
AM 255: Problem Set 2
Douglas Lanman

28 September 2006

Problem 1

Consider the first-order wave equation given on page 38 of [1].

ut = ux, −∞ < x < ∞, 0 ≤ t

u(x, 0) = sin(x), −∞ < x < ∞
Compute the discrete difference approximation at time T = 2π given by

vn+1
j = (I + kD0)v

n
j = vn

j +
λ

2
(vn

j+1 − vn
j−1), (1)

where λ = k/h is the ratio of the time step k to the space step h. Consider discrete grids
of size N = {19, 39, 79, 159, 319} and values of λ = {1/2, h}. Graphically compare the exact
solution to the numerical solutions for N = 19 and tabulate the L2-errors. Finally, estimate
the order of approximation achieved for each value of λ.

My implementation of the discrete difference approximation, as defined by Equation 1, was
completed using Matlab and is included as prob1.m. Note that prob1.m accepts a single
input argument kMode which is used to toggle λ = 1/2 or λ = h.

Before presenting the results of my program, I will briefly outline the architecture of the
source code. On lines 21-55 I select the values of {N, h, k} and determine the resulting grid
points {x, t}. (Note that on lines 44-47 I ensure that the last time is given by T = 2π.) Lines
56-66 implement Equation 1. Note that I have implemented the central difference operator
D0 as a stand-alone program D0.m. Finally, lines 67-104 create the tables and plots shown
in this write-up.

Recall from Equation 2.1.3 in [1] that the general solution to the first-order wave equation
is given by u(x, t) = f(x+ t), where f(x) is the initial condition along t = 0. As a result, the
solution at T = 2π is given by u(x, 2π) = sin(x + 2π) = sin(x). As specified in the problem
statement, I have plotted the numerical approximation along with the analytic solution in
Figure 1. (Note that the cases λ = {1/2, h} are shown in Figure 1(a) and 1(b), respectively.
Also recall that λ = h ⇒ k = h2 from page 44 in [1].)

The approximation results for both λ = 1/2 and λ = h are tabulated below.

N L2-error order
19 1.121 NA
39 0.496 h1.18

79 0.233 h1.09

159 0.696 h−1.58

319 1.231e15 h−50.65

N L2-error order
19 0.647 NA
39 0.146 h2.15

79 3.536e-2 h2.04

159 8.680e-3 h2.03

319 2.176e-3 h2.00

Table 1.1: λ = 1/2 Table 1.2: λ = h
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(a) Results for N = 19 and λ = 1/2
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(b) Results for N = 19 and λ = h

Figure 1: Comparison between difference approximations and the analytic solution.

Note that the standard definition of the discrete L2 norm was used to evaluate the total
error as

L2-error(N) ,

√√√√
N∑

j=0

|u(xj, tn)− vn
j |2h.

In addition, the following definition of order of approximation was given in class.

order , log2

(
L2-error(N)

L2-error(2N)

)

In conclusion, we find that the numerical results agree with the predictions made in class
and on pages 38-44 in [1]. Specifically, we find that the numerical solution is unstable for
λ = 1/2, whereas it is stable for λ = h. Despite achieving stability, this solution remains
undesirable as it requires too many time steps to achieve a robust estimate in practical
situations.

Problem 2

Consider the discrete difference approximation to ut = ux given by

vn+1
j = (I + kD0)v

n
j + σkhD+D−vn

j , where v0
j = fj. (2)

Modify this scheme such that it approximates ut = −ux. Prove that the conditions in
Equations 2.1.14 and 2.1.15 from [1] are also necessary for stability in this case.

To begin our analysis, note that Equation 1 approximates the differential equation ut = ux

by taking the forward difference in time and the the central difference in space. Equation 2
incorporates an additional artificial viscosity term into this expression. As a result, we can
approximate the differential equation ut = −ux by changing the sign of the central difference
in space as follows.

vn+1
j = (I − kD0)v

n
j + σkhD+D−vn

j , where v0
j = fj. (3)
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Rearranging the terms in Equation 3, we have

vn+1
j − vn

j

k
= −D0v

n
j + σhD+D−vn

j ,

which approximates the differential equation

ut = −ux + σhuxx.

In the limit h → 0, the term in uxx becomes negligible and we obtain an approximate solution
to ut = −ux.

In order to find the necessary conditions for stability, we begin by making the ansatz

vn
j =

1√
2π

v̂n(ω)eiωxj ,

where the solution is composed of a single Fourier component. Substituting this expression
into Equation 3, we obtain the following expression.

eiωxj v̂n+1(ω) = (I − kD0 + σkhD+D−) eiωxj v̂n(ω) (4)

Recall from [1] the following forms for the forward, backward, and central difference operators
in terms of the shift operator E.

D+ = (E − E0)/h, D− = (E0 − E−1)/h, and D0 = (E − E−1)/2h (5)

Combining these expressions, we find

D+D−vn
j =

(E − 2E0 + E−1)vn
j

h2
=

vn
j+1 − 2vn

j + vn
j−1

h2
. (6)

Applying Equations 5 and 6 to Equation 4, we obtain

eiωxj v̂n+1(ω) =

(
eiωxj − λ

2

(
eiωxj+1 − eiωxj−1

)
+ σλ

(
eiωxj+1 − 2eiωxj + eiωxj−1

))
v̂n(ω),

where λ = k/h. Recall that xj = jh such that eiωxj = eiωjh. As a result, we can factor out
eiωxj on the right-hand side of the previous expression as follows.

eiωxj v̂n+1(ω) = eiωxj

(
1− λ

2

(
eiωh − e−iωh

)
+ σλ

(
eiωh + e−iωh − 2

))
v̂n(ω)

Using the basic trigonometric identities sin x = (eix − e−ix)/2i and cos x = (eix + e−ix)/2,
the previous expression can be reduced to

v̂n+1(ω) = (1− iλ sin(ωh) + 2σλ (cos(ωh)− 1)) v̂n(ω).

Finally, we recall the half-angle formula in which sin2(x/2) = (1 − cos(x))/2; applying this
formula to the previous equation provides a closed-form expression for the symbol Q̂.

v̂n+1(ω) = Q̂v̂n(ω), Q̂ = 1− iλ sin ξ − 4σλ sin2 ξ

2
, (7)
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where ξ = ωh.
Recall from page 44 in [1] that we consider a method stable if

sup
0≤tn≤T,ω,k,h

|Q̂n| ≤ K(T ),

as h, k → 0. As was done in the textbook, we can choose σ, k, and h such that

|Q̂| ≤ 1 ⇒ |Q̂|2 ≤ 1. (8)

Substituting the expression for the symbol Q̂ from Equation 7, we derive the following
expression.

|Q̂|2 =

(
1− 4σλ sin2 ξ

2

)
+ λ2 sin2 ξ

= 1− (8σλ− 4λ2) sin2 ξ

2
+ (16σ2 − 4)λ2 sin4 ξ

2
(9)

Combining Equations 8 and 9, we derive the following constraint for a stable solution.

(8σλ− 4λ2) sin2 ξ

2
− (16σ2 − 4)λ2 sin4 ξ

2
≥ 0 (10)

First, consider the situation in which 2σ ≤ 1 ⇒ (16σ2 − 4) ≤ 0. In order to guarantee that
Equation 8 is satisfied, it is sufficient for

8σλ− 4λ2 ≥ 0.

⇒ λ ≤ 2σ, such that 0 < λ ≤ 2σ ≤ 1, (11)

which is precisely the stability condition specified by Equation 2.1.14 in [1]. Now, let us
consider the case for which 2σ ≥ 1 ⇒ (16σ2− 4) ≥ 0. In order to guarantee that Equation 8
is satisfied, it is necessary for

(8σλ− 4λ2) sin2 ξ

2
≥ (16σ2 − 4)λ2 sin4 ξ

2

⇒ (8σλ− 4λ2) sin2 ξ

2
≥ (16σ2 − 4)λ2 sin2 ξ

2
,

since sin4 ξ
2

is bounded from above by sin2 ξ
2
. Reducing the previous expression gives

8σλ− 4λ2 ≥ (16σ2 − 4)λ2

⇒ 2σλ ≤ 1, (12)

which is precisely the stability condition specified by Equation 2.1.15 in [1]. In conclusion,
we have shown that this modified scheme will be stabile if the conditions in Equations 2.1.14
and 2.1.15 from [1] are satisfied, as tabulated below.

Condition 1: 0 < λ ≤ 2σ ≤ 1
Condition 2: 2σ ≥ 1, 2σλ ≤ 1

(13)

(QED)
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Problem 3

Choose σ in Equation 2 such that Q only uses two gridpoints. What is the stability criterion?

Let use define the symbol Q such that vn+1
j , Qvn

j . By inspection of Equation 2, we have

Q = I + kD0 + σkhD+D−. (14)

At this point, we review the Lax-Friedrichs Method (as presented on page 46 of [1]) for
approximating ut = ux, which is given by

vn+1
j =

1

2
(vn

j+1 + vn
j−1) + kD0v

n
j . (15)

Essentially, this approach replaces the values of vn
j with the average of its nearest neighbors

vn
j+1 and vn

j−1. As a result, Q only uses two gridpoints to estimate vn+1
j . From Equation 6,

we have

D+D−vn
j =

vn
j+1 − 2vn

j + vn
j−1

h2
.

Applying this expression to Equation 15, we obtain the following result.

vn+1
j =

1

2
(vn

j+1 − 2vn
j + vn

j−1) + vn
j + kD0v

n
j

= (I + kD0)v
n
j +

1

2
h2D+D−vn

j

= (I + kD0 +
1

2
h2D+D−)vn

j

By comparison to Equation 14, we have

σkh =
1

2
h2

⇒ 2σ =
h

k
=

1

λ
. (16)

If λ ≥ 1, then 2σ ≤ 1 (by substitution into Equation 16). This situation contradicts
Condition 1 for convergence as specified in Equation 13. As a result, we must have λ ≤
1 ⇒ 2σ ≥ 1. This result satisfies Condition 2 for convergence, since λ ≤ 1 ⇒ 2σλ ≤ 1. In
conclusion, the stability criterion for Equation 15 is given as follows.

λ =
k

h
≤ 1
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  1 function prob1(kMode)
  2 
  3 % AM 255, Problem Set 2, Problem 1
  4 %    Solves the  first-order wave equation IVP using
  5 %    a discrete difference approximation. Results are
  6 %    displayed graphically and tabulated for inclusion
  7 %    in the write-up.
  8 %
  9 % Input:
 10 %    kMode: Selects the mode for the time-step
 11 
 12 %
 13 % Output:
 14 %    Tables/plots required for the write-up.
 15 %
 16 % Douglas Lanman, Brown University, Sept. 2006
 17 
 18 % Reset Matlab command window.
 19 
 20 
 21 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 22 % Part I: Specify discrete grid parameters.
 23 
 24 % Specify the initial condition.
 25 
 26 
 27 % Define space/time grid interval(s) for evaluation.
 28 % #gridpoints s.t. N+2 on [0,2*pi]
 29 % resulting space steps
 30 
 31 % Select time step (based on user input).
 32 if ~exist('kMode','var') || kMode == 1
 33 
 34 else
 35 
 36 end
 37    
 38 % Set discrete positions/time-steps for evaluation.
 39 % Note: All time steps will be equal, except the 
 40 
 41 %       time will be exactly 2*pi.
 42 for i = 1:length(N)
 43 
 44 
 45    if t{i}(end) ~= 2*pi
 46 
 47    end
 48 end
 49 
 50 % Initialize the numerical solution(s).
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 51 for i = 1:length(N)
 52 
 53 % boundary values
 54 end
 55 
 56 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 57 % Part II: Evaluate difference approximation to IVP.
 58 
 59 % Update solution sequentially (beginning with I.C.).
 60 % Note: Uses D0.m for the central difference.
 61 for i = 1:length(N)
 62    for n = 1:(length(t{i})-1)
 63 
 64    end   
 65 end
 66 
 67 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 68 % Part III: Plot/tabulate modeling results.
 69 
 70 % Evaluate the exact solution.
 71 
 72 
 73 
 74 % Determine the L2-error and the approximation order.
 75 for i = 1:length(N)
 76 
 77    if i > 1
 78 
 79    end
 80 end
 81 
 82 % Tabulate results.
 83 disp(' N     L2-error     order'
 84 disp('--------------------------'
 85 for i = 1:length(N)
 86    if i > 1
 87       fprintf('%3d   %.5g   %+2.2f\n'
 88    else
 89       fprintf('%3d   %.5g\n'
 90    end
 91 end
 92 
 93 % Compare approximation (N=19) to exact solution.
 94 
 95 plot(xe,fe,'r-','LineWidth'
 96 hold on
 97    plot(x{1},v{1}(end,:),'.','MarkerSize'
 98 hold off
 99 set(gca,'LineWidth',2,'FontSize',14,'FontWeight','normal'
100 xlabel('$x_j$','FontName','Times',...
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101    'Interpreter','Latex','FontSize'
102 
103 grid on
104 legend('Analytic Solution','Difference Approx.'
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 1 function b = D0(a,h)
 2 
 3 % DO Central difference operator.
 4 %    DO(A,H) evaluates the central difference of the
 5 %    array A with grid-spacing H, as defined in:
 6 %    
 7 %    "Time Dependent Problems and Difference Methods",
 8 %    B. Gustafsson, H.-O. Kreiss, and J. Oliger, 1995.
 9 %
10 % Douglas Lanman, Brown University, Sept. 2006
11 
12 % Determine the length of the input array.
13 
14 
15 % Shift array indices (modulo the array length).
16 % shift forward
17 % shift backward
18 
19 % Evaluate the central difference.
20 
 


