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Problem 1

Let f be a real function with the Fourier series
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is real for all V.

First, we note that_SN is real for all N if and only if Sy = Sy (i.e., Sy is equal to its
complex conjugate Sy ).
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Note that, on the right-hand side (RHS) of Equation 2, we have substituted w — —w (since
the summation can be taken in any order).
Equating Equations 1 and 2, we find that f(w) must be conjugate symmetric in order for

Sy to be a real-valued function for all N (i.e., f(w) = f(—w)). Recall from Equation 1.1.2
in [1], we have

flw) = —= / e f(a (e f(x)), (3)

where on the RHS we have used the definition of the L, scalar product norm given by
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Given these definitions, we have
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Since f is a real function we must have f(z) = f(z). Equating Equations 3 and 4, we
prove the desired result: if f is a real function, then its Fourier coefficients f(w) are conjugate

~

symmetric such that f(w) = f(~w) and, as a result, Sy = Sy and Sy must be real for all

N.

flw) = f(—w) = Sy =Sy, .. Sy isreal for all N

(QED)

Problem 2

()

Derive estimates for
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where D = D, D_D%, DD, D3, DyD, D_.

In this problem we will investigate the approximation of the third partial derivative 93 /93
using several difference operators. To begin our analysis, we evaluate the result analytically.
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The following Taylor series expansions will also be required in the subsequent analysis.
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Finally, we repeat for completeness the forward, backward, and central difference operators

in terms of the shift operator FE.

D, =(E—-E°/h, D_=(E"-E")/h, and Dy = (E — E~*)/2h

. _ 3
Part (a): D= D3
Substituting for the forward difference operator we find
Dieiwm — DiD_’_eiwa: — h_lDi<E o EO>6iwx — h—l(eiwh . 1>D3_€zwx
— h—2(6iwh o 1)2D+€iwx — h—3(eiwh . 1)361'(.090.
At this point we can substitute the Taylor series expansion for e*” such that

D3 e = b3 (iwh + O(w?h?))%e™* = (—iw® + O(w'h))e™?.

In conclusion, we find that D? is a first-order accurate approximation of §*/92* since the

error is proportional to h.
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Part (b): D =D_D?
Substituting for the forward and backward difference operators we find
D_D¥e"" =D_D,D,e“" =h'D_D (E — E°)e™" = h™'(e®“" — 1)D_D, ™"
= h2(elh — 1)2D_e® = h=3(eh — 1)2(1 — emiwh)eion,
At this point we can substitute the Taylor series expansions for e*™" such that
D_D3e™* = h73(iwh + O(w?h?))?(iwh + O(w?h?))e™" = (—iw® + O(w'h))e™?.

In conclusion, we find that D_D? is a first-order accurate approximation of §°/dx* since
the error is proportional to h.

83 W
(o0t 55)

= O(W'h) 8)

Part (¢): D= D?D,
Substituting for the forward and backward difference operators we find

DzDJreiw.r — h_1D2_ (E . EO)eiwm — h—l(eiwh . 1)D_D_eiw$
— h—2(€iwh o 1)(1 . e—iwh)D_eiwx — h—3(6iwh . 1)(1 o e—iwh)Qeiwx‘

At this point we can substitute the Taylor series expansions for e*™" such that
D2 D e™* = h3(iwh + O(w?h?)) (iwh + O(w?h?))?e™" = (—iw® + O(w*h))e™*.

In conclusion, we find that D% D, is a first-order accurate approximation of 9%/9z3 since
the error is proportional to h.
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Part (d): D= D?
Substituting for the backward difference operator we find
D" = p T D (E° — E71)e™" = b1 (1 — e “")D_D_e™"
= h72(1 — e Wh2D_elww = (1 — emih)3eine
At this point we can substitute the Taylor series expansions for e~*" such that
D? ™" = b3 (iwh + O(w?h?))*e™” = (—iw® + O(w*h))e™".

In conclusion, we find that D? is a first-order accurate approximation of 9%/9z* since the

error is proportional to h.
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Part (e): D= DyD,.D_

Substituting for the forward, backward, and central difference operators we find

DOD+D_€iwx — h_1D0D+(EO o E—l)eiwaz — h—l(l o e—iwh)D0D+eiwx
— h72<1 o efiwh)(eiwh . 1)D06iwx

iwh —iwh
—ih3(] — e~ why(piwh _ e e T\ iwn
ih>(1—e ™" (e ) ( 5 e
= ih?(1 — e M) (™" — 1) sin(wh)e™”.
At this point we can substitute the Taylor series expansions for e*™" and sin(wh) such that
DoD,D_e™* = ih 3 (iwh + O(w*h?)) (iwh + O(w?h?))(wh + O(w’h?))e™*
= (—iw® + O(w’h?))e™",

In conclusion, we find that DyD,D_ is a second-order accurate approximation of 93/dz3
since the error is proportional to hZ.
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Problem 3

Compute | Dy D_||.

We will begin by deriving an upper bound on the discrete norm for periodic gridfunctions.
Given two operators P and @, Equation 1.2.12 in [1] gives

1PQlr < | PallQllr-
Also from page 22 in [1], we have
1D lln < 2/h and | D_||s < 2/h.
Substituting, we find the following upper bound for the discrete operator norm of D, D_.
ID+D_|ln < | Dellnl D-[In < 4/1? (12)

We can prove that the inequality in Equation 12 can be replaced with an equality by
selecting a specific periodic gridfunction u. Let us begin by substituting for the forward and
backward difference operators in terms of the shift operator E.

D, =(E—-E°/hand D_ = (E° - E")/h
Substituting for D, and D_ we find the following result.

(DyD_w)j = h™*((E = 2E° + B~ u); = h™*(uj1 — 2u; + uj1)
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The definition of the discrete scalar product and norm for periodic gridfunctions are given

as follows.
N

(w,v)n = > _Tyvsh and [Jullf = (u, )y

=0

As a result, we have

U; 1—2E'+ﬂ'_1 U; 1—2U'+U'_1
DDl = Y (i) (Bt

Jj=0

=z

1

N
=73 Z U1 — 205 + 1) (uje1 — 205 + uj-1).

Motivated by the example on page 23 of [1], we define u; = (—1)’ such that

lulli, = (N + 1)h (13)
1 N
| DL D_ul; = 5 Z((_I)J-H —2(—1) 4 (=1)77)?
=0
1 16(N+1) 16
— _ 2
=@ 216 = =57 =57 luli
=0
4
= [|1D+D-ulln = 5 [lulla. (14)

Recall that the discrete norm of an operator @) is given by
1QI[n = sup |Qulln/[[ulln-
u#0
Combining Equations 13 and 14 we find
1D+ D—ull/llulln, = 4/h?, for u; = (—1)". (15)

In conclusion, we have found a “witness” gridfunction u; = (—1)7 which achieves the
upper bound in Equation 12. By the definition of the discrete operator norm, we conclude

|D,D_ ||, = 4/4 (16)
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