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Problem 1

Prove that the θ scheme

(I − θkD0)v
n+1
j = (I + (1− θ)kD0)v

n
j (1)

is unconditionally stable for θ ≥ 1
2
.

As we have done previously, we begin by considering simple wave solutions of the form

vn
j =

1√
2π

eiωxj v̂n(ω).

Substituting into Equation 1 yields

(I − θkD0)e
iωxj v̂n+1(ω) = (I + (1− θ)kD0)e

iωxj v̂n(ω)(
I − θλ

2
(E − E−1)

)
eiωjhv̂n+1(ω) =

(
I +

(1− θ)λ

2
(E − E−1)

)
eiωjhv̂n(ω),

where we have used the following identities: D0 = (E − E−1)/2h, λ = k/h, and xj = jh.
Simplifying this equation, we obtain the following expressions(

eiωjh − θλ

2
(eiω(j+1)h − eiω(j−1)h)

)
v̂n+1(ω) =

(
eiωjh +

(1− θ)λ
2

(eiω(j+1)h − eiω(j−1)h)
)
v̂n(ω)(

1− θλ

2
(eiωh − e−iωh)

)
v̂n+1(ω) =

(
1 +

(1− θ)λ
2

(eiωh − e−iωh)
)
v̂n(ω)

(1− iθλ sin ξ) v̂n+1(ω) = (1 + i(1− θ)λ sin ξ)) v̂n(ω), (2)

where ξ = ωh. From Equation 2 we find the following form of the symbol Q̂.

v̂n+1(ω) = Q̂v̂n(ω), Q̂ =
1 + i(1− θ)λ sin ξ

1− iθλ sin ξ
(3)

Recall from page 44 in [1] that we consider a method stable if

sup
0≤tn≤T,ω,k,h

|Q̂n| ≤ K(T ),

as h, k → 0. As was done in the textbook, we can choose σ, k, and h such that |Q̂| ≤ 1 ⇒ |Q̂|2 ≤ 1.
Also recall that for complex numbers z1 and z2, the squared modulus satisfies |z1|2 = z1z̄1 and
|z1/z2| = |z1|/|z2|. Applying these identities to the symbol Q̂, we derive the following result.

|Q̂|2 =
|1 + i(1− θ)λ sin ξ|2

|1− iθλ sin ξ|2

=
1 + i(1− θ)λ sin ξ

1− iθλ sin ξ
· 1− i(1− θ)λ sin ξ

1 + iθλ sin ξ

=
1 + (1− θ)2λ2 sin2 ξ

1 + θ2λ2 sin2 ξ
≤ 1 (4)
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From Equation 4, we have

1 + (1− θ)2λ2 sin2 ξ ≤ 1 + θ2λ2 sin2 ξ

(1− θ)2 ≤ θ2

θ2 − 2θ + 1 ≤ θ2, ⇒ θ ≥ 1
2
.

This proves that Equation 1 is unconditionally stable (i.e., stable for all values of λ) if and only if
θ ≥ 1

2 . (QED)

Problem 2

When deriving the order of accuracy, Taylor expansion around some point (x∗, t∗) is used. Prove
that (x∗, t∗) can be chosen arbitrarily and, in particular, that it does not have to be a gridpoint.

Let us begin by considering the discrete difference approximation to ut = ux given by

vn+1
j = (I + kD0)vn

j + σkhD+D−v
n
j .

Expanding the difference operators and collecting terms, we find the following expression.

vn+1
j − vn

j

k
−
vn
j+1 − vn

j−1

2h
− σh

(
vn
j+1 − 2vn

j + vn
j−1

h2

)
= 0 (5)

In order to estimate the truncation error, we follow the approach outlined in §2.4 from [1]. Specif-
ically, we will calculate how well u satisfies the difference approximation in Equation 5. Assuming
u is a smooth function, substitution into the previous expression yields

τn
j ,

un+1
j − un

j

k
−
un

j+1 − un
j−1

2h
− σh

(
un

j+1 − 2un
j + un

j−1

h2

)
,

where τn
j is defined as the truncation error evaluated at (xj , tn). This expression is equivalent to

Equation 2.4.6 on page 60 in [1] and holds at all gridpoints (xj , tn). Note, however, that we can
evaluate the truncation error τ(x∗, t∗) about any arbitrary point (x∗, t∗) to obtain

τ(x∗, t∗) ,
u(x∗, t∗ + k)− u(x∗, t∗)

k
−

u(x∗ + h, t∗)− u(x∗ − h, t∗)
2h

− (6)

σh

(
u(x∗ + h, t∗)− 2u(x∗, t∗) + u(x∗ − h, t∗)

h2

)
At this point, we recall that the following Taylor series expansions were derived on page 59 in [1]
and are valid around any point (x, t).

u(x, t+ k)− u(x, t)
k

= ut(x, t) +
k

2
utt(x, t) +

k2

3!
ψ0(x, t) (7)

u(x+ h, t)− u(x− h, t)
2h

= ux(x, t) +
h2

3!
uxxx(x, t) +

h4

5!
ϕ0(x, t) (8)

u(x+ h, t)− 2u(x, t) + u(x− h, t)
h2

= uxx(x, t) +
2h2

4!
uxxxx(x, t) +

2h4

6!
ϕ1(x, t) (9)
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Substituting Equations 7, 8, and 9 into Equation 6, we obtain the following form for the truncation
error about (x∗, t∗).

τ(x∗, t∗) = ut(x∗, t∗)− ux(x∗, t∗) +
k

2
utt(x∗, t∗)− σhuxx(x∗, t∗) +O(h2 + k2)

Since ut = ux, we can simplify this expression as follows.

τ(x∗, t∗) =
(
k

2
− σh

)
uxx(x∗, t∗) +O(h2 + k2) (10)

Recall that the truncation error is said to be accurate of order (p, q) if τ(x∗, t∗) = O(hp + kq). In
conclusion, we find that the scheme in Equation 5 is accurate of order (1, 1) for σ 6= k/(2h) and of
order (2, 2) otherwise. Note that this conclusion is valid for any point (x∗, t∗), yet it agrees with
the result found at specific gridpoints (xj , tn) given in [1] on page 60.

In general, we could have considered any scheme (rather than the specific analysis that was
presented for Equation 5). For any scheme, the Taylor series expansions derived on page 59 in [1]
will hold for any point (x∗, t∗). As a result, the leading order behavior of the Taylor series expansion
will be identical, resulting in the same truncation error τ(x∗, t∗) for all values of (x∗, t∗). (QED)

Problem 3

Prove that the leap-frog scheme

vn+1
j = vn−1

j + λ(vn
j+1 − vn

j−1) (11)

and the Crank-Nicholson scheme(
I − k

2
D0

)
vn+1
j =

(
I +

k

2
D0

)
vn
j (12)

are accurate of order (2, 2). Despite the same order of accuracy, one can expect that one scheme is
more accurate than the other. Why is that so?

Let’s begin by rearranging terms in Equation 11 to obtain

vn+1
j − vn−1

j

2k
=
vn
j+1 − vn

j−1

2h
,

where λ = k/h. Recall that the central difference satisfies

D0v
n
j =

vn
j+1 − vn

j−1

2h

and as a result, the previous expression reduces to

vn+1
j − vn−1

j

2k
−D0v

n
j = 0. (13)

In order to estimate the truncation error, we follow the approach outlined in §2.4 from [1]. Specifi-
cally, we will calculate how well u satisfies the difference approximation in Equation 13. Assuming
u is a smooth function, substitution into the previous expression yields

un+1
j − un−1

j

2k
−D0u

n
j = 0
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un+1
j − un−1

j

2k
−
un

j+1 − un
j−1

2h
= 0. (14)

Recall that the following Taylor series expansions about (x, t) are given on page 59 of [1]

D0u(x, t) =
u(x+ h, t)− u(x− h, t)

2h
= ux(x, t) +

h2

3!
uxxx(x, t) +

h4

5!
ϕ0(x, t) (15)

u(x, t+ k)− u(x, t− k)
2k

= ut(x, t) +
k2

3!
uttt(x, t) +

k4

5!
ψ1(x, t), (16)

where

|ϕ0(x, t)| ≤ max
x−h≤ξ≤x+h

|∂
5u(ξ, t)
∂x5

| and |ψ1(x, t)| ≤ max
t−k≤ξ≤t+k

|∂
5u(x, ξ)
∂t5

|.

Substituting Equations 15 and 16 into Equation 14, we obtain

ut(xj , tn)− ux(xj , tn) +
k2

3!
uttt(xj , tn)− h2

3!
uxxx(xj , tn) +O(h4 + k4) , τn

j ,

where τn
j is the truncation error. Recall that Equation 11 approximates the solution to the dif-

ferential equation ut = ux. As a result, we have uttt = uxxx and the previous expression can be
reduced to

τn
j =

(
k2

3!
− h2

3!

)
uxxx(xj , tn) +O(h4 + k4) = O(h2 + k2) (17)

Recall that the truncation error is said to be accurate of order (p, q) if τ = O(hp + kq). As a result,
the leap-frog scheme in Equation 11 is accurate of order (2,2), by Equation 17. (QED)

Now let’s consider the Crank-Nicholson scheme in Equation 12. Rearranging terms gives the
following expression.

vn+1
j − vn

j

k
− 1

2
D0v

n+1
j − 1

2
D0v

n
j = 0

Assuming u is a smooth function, substitution into the previous expression yields

un+1
j − un

j

k
− 1

2
D0u

n+1
j − 1

2
D0u

n
j = 0. (18)

Note that the Taylor series expansion, about (x, t), for the third term is given by Equation 15.
Similarly, the expansion of the first term is given on page 59 in [1] as

u(x, t+ k)− u(x, t)
k

= ut(x, t) +
k

2
utt(x, t) +

k2

3!
ψ0(x, t)

= ux(x, t) +
k

2
uxx(x, t) +

k2

3!
ψ0(x, t), (19)

since ut = ux and where

|ψ0(x, t)| ≤ max
t≤ξ≤t+k

|∂
3u(x, ξ)
∂t3

|.

To complete the derivation, we must find the Taylor series expansion for the second term in Equa-
tion 18. By analogy to Equation 15, the expansion about (x, t+ k) is given by

D0u(x, t+ k) =
u(x+ h, t+ k)− u(x− h, t+ k)

2h

= ux(x, t+ k) +
h2

3!
uxxx(x, t+ k) +

h4

5!
ϕ0(x, t+ k).
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Note that the Taylor series expansion about (x, t) for the leading term is given by

ux(x, t+ k) = ux(x, t) + kuxt(x, t) +
k2

2
uxtt(x, t) +O(k3)

= ux(x, t) + kuxx(x, t) +
k2

2
uxxx(x, t) +O(k3),

since ut = ux. Substituting this result into the previous expression, we have

D0u(x, t+ k) = ux(x, t) + kuxx(x, t) +
(
k2

2
+
h2

3!

)
uxxx(x, t) + . . . , (20)

where higher-order terms have been omitted. Substituting Equations 15, 19, and 20 into Equa-
tion 18 gives the following result (when considering only the leading-order terms in h and k).

ux(x, t)+
k

2
uxx(x, t)−1

2
ux(x, t)−k

2
uxx(x, t)−

(
k2

4
+

h2

2 · 3!

)
uxxx(x, t)−1

2
ux(x, t)− h2

2 · 3!
uxxx(x, t) = τ

Simplifying this expression yields the following form for the truncation error.

τ = −
(
k2

4
+
h2

3!

)
uxxx(x, t) = O(h2 + k2) (21)

In conclusion, the Crank-Nicholson scheme in Equation 12 is accurate of order (2,2), by
Equation 21. (QED)

Although both the leap-frog and Crank-Nicholson schemes have the same order of accuracy,
one can expect that the leap-frog scheme is more accurate. From Equations 17 and 21,
we know that the schemes have the following leading-order truncation errors.

τleap-frog = +
(
k2

3!
− h2

3!

)
uxxx(x, t)

τCrank-Nicholson = −
(
k2

4
+
h2

3!

)
uxxx(x, t)

Note that both schemes have identical “spatial” truncation errors of −h2

3! uxxx(x, t), however the
magnitude of the “temporal” error for the leap-frog method is smaller than that for the Crank-
Nicholson scheme (i.e., k2/3! < k2/4). As a result, for a fixed value of λ = k/h for which both
schemes are stable, one would expect that the leap-frog method would predict the solution with
≈66.7% of the L2-error exhibited by the Crank-Nicholson scheme. This result demonstrates that
the order of accuracy does not fully specify the truncation errors and, in certain situations, the
coefficients of the leading-order terms will decide which scheme is more accurate.
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