an isolating block with the Conley index of a source. This ensures that R is a wide
region.

Let T be the triangle that contains snew. Our system assigns vector values at the three vertices of T
to enforce a source at snew. Let R ′ = {T }. Then region L = R \ R ′ has two boundaries. The flow enters
L from the inner boundary and leaves at the outer boundary. Therefore, L has the trivial Conley index
(see Figure 4(e)), and the flow smoothing inside L usually produces a vector field without singularities.

Moving a center or saddle is considerably more challenging. First, finding a connecting orbit between
the saddle and a regular point is numerically unstable. Moreover, finding a connecting orbit between a
center and a regular point is almost impossible. To solve these numerical issues, we make use of flow
rotations and reflections to make singularity movement applicable to any linear singularity. If sold is
a saddle, we use flow reflection to turn it into a singularity with positive index. Then, we perform an
appropriate rotation such that the resulting vector field has a zero curl at sold, and the singularity
is now a source. This simplifies the process of locating the connecting orbit between sold and snew.
Figure 12 provides an example of moving a saddle in a vector field (upper-left). First, flow reflection is
applied to turn the saddle into a source (upper-right). Next, the source is moved (lower-right) before a
compensating reflection is applied (lower-left).

6. DESIGN FOR 3D MESH SURFACES

In this section, we describe how we adapt our three-stage vector field design system for planar domains
to mesh surfaces. There are several challenges that we must overcome. First, a 3D surface often lacks a
global parameterization, which is needed to correlate the tangent vectors defined at different locations
in order to build surface-based basis fields from design elements. Second, topological analysis of vector
fields requires a scheme that interpolates the vectors that are defined at the vertices and produces a
continuous vector field everywhere in the mesh. However, the tangent planes of a mesh surface are
discontinuous at vertices and edges, and the definition of vector field continuity from smooth manifolds
does not apply. In addition, as we will demonstrate in Section 6.2.1, the piecewise linear interpolation
scheme that works well for planar vector fields will cause inconsistent vector values across the edges. To
address these issues, we borrow the ideas of geodesic polar maps and parallel transport from classical
differential geometry to set up correlations between tangent vectors defined at different parts of the
surface. The correlations are used for two purposes. First, we extend the construction of basis vector
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Fig. 12. Flow reflections are useful to overcome the numerical difficulties associated with saddles. In this example, a singularity

movement operation is applied to a vector field (upper-left) to obtain a new vector field (lower-left). The vector field is first reflected

so that the saddle becomes a source (upper-right), followed by a source movement (lower-right), before a compensating reflection

is performed (lower-left).

fields (Section 4.1) to surfaces by parallel transporting tangent vectors from the location of the design
element to anywhere on the surface. Second, we adapt the piecewise linear approximation from planar
domains (Section 4.2) to mesh surfaces by parallel transporting vectors from a vertex to anywhere
inside its one-ring neighborhood. The piecewise interpolation scheme results in a continuous surface
vector field, and supports efficient analysis and editing operations.

6.1 Initialization: Construction of Basis Vector Fields on Surfaces

In this section, we describe how we construct a basis vector field on a mesh from a design element.
Recall that in the planar case, a design element O is converted into a global basis field, according to
Eqs. (2) and (3). To extend this method to surfaces, we perform the following three-step process, as
illustrated in Figure 13. First, we compute a geodesic polar map with respect to the location of O (left),
which assigns every point A on the surface with a pair of coordinates (xA, yA). This can seen as building
a global parameterization for the surface using the tangent plane at O. Next, (xA, yA) are substituted
into Eqs. (2) or (3) to obtain a tangent vector value WA defined at O (middle). Finally, WA is parallel
transported from O to A along the shortest geodesic that connects them (right). The process is based on
several ideas from classical differential geometry, namely, geodesics, geodesic polar maps, and parallel
transport. We will review each of these in turn.

A geodesic on a curved surface is a locally shortest and straightest curve. It is a generalization of a
straight line in the plane. Starting from a point p on the surface, there is a geodesic in every tangent
direction −→v . Denote this geodesic by γp,−→v . A point q on γp,−→v with a distance ρ from p can be identified
by the coordinates (ρ , θ ), where θ is the angular coordinate of −→v with respect to some local frame at p.
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Fig. 13. Our three-step algorithm (from left-to-right) for creating a surface basis vector field from a user-specified constraint O.

First, the surface is parameterized using a geodesic polar map with respect to O. This parameterization is denoted as α. Second,

the basis vector field is computed inside the tangent plane at O with the polar coordinates from α. Finally, the vectors are parallel

transported along shortest geodesics on the surface.

In the plane, the coordinates reduce to the familiar polar coordinates. This map is the geodesic polar
map. On a curved surface, a geodesic polar map is neither bijective nor continuous. For example, on the
Earth, a geodesic polar map with respect to the North Pole will have discontinuities at the South Pole.
However, the focus of a design element is in a nearby region, and the geodesic polar map with respect
to the design element meets our needs.

In differential geometry, parallel transport is used to correlate tangent vectors that are defined at
different locations with a geodesic that connects them. Formally, let p and q be two points on a smooth
manifold S, and let γ : [0, 1] → S be a geodesic such that γ (0) = p and γ (1) = q. Furthermore, let Vp
and Vq be tangent vectors defined at p and q, respectively. If the oriented angle between γ ′(0) and Vp
equals that between γ ′(1) and Vq, then Vp and Vq are said to be parallel with respect to γ , and Vq is
said to be the parallel transport of Vp along γ . Notice that γ gives rise to an orthonormal and bijective
linear map between TMp and TMq, the tangent planes at p and q. This map is a transport function
and denoted by fpq.

For a design element d , let αd : S → R2 be a geodesic polar map with respect to d , and let fdp :
TMd → TMp be the transport function along a geodesic γdp. Then, the surface basis vector field Wd (p)
that corresponds to a design element d is constructed as Wd (p) = fdpV (αd (p)). In this equation, V is
evaluated according to formulae such as Eqs. (2) or (3). For the purposes of building the geodesic polar
map αd and computing the transport function fdp, we need to compute a geodesic from any vertex of
the surface to the design element d .

Assume that the design element d is situated inside a triangle T . We first compute the geodesic
distance function gd with respect to d for every vertex using the fast marching method [Kimmel
and Sethian 1998]. The values of gd at a vertex is the radial component of the geodesic polar map. To
construct the angular component in the ideal situation, we need to perform particle tracing from a vertex
in the opposite direction of �gd , the gradient vector field of gd . However, performing particle tracing
for every vertex is expensive. In addition, −�gd often has local minima other than d . To overcome these
problems, we propose a two-region approach in which the angular component θ is computed directly
only within a surface disk surrounding d such that the disk contains a user-specified percentage of the
total vertices in the mesh. We use 25% in practice. For a point inside the disk, we project it onto the
tangent plane at d to obtain θ . For a vertex p outside the disk, we perform particle tracing from p in
the direction of − � gd until it hits an edge e = rs that is on the boundary of the disk. If θ (r) and θ (s)
are both known, then θ (p) is obtained by linearly interpolating between θ (r) and θ (s). If particle tracing
from p fails to reach any boundary edge, then there is no shortest geodesic between p and d . In this
case, a random θ value is assigned to p. Although this may seem to have created discontinuities in the
vector field, let us recall that vector values are only computed at the vertices at this stage. In the next
section, we will describe a piecewise interpolation scheme in which a continuous vector field is created
based on the values defined at the vertices.
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Fig. 14. Design elements for creating an initial vector field. From left to right: a dipole vector field on a sphere using a source

element, a singularity-free vector field on a torus with three regular elements, and another vector field on the torus with a

clockwise center element and counter-clockwise element. Notice that the surface basis vector fields are very efficient for creating

initial vector fields.

The aforementioned method works well for nearly flat or spherical regions. However, around nearly
cylindrical features, the projection is likely to result in undesired values on the side of the cylinder that
is opposite to the center of the design element. We are investigating other possible surface parameter-
izations, such as cylindrical coordinates, to address this.

Given a geodesic polar map, a tangent vector can be parallel transported to a vertex along a geodesic.
This completes the construction of a basis vector field. Figure 14 provides three examples: a dipole
vector field on a sphere with a single source element (left), a singularity-free vector field on a torus with
three regular elements (middle), and another vector field on a torus with a clockwise center element
and a counter-clockwise center element (right). Additional examples are shown in Figure 2.

Let us stress that this is not the only way to create basis vector fields. In van Wijk’s visualization
tool [2003], an element is translated into a 3D vector field before being projected onto the surface. While
our approach appears to be more intuitive in this case, given that a surface is locally homeomorphic to
a plane, van Wijk’s 3D projection method is faster, since it does not require the construction of geodesic
polar maps. Constrained optimization [Turk 2001; Wei and Levoy 2001] is another way to produce an
initial vector field with desired behaviors. Praun et al. [2000] propose a vector field propagation approach
in which a vector value is defined inside one face of the mesh surface. Through region growing, the vector
value for a new triangle is obtained by computing the average tangent vector of neighboring triangles
that are already part of the region. This vector is then projected onto the face.

6.2 Analysis: Vector Field Continuity and Piecewise Interpolation Scheme for Meshes

Once vector values are determined at the vertices, we use a piecewise interpolation scheme to con-
struct a continuous vector field on the mesh surface. This is needed in order to provide control over
vector field topology. Unfortunately, the piecewise linear approximation for planar domains does not
produce consistent vector fields on mesh surfaces. Figure 15 illustrates this with an example. Given
a vertex O and its one-ring neighborhood (a), the vectors are zero at A, B, C, and D. In addition,

V (O) is in the direction of
−→
OC. With piecewise linear representation, the vectors at the midpoints of

edges OD and OB are fixed (c). Due to continuity constraints across the edges, the vectors at the mid-
dle points OA in triangles �ODA and �OAB lead to inconsistencies (d). The problem is due to the
angle deficit at O and discontinuity of tangent planes at the vertices and across the edges. In this
section, we describe an interpolation scheme that is guaranteed to produce a continuous vector field
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Fig. 15. The piecewise linear representation for planar domains does not produce continuous vector fields on mesh surfaces.

The vectors are zero at A, B, C, and D. The vector at O is in the direction of
−→
OC (a). The piecewise linear representation and

vector field consistency along edges OD and OB eventually lead to vector field discontinuity along edges OA (c) and (d). In

contrast, our piecewise interpolation scheme (Section 6.2) produces a continuous vector field (e), which corresponds to a family

of nonintersecting and spacing-filling trajectories in the one-ring neighborhood of O (b).

directly on mesh surfaces. This scheme is a generalization of the piecewise linear representation from
the planar case, and it allows fast and efficient analysis and editing of the vector fields on meshes.
Before describing the scheme, however, we first need a definition of the vector field continuity for mesh
surfaces.

For planar domains, the concept of vector field continuity is well-defined because any two vectors
can be compared, regardless of their locations. This is no longer true for a general surface, since the
tangent planes at different locations are distinct and there is not an obvious and consistent way to
correlate them without a global parameterization. Furthermore, the tangent planes of mesh surfaces
are often discontinuous across the vertices and edges. Stam [2003] addresses the problem by using
a subdivision surface whose tangent planes are continuous everywhere. However, for most geometric
processing operations, subdivision surfaces incur higher computational costs than polygonal meshes.

Recall that for a smooth vector field, a point is either a singularity or regular point. We can always
define singularities for surface vector fields because zero vectors can be identified, regardless of location.
In addition, the flow-box theorem for ordinary differential equations gives us a picture of what happens
near a regular point [Hale and Kocak 1991].

THEOREM 6.1. Let V be a smooth vector field defined in D ⊂ Rn. If p0 ∈ D is a regular point of V , then
there exists a neighborhood U of p0 and a homeomorphism h : U → Rn which carries each piece of a
trajectory lying on U onto a straight line of Rn parallel to the X -axis.

In other words, near a regular point, it is possible to warp the space such that nearby trajectories are
parallel and space-filling. We propose to use this property as the definition for vector field consistency
(continuity) for a regular point on mesh surfaces. Notice that the flow-box theorem is true, even when
the vector field V is only Lipschitz-continuous [Calcaterra and Boldt 2003], which is a stronger condition
than continuity, but weaker than smoothness. Basically, a vector field V over a domain is Lipschitz-
continuous if there exists a constant K such that for any x, y in the domain, |V (x) − V (y)| < K |x − y|.
We propose the following definition:

Definition 6.2. Let V be a vector field defined on a mesh surface M. Here, V is consistent at a point
p0 ∈ M if one of the following situations is true:
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(a) For any path γ [0, 1) → M such that V (γ (t)) is well-defined for any t ∈ [0, 1) and for limt→1 γ (t) =
p0, we have limt→1 V (γ (t)) = 0. In this case, p0 is a singularity.

(b) There exists a neighborhood U of p0 and a homeomorphism h : U → R2 which carries each piece
of a trajectory lying in U onto a straight line in R2 parallel to the X-axis. In this case, p0 is regular.

In other words, a consistent vector field on a mesh surface should exhibit the same local behaviors
as those defined in a plane. Notice that in this definition, we require continuity at singularities, and
unique solvability at regular points. Unique solvability refers to the fact that for any point p0, there
exists a unique solution to the differential equation induced by the vector field. Observe that as curves
on a continuous surface, it makes sense to discuss the continuity of the trajectories of a vector field.
Figure 15(e) illustrates the result of our interpolation scheme, to be described next (compare this to
Figure 15(d)). Notice that this scheme leads to a family of nonintersecting and space-filling trajectories
in the one-ring neighborhood of O (Figure 15(b)).

6.2.1 Piecewise Approximation. For every vertex in the mesh, we record its surface normal and
the local frame for the tangent plane. This allows a tangent vector to be transformed from its local
coordinates to global coordinates.

A vector field V on a mesh surface is represented by assigning tangent vectors {W1, W2, . . . , Wn}
at the mesh vertices {v1, v2, . . . , vn}. For each Wi, we maintain its local coordinates for vector field
design and 3D global coordinates for display. We cannot simply perform interpolation of Wis, since they
are in general not coplanar. Furthermore, without a surface parameterization, tangent vectors that
are defined at different vertices are not correlated. To overcome these problems, we first define a local
parameterization for the one-ring neighborhood of a vertex vi. This parameterization allows the parallel
transport of Wi to any point p inside vi ’s one-ring neighborhood. Let μi be such a transport function
(which we will soon describe). Then, for a point p inside a triangle T = {vT1

, vT2
, vT3

} whose barycentric
coordinates are (α1, α2, α3), Eq. (4) can now be rewritten as the weighted sum of the tangent vectors
that are parallel transported from the three vertices:

V (p) =
3∑

j=1

α j μTj (WTj , p) (9)

Let us consider Vi, the vector field that is constructed according to Eq. (9) under the assumption that
W j = 0 for every j �= i. We have V = ∑n

i=1 Vi. Notice Vi is zero outside the one-ring neighborhood of
vertex vi. As we will soon see, Vi is a consistent vector field over the mesh surface for every i, and so
is V . Before we describe the parameterization and transport function in detail, we need the following
definitions [Polthier and Schmies 1998]:

Definition 6.3. Let M be a polyhedral mesh representing a closed curved surface. Let v be a vertex
with incident triangles Tj ( j = 1, . . n), and θ j be the interior angle of Tj at v. Then,

(1) The total vertex angle at θ (v) is given by θ (v) = ∑n
j=1 θ j ; and

(2) 2π −θ (v) is the Gaussian curvature at v. A vertex v is Euclidean if it has a zero Gaussian curvature;
otherwise, it is non-Euclidean.

Define r = θ (v)
2π

. Notice that r = 1 for vertices with a zero Gaussian curvature. There are two ways of
measuring the angles between two rays emanating from a vertex v. The first is the Euclidean angle,
which is the angle measured on the mesh. The second angle is the normalized angle, as measured in
the tangent space (each ray corresponds to a tangent vector). The normalized angle α is related to the
Euclidean angle β by β = rα [Polthier and Schmies 1998]. Figure 16 provides an illustration. In the left

ACM Transactions on Graphics, Vol. 25, No. 4, October 2006.



Vector Field Design on Surfaces • 1317

Fig. 16. This figure illustrates the idea of parallel transporting a tangent vector Wi = WP from a vertex vi = P to a point K
inside P’s one-ring neighborhood, R. First, we build a local parameterization ρ for R. Then, WP is parallel transported to K along

the ray
−−−−−−→
ρ(P)ρ(K). This construction guarantees vector field consistency on mesh surfaces.

portion, P = vi is a vertex with the tangent plane TMP (right). Its one-ring neighborhood R consists of
the triangles �PQ1Q2, �PQ2Q3, . . . , and �PQnQ1 (n = 4). Let θ j = ∠Q j PQ j+1. In the right portion,
let D be the unit disk in TMP and let ρ be the following homeomorphism from R to D:

(1) ρ induces a bijective mapping between the boundary of R and the boundary of the unit circle. For
any point M ∈ ∂ R, ρ is a linear map from

−→
PM to

−−−−−−→
ρ(P)ρ(M).

(2) ρ is linear scaling on the angles between rays. If two rays emanating from P have a Euclidean angle
of θ , then the angle between their images (normalized angle) is θ

r .

Note that this construction is similar to the geodesic polar maps used by Welch and Witkin [1994]
for free-form shape design, with a minor difference: In their setting, the parameterization domain is
a polygon, not the unit disk, as in our case. Polthier and Schmies [1998] have used similar maps to
perform parallel translation on vectors over a polygonal surface.

To transfer Wi to a point K inside triangle Q j PQ j+1, we first locate the ray
−→
PM that contains K. Let

φ be the counter-clockwise angle between Wi and the ray
−−−−−−→
ρ(P)ρ(M). We define μi(Wi, p) as the vector

at K such that the angle between μi(Wi, p) and
−→
PM equals φ. Furthermore, |μi(Wi, p)| = |Wi|.

Basically, we have created a constant vector field (= Wi) inside the unit disk (Figure 16, right), which
is then scaled such that the magnitude is one at the origin and linearly decreases to zero along each line
segment connecting the origin and a point on the boundary of the disk. Notice the resulting vector field
is Lipschitz-continuous. Finally, the scaled vector field is mapped to the one-ring neighborhood to obtain
Vi through parallel transport, as described earlier. Note that the distortion contained in the parame-
terization ρ is caused by the Gaussian curvature of vi, and therefore has an upper bound. This implies
that Vi is also Lipschitz-continuous. As a result, vector field consistency (continuity and unique solv-
ability) is ensured. Intuitively, as a parameterization, ρ does not distinguish between the points inside a
triangle or on an edge. Consequently, vector field continuity is automatically guaranteed here. Further-
more, the continuity of ρ ensures the continuity of the resulting vector field at the vertices. For planar
domains, r = 1 everywhere and this approximation reduces to the piecewise linear representation
(Section 4.2).
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Fig. 17. Singularity determination inside a triangle under the piecewise interpolation scheme. Here, Q is the only non-Euclidean

vertex.

Our piecewise interpolation scheme induces a vector field W that is continuous and nonlinear inside
each triangle T minus three vertices. We can think of such a region as a triangle minus three arbitrarily
small corners, each around a vertex. Therefore, W can be seen as being defined over a hexagon that is
arbitrarily close to T . Along each edge of the triangle, W is linear in terms of length. Along the sides
where the corners are cut, W is linear in terms of vertex angle. Locating singularities of W is rather
difficult in this setting. Furthermore, the Poincaré index for a hexagon can be ±2, which implies possibly
two linear singularities or one second-order singularity inside T . This makes topological control more
difficult. To overcome these difficulties, we perform a four-fold triangle subdivision for the input mesh.
Basically, the midpoint of every edge in the original mesh becomes a new Euclidean vertex, since its
total vertex angle is 2π . This means that every triangle in the subdivided mesh can have, at most, one
non-Euclidean vertex, and the analysis becomes more tractable. From now on, we will assume the input
mesh already satisfies this requirement.

6.2.2 Analysis. Our interpolation scheme results in a nonlinear vector field inside a triangle, which
requires new ways of computing the Jacobian, curl, divergence, as well as the singularities and sepa-
ratrices. In this section, we provide solutions to these issues. Let T = �QRS be a triangle with exactly
one non-Euclidean vertex Q . Then the vector field V , as constructed in Eq. (9), is linear on RS and
along any ray emanating from Q . Furthermore, W is a continuous vector field defined on T minus an
arbitrarily small corner near Q , that is, a quadrilateral, as illustrated in Figure 17. Let VR = V (R) and
VS = V (S) be the values at R and S, respectively. At Q , we need a direction to determine the value. Let
W denote the vector field of V along an arbitrarily small line segment near Q such that WQR = W (QR)

and WQS = W (QS) are the vectors in the direction
−→
QR and

−→
QS.

Since the Jacobian is no longer constant inside T , we compute the pointwise Jacobian through a
local approximation. First, two points M1 and M2 are selected inside T such that they are sufficiently
close to M0, and

−−−−→M0M1 and
−−−−→M0M2 are not colinear. Next, we build a linear vector field V such that

V (Mi) = V (Mi) for i = 0, 1, 2. Finally, the Jacobian of V at M0 is approximated by the Jacobian of V .
Pointwise curl and divergence are computed from the Jacobian. On the other hand, the curl and

divergence for a triangle can be obtained accurately by calculating the divergence and curl along the
three edges of the triangle. Notice that the piecewise interpolation scheme that we describe in this
section is linear along these edges. Let Ne and De be the outward normal and directional vector on an
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edge e, then we have the following results:

div(T ) =
(WQR + VR) · N−→QR

2
|−→QR|

+ (VR + VS) · N−→RS

2
|−→RS| (10)

+
(VS + WSQ) · N−→SQ

2
|−→SQ|

curl(T ) =
(WQR + VR) · D−→QR

2
|−→QR|

+ (VR + VS) · D−→RS

2
|−→RS| (11)

+
(VS + WSQ) · D−→SQ

2
|−→SQ|

Note that the total curl and divergence is zero for any closed two-manifold. By construction, our piece-
wise interpolation scheme maintains this property for mesh surfaces.

The Poincaré index of a triangle is computed for a quadrilateral, as illustrated in Figure 17. Along each
side, the vector field continuously and monotonically interpolates the vector values at the end points.
We treat WQR and WQS as vector values defined at the ends of an arbitrarily small edge. The total index
angle is in (−4π, 4π ), which implies that T can have, at most, one linear singularity. The piecewise
interpolation scheme maintains the Poincaré-Hopf theorem, and our numerical results support this. If
the Poincaré index of T is not zero, there must be a singularity inside. To locate the singularity P , we
perform a binary search for a point M ∈ −→RS such that VM = V (M ) and WQM = W (Q M ) are colinear
and point in opposite directions. Let WQM = −αVM , then P = (1 − m)Q + mM (m = α/(α + 1)) is the
location of the singularity. The Jacobian at P is used to determine its type, and in the case of a saddle,
the incoming and outgoing directions.

The Runge-Kutta method that we used for computing the separatrices for planar vector fields (Sec-
tion 4.2) can be adapted to mesh surfaces. Polthier and Schmies have also suggested a fourth-order
Runge-Kutta method for computing trajectories for a continuous vector field on mesh surfaces [1998].
Figures 18 and 2 show some example vector fields on various 3D models along with their topological
skeletons.

6.3 Editing

While the main concepts for editing operations on a surface remain the same as those for planar
domains, some changes need to be made to reflect the differences in vector field representations and
the complexity of the surface geometry, such as curvature and higher genus.

To perform flow rotations on a mesh surface, we simply rotate the vector value Wis in the tangent
planes at each vertex. Since the transport functions are orthonormal transformations between the
tangent planes (Section 6.2.1), rotating Wis by an angle of θ results in a rotation of the same angle
inside every triangle and edge. Therefore, flow rotations maintain the number, location, and Poincaré
index of the singularities. Furthermore, for any point inside a triangle, Eq. (5) remains valid. In contrast,
a flow reflection requires that the local frames and reflection axes at every vertex be correlated. We
make use of a global polar map to parallel transport this information. A flow reflection negates the sign
of the Poincaré indices. However, it may create some additional singularities due to singularities in the
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Fig. 18. A vector field on the sphere (left) is first rotated by π
4

(middle), then reflected (right).

fields of local frames and the field of reflection axes. Regardless of these issues, the resulting vector
field still satisfies the Poincaré-Hopf theorem. Figure 18 illustrates the effects of flow rotations and
reflections on a vector field defined over a sphere. The original field (left) is first rotated by π

4
(middle),

then reflected (right). Compare this figure with Figure 6.
Similar to the planar case, flow smoothing on a surface vector field is carried out by performing

vector-valued smoothing inside a user-specified region. We have implemented two variations for this.
In the first, we perform vector-valued smoothing to the original vector field as a 3D vector field and
project the resultant vector field onto the surface. The second approach parameterizes R based on some
planar domain and performs smoothing in this domain. Both smoothing techniques provide similar
results. However, theoretically speaking, the second approach seems more natural for surfaces.

7. APPLICATIONS

All the vector fields shown in this article were created using our system. In addition, we have ap-
plied vector field design to several graphics applications: painterly rendering of images, pencil sketch
illustration of smooth surfaces, and example-based texture synthesis.

7.1 Painterly Rendering

Painterly rendering refers to creating digital images that have the appearance of being painted. There
are numerous published approaches to painterly rendering, and to review them all is beyond the scope
of this article. These techniques have focused on providing the user with control over certain aspects of
brush strokes, such as textures and styles, while automatically determining other aspects, such as base
colors and orientations. In particular, image-based gradient fields have often been used to guide the
orientation of brush strokes. While this may be appropriate for some parts of the image (near the feature
lines), it often produces brush strokes with noisy orientations in areas with nearly uniform colors.
Furthermore, it creates unnecessary constraints on the way that artists may express themselves. Our
goal for this application is to let the user control brush stroke orientations through vector field design.

We use a level-of-detail approach by Hertzmann [1998]. In this approach, a painting is created in
a series of layers, starting with a rough sketch drawn with brush strokes of a large size. Then the
sketch is painted over with brush strokes of gradually decreasing size at places where signals of higher
frequencies are present. This approach is very fast and high-quality. However, we make the following
modification: Instead of using the image gradient field to guide the brush stroke orientations, let the
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Fig. 19. Painterly rendering of a human eye image through vector field design. The input vector field was created using our

system (lower-left). The high-quality van Gogh-style rendering (right) was produced offline with the approach of Hays and

Essa [2004].

user create a synthetic vector field with our design system. To make this task fast and effective, we
incorporate the painterly rendering algorithm into our system. In addition to viewing the vector field,
the user can also switch to the painterly rendering that uses the current vector field. The results are
interactively displayed as the user makes changes to the vector field. Figures 19 and 20 show the
results for two source images: a human’s eye (van Gogh-style) and a cat’s face (impressionism). For
the human eye, a center element was placed at the middle of the pupil and a saddle element was
placed at the corner of the eye. Two regular elements were placed along the eyebrow to ensure that
the brush strokes did not cross the feature. With five elements, a vector field (lower-left) was produced
that matched the main features of the image (the eye and eyebrow). For the cat’s face, two center
elements of opposite orientations were placed at the middle of each eye. A saddle element was placed
underneath the nose and six regular elements were placed along the ears and chin. The final high-
quality painterly images in both figures were created offline using the algorithm of Hays and Essa
[2004].

7.2 Nonphotorealistic Illustration of Surfaces

There has been much work in creating hatch-based illustrations of surfaces, and to review all of them
is beyond the scope of this article. Girshick et al. [2000] have shown that principle curvature fields are
good at conveying shapes. Traditional techniques often make use of principle curvature directions to
guide the hatch field. Hertzmann and Zorin [2000] present an efficient algorithm for approximating the
principle curvature fields over the mesh by local surface fitting, which leads to a high-quality pen-and-
ink style of rendering of 3D shapes. Praun et al. [2001] treat the problem of hatch-based illustration as
performing texture synthesis on surfaces, which leads to a real-time hatching system in which the user
has the option to guide the orientation of hatches with a vector field on a 3D model. The researcher
van Wijk [2003] applies his image-based flow visualization technique to curvature fields to produce
nonphotorealistic illustrations of 3D surfaces. Similar to the image gradient field, principle curvature
fields are rather noisy for regions where the principle directions are not prominent.
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Fig. 20. Another example of painterly rendering based on vector field design: a cat’s face. The high-quality impressionistic image

shown in the right was also produced offline with the approach of Hays and Essa [2004].

In this work, we allow the user to guide the hatch field through vector field design. Figure 21 shows
the results of applying this technique to various 3D models. The vector field used for the dragon model
in the lower-right image was obtained by rotating the vector field from the lower-left image by π

3
.

7.3 Example-Based Texture Synthesis

Example-based texture synthesis refers to creating patterns on surfaces based on a given input image
of a texture. Praun et al. [2000] propose “lapped textures” in which the surface is partitioned into
overlapping regions and each region receives a portion of the input image. This method is fast, but
causes seams due to surface partition. For textures that contain only high frequencies, the seams are
relatively unnoticeable. Another class of methods [Turk 2001; Wei and Levoy 2001] performs synthesis
on surfaces directly, without creating seams. For any point on the surface, its color is copied from the
pixel in the same image that provides the best neighborhood match, based on a distance criterion. For
both types of synthesis methods, a vector field is used to provide local orientation and scale, as well as
to determine the synthesis order.

Figure 22 shows the results of applying our vector field design system to texture synthesis on the
bunny and the feline. The texture synthesis method is based on those of Turk [2001] and Wei and Levoy
[2001]. The two vector fields used for the bunny are a sink element at the tail and a source element on
the forehead (upper-left), and a π

3
rotation of a dipole (a source element and sink element) on the visible

side of bunny (upper-right). Notice that the spiraling in the second vector field near the singularities
on the side of the bunny is evident in the texture in the upper-right image. The bottom row of Figure 22
shows the feline with a tiger stripe pattern that is guided by two different vector fields, both of which
lead to reasonable results.
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Fig. 21. We have applied vector field design to nonphotorealistic illustration of 3D surfaces. The pencil style illustration is based

on van Wijk’s image-based flow visualization technique [2003]. The vector field used for the dragon image in the lower-right was

obtained by rotating the vector field from the lower-left by π
3

.

8. CONCLUSION AND FUTURE WORK

Vector field design on surfaces is an important problem that has received relatively little attention.
We have identified a number of graphics applications, such as nonphotorealistic rendering and texture
synthesis, for which a vector field design system is needed. We also propose a set of requirements for a
vector field design system. Namely, the user can create a wide variety of vector fields (not some subclass)
with relatively little effort. Also, the user has control over vector field topology.

We present a vector field design system for both planar domains and 3D surfaces. To our knowledge,
this is the first system that produces continuous vector fields on mesh surfaces and provides control
over the number and location of singularities. The system has a three-stage pipeline: initialization,
analysis, and editing. The editing operations are at the core of our system. To make the system fully
functional, we have introduced algorithms to resolve several problems. Many of these problems are
challenging in and of themselves.

(1) The piecewise interpolation scheme for mesh surfaces is novel, and enables efficient vector field
analysis and editing on meshes. To our knowledge, existing singularity pair cancellation techniques
work only for planar domains.

(2) We describe a new technique to construct surface basis vector fields that is based on the concepts
of geodesic polar maps and parallel transport.
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Fig. 22. This figure shows the results of applying our surface vector field design system to texture synthesis. Two vector fields are

used for each model: the bunny, and the feline. Notice that singularities lead to the breakup of synthesis patterns (upper-right).

Also, the spirals around these singularities are obvious in the synthesis result. For anisotropic textures, different vector fields

lead to different visual appearances (compare the bunny images and feline images, respectively).

(3) We allow the user to control the location of singularities with a novel singularity movement opera-
tion. Furthermore, we provide a unified framework for implementing both singularity pair cancel-
lation and singularity movement based on Conley index theory, which is more general and powerful
than the well-known Poincaré index. To our knowledge, this is the first time Conley index theory
has been applied to computer graphics. Furthermore, the region optimization technique that we
describe helps to produce smooth vector fields after editing operations have been performed.

(4) We use flow rotations and reflections to overcome the numerical instabilities associated with regions
of high curl and regions near saddles, which allows control over any linear singularity.

There are a number of issues that we wish to improve upon in our current system. First, we have used
the same decay constant d for all design elements when creating basis vector fields (Eqs. (2) and (3)).
It may be desirable to let the user control this constant. Second, our topological editing algorithms
sometimes produce regions that are larger than necessary. This means that the behavior of the flow
may be changed at places that are far away from the user-specified singularities. We plan to investigate
ways of restricting the size of such regions. Third, we rely on the user to specify the singularities pair
for cancellation. It may be useful to provide the function “automatic singularity pairing for elimina-
tion,” in which the user specifies one singularity to be removed and the system determines another
for cancellation. Finally, our surface vector field design system currently only handles closed surfaces.
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Surfaces with holes may cause incorrect results when computing geodesic polar maps, and we use hole
filling techniques to remove these holes. It is desirable to consider other approaches in which surfaces
with holes can be handled directly, without filling.

There are several possible areas of future research. So far, we have focused on controlling the sin-
gularities in a vector field. It is natural to ask for controls over separatrices and periodic orbits, which
are also part of vector field topology. Can we extend the concept of singular elements and allow the
creation of canonical separatrices and periodic orbits? What editing operations are necessary to edit
them? Finally, and maybe more fundamentally, what applications will benefit from these operations?

Singularity pair cancellation can be seen as performing a particular type of bifurcation if we track
the continuous change that is involved. Many other types of bifurcations exist. They are interesting
mathematically, and also have applications for scientific visualization.

Vector field design for surfaces might be extended to handle vector fields that are defined for volumes
or other higher-dimensional datasets. Also, we are interested in identifying other applications for vector
field design, such as fluid simulation and hairstyle design. Fluid simulation will require the ability to
create wavy fields, as well as time-dependent flows.

Another important area of application is for educational purposes, in which students learn important
concepts of vector fields through creating and manipulating vector fields and observing the changes.
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