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Problem 1

Consider the first-order wave equation given on page 38 of [1].
Up = Uy, —00 < x<00,0< 1t
u(z,0) =sin(z), —oo <z < 0

Compute the discrete difference approximation at time T = 27 given by

n n n )\ n n
UjH = (I + kDo)vj = v} + 9 (Vi1 — vi1), (1)
where A = k/h is the ratio of the time step k to the space step h. Consider discrete grids
of size N = {19,39,79,159, 319} and values of A = {1/2, h}. Graphically compare the exact
solution to the numerical solutions for N = 19 and tabulate the Lo-errors. Finally, estimate
the order of approximation achieved for each value of .

My implementation of the discrete difference approximation, as defined by Equation 1, was
completed using Matlab and is included as probl.m. Note that probl.m accepts a single
input argument kMode which is used to toggle A = 1/2 or A = h.

Before presenting the results of my program, I will briefly outline the architecture of the
source code. On lines 21-55 I select the values of { N, h, k} and determine the resulting grid
points {z,t}. (Note that on lines 44-47 I ensure that the last time is given by 7' = 2r.) Lines
56-66 implement Equation 1. Note that I have implemented the central difference operator
Dy as a stand-alone program DO.m. Finally, lines 67-104 create the tables and plots shown
in this write-up.

Recall from Equation 2.1.3 in [1] that the general solution to the first-order wave equation
is given by u(z,t) = f(x+1t), where f(z) is the initial condition along ¢ = 0. As a result, the
solution at 7' = 27 is given by u(z,27) = sin(z + 27) = sin(x). As specified in the problem
statement, I have plotted the numerical approximation along with the analytic solution in
Figure 1. (Note that the cases A = {1/2, h} are shown in Figure 1(a) and 1(b), respectively.
Also recall that A = h = k = h? from page 44 in [1].)

The approximation results for both A = 1/2 and A = h are tabulated below.

N | Lo-error | order N | Ly-error | order
19 1.121 NA 19 0.647 NA
39 0.496 ht18 39 0.146 h215
79 0.233 h109 79 | 3.536e-2 | hZ9
159 0.696 h1o8 159 | 8.680e-3 | h203
319 | 1.231el5 | A—°0-65 319 | 2.176e-3 | h>0
Table 1.1: A =1/2 Table 1.2: A\=h
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Figure 1: Comparison between difference approximations and the analytic solution.

Note that the standard definition of the discrete L, norm was used to evaluate the total
eITor as

N
Ly-error(N) £ Z [u(a;, t™) — v7|2h.
=0

In addition, the following definition of order of approximation was given in class.

2\ Ly-error(2N)

In conclusion, we find that the numerical results agree with the predictions made in class
and on pages 38-44 in [1]. Specifically, we find that the numerical solution is unstable for
A = 1/2, whereas it is stable for A\ = h. Despite achieving stability, this solution remains
undesirable as it requires too many time steps to achieve a robust estimate in practical
situations.

Problem 2

Consider the discrete difference approximation to u; = u, given by

VI = (I + kDo) + okhD, D_v?, where v = f;. (2)

J

Modify this scheme such that it approximates u; = —u,. Prove that the conditions in
Equations 2.1.14 and 2.1.15 from [1] are also necessary for stability in this case.

To begin our analysis, note that Equation 1 approximates the differential equation u; = u,
by taking the forward difference in time and the the central difference in space. Equation 2
incorporates an additional artificial viscosity term into this expression. As a result, we can
approximate the differential equation u; = —u, by changing the sign of the central difference
in space as follows.

U;LH = (I = kDo)v} + okhD,D_v}, where ’U;) = fj. (3)
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Rearranging the terms in Equation 3, we have

UT»LJrl —n

jTj = —D()’U;L + Uh,D_t,_D_U;L,

which approximates the differential equation
Uy = — Uy + Ohig,.

In the limit A~ — 0, the term in u,, becomes negligible and we obtain an approximate solution
to Uy = —Uy.
In order to find the necessary conditions for stability, we begin by making the ansatz

1

n AN

vl = ™ (w)e™™ i

J V2T

where the solution is composed of a single Fourier component. Substituting this expression
into Equation 3, we obtain the following expression.

eiwm]-@n—kl(w) — (I — kDo + O‘kth+D_) el f)n(w) (4)

Recall from [1] the following forms for the forward, backward, and central difference operators
in terms of the shift operator E.

D, =(E—E°/h, D_=(E"—E")/h, and Dy = (E — E~")/2h (5)
Combining these expressions, we find

L (E=2E°4+E~Y! o, — 200 4o
DyD vt = = L=t— = (6)

Applying Equations 5 and 6 to Equation 4, we obtain
wx; An+1 WX A W § TWT WX W § TWT AN
et (w) = (e 3—5(6 L T g\ (€T — 26T 4 T ) M (w),

where A = k/h. Recall that z; = jh such that e™% = e/ As a result, we can factor out
e™?i on the right-hand side of the previous expression as follows.

eiwxj@n-&-l(w) — eiwxj (1 _ % (eiwh _ e—iwh) Lo\ (eiwh + e—iwh o 2)) ,ﬁn(w)

Using the basic trigonometric identities sinz = (e — e7%)/2i and cosx = (e + ™) /2,
the previous expression can be reduced to

0" Hw) = (1 — ixsin(wh) + 20\ (cos(wh) — 1)) ™ (w).

Finally, we recall the half-angle formula in which sin?(z/2) = (1 — cos(x))/2; applying this
formula to the previous equation provides a closed-form expression for the symbol Q).

" Hw) = Q0" (w), Q=1—1iXsiné — 4o sin® g (7)
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where & = wh.
Recall from page 44 in [1] that we consider a method stable if

sup |Q"| < K(T),

0<tn <T'w,k,h

as h,k — 0. As was done in the textbook, we can choose o, k, and h such that
QI<1= QP <L (8)

Substituting the expression for the symbol @ from Equation 7, we derive the following
expression.

Q> = (1 — 4o \sin? g) + A2sin®¢

1~ o — eyt 4 (1607 st .

Combining Equations 8 and 9, we derive the following constraint for a stable solution.
(80 — 4)?) sin2§ — (1607 — 4)\? sin4g >0 (10)

First, consider the situation in which 20 < 1 = (160% — 4) < 0. In order to guarantee that
Equation 8 is satisfied, it is sufficient for

8\ — 4)\? > 0.

= A\ < 20, such that 0 < A <20 <1, (11)

which is precisely the stability condition specified by Equation 2.1.14 in [1]. Now, let us
consider the case for which 20 > 1 = (1602 —4) > 0. In order to guarantee that Equation 8
is satisfied, it is necessary for

(80 — 4)\?) sin® g > (160% — 4)\*sin* g
= (80 — 4)\?)sin’ g > (1602 — 4)\?sin 2
since sin? % is bounded from above by sin? % Reducing the previous expression gives

8o\ — 4X\? > (1602 — 4)\?

= 20\ < 1, (12)

which is precisely the stability condition specified by Equation 2.1.15 in [1]. In conclusion,
we have shown that this modified scheme will be stabile if the conditions in Equations 2.1.14
and 2.1.15 from [1] are satisfied, as tabulated below.

Condition 1: 0 < A <20 <1

Condition 2: 20 > 1, 20\ < 1 (13)

(QED)
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Problem 3

Choose o in Equation 2 such that ) only uses two gridpoints. What is the stability criterion?

Let use define the symbol () such that v}”l =S Qu}. By inspection of Equation 2, we have
Q=I1+kDy+ckhD,D_. (14)

At this point, we review the Laz-Friedrichs Method (as presented on page 46 of [1]) for
approximating u; = u,, which is given by

1
U;.H_l = §(U?+1 + ?}?_1) + k’D()U;L. (15)

Essentially, this approach replaces the values of v} with the average of its nearest neighbors
n+1

v}, and v} ;. As a result, @ only uses two gridpoints to estimate v;

we have

. From Equation 6,

Uiy — 207 + v
B2
Applying this expression to Equation 15, we obtain the following result.

D+D_/U;L =

1
'U;H_l = 5(7)?+1 — 21)? + U;L_1> + U? + kDOU?

1
= (I+kDo)vj + 5h*Dy D v}

1
= (I -+ k‘DO + §hzl)+l),)/l);1

By comparison to Equation 14, we have

1
kh = =h?
TH =g
h 1

If A > 1, then 20 < 1 (by substitution into Equation 16). This situation contradicts
Condition 1 for convergence as specified in Equation 13. As a result, we must have A <
1 = 20 > 1. This result satisfies Condition 2 for convergence, since A < 1 = 20\ < 1. In
conclusion, the stability criterion for Equation 15 is given as follows.

A=- <1

>

References
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function probl(kMode)

% AM 255, Problem Set 2, Problem 1

% Solves the Tfirst-order wave equation IVP using
% a discrete difference approximation. Results are
% displayed graphically and tabulated for inclusion
% in the write-up.

%

% Input:

% kMode: Selects the mode for the time-step

% size; kMode = {1 := k=h/2, 2 := k=h"2).

%

% Output:

% Tables/plots required for the write-up.

%
% Douglas Lanman, Brown University, Sept. 2006

% Reset Matlab command window.
clc;

%%%%6%%%%6%%%%6%%%%6%6%%%%6%%%%6%% % %% %% %% %% %% %% %%% % %%% % %%6% % % %%
% Part 1: Specify discrete grid parameters.

% Specify the initial condition.
IC = @(x) sin(x);

% Define space/time grid interval(s) for evaluation.
N [19 39 79 159 319]1; % #gridpoints s.t. N+2 on [0,2*pi]
h = 2*pi./(N+1); % resulting space steps

% Select time step (based on user input).
if ~exist("kMode®","var®) || kMode ==

k = h/2;
else

k = h."2;
end

% Set discrete positions/time-steps for evaluation.
% Note: All time steps will be equal, except the

% last; it will be adjusted so that the final
% time will be exactly 2*pi.

for i = 1:length(N)

x{i} = h(i)*[0:N(i)1];
t{i} = [0:k(1):2*pi];
if t{i}(end) ~= 2*pi
t{i} (end+l) = 2*pi;
end
end

% Initialize the numerical solution(s).
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51 for i1 = 1l:length(N)

52 v{i} = zeros(length(t{i}),N(i)+1);

53 v{i} (1,:) = IC(x{i}); % boundary values
54 end

55

56 %%6%%%%%%%%6%%%%6%%%%6%%% %6%%% %%%% %6%%% %6%6%% %6%6%% % %6%% % %% % % %% %% %
57 % Part 11: Evaluate difference approximation to IVP.

58

59 % Update solution sequentially (beginning with 1.C.).
60 % Note: Uses DO.m for the central difference.

61 for i = 1:length(N)

62 for n = 1:(length(t{i})-1)

63 v{i}l(n+l,:) = v{i}(n,:) + k(i)*DO(v{i}(n,:),h(i));
64 end

65 end

66

67 %%6%%%%6%%%%6%%%%6%%% %% %% %% %% %% %% %% % %6%% % %%6% % % %6% %% %% %% %% %% %
68 % Part 111: Plot/tabulate modeling results.

69

70 % Evaluate the exact solution.

71 xe = linspace(0,2*pi,1000);

72 fe = IC(xe);

73

74 % Determine the L2-error and the approximation order.
75 for 1 = 1l:length(N)

76 L2 error (i) = sqgrt(sum((abs(IC(x{i})-v{i}(end,:)).”2)*h(i)));
77 ifi>1

78 order (i) = log2(L2 error(i-1) /L2 error(i));

79 end

80 end

81

82 % Tabulate results.

83 disp(® N L2-error order”®) ;

84 disp("-———------"-""" - ")

85 for i = 1:length(N)

86 ifi>1

87 fprintf("%3d %.59g %+2.2f\n",N(i),L2 error(i),order(i));
88 else

89 fprintf("%3d %.59\n",N(i),L2 error(i));

90 end

91 end

92

93 % Compare approximation (N=19) to exact solution.

94 figure(l); clf;

95 plot(xe,fe, "r-", "LineWidth®, 3);

96 hold on;

97 plot(x{1},v{1}(end,:),".", "MarkerSize~", 20) ;

98 hold off;

99 set(gca, "LineWidth",2,"FontSize",14, "FontWeight", "normal ") ;
100 xlabel ("$x_j$", "FontName®,"Times", ...
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101 "Interpreter”, "Latex”, "FontSize~", 16) ;

102 stitle('Difference Approximation vs. Analytic Solution');
103 grid on; axis ([0 2*pi -2 21);

104 legend("Analytic Solution®, "Difference Approx.~");
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function b = DO(a,h)

% DO Central difference operator.
% DO(A,H) evaluates the central difference of the
array A with grid-spacing H, as defined in:

% "Time Dependent Problems and Difference Methods™,
% B. Gustafsson, H.-0O. Kreiss, and J. Oliger, 1995.

O© 0O ~NOULA WNEPR
=

=
o

% Douglas Lanman, Brown University, Sept. 2006

ol
N

% Determine the length of the input array.

13 N = length(a);

14

15 % Shift array indices (modulo the array length).
16 £ = mod([1:N]-2,N)+1; % shift Forward

17 bj = mod([1:N],N)+1; % shift backward

18

19 % Evaluate the central difference.

N
o

b = (a(bj)-a(fj))/(2*h);



