AM 255: Problem Set 1

Douglas Lanman

14 September 2006

Problem 1

Let f be a real function with the Fourier series

$$
f(x)=\frac{1}{\sqrt{2 \pi}} \sum_{\omega=-\infty}^{\infty} \hat{f}(\omega) e^{i \omega x}
$$

Prove that

$$
S_{N}=\frac{1}{\sqrt{2 \pi}} \sum_{\omega=-N}^{N} \hat{f}(\omega) e^{i \omega x}
$$

is real for all N.
First, we note that S_{N} is real for all N if and only if $S_{N}=\bar{S}_{N}$ (i.e., S_{N} is equal to its complex conjugate \bar{S}_{N}).

$$
\begin{gather*}
S_{N}=\frac{1}{\sqrt{2 \pi}} \sum_{\omega=-N}^{N} \hat{f}(\omega) e^{i \omega x} \tag{1}\\
\bar{S}_{N}=\frac{1}{\sqrt{2 \pi}} \sum_{\omega=-N}^{N} \overline{\hat{f}(\omega)} e^{-i \omega x}=\frac{1}{\sqrt{2 \pi}} \sum_{\omega=-N}^{N} \bar{f}(-\omega) e^{i \omega x} \tag{2}
\end{gather*}
$$

Note that, on the right-hand side (RHS) of Equation 2, we have substituted $\omega \rightarrow-\omega$ (since the summation can be taken in any order).

Equating Equations 1 and 2, we find that $\hat{f}(\omega)$ must be conjugate symmetric in order for S_{N} to be a real-valued function for all N (i.e., $\left.\hat{f}(\omega)=\overline{\hat{f}(-\omega)}\right)$. Recall from Equation 1.1.2 in [1], we have

$$
\begin{equation*}
\hat{f}(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{2 \pi} e^{-i \omega x} f(x) d x=\frac{1}{\sqrt{2 \pi}}\left(e^{i \omega x}, f(x)\right) \tag{3}
\end{equation*}
$$

where on the RHS we have used the definition of the L_{2} scalar product norm given by

$$
(f, g)=\int_{0}^{2 \pi} \bar{f} g d x .
$$

Given these definitions, we have

$$
\begin{align*}
\hat{f}(-\omega) & =\frac{1}{\sqrt{2 \pi}} \int_{0}^{2 \pi} e^{i \omega x} f(x) d x=\frac{1}{\sqrt{2 \pi}}\left(e^{-i \omega x}, f(x)\right) \\
\Rightarrow \overline{\hat{f}(-\omega)} & =\frac{1}{\sqrt{2 \pi}} \int_{0}^{2 \pi} e^{i \omega x} f(x) d x=\frac{1}{\sqrt{2 \pi}} \overline{\left(e^{-i \omega x}, f(x)\right)} \\
& =\frac{1}{\sqrt{2 \pi}} \int_{0}^{2 \pi} e^{-i \omega x} \overline{f(x)} d x=\frac{1}{\sqrt{2 \pi}}\left(e^{i \omega x}, \overline{f(x)}\right) . \tag{4}
\end{align*}
$$

Since f is a real function we must have $f(x)=\overline{f(x)}$. Equating Equations 3 and 4, we prove the desired result: if f is a real function, then its Fourier coefficients $\hat{f}(\omega)$ are conjugate symmetric such that $\hat{f}(\omega)=\overline{\hat{f}(-\omega)}$ and, as a result, $S_{N}=\bar{S}_{N}$ and S_{N} must be real for all N.

$$
\begin{equation*}
\hat{f}(\omega)=\overline{\hat{f}(-\omega)} \Rightarrow S_{N}=\bar{S}_{N}, \quad \therefore S_{N} \text { is real for all } N \tag{5}
\end{equation*}
$$

(QED)

Problem 2

Derive estimates for

$$
\left|\left(D-\frac{\partial^{3}}{\partial x^{3}}\right) e^{i \omega x}\right|
$$

where $D=D_{+}^{3}, D_{-} D_{+}^{2}, D_{-}^{2} D_{+}, D_{-}^{3}, D_{0} D_{+} D_{-}$.
In this problem we will investigate the approximation of the third partial derivative $\partial^{3} / \partial x^{3}$ using several difference operators. To begin our analysis, we evaluate the result analytically.

$$
\begin{equation*}
\frac{\partial^{3}}{\partial x^{3}} e^{i \omega x}=-i \omega^{3} e^{i \omega x} \tag{6}
\end{equation*}
$$

The following Taylor series expansions will also be required in the subsequent analysis.

$$
\begin{aligned}
e^{x} & =\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\mathcal{O}\left(x^{2}\right) \\
\sin (x) & =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}=x-\frac{x^{3}}{3!}+\mathcal{O}\left(x^{5}\right)
\end{aligned}
$$

Finally, we repeat for completeness the forward, backward, and central difference operators in terms of the shift operator E.

$$
D_{+}=\left(E-E^{0}\right) / h, D_{-}=\left(E^{0}-E^{-1}\right) / h, \text { and } D_{0}=\left(E-E^{-1}\right) / 2 h
$$

Part (a): $D=D_{+}^{3}$
Substituting for the forward difference operator we find

$$
\begin{aligned}
D_{+}^{3} e^{i \omega x} & =D_{+}^{2} D_{+} e^{i \omega x}=h^{-1} D_{+}^{2}\left(E-E^{0}\right) e^{i \omega x}=h^{-1}\left(e^{i \omega h}-1\right) D_{+}^{2} e^{i \omega x} \\
& =h^{-2}\left(e^{i \omega h}-1\right)^{2} D_{+} e^{i \omega x}=h^{-3}\left(e^{i \omega h}-1\right)^{3} e^{i \omega x}
\end{aligned}
$$

At this point we can substitute the Taylor series expansion for $e^{i \omega h}$ such that

$$
D_{+}^{3} e^{i \omega x}=h^{-3}\left(i \omega h+\mathcal{O}\left(\omega^{2} h^{2}\right)\right)^{3} e^{i \omega x}=\left(-i \omega^{3}+\mathcal{O}\left(\omega^{4} h\right)\right) e^{i \omega x}
$$

In conclusion, we find that D_{+}^{3} is a first-order accurate approximation of $\partial^{3} / \partial x^{3}$ since the error is proportional to h.

$$
\begin{equation*}
\left|\left(D_{+}^{3}-\frac{\partial^{3}}{\partial x^{3}}\right) e^{i \omega x}\right|=\mathcal{O}\left(\omega^{4} h\right) \tag{7}
\end{equation*}
$$

Part (b): $D=D_{-} D_{+}^{2}$
Substituting for the forward and backward difference operators we find

$$
\begin{aligned}
D_{-} D_{+}^{2} e^{i \omega x} & =D_{-} D_{+} D_{+} e^{i \omega x}=h^{-1} D_{-} D_{+}\left(E-E^{0}\right) e^{i \omega x}=h^{-1}\left(e^{i \omega h}-1\right) D_{-} D_{+} e^{i \omega x} \\
& =h^{-2}\left(e^{i \omega h}-1\right)^{2} D_{-} e^{i \omega x}=h^{-3}\left(e^{i \omega h}-1\right)^{2}\left(1-e^{-i \omega h}\right) e^{i \omega x} .
\end{aligned}
$$

At this point we can substitute the Taylor series expansions for $e^{ \pm i \omega h}$ such that

$$
D_{-} D_{+}^{2} e^{i \omega x}=h^{-3}\left(i \omega h+\mathcal{O}\left(\omega^{2} h^{2}\right)\right)^{2}\left(i \omega h+\mathcal{O}\left(\omega^{2} h^{2}\right)\right) e^{i \omega x}=\left(-i \omega^{3}+\mathcal{O}\left(\omega^{4} h\right)\right) e^{i \omega x}
$$

In conclusion, we find that $D_{-} D_{+}^{2}$ is a first-order accurate approximation of $\partial^{3} / \partial x^{3}$ since the error is proportional to h.

$$
\begin{equation*}
\left|\left(D_{-} D_{+}^{2}-\frac{\partial^{3}}{\partial x^{3}}\right) e^{i \omega x}\right|=\mathcal{O}\left(\omega^{4} h\right) \tag{8}
\end{equation*}
$$

Part (c): $D=D_{-}^{2} D_{+}$
Substituting for the forward and backward difference operators we find

$$
\begin{aligned}
D_{-}^{2} D_{+} e^{i \omega x} & =h^{-1} D_{-}^{2}\left(E-E^{0}\right) e^{i \omega x}=h^{-1}\left(e^{i \omega h}-1\right) D_{-} D_{-} e^{i \omega x} \\
& =h^{-2}\left(e^{i \omega h}-1\right)\left(1-e^{-i \omega h}\right) D_{-} e^{i \omega x}=h^{-3}\left(e^{i \omega h}-1\right)\left(1-e^{-i \omega h}\right)^{2} e^{i \omega x}
\end{aligned}
$$

At this point we can substitute the Taylor series expansions for $e^{ \pm i \omega h}$ such that

$$
D_{-}^{2} D_{+} e^{i \omega x}=h^{-3}\left(i \omega h+\mathcal{O}\left(\omega^{2} h^{2}\right)\right)\left(i \omega h+\mathcal{O}\left(\omega^{2} h^{2}\right)\right)^{2} e^{i \omega x}=\left(-i \omega^{3}+\mathcal{O}\left(\omega^{4} h\right)\right) e^{i \omega x}
$$

In conclusion, we find that $D_{-}^{2} D_{+}$is a first-order accurate approximation of $\partial^{3} / \partial x^{3}$ since the error is proportional to h.

$$
\begin{equation*}
\left|\left(D_{-}^{2} D_{+}-\frac{\partial^{3}}{\partial x^{3}}\right) e^{i \omega x}\right|=\mathcal{O}\left(\omega^{4} h\right) \tag{9}
\end{equation*}
$$

Part (d): $D=D_{-}^{3}$
Substituting for the backward difference operator we find

$$
\begin{aligned}
D_{-}^{3} e^{i \omega x} & =h^{-1} D_{-}^{2}\left(E^{0}-E^{-1}\right) e^{i \omega x}=h^{-1}\left(1-e^{-i \omega h}\right) D_{-} D_{-} e^{i \omega x} \\
& =h^{-2}\left(1-e^{-i \omega h}\right)^{2} D_{-} e^{i \omega x}=h^{-3}\left(1-e^{-i \omega h}\right)^{3} e^{i \omega x}
\end{aligned}
$$

At this point we can substitute the Taylor series expansions for $e^{-i \omega h}$ such that

$$
D_{-}^{3} e^{i \omega x}=h^{-3}\left(i \omega h+\mathcal{O}\left(\omega^{2} h^{2}\right)\right)^{3} e^{i \omega x}=\left(-i \omega^{3}+\mathcal{O}\left(\omega^{4} h\right)\right) e^{i \omega x}
$$

In conclusion, we find that D_{-}^{3} is a first-order accurate approximation of $\partial^{3} / \partial x^{3}$ since the error is proportional to h.

$$
\begin{equation*}
\left|\left(D_{-}^{3}-\frac{\partial^{3}}{\partial x^{3}}\right) e^{i \omega x}\right|=\mathcal{O}\left(\omega^{4} h\right) \tag{10}
\end{equation*}
$$

Part (e): $D=D_{0} D_{+} D_{-}$
Substituting for the forward, backward, and central difference operators we find

$$
\begin{aligned}
D_{0} D_{+} D_{-} e^{i \omega x} & =h^{-1} D_{0} D_{+}\left(E^{0}-E^{-1}\right) e^{i \omega x}=h^{-1}\left(1-e^{-i \omega h}\right) D_{0} D_{+} e^{i \omega x} \\
& =h^{-2}\left(1-e^{-i \omega h}\right)\left(e^{i \omega h}-1\right) D_{0} e^{i \omega x} \\
& =i h^{-3}\left(1-e^{-i \omega h}\right)\left(e^{i \omega h}-1\right)\left(\frac{e^{i \omega h}-e^{-i \omega h}}{2 i}\right) e^{i \omega x} \\
& =i h^{-3}\left(1-e^{-i \omega h}\right)\left(e^{i \omega h}-1\right) \sin (\omega h) e^{i \omega x}
\end{aligned}
$$

At this point we can substitute the Taylor series expansions for $e^{ \pm i \omega h}$ and $\sin (\omega h)$ such that

$$
\begin{aligned}
D_{0} D_{+} D_{-} e^{i \omega x} & =i h^{-3}\left(i \omega h+\mathcal{O}\left(\omega^{2} h^{2}\right)\right)\left(i \omega h+\mathcal{O}\left(\omega^{2} h^{2}\right)\right)\left(\omega h+\mathcal{O}\left(\omega^{3} h^{3}\right)\right) e^{i \omega x} \\
& =\left(-i \omega^{3}+\mathcal{O}\left(\omega^{5} h^{2}\right)\right) e^{i \omega x}
\end{aligned}
$$

In conclusion, we find that $D_{0} D_{+} D_{-}$is a second-order accurate approximation of $\partial^{3} / \partial x^{3}$ since the error is proportional to h^{2}.

$$
\begin{equation*}
\left|\left(D_{0} D_{+} D_{-}-\frac{\partial^{3}}{\partial x^{3}}\right) e^{i \omega x}\right|=\mathcal{O}\left(\omega^{5} h^{2}\right) \tag{11}
\end{equation*}
$$

Problem 3

Compute $\left\|D_{+} D_{-}\right\|_{h}$.
We will begin by deriving an upper bound on the discrete norm for periodic gridfunctions. Given two operators P and Q, Equation 1.2.12 in [1] gives

$$
\|P Q\|_{h} \leq\|P\|_{h}\|Q\|_{h}
$$

Also from page 22 in [1], we have

$$
\left\|D_{+}\right\|_{h} \leq 2 / h \text { and }\left\|D_{-}\right\|_{h} \leq 2 / h
$$

Substituting, we find the following upper bound for the discrete operator norm of $D_{+} D_{-}$.

$$
\begin{equation*}
\left\|D_{+} D_{-}\right\|_{h} \leq\left\|D_{+}\right\|_{h}\left\|D_{-}\right\|_{h} \leq 4 / h^{2} \tag{12}
\end{equation*}
$$

We can prove that the inequality in Equation 12 can be replaced with an equality by selecting a specific periodic gridfunction u. Let us begin by substituting for the forward and backward difference operators in terms of the shift operator E.

$$
D_{+}=\left(E-E^{0}\right) / h \text { and } D_{-}=\left(E^{0}-E^{-1}\right) / h
$$

Substituting for D_{+}and D_{-}we find the following result.

$$
\left(D_{+} D_{-} u\right)_{j}=h^{-2}\left(\left(E-2 E^{0}+E^{-1}\right) u\right)_{j}=h^{-2}\left(u_{j+1}-2 u_{j}+u_{j-1}\right)
$$

The definition of the discrete scalar product and norm for periodic gridfunctions are given as follows.

$$
(u, v)_{h}=\sum_{j=0}^{N} \bar{u}_{j} v_{j} h \text { and }\|u\|_{h}^{2}=(u, u)_{h}
$$

As a result, we have

$$
\begin{aligned}
\left\|D_{+} D_{-} u\right\|_{h}^{2} & =\sum_{j=0}^{N}\left(\frac{\bar{u}_{j+1}-2 \bar{u}_{j}+\bar{u}_{j-1}}{h^{2}}\right)\left(\frac{u_{j+1}-2 u_{j}+u_{j-1}}{h^{2}}\right) h \\
& =\frac{1}{h^{3}} \sum_{j=0}^{N}\left(\bar{u}_{j+1}-2 \bar{u}_{j}+\bar{u}_{j-1}\right)\left(u_{j+1}-2 u_{j}+u_{j-1}\right)
\end{aligned}
$$

Motivated by the example on page 23 of [1], we define $u_{j}=(-1)^{j}$ such that

$$
\begin{align*}
\|u\|_{h}^{2} & =(N+1) h \tag{13}\\
\left\|D_{+} D_{-} u\right\|_{h}^{2} & =\frac{1}{h^{3}} \sum_{j=0}^{N}\left((-1)^{j+1}-2(-1)^{j}+(-1)^{j-1}\right)^{2} \\
& =\frac{1}{h^{3}} \sum_{j=0}^{N} 16=\frac{16(N+1)}{h^{3}}=\frac{16}{h^{4}}\|u\|_{h}^{2} \\
\Rightarrow\left\|D_{+} D_{-} u\right\|_{h} & =\frac{4}{h^{2}}\|u\|_{h} . \tag{14}
\end{align*}
$$

Recall that the discrete norm of an operator Q is given by

$$
\|Q\|_{h}=\sup _{u \neq 0}\|Q u\|_{h} /\|u\|_{h} .
$$

Combining Equations 13 and 14 we find

$$
\begin{equation*}
\left\|D_{+} D_{-} u\right\|_{h} /\|u\|_{h}=4 / h^{2}, \text { for } u_{j}=(-1)^{j} . \tag{15}
\end{equation*}
$$

In conclusion, we have found a "witness" gridfunction $u_{j}=(-1)^{j}$ which achieves the upper bound in Equation 12. By the definition of the discrete operator norm, we conclude

$$
\begin{equation*}
\left\|D_{+} D_{-}\right\|_{h}=4 / h^{2} \tag{16}
\end{equation*}
$$

References

[1] Bertil Gustafsson, Heinz-Otto Kreiss, and Joseph Oliger. Time Dependent Problems and Difference Methods. John Wiley \& Sons, 1995.

