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Problem 1

Part 1: Consider the following initial value problems for the heat equation ut = uxx.

ut = uxx, −∞ < x < ∞, 0 ≤ t

u(x, 0) = u0(x) =

{
1 if |x| ≤ 1/2
0 otherwise

(1)

ut = uxx, −∞ < x < ∞, 0 ≤ t

u(x, 0) = u0(x) = cos(πx), −∞ < x < ∞ (2)

In both cases we will examine periodic solutions on the interval [−1, 1], evaluated at time
t = 1. Begin by deriving exact solutions to these initial value problems.

We begin by observing that the initial conditions are periodic on the interval [−1, 1], rather
than the canonical interval [−2π, 2π]. Recall from [3] that the Fourier series of a periodic
function f(x) on [−L/2, L/2] is given by the following pair of expressions.

f(x) =
∞∑

ω=−∞
ei (2πωx/L)f̂(ω)

f̂(ω) =
1

L

∫ L/2

−L/2

e−i (2πωx/L)f(x) dx

For this problem we can substitute L = 2 into the previous expressions to obtain the appro-
priate Fourier series representation.

f(x) =
∞∑

ω=−∞
eiπωxf̂(ω) (3)

f̂(ω) =
1

2

∫ 1

−1

e−iπωxf(x) dx (4)

At this point we can proceed in the manner outlined on page 61 in [1] and assume a solution
to the heat equation consisting of a single Fourier component.

u(x, t) = eiπωxû(ω, t)

Substituting this expression into ut = uxx yields the following ordinary differential equation

ût(ω, t) = −(πω)2û(ω, t), û(ω, 0) = û0(ω),
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which has the general solution

û(ω, t) = e−(πω)2tû0(ω) ⇒ u(x, t) =
∞∑

ω=−∞
eiπωxe−(πω)2tû0(ω). (5)

Substituting into Equation 4, the Fourier coefficients of the initial condition in Equation 1
are given by

û0(ω) =
1

2

∫ 1/2

−1/2

e−iπωx dx =

{
sin(πω

2 )
πω

if ω 6= 0
1
2

if ω = 0,

since u0(x) is non-zero only on the interval [−1/2, 1/2]. Applying this result to Equation 5
gives the exact solution for Equation 1 as an infinite series.

u(x, t) =
∞∑

ω=−∞
eiπωxe−(πω)2tû0(ω) =

1

2
+

∞∑
ω=1

e−(πω)2t

(
sin

(
πω
2

)
πω
2

)(
eiπωx + e−iπωx

2

)

⇒ u(x, t) =
1

2
+

∞∑
ω=1

e−(πω)2t

(
sin

(
πω
2

)
πω
2

)
cos(πωx) (6)

Similarly, the Fourier coefficients of the initial condition in Equation 2 can be obtained by
direct inspection.

u0(x) = cos(πx) =
eiπx + e−iπx

2
=

∞∑
ω=−∞

eiπωxf̂(ω)

⇒ û0(ω) =

{
1/2 if ω ∈ {−1, 1}
0 otherwise

Substituting these coefficients into Equation 5 gives the exact solution for Equation 2.

u(x, t) =
∞∑

ω=−∞
eiπωxe−(πω)2tû0(ω) = e−π2t

(
eiπx + e−iπx

2

)

⇒ u(x, t) = e−π2t cos(πx) (7)

This completes the derivation of the exact solutions. Note that Equations 6 and 7 will be
used in the following parts to estimate the numerical order of accuracy of various finite
difference schemes for the heat equation.

2



AM 255 Final Exam Douglas Lanman

Part 2: Evaluate the following discrete difference approximation to Equations 1 and 2

vn+1
j = vn

j +
k

h2

(
vn

j+1 − 2vn
j + vn

j−1

)
, (8)

consisting of a second-order central difference in space and an explicit forward Euler scheme
in time. Consider grid spacings given by h = { 2

21
, 2

41
, 2

81
, 2

161
, 2

321
} and time steps given by

µ = k
h2 = 0.4. Report L2-errors and the numerical order of accuracy for all parameter sets.

Recall from page 63 in [1] that the scheme in Equation 8 is called the Euler method ; in terms
of the discrete difference operators, we can express this approximation in the following form.

vn+1
j = (I + kD+D−)vn

j (9)

My implementation of this discrete difference approximation was completed using Matlab and
is included as EulerMethod.m. Before presenting the results of my program, I will briefly
outline the architecture of the source code. On lines 13-65 I select the initial condition, the
values of {N, h, k}, and determine the resulting grid points {x, t}. (Note that on lines 55-57
I ensure that the last time is given by t = 1.) Lines 71-83 implement Equation 9. Note that
I have implemented the D+D− operator as a stand-alone program DpDm.m. Lines 89-172
create the tables and plots shown in this write-up. Finally, note that the truncated infinite
series approximating the exact solution to Equation 1 is defined on lines 175-182.

The approximation results for k = 0.4h2 are tabulated below; Table 1.1 shows the results
for the “boxcar” initial condition in Equation 1, whereas Table 1.2 shows the results for the
cosine initial condition in Equation 2. Corresponding plots are shown in Figures 1 and 2.

h N L2-error order
2/21 20 3.275e-6 NA
2/41 40 8.822e-7 1.89
2/81 80 2.276e-7 1.95
2/161 160 5.771e-8 1.98
2/321 320 1.452e-8 1.99

Table 1.1: Results for Equation 1

h N L2-error order
2/21 20 5.145e-6 NA
2/41 40 1.386e-6 1.89
2/81 80 3.575e-7 1.95
2/161 160 9.065e-8 1.98
2/321 320 2.282e-8 1.99

Table 1.2: Results for Equation 2

Note that the standard definition of the discrete L2-norm was used to evaluate the total
error as

L2-error(N) ,

√√√√
N∑

j=0

|u(xj, tn)− vn
j |2h.

In addition, recall that the following definition of order of approximation was given in class.

order , log2

(
L2-error(N)

L2-error(2N)

)

From these results, we find that the Euler method for the heat equation (as defined in
Equation 9) is stable and has second-order numerical accuracy for both initial conditions.
Recall from page 63 in [1] that the Euler method is stable for k/h2 ≤ 1/2. Since we used
k = 0.4h2, we find that these results are consistent with theoretical predictions. (Note that
a discussion of special considerations for “boxcar” initial conditions is delayed until Part 3.)
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(c) h = 2/41, k = 0.4h2
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(d) h = 2/81, k = 0.4h2
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(e) h = 2/161, k = 0.4h2

Figure 1: Approximation results corresponding to Table 1.1. (a) Comparison between exact
initial condition and Fourier series approximation using 21 terms. (b)-(e) Comparison be-
tween Euler method and the analytic solution of Equation 1 at t = 1, for h = { 2

21
, 2

41
, 2

81
, 2

161
}

and k = 0.4h2. (Plots (b)-(e) show residuals after subtracting 1/2 from each solution.)
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(b) h = 2/21, k = 0.4h2
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(c) h = 2/41, k = 0.4h2
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(d) h = 2/81, k = 0.4h2

−1 −0.5 0 0.5 1
−6

−4

−2

0

2

4

6

8
x 10

−5

x

 

 

Analytic Solution
Difference Approx.

(e) h = 2/161, k = 0.4h2

Figure 2: Approximation results corresponding to Table 1.2. (a) Plot of exact initial condi-
tion. (b)-(e) Comparison between the Euler method and the analytic solution of Equation 2
at time t = 1, for h = { 2

21
, 2

41
, 2

81
, 2

161
} and k = 0.4h2.
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Part 3: Evaluate the second-order Crank-Nicholson approximation to Equations 1 and 2

vn+1
j = vn

j +
k

2h2

(
vn+1

j+1 − 2vn+1
j + vn+1

j−1 + vn
j+1 − 2vn

j + vn
j−1

)
. (10)

Consider grid spacings given by h = { 2
21

, 2
41

, 2
81

, 2
161

, 2
321
} and time steps given by µ = k

h2 = 10
and λ = k

h
= 1. Report L2-errors and the numerical order of accuracy for all parameter sets.

Recall, from page 68 in [1], that the Crank-Nicholson scheme in Equation 10 can be written
using the discrete difference operators as follows.

(
I − k

2
D+D−

)
vn+1

j =

(
I +

k

2
D+D−

)
vn

j (11)

My implementation of this discrete difference approximation was completed using Matlab
and is included as CrankNicholson.m. Before presenting the results of my program, I will
briefly outline the architecture of the source code. On lines 13-70 I select the initial condition,
the values of {N, h, k}, and determine the resulting grid points {x, t}. (Note that on lines
60-62 I ensure that the last time is given by t = 1.) Lines 73-103 implement Equation 11.
Note that I have implemented the D+D− operator, in matrix form, on lines 79-87. Lines
106-192 create the tables and plots shown in this write-up. Finally, note that the truncated
infinite series approximating the exact solution to Equation 1 is defined on lines 195-202.

The approximation results for k = 10h2 are tabulated below; Table 1.3 shows the results
for the “boxcar” initial condition in Equation 1, whereas Table 1.4 shows the results for the
cosine initial condition in Equation 2. Corresponding plots are shown in Figures 3 and 4.

h N L2-error order
2/21 20 1.437e-2 NA
2/41 40 1.627e-6 13.11
2/81 80 6.504e-8 4.64
2/161 160 3.498e-8 0.89
2/321 320 9.980e-9 1.81
2/641 640 2.577e-9 1.95

Table 1.3: Equation 1 with k = 10h2

h N L2-error order
2/21 20 2.495e-5 NA
2/41 40 1.335e-6 4.22
2/81 80 1.022e-7 3.71
2/161 160 5.495e-8 0.89
2/321 320 1.568e-8 1.81
2/641 640 4.048e-9 1.95

Table 1.4: Equation 2 with k = 10h2

The approximation results for k = h are tabulated below; Table 1.5 shows the results for the
“boxcar” initial condition in Equation 1, whereas Table 1.6 shows the results for the cosine
initial condition in Equation 2. Corresponding plots are shown in Figures 5 and 6.

h N L2-error order
2/21 20 3.088e-2 NA
2/41 40 5.185e-3 2.57
2/81 80 9.719e-6 9.06
2/161 160 3.627e-7 4.74
2/321 320 9.171e-8 1.98
2/641 640 2.305e-8 1.99

Table 1.5: Equation 1 with k = h

h N L2-error order
2/21 20 2.647e-5 NA
2/41 40 8.236e-6 1.68
2/81 80 2.217e-6 1.89
2/161 160 5.697e-7 1.96
2/321 320 1.441e-7 1.98
2/641 640 3.620e-8 1.99

Table 1.6: Equation 2 with k = h
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From these results, we find that the Crank-Nicholson approximation for the heat equation
(as defined in Equation 11) is stable and has second-order numerical accuracy for both
initial conditions. Recall from pages 68 and 69 in [1] that the Crank-Nicholson scheme is
unconditionally stable. As a result, the experimental results confirm the theoretical stability
analysis. Also recall that the Crank-Nicholson scheme was proven to be accurate toO(h2+k2)
in Problem 3 of Problem Set 3. Once again, the numerical results confirm the theoretical
prediction of second-order accuracy.

To conclude my analysis I would like to mention a particular detail of my implementation
which was required to obtain second-order accuracy for the “boxcar” initial condition in
Equation 1. Specifically, I found that this initial condition could not be represented directly
as a discontinuous “boxcar” function. Instead, I used a truncated Fourier series to synthesize
the initial condition (as shown in Figures 1(a), 3(a) and 1(d)). Experimentally, I found that
allowing between 11 to 21 terms in the Fourier series expansion led to second-order accuracy
in Parts 2 and 3. As discussed on page 62 in [1], the heat equation is a parabolic equation
and, as a result, each Fourier component is damped with time; this damping is particularly
strong for high frequencies. As a result, the higher-order terms in the Fourier series do not
significantly affect the solution at time t = 1 and can be removed from the initial condition.
As I found experimentally, this improved the stability of the solution and also led to second-
order accuracy. While outside the scope of this course, I believe that this effect can be
explained by the Nyquist-Shannon sampling theorem [2]. Specifically, unless we truncate
the higher-order terms, the “boxcar” function will be undersampled for small grid-spacings
(e.g., for N < 320 in Tables 1.3-1.6). In conclusion, we find that the Crank-Nicholson
scheme has second-order numerical accuracy if the initial conditions are handled with care;
otherwise, we only find first-order accuracy experimentally.
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(c) h = 2/41, k = 10h2

−1 −0.5 0 0.5 1
−4

−2

0

2

4

6
x 10

−5

x

 

 

Analytic Solution
Difference Approx.

(d) h = 2/81, k = 10h2
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(e) h = 2/161, k = 10h2

Figure 3: Approximation results corresponding to Table 1.3. (a) Comparison between exact
initial condition and the Fourier series approximation using 11 terms. (b)-(e) Comparison
between the Crank-Nicholson approximation and the analytic solution of Equation 1 at time
t = 1, for h = { 2

21
, 2

41
, 2

81
, 2

161
} and k = 10h2. (Note that plots (b)-(e) show residuals after

subtracting the mean value of 1/2 from the solutions.)
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(b) h = 2/21, k = 10h2
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(c) h = 2/41, k = 10h2
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Figure 4: Approximation results corresponding to Table 1.4. (a) Plot of exact initial condi-
tion. (b)-(e) Comparison between Crank-Nicholson and the analytic solution of Equation 2
at time t = 1, for h = { 2
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81
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161
} and k = 10h2.
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Figure 5: Approximation results corresponding to Table 1.5. (a) Comparison between exact
initial condition and the Fourier series approximation using 11 terms. (b)-(e) Comparison
between the Crank-Nicholson approximation and the analytic solution of Equation 1 at time
t = 1, for h = { 2

21
, 2

41
, 2

81
, 2

161
} and k = h. (Note that plots (b)-(e) show residuals after

subtracting the mean value of 1/2 from the solutions.)
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(b) h = 2/21, k = h
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(d) h = 2/81, k = h
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Figure 6: Approximation results corresponding to Table 1.6. (a) Plot of exact initial condi-
tion. (b)-(e) Comparison between Crank-Nicholson and the analytic solution of Equation 2
at time t = 1, for h = { 2
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} and k = h.
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Problem 2

Find the constants {a, b, c, d} (which may depend on λ = k/h) in the explicit scheme

vn+1
j = avn

j−1 + bvn
j + cvn

j+1 + dvn
j+2 (12)

to obtain a third-order accurate method for approximating the first-order hyperbolic wave
equation ut = ux. Analyze the stability and dissipativity of your scheme.

Let’s begin our analysis by converting Equation 12 to the following “normalized” form (by
subtracting vn

j from both sides and dividing by k).

vn+1
j − vn

j

k
=

(a

k

)
vn

j−1 +

(
b− 1

k

)
vn

j +
( c

k

)
vn

j+1 +

(
d

k

)
vn

j+2 (13)

In order to derive a third-order accurate method for the first-order hyperbolic wave equation,
we will assume that u is a smooth function. From pages 59 and 60 in [1], recall the following
Taylor series expansion for the left-hand side of Equation 13 (where we have applied the
PDE to relate temporal to spatial derivatives).

u(x, t + k)− u(x, t)

k
= ut(x, t) +

k

2
utt(x, t) +

k2

6
uttt(x, t) +O(k3)

= ux(x, t) +
k

2
uxx(x, t) +

k2

6
uxxx(x, t) +O(k3) (14)

In addition, we recall the following Taylor series expansions for the right-hand terms.

u(x− h, t) = u(x, t)− hux(x, t) +
h2

2
uxx(x, t)− h3

6
uxxx(x, t) +O(h4) (15)

u(x + h, t) = u(x, t) + hux(x, t) +
h2

2
uxx(x, t) +

h3

6
uxxx(x, t) +O(h4) (16)

u(x + 2h, t) = u(x, t) + 2hux(x, t) + 2h2uxx(x, t) +
4h3

3
uxxx(x, t) +O(h4) (17)

In order to obtain a third-order accurate scheme we observe that the terms in ux, uxx, and
uxxx must cancel between the left-hand and right-hand sides. Substituting Equations 24-17
into Equation 13 gives the following constraints on the coefficients {a, b, c, d} (by equating
these terms across sides).

a + b + c + d = 1

−a + c + 2d = λ

a + c + 4d = λ2

−a + c + 8d = λ3

These constraints define a linear system of equations which can be solved to obtain {a, b, c, d}.
Expressed as a matrix-vector product, the constraints have the following form.




1 1 1 1
−1 0 1 2
1 0 1 4
−1 0 1 8







a
b
c
d


 =




1
λ
λ2

λ3
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Inverting this expression yields the following solution for the third-order accurate “upwind”
method for approximating the first-order hyperbolic wave equation ut = ux. (Note that, by
construction, the truncation error is given by τn

j = O(h3 + k3) and the resulting scheme is
accurate to order (3,3).)

vn+1
j = avn

j−1 + bvn
j + cvn

j+1 + dvn
j+2

a = −1
3
λ + 1

2
λ2 − 1

6
λ3

b = 1− 1
2
λ− λ2 + 1

2
λ3

c = λ + 1
2
λ2 − 1

2
λ3

d = −1
6
λ + 1

6
λ3

In order to find the necessary conditions for stability, we begin by making the ansatz

vn
j =

1√
2π

eiωxj v̂n(ω),

where the solution is composed of a single Fourier component and xj = jh. Substituting
this expression into Equation 12 and canceling common terms on both sides, we obtain the
following form for the amplification factor Q̂.

v̂n+1(ω) = Q̂v̂n(ω), Q̂ = ae−iωh + b + ceiωh + de2iωh (18)

Recall from page 44 in [1] that we consider a method stable if

sup
0≤tn≤T,ω,k,h

|Q̂n| ≤ K(T ),

as h, k → 0. As was done in the textbook, we can choose k and h such that

|Q̂| ≤ 1 ⇒ |Q̂|2 ≤ 1.

Substituting for the symbol Q̂ from Equation 18, we derive the following expression (where
ξ = ωh).

|Q̂|2 =
(
ae−iωh + b + ceiωh + de2iωh

) (
aeiωh + b + ce−iωh + de−2iωh

)

= (a2 + b2 + c2 + d2) + 2(ab + bc + cd) cos(ξ) + 2(ac + bd) cos(2ξ) + 2ad cos(3ξ)

At this point we recall the following trigonometric identities from [4].

sin2

(
ξ

2

)
=

1− cos(ξ)

2
cos(3ξ) = 4 cos3(ξ)− 3 cos(ξ)

Applying these identities allows us to simplify the previous expression for |Q̂|2. (For a full
explanation, please see that attached Mathematica notebook. In addition, note that we have
also substituted a + b + c + d = 1 to obtain the first term in the expression.)

|Q̂|2 = 1− 4(ac + bd) sin2(ξ)− 4(ab + bc + cd + ad) sin2

(
ξ

2

)
− 8ad cos(ξ) sin2

(
ξ

2

)

13
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At this point we can substitute for {a, b, c, d} to obtain a closed-form expression for |Q̂|2 in
terms of λ. Once again, this involves a fair amount of algebraic manipulation; we quote the
final expression here (although a complete derivation is presented in the attached Mathe-
matica notebook).

|Q̂|2 = 1− α(λ) sin4

(
ξ

2

)
− β(λ) cos(ξ) sin4

(
ξ

2

)
(19)

α(λ) , 8 λ

3
+

4 λ2

9
− 16 λ3

3
+

4 λ4

9
+

8 λ5

3
− 8 λ6

9

β(λ) , −16 λ2

9
+

8 λ3

3
+

8 λ4

9
− 8 λ5

3
+

8 λ6

9

To derive the stability criterion, we note that the following inequality must hold in order for
|Q̂|2 ≤ 1.

α(λ) sin4

(
ξ

2

)
+ β(λ) cos(ξ) sin4

(
ξ

2

)
> 0

Dividing by the common term in sin4
(

ξ
2

)
gives the following inequality.

α(λ) + β(λ) cos(ξ) > 0

Since −1 ≤ cos(ξ) ≤ 1, we note that α(λ) ± β(λ) > 0. This provides the following two
stability constraints on λ.

α(λ) + β(λ) =
8λ

3
− 4λ2

3
− 8λ3

3
+

4λ4

3
> 0

α(λ)− β(λ) =
8λ

3
+

20λ2

9
− 8λ3 − 4λ4

9
+

16λ5

3
− 16λ6

9
> 0

Solving these inequalities for λ gives the following stable region for the proposed scheme.
(Once again, see the attached Mathematica notebook for a complete derivation of the poly-
nomial roots and stability region.)

0 < λ < 1 (20)

We conclude our analysis by analyzing the dissipativity of the proposed scheme. Recall
from Definition 5.2.1 on page 179 in [1] that an approximation scheme (with symbol Q̂) is
dissipative of over 2r if all the eigenvalues zν of Q̂ satisfy

|zν | ≤ (1− δ|ξ|2r)eαSk, |ξ| ≤ π,

where δ > 0 is a positive constant independent of ξ or h. First, we observe that the scheme
satisfies the fourth-order dissipativity condition near ξ = 0. For small ξ we recall that
| sin(ξ)| ≈ |ξ| and | cos(ξ)| ≈ 1. As a result, Equation 19 gives the following result.

|Q̂|2 = |z|2 ≈ 1−
(

α(λ) + β(λ)

16

)
|ξ|4, for |ξ| near 0

Note that, by the stability condition, α(λ)+β(λ) > 0. As a result, Definition 5.2.1 is satisfied
and we conclude that the proposed scheme is dissipative of order 4 for 0 < λ < 1.

14
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Problem 3

Part 1: Discuss the accuracy and stability of the Lax-Wendroff scheme for ut = Aux,
assuming 2π periodicity, for

A =

(
0 1
−1 0

)
.

Recall from pages 227 and 228 in [1] that the Lax-Wendroff scheme is based on the following
Taylor series expansion.

u(tn+1) = u(tn) + kut(tn) +
k2

2
utt(tn) +O(k3)

Note that the PDE can be applied to convert temporal derivatives to spatial derivatives as
follows.

utt = A(ux)t = A(ut)x = A(Aux)x = A2uxx

Apply this result to the previous Taylor series gives the following expression.

u(tn+1) = u(tn) + kAux(tn) +
k2

2
A2uxx(tn) +O(k3)

Using finite differences to approximate terms up to second-order in k yields the following
general form for the Lax-Wendroff scheme for ut = Aux. (Note that this expression is
identical to that derived in Problem 1 of Problem Set 8, as well as in class on 12/5/06.)

vn+1
j =

(
I + kAD0 +

k2

2
A2D+D−

)
vn

j (21)

At this point we can substitute for A and A2 to obtain the explicit form of the Lax-Wendroff
scheme for this part.

vn+1
j =

(
1 0
0 1

)
vn

j + k

(
0 1
−1 0

)
D0v

n
j +

k2

2

( −1 0
0 −1

)
D+D−vn

j (22)

Before proceeding to analyze the accuracy of this scheme, we briefly observe that this problem
is ill-posed. By Theorem 4.3.1 on page 116 in [1], the initial value problem for ut = Aux

will be well-posed if, and only if, the eigenvalues of A are real and distinct and there is a
complete system of eigenvectors. By inspection, the eigenvalues of A are λ = {−i, i} and
the associated eigenvectors are {(i 1)T , (−i 1)T}. Regardless, we can continue to apply
the standard accuracy and stability analysis procedures to the approximation scheme in
Equation 22.

To analyze the accuracy of the proposed scheme, we begin by writing Equation 21 in the
“normalized” form.

vn+1
j − vn

j

k
= AD0v

n
j +

k

2
A2D+D−vn

j

Next, we assume that u is a smooth function and substitute into the previous expression to
obtain the truncation error τn

j evaluated at (xj, tn).

τn
j =

un+1
j − un

j

k
− AD0u

n
j −

k

2
A2D+D−un

j (23)

15
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At this point we recognize that the first term has the following Taylor series expansion (where
we have applied the PDE to relate temporal to spatial derivatives).

u(x, t + k)− u(x, t)

k
= ut(x, t) +

k

2
utt(x, t) +

k2

6
uttt(x, t) +O(k3)

= Aux(x, t) +
kA2

2
uxx(x, t) +

k2A3

6
uxxx(x, t) +O(k3) (24)

In addition, we recall the following Taylor series expansions for the remaining terms (from
page 59 in [1]).

D0u(x, t) = ux(x, t) +
h2

3!
uxxx(x, t) +

h4

5!
uxxxxx(x, t) +O(h6) (25)

D+D−u(x, t) = uxx(x, t) +
2h2

4!
uxxxx(x, t) +

2h4

6!
uxxxxxx(x, t) +O(h6) (26)

Substituting Equations 24-26 into Equation 23 gives the following expression for the trun-
cation error. (Note that this result was verified using the attached Mathematica notebook.)

τn
j =

{
Aux(x, t) +

kA2

2
uxx(x, t) +

k2A3

6
uxxx(x, t) +O(k3)

}
−

A

{
ux(x, t) +

h2

3!
uxxx(x, t) +

h4

5!
uxxxxx(x, t) +O(h6)

}
−

k

2
A2

{
uxx(x, t) +

2h2

4!
uxxxx(x, t) +

2h4

6!
uxxxxxx(x, t) +O(h6)

}

Since the terms in ux and uxx cancel, we are left with the following expression for the
truncation error. (Also note that, since A 6= A3, no higher-order accuracy can be obtained
by optimizing the choice of k and h.)

τn
j = O(h2 + k2)

Recall from page 165 in [1] that we generally assume a relationship between k and h, where
k = λhp (with p the order of the differential operator in space and a positive constant λ).
Since this is a first-order PDE, we assume k = λh. As a result, we conclude that the proposed
scheme is accurate to order (2,2) according to the expression for the truncation error. (In
general, however, one must be careful when defining the initial condition since the system is
ill-posed. Theoretically, this remains a second-order scheme based on the truncation error.)

At this point we need to obtain the amplification factor Q̂ by substituting the typical
ansatz

vn
j =

1√
2π

eiωxj v̂n(ω)

into Equation 21. Recall the following Fourier transforms were derived in Problems 1 and 5
in Problem Set 4.

D0e
iωxj =

i

h
sin(ξ)eiωxj

D+D−eiωxj = − 4

h2
sin2

(
ξ

2

)
eiωxj

16
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Substituting these identities and following our derivation from Problem 1 in Problem Set 8,
we obtain the following form for the symbol Q̂.

Q̂ = I + iλA sin(ξ)− 2λ2A2 sin2

(
ξ

2

)
(27)

Substituting for A obtains the following expression for the amplification factor.

Q̂ =

(
1 + 2λ2 sin2

(
ξ
2

)
iλ sin(ξ)

−iλ sin(ξ) 1 + 2λ2 sin2
(

ξ
2

)
)

We note that there are two eigenvalues zν of Q̂ given by the following expressions.

z1 = 1− λ sin(ξ) + 2λ2 sin2

(
ξ

2

)
z2 = 1 + λ sin(ξ) + 2λ2 sin2

(
ξ

2

)

Recall that Theorem 5.2.2 on page 173 in [1] defines the von Neumann stability condition
for approximations with constant coefficients; specifically, a necessary condition for stability
is that the eigenvalues zν of Q̂ satisfy

|zν | ≤ eαSk, |ξ| ≤ π,

for all h ≤ h0. For |ξ| ≤ π, we note that sin(ξ) ≤ 1 and sin2
(

ξ
2

) ≤ 1. As a result, the
eigenvalues are bounded from above by |zν | ≤ 1 + λ + 2λ2, for λ > 0, and the von Neumann
condition is not satisfied for all λ. Furthermore, we recall from Corollary 5.2.1 on page 175
in [1] that the von Neumann condition is sufficient if Q̂ is Hermitian. Since Q̂ is Hermitian,
we conclude that the proposed Lax-Wendroff scheme is unconditionally unstable.

Part 2: Discuss the accuracy and stability of the Lax-Wendroff scheme for ut = Aux,
assuming 2π periodicity, for

A =

(
0 1
0 0

)
.

Before proceeding to analyze the accuracy and stability of this scheme, we briefly observe
that this problem is also ill-posed. By Theorem 4.3.1 on page 116 in [1], the initial value
problem for ut = Aux will be well-posed if, and only if, the eigenvalues of A are real and
distinct and there is a complete system of eigenvectors. By inspection, the eigenvalues of
A are λ = {0, 0} and the associated eigenvectors are {(1 0)T , (0 0)T}. (Note that by
Definition 4.3.1 on page 119 in [1] this problem is weakly-hyperbolic, since the eigenvalues
are real but not distinct.) Regardless, we can continue to apply the standard accuracy and
stability analysis procedures to the approximation scheme in Equation 21.

To begin our analysis, we note that all the powers of A are zero for n ≥ 2.

An =

(
0 0
0 0

)
for n ≥ 2

Substituting for A and A2 in Equation 21 gives the following explicit form of the Lax-
Wendroff scheme for this part.

vn+1
j =

(
1 0
0 1

)
vn

j + k

(
0 1
0 0

)
D0v

n
j (28)

17
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Note that, since all higher powers of A are zero, the Lax-Wendroff scheme reduces to the
forward Euler scheme. (Also recall from page 167 of [1] that the one-dimensional forward
Euler scheme is only first-order accurate and unconditionally unstable. As we proceed we’ll
look for similar results to manifest themselves in this example.) As before, we can write
Equation 21 in the “normalized” form (with A2 = 0).

vn+1
j − vn

j

k
= AD0v

n
j

Next, we assume that u is a smooth function and substitute into the previous expression to
obtain the truncation error τn

j evaluated at (xj, tn).

τn
j =

un+1
j − un

j

k
− AD0u

n
j (29)

Substituting Equations 24 and 25 into Equation 29 gives the following expression for the
truncation error. (Note that this result was verified using the attached Mathematica note-
book. Also note that the terms in An have been eliminated for n ≥ 2.)

τn
j = Aux(x, t)− A

{
ux(x, t) +

h2

3!
uxxx(x, t) +

h4

5!
uxxxxx(x, t) +O(h6)

}

= −h2

3!
Auxxx(x, t)− h4

5!
Auxxxxx(x, t) +O(h6)

Since the term in ux cancels, we are left with the following expression for the truncation
error.

τn
j = O(h2)

Note that, since all terms in k have been eliminated, the truncation error is independent of k.
In conclusion, we report that the the proposed scheme is second-order accurate according
to the expression for the truncation error. (As before, one must be careful when defining
the initial condition since the system is ill-posed. Theoretically, this remains a second-order
scheme based on the truncation error.)

To assess the stability of this scheme we proceed as in the previous part. First, we
substitute for A in Equation 27 to obtain the following expression for the symbol Q̂.

Q̂ =

(
1 iλ sin(ξ)
0 1

)

We note that there is a single repeated eigenvalue z of Q̂ given by z = 1 (since Q̂ is upper
triangular). As a result, the von Neumann condition is satisfied; note, however, that this
condition is not necessarily sufficient since Q̂ is not a normal matrix. Recall from Theorem
5.2.1 on page 173 in [1] that the approximation scheme is stable if, and only if,

|Q̂n(ξ)| ≤ KSeαStn ,

for all h = 2π/(N + 1) ≤ h0 and all |ω| ≤ N/2. In this case, the powers of Q̂n can be
obtained directly.

Q̂n =

(
1 inλ sin(ξ)
0 1

)

Note that the norm of Q̂n(ξ) is of order n, which cannot be bounded by KSeαStn . We con-
clude that, by Theorem 5.2.1, the proposed Lax-Wendroff scheme is unconditionally
unstable for this problem.

18
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Problem 4

Consider the following scheme for the hyperbolic system ut + Aux = 0.

v∗j = vn
j −

kA

6h

(−vn
j+2 + 8vn

j+1 − 7vn
j

)
(30)

vn+1
j =

1

2

(
vn

j + v∗j −
kA

6h

(
7v∗j − 8v∗j−1 + v∗j−2

))
(31)

What is the accuracy of this scheme?

In order to estimate the truncation error, we begin by substituting Equation 30 for the first
instance of v∗j in Equation 31.

vn+1
j = vn

j −
kA

12h

(−vn
j+2 + 8vn

j+1 − 7vn
j

)− kA

12h

(
7v∗j − 8v∗j−1 + v∗j−2

)

Next, we “normalize” this expression by subtracting vn
j from both sides and dividing by k.

vn+1
j − vn

j

k
= − A

12h

(−vn
j+2 + 8vn

j+1 − 7vn
j

)− A

12h

(
7v∗j − 8v∗j−1 + v∗j−2

)
(32)

Note that the left-hand side is the forward difference approximation to ut, whereas the right-
hand side approximates −Aux. To proceed, we recognize the following expressions for v∗j−1

and v∗j−2.

v∗j−1 = vn
j−1 −

kA

6h

(−vn
j+1 + 8vn

j − 7vn
j−1

)
(33)

v∗j−2 = vn
j−2 −

kA

6h

(−vn
j + 8vn

j−1 − 7vn
j−2

)
(34)

Substituting Equations 30, 33 and 34 into Equation 32 gives the following form for the
difference scheme.

vn+1
j − vn

j

k
=

(
− A

12h
− 7kA2

72h2

)
vn

j−2 +

(
2A

3h
+

8kA2

9h2

)
vn

j−1 +

(
−19kA2

12h2

)
vn

j +

(
−2A

3h
+

8kA2

9h2

)
vn

j+1 +

(
A

12h
− 7kA2

72h2

)
vn

j+2

Following the approach on pages 59 and 60 in [1], the truncation error τn
j evaluated at (xj, tn)

is obtained by assuming u is a smooth function and substituting into the previous expression.

τn
j =

un+1
j − un

j

k
−

(
− A

12h
− 7kA2

72h2

)
un

j−2 −
(

2A

3h
+

8kA2

9h2

)
un

j−1−
(
−19kA2

12h2

)
un

j −
(
−2A

3h
+

8kA2

9h2

)
un

j+1 −
(

A

12h
− 7kA2

72h2

)
un

j+2 (35)

At this point we recognize that the first term has the following Taylor series expansion (where
we have applied the PDE to relate temporal to spatial derivatives).

u(x, t + k)− u(x, t)

k
= ut(x, t) +

k

2
utt(x, t) +

k2

6
uttt(x, t) +O(k3)

= −Aux(x, t) +
kA2

2
uxx(x, t)− k2A3

6
uxxx(x, t) +O(k3) (36)

19
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In addition, we recall the following Taylor series expansions for the remaining terms.

u(x− 2h, t) = u(x, t)− 2hux(x, t) + 2h2uxx(x, t)− 4h3

3
uxxx(x, t) +O(h4) (37)

u(x− h, t) = u(x, t)− hux(x, t) +
h2

2
uxx(x, t)− h3

6
uxxx(x, t) +O(h4) (38)

u(x + h, t) = u(x, t) + hux(x, t) +
h2

2
uxx(x, t) +

h3

6
uxxx(x, t) +O(h4) (39)

u(x + 2h, t) = u(x, t) + 2hux(x, t) + 2h2uxx(x, t) +
4h3

3
uxxx(x, t) +O(h4) (40)

Substituting Equations 36-40 into Equation 35 gives the following expression for the trun-
cation error. (Note that this result was verified using the attached Mathematica notebook.)

τn
j =

{
−Aux(xj, tn) +

kA2

2
uxx(xj, tn)− k2A3

6
uxxx(xj, tn) +O(k3)

}
−

{
−Aux(xj, tn) +

kA2

2
uxx(xj, tn)− kh2A2

18
uxxxx(xj, tn) +

h4A

30
uxxxxx(xj, tn) +O(kh4)

}

Since the terms in ux and uxx cancel, we are left with the following expression for the
truncation error.

τn
j = O(h4 + kh2 + k2)

Recall from page 165 in [1] that we generally assume a relationship between k and h, where
k = λhp (with p the order of the differential operator in space and a positive constant
λ). Since this is a first-order PDE, we assume k = λh. As a result, we conclude that the
proposed scheme is second-order accurate according to the expression for the truncation
error (with k = λh).
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E:\Work\AM 255\Final Exam\Problem 1 December 20, 2006

  1 function EulerMethod
  2 
  3 % AM 255, Final Exam, Problem 1: Part 2
  4 %    Solves heat equation initial value problems using
  5 %    the Euler method. Results are displayed graphically
  6 %    and tabulated for inclusion in the write-up.
  7 %
  8 % Douglas Lanman, Brown University, Dec. 2006
  9 
 10 % Reset Matlab environment.
 11 
 12 
 13 % Set Euler method parameters.
 14 % (1 = "boxcar", 2 = cosine)
 15 
 16 
 17 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 18 % Part I: Specify discrete grid parameters.
 19 
 20 % Specify the initial condition and exact solution.
 21 switch initialCondition
 22    % Case 1: First initial condition (i.e., "boxcar").
 23    % Note: Must take care when approximating "boxcar".
 24    %       See write-up for explaination.
 25    case 1
 26 % use 10 terms to approximate initial condition
 27 % use 100 terms to approximate exact solution
 28    % Case 2: Second initial condition (i.e., cosine).
 29    otherwise
 30 
 31 
 32 end
 33 
 34 % Define space grid interval(s) for evaluation.
 35 % space steps
 36 % #gridpoints s.t. N+2 on [-1,1]
 37 
 38 % Select the final time for evaluation.
 39 % Note: Initial time is assumed to be zero.
 40 
 41 
 42 % Select time step.
 43 
 44 
 45 % Set discrete positions/time-steps for evaluation.
 46 % Note: All time steps will be equal, except the 
 47 
 48 %       time will be exactly 'tf'.
 49 
 50 
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 51 for i = 1:length(N)
 52 
 53 
 54 
 55    if t{i}(end) ~= tf
 56 
 57    end
 58 end
 59 
 60 % Initialize the numerical solution(s).
 61 
 62 for i = 1:length(N)
 63 
 64 % boundary values
 65 end
 66 
 67 
 68 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 69 % Part II: Solve IVP using the Euler method.
 70 
 71 % Update solution sequentially (beginning with I.C.).
 72 % Note: DpDm.m implements the second-order difference operator.
 73 %       Modify amplication factor for the last time step.
 74 for i = 1:length(N)
 75    for n = 1:(length(t{i})-1)
 76       if n ~= (length(t{i})-1)
 77 
 78       else
 79 
 80 
 81       end
 82    end   
 83 end
 84 
 85 
 86 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 87 % Part III: Plot/tabulate modeling results.
 88 
 89 % Evaluate the exact solution.
 90 
 91 
 92 
 93 % Determine the L2-error and the approximation order.
 94 
 95 
 96 for i = 1:length(N)
 97 
 98    if i > 1
 99 
100    end
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101 end
102 
103 % Tabulate results.
104 disp(' N     L2-error     order'
105 disp('--------------------------'
106 for i = 1:length(N)
107    if i > 1
108       fprintf('%3d   %.5g   %+2.2f\n'
109    else
110       fprintf('%3d   %.5g\n'
111    end
112 end
113 
114 % Compare approximation to exact solution.
115 for i = 1:length(N)
116 
117    if initialCondition ~= 1
118       plot(xe,fe,'r-','LineWidth'
119    else
120       plot(xe,fe-0.5,'r-','LineWidth'
121    end
122    hold on
123       if i > 2
124          if initialCondition ~= 1
125             plot(x{i},v{i}(end,:),'--','LineWidth'
126          else
127             plot(x{i},v{i}(end,:)-0.5,'--','LineWidth'
128          end
129       else
130          if initialCondition ~= 1
131             plot(x{i},v{i}(end,:),'.','MarkerSize'
132          else
133             plot(x{i},v{i}(end,:)-0.5,'.','MarkerSize'
134          end
135       end
136    hold off
137    set(gca,'LineWidth',2,'FontSize',14,'FontWeight','normal'
138    xlabel('$x$','FontName','Times','Interpreter','Latex','FontSize'
139    
140    legend('Analytic Solution','Difference Approx.'
141    grid on
142    if initialCondition ~= 1
143 
144    else
145 
146    end
147 end
148 
149 % Compare initial condition to truncated Fourier series.
150 
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151 if initialCondition == 1
152    plot(xe,abs(xe)<=.5,'r-','LineWidth'
153 else
154    plot(xe,ES(xe,0),'r-','LineWidth'
155 end
156 hold on
157    if initialCondition == 1
158       plot(x{end},v{end}(1,:),'-','LineWidth'
159    else
160       plot(x{end},v{end}(1,:),'--','LineWidth'
161    end
162 hold off
163 set(gca,'LineWidth',2,'FontSize',14,'FontWeight','normal'
164 xlabel('$x$','FontName','Times','Interpreter','Latex','FontSize'
165 
166 legend('Analytic Solution','Difference Approx.'
167 grid on
168 if initialCondition == 1
169 
170 else
171 
172 end
173 
174 
175 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
176 % Define exact solution to "boxcar" initial condition.
177 % Note: K defines number of terms in series approximation.
178 function f = u(x,t,k)
179 
180 for w = 1:k
181 
182 end
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 1 function b = DpDm(a,h)
 2 
 3 % DpDm Sequential backward/forward difference operator.
 4 %    DpDm(A,H) evaluates the sequential backward/forward 
 5 %    difference of the array A with grid-spacing H, as 
 6 %    defined in:
 7 %    
 8 %    "Time Dependent Problems and Difference Methods",
 9 %    B. Gustafsson, H.-O. Kreiss, and J. Oliger, 1995.
10 %
11 % Douglas Lanman, Brown University, Dec. 2006
12 
13 % Determine the length of the input array.
14 
15 
16 % Shift array indices (modulo the array length).
17 % shift forward
18 % shift backward
19 
20 % Evaluate the sequential backward/forward difference.
21 
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  1 function CrankNicholson
  2 
  3 % AM 255, Final Exam, Problem 1: Part 2
  4 %    Solves heat equation initial value problems using
  5 %    the Crank-Nicholson method. Results are displayed
  6 %    graphically and tabulated for the write-up.
  7 %
  8 % Douglas Lanman, Brown University, Dec. 2006
  9 
 10 % Reset Matlab environment.
 11 
 12 
 13 % Set Euler method parameters.
 14 % (1 = "boxcar", 2 = cosine)
 15 % (1 = {k = 10*h^2}, 2 = {k = h})
 16 
 17 
 18 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 19 % Part I: Specify discrete grid parameters.
 20 
 21 % Specify the initial condition and exact solution.
 22 switch initialCondition
 23    % Case 1: First initial condition (i.e., "boxcar").
 24    % Note: Must take care when approximating "boxcar".
 25    %       See write-up for explaination.
 26    case 1
 27 % use 2 terms to approximate initial condition
 28 % use 100 terms to approximate exact solution
 29    % Case 2: Second initial condition (i.e., cosine).
 30    otherwise
 31 
 32 
 33 end
 34 
 35 % Define space grid interval(s) for evaluation.
 36 % space steps
 37 % #gridpoints s.t. N+2 on [-1,1]
 38 
 39 % Select the final time for evaluation.
 40 % Note: Initial time is assumed to be zero.
 41 
 42 
 43 % Select time step.
 44 if kMode == 1
 45 
 46 else
 47 
 48 end
 49 
 50 % Set discrete positions/time-steps for evaluation.
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 51 % Note: All time steps will be equal, except the 
 52 
 53 %       time will be exactly 'tf'.
 54 
 55 
 56 for i = 1:length(N)
 57 
 58 
 59 
 60    if t{i}(end) ~= tf
 61 
 62    end
 63 end
 64 
 65 % Initialize the numerical solution(s).
 66 
 67 for i = 1:length(N)
 68 
 69 % boundary values
 70 end
 71 
 72 
 73 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 74 % Part II: Solve IVP using Crank-Nicholson.
 75 
 76 % Update solution sequentially (beginning with I.C.).
 77 for i = 1:length(N)
 78    
 79    % Store forward/backward difference operators.
 80 
 81 
 82 
 83    
 84    % Evaluate amplification factor.
 85 
 86 
 87 
 88    
 89    % Calculate Crank-Nicholson solution.
 90    % Note: Modify amplication factor for the last time step.
 91    for n = 1:(length(t{i})-1)
 92       if n ~= (length(t{i})-1)
 93 
 94       else
 95 
 96 
 97 
 98 
 99 
100       end
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101    end
102    
103 end % End of Crank-Nicholson solution.
104 
105 
106 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
107 % Part III: Plot/tabulate modeling results.
108 
109 % Evaluate the exact solution.
110 
111 
112 
113 % Determine the L2-error and the approximation order.
114 
115 
116 for i = 1:length(N)
117 
118    if i > 1
119 
120    end
121 end
122 
123 % Tabulate results.
124 disp(' N     L2-error     order'
125 disp('--------------------------'
126 for i = 1:length(N)
127    if i > 1
128       fprintf('%3d   %.5g   %+2.2f\n'
129    else
130       fprintf('%3d   %.5g\n'
131    end
132 end
133 
134 % Compare approximation to exact solution.
135 for i = 1:length(N)
136 
137    if initialCondition ~= 1
138       plot(xe,fe,'r-','LineWidth'
139    else
140       plot(xe,fe-0.5,'r-','LineWidth'
141    end
142    hold on
143       if i > 2
144          if initialCondition ~= 1
145             plot(x{i},v{i}(end,:),'--','LineWidth'
146          else
147             plot(x{i},v{i}(end,:)-0.5,'--','LineWidth'
148          end
149       else
150          if initialCondition ~= 1
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151             plot(x{i},v{i}(end,:),'.','MarkerSize'
152          else
153             plot(x{i},v{i}(end,:)-0.5,'.','MarkerSize'
154          end
155       end
156    hold off
157    set(gca,'LineWidth',2,'FontSize',14,'FontWeight','normal'
158    xlabel('$x$','FontName','Times','Interpreter','Latex','FontSize'
159    
160    legend('Analytic Solution','Difference Approx.'
161    grid on
162    if initialCondition ~= 1
163 
164    else
165 
166    end
167 end
168 
169 % Compare initial condition to truncated Fourier series.
170 
171 if initialCondition == 1
172    plot(xe,abs(xe)<=.5,'r-','LineWidth'
173 else
174    plot(xe,ES(xe,0),'r-','LineWidth'
175 end
176 hold on
177    if initialCondition == 1
178       plot(x{end},v{end}(1,:),'-','LineWidth'
179    else
180       plot(x{end},v{end}(1,:),'--','LineWidth'
181    end
182 hold off
183 set(gca,'LineWidth',2,'FontSize',14,'FontWeight','normal'
184 xlabel('$x$','FontName','Times','Interpreter','Latex','FontSize'
185 
186 legend('Analytic Solution','Difference Approx.'
187 grid on
188 if initialCondition == 1
189 
190 else
191 
192 end
193 
194 
195 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
196 % Define exact solution to "boxcar" initial condition.
197 % Note: K defines number of terms in series approximation.
198 function f = u(x,t,k)
199 
200 for w = 1:k
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201 
202 end
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  1 function upwind
  2 
  3 % AM 255, Final Exam, Problem 2
  4 %    Solves the first-order hyperbolic wave equation using
  5 %    the third-order upwind method. Results are displayed 
  6 %    graphically and tabulated for inclusion in the write-up.
  7 %
  8 % Douglas Lanman, Brown University, Dec. 2006
  9 
 10 % Reset Matlab environment.
 11 
 12 
 13 
 14 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 15 % Part I: Specify discrete grid parameters.
 16 
 17 % Specify the initial condition and exact solution.
 18 
 19 
 20 
 21 % Define space/time grid interval(s) for evaluation.
 22 % #gridpoints s.t. N+2 on [0,2*pi]
 23 % resulting space steps
 24 
 25 % Select time step.
 26 
 27 
 28 
 29 % Select the final time for evaluation.
 30 % Note: Initial time is assumed to be zero.
 31 
 32 
 33 % Set discrete positions/time-steps for evaluation.
 34 % Note: All time steps will be equal, except the 
 35 
 36 %       time will be exactly 'tf'.
 37 
 38 
 39 for i = 1:length(N)
 40 
 41 
 42    if t{i}(end) ~= tf
 43 
 44    end
 45 end
 46 
 47 % Initialize the numerical solution(s).
 48 
 49 for i = 1:length(N)
 50 
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 51 % boundary values
 52 end
 53 
 54 
 55 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 56 % Part II: Solve IVP using the updwind method.
 57 
 58 % Evaluate upwind coefficients.
 59 
 60 
 61 
 62 
 63 
 64 
 65 % Update solution sequentially (beginning with I.C.).
 66 % Note: Modify amplication factor for the last time step.
 67 for i = 1:length(N)
 68    for n = 1:(length(t{i})-1)
 69       if n ~= (length(t{i})-1)
 70          v{i}(n+1,:) = a(i)*circshift(v{i}(n,:),[1 1]) + ...
 71                        b(i)*circshift(v{i}(n,:),[1 0]) + ...
 72                        c(i)*circshift(v{i}(n,:),[1 -1]) + ...
 73 
 74       else
 75 
 76 
 77 
 78 
 79 
 80 
 81          v{i}(n+1,:) = af*circshift(v{i}(n,:),[1 1]) + ...
 82                        bf*circshift(v{i}(n,:),[1 0]) + ...
 83                        cf*circshift(v{i}(n,:),[1 -1]) + ...
 84 
 85       end
 86    end   
 87 end
 88 
 89 
 90 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 91 % Part III: Plot/tabulate modeling results.
 92 
 93 % Evaluate the exact solution.
 94 
 95 
 96 
 97 % Determine the L2-error and the approximation order.
 98 
 99 
100 for i = 1:length(N)



upwind.m Page 3
E:\Work\AM 255\Final Exam\Problem 2 December 20, 2006

101 
102    if i > 1
103 
104    end
105 end
106 
107 % Tabulate results.
108 disp(' N     L2-error     order'
109 disp('--------------------------'
110 for i = 1:length(N)
111    if i > 1
112       fprintf('%3d   %.5g   %+2.2f\n'
113    else
114       fprintf('%3d   %.5g\n'
115    end
116 end
117 
118 % Compare approximation to exact solution.
119 for i = 1:length(N)
120 
121    plot(xe,fe,'r-','LineWidth'
122    hold on
123       if i > 2
124          plot(x{i},v{i}(end,:),'--','LineWidth'
125       else
126          plot(x{i},v{i}(end,:),'.','MarkerSize'
127       end
128    hold off
129    set(gca,'LineWidth',2,'FontSize',14,'FontWeight','normal'
130    xlabel('$x$','FontName','Times','Interpreter','Latex','FontSize'
131    
132    legend('Analytic Solution','Difference Approx.'
133    grid on
134 end
 


