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Problem 1

Let f be a real function with the Fourier series

f(x) =
1√
2π

∞∑
ω=−∞

f̂(ω)eiωx.

Prove that

SN =
1√
2π

N∑
ω=−N

f̂(ω)eiωx

is real for all N .

First, we note that SN is real for all N if and only if SN = SN (i.e., SN is equal to its
complex conjugate SN).

SN =
1√
2π

N∑
ω=−N

f̂(ω)eiωx (1)

SN =
1√
2π

N∑
ω=−N

f̂(ω)e−iωx =
1√
2π

N∑
ω=−N

f̂(−ω)eiωx (2)

Note that, on the right-hand side (RHS) of Equation 2, we have substituted ω → −ω (since
the summation can be taken in any order).

Equating Equations 1 and 2, we find that f̂(ω) must be conjugate symmetric in order for

SN to be a real-valued function for all N (i.e., f̂(ω) = f̂(−ω)). Recall from Equation 1.1.2
in [1], we have

f̂(ω) =
1√
2π

∫ 2π

0

e−iωxf(x)dx =
1√
2π

(eiωx, f(x)), (3)

where on the RHS we have used the definition of the L2 scalar product norm given by

(f, g) =

∫ 2π

0

fg dx.

Given these definitions, we have

f̂(−ω) =
1√
2π

∫ 2π

0

eiωxf(x)dx =
1√
2π

(e−iωx, f(x))

⇒ f̂(−ω) =
1√
2π

∫ 2π

0

eiωxf(x)dx =
1√
2π

(e−iωx, f(x))

=
1√
2π

∫ 2π

0

e−iωxf(x)dx =
1√
2π

(eiωx, f(x)). (4)
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Since f is a real function we must have f(x) = f(x). Equating Equations 3 and 4, we
prove the desired result: if f is a real function, then its Fourier coefficients f̂(ω) are conjugate

symmetric such that f̂(ω) = f̂(−ω) and, as a result, SN = SN and SN must be real for all
N .

f̂(ω) = f̂(−ω) ⇒ SN = SN , ∴ SN is real for all N (5)

(QED)

Problem 2

Derive estimates for ∣∣∣∣(D − ∂3

∂x3

)
eiωx

∣∣∣∣
where D = D3

+, D−D2
+, D2

−D+, D3
−, D0D+D−.

In this problem we will investigate the approximation of the third partial derivative ∂3/∂x3

using several difference operators. To begin our analysis, we evaluate the result analytically.

∂3

∂x3
eiωx = −iω3eiωx (6)

The following Taylor series expansions will also be required in the subsequent analysis.

ex =
∞∑

n=0

xn

n!
= 1 + x +O(x2)

sin(x) =
∞∑

n=0

(−1)n

(2n + 1)!
x2n+1 = x− x3

3!
+O(x5)

Finally, we repeat for completeness the forward, backward, and central difference operators
in terms of the shift operator E.

D+ = (E − E0)/h, D− = (E0 − E−1)/h, and D0 = (E − E−1)/2h

Part (a): D = D3
+

Substituting for the forward difference operator we find

D3
+eiωx = D2

+D+eiωx = h−1D2
+(E − E0)eiωx = h−1(eiωh − 1)D2

+eiωx

= h−2(eiωh − 1)2D+eiωx = h−3(eiωh − 1)3eiωx.

At this point we can substitute the Taylor series expansion for eiωh such that

D3
+eiωx = h−3(iωh +O(ω2h2))3eiωx = (−iω3 +O(ω4h))eiωx.

In conclusion, we find that D3
+ is a first-order accurate approximation of ∂3/∂x3 since the

error is proportional to h. ∣∣∣∣(D3
+ −

∂3

∂x3

)
eiωx

∣∣∣∣ = O(ω4h) (7)
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Part (b): D = D−D2
+

Substituting for the forward and backward difference operators we find

D−D2
+eiωx = D−D+D+eiωx = h−1D−D+(E − E0)eiωx = h−1(eiωh − 1)D−D+eiωx

= h−2(eiωh − 1)2D−eiωx = h−3(eiωh − 1)2(1− e−iωh)eiωx.

At this point we can substitute the Taylor series expansions for e±iωh such that

D−D2
+eiωx = h−3(iωh +O(ω2h2))2(iωh +O(ω2h2))eiωx = (−iω3 +O(ω4h))eiωx.

In conclusion, we find that D−D2
+ is a first-order accurate approximation of ∂3/∂x3 since

the error is proportional to h.∣∣∣∣(D−D2
+ −

∂3

∂x3

)
eiωx

∣∣∣∣ = O(ω4h) (8)

Part (c): D = D2
−D+

Substituting for the forward and backward difference operators we find

D2
−D+eiωx = h−1D2

−(E − E0)eiωx = h−1(eiωh − 1)D−D−eiωx

= h−2(eiωh − 1)(1− e−iωh)D−eiωx = h−3(eiωh − 1)(1− e−iωh)2eiωx.

At this point we can substitute the Taylor series expansions for e±iωh such that

D2
−D+eiωx = h−3(iωh +O(ω2h2))(iωh +O(ω2h2))2eiωx = (−iω3 +O(ω4h))eiωx.

In conclusion, we find that D2
−D+ is a first-order accurate approximation of ∂3/∂x3 since

the error is proportional to h.∣∣∣∣(D2
−D+ −

∂3

∂x3

)
eiωx

∣∣∣∣ = O(ω4h) (9)

Part (d): D = D3
−

Substituting for the backward difference operator we find

D3
−eiωx = h−1D2

−(E0 − E−1)eiωx = h−1(1− e−iωh)D−D−eiωx

= h−2(1− e−iωh)2D−eiωx = h−3(1− e−iωh)3eiωx.

At this point we can substitute the Taylor series expansions for e−iωh such that

D3
−eiωx = h−3(iωh +O(ω2h2))3eiωx = (−iω3 +O(ω4h))eiωx.

In conclusion, we find that D3
− is a first-order accurate approximation of ∂3/∂x3 since the

error is proportional to h. ∣∣∣∣(D3
− −

∂3

∂x3

)
eiωx

∣∣∣∣ = O(ω4h) (10)
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Part (e): D = D0D+D−

Substituting for the forward, backward, and central difference operators we find

D0D+D−eiωx = h−1D0D+(E0 − E−1)eiωx = h−1(1− e−iωh)D0D+eiωx

= h−2(1− e−iωh)(eiωh − 1)D0e
iωx

= ih−3(1− e−iωh)(eiωh − 1)

(
eiωh − e−iωh

2i

)
eiωx

= ih−3(1− e−iωh)(eiωh − 1) sin(ωh)eiωx.

At this point we can substitute the Taylor series expansions for e±iωh and sin(ωh) such that

D0D+D−eiωx = ih−3(iωh +O(ω2h2))(iωh +O(ω2h2))(ωh +O(ω3h3))eiωx

= (−iω3 +O(ω5h2))eiωx.

In conclusion, we find that D0D+D− is a second-order accurate approximation of ∂3/∂x3

since the error is proportional to h2.∣∣∣∣(D0D+D− −
∂3

∂x3

)
eiωx

∣∣∣∣ = O(ω5h2) (11)

Problem 3

Compute ‖D+D−‖h.

We will begin by deriving an upper bound on the discrete norm for periodic gridfunctions.
Given two operators P and Q, Equation 1.2.12 in [1] gives

‖PQ‖h ≤ ‖P‖h‖Q‖h.

Also from page 22 in [1], we have

‖D+‖h ≤ 2/h and ‖D−‖h ≤ 2/h.

Substituting, we find the following upper bound for the discrete operator norm of D+D−.

‖D+D−‖h ≤ ‖D+‖h‖D−‖h ≤ 4/h2 (12)

We can prove that the inequality in Equation 12 can be replaced with an equality by
selecting a specific periodic gridfunction u. Let us begin by substituting for the forward and
backward difference operators in terms of the shift operator E.

D+ = (E − E0)/h and D− = (E0 − E−1)/h

Substituting for D+ and D− we find the following result.

(D+D−u)j = h−2((E − 2E0 + E−1)u)j = h−2(uj+1 − 2uj + uj−1)
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The definition of the discrete scalar product and norm for periodic gridfunctions are given
as follows.

(u, v)h =
N∑

j=0

ujvjh and ‖u‖2
h = (u, u)h

As a result, we have

‖D+D−u‖2
h =

N∑
j=0

(
uj+1 − 2uj + uj−1

h2

) (
uj+1 − 2uj + uj−1

h2

)
h

=
1

h3

N∑
j=0

(uj+1 − 2uj + uj−1)(uj+1 − 2uj + uj−1).

Motivated by the example on page 23 of [1], we define uj = (−1)j such that

‖u‖2
h = (N + 1)h (13)

‖D+D−u‖2
h =

1

h3

N∑
j=0

((−1)j+1 − 2(−1)j + (−1)j−1)2

=
1

h3

N∑
j=0

16 =
16(N + 1)

h3
=

16

h4
‖u‖2

h

⇒ ‖D+D−u‖h =
4

h2
‖u‖h. (14)

Recall that the discrete norm of an operator Q is given by

‖Q‖h = sup
u 6=0
‖Qu‖h/‖u‖h.

Combining Equations 13 and 14 we find

‖D+D−u‖h/‖u‖h = 4/h2, for uj = (−1)j. (15)

In conclusion, we have found a “witness” gridfunction uj = (−1)j which achieves the
upper bound in Equation 12. By the definition of the discrete operator norm, we conclude

‖D+D−‖h = 4/h2 (16)
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