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Problem 1

Prove that the 0 scheme

(I —0kD D )i = (I +(1—0)kD D_)o}, j=0,1,...,N, 0<0<1 (1)

is unconditionally stable for # > %

In order to find the necessary conditions for stability, we begin by making the ansatz

1 .
vy = ——= " (W),

V2r

where the solution is composed of a single Fourier component. Substituting this expression
into Equation 1, we obtain the following result.

1 . 1
—— "N W) (I — 0kD.D_) ™% =
o (w) ( +D_) o

= 0" (w) ("% — OkD, D_e™") = 0"(w) (™% + (1 — 0)kD, D_e™"7) (2)

0"(w) (I + (1 —0)kDyD_) e

In order to proceed, we require the following identity (given by Equation 2.5.7 in [1]).
WX i 2 5 TWT 5 k
kD, D_e*" = —40sin 7€, where 0 = 7 and £ = wh (3)
Substituting Equation 3 into Equation 2 gives the following expressions.

0" (w) (6”” + 4600 sin® geiwxf) = 1" (w) (eiwj +4(0 — 1) sin® geiwmf)

= "H(w) (1 + 460 sin? g) =" (w) (1 +4(0 — 1)o sin’ g)

Simplifying this equation gives a closed-form expression for the symbol Q

1+4(0 — 1)osin® 5
1 4 460 sin® %

~

W) = Qin(w), Q=

Recall from page 44 in [1] that we consider a method stable if

sup |Q"| < K(T),

0<tn <T'\w,k,h

as h,k — 0. As was done in the textbook, we can choose o, k, and h such that
QI < 1.

1
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Substituting the expression for the symbol Q from Equation 4, we derive the following

equation.

1+4(0 — 1)osin®§
1 + 400 sin® §

~

Q=

<1

Recall that, for complex numbers z; and zy, the modulus satisfies: |z + 22| < |z1] + |22],
|z122] = |21]|22|, and |z1/22] = |z1]/]22|. Applying these identities to the previous expression,
we derive the following result.

1+4(0 — 1)osin®§
1 + 400 sin® §

_ {1—1—4(9— l)asin2g‘

1
|1+ 460 sin® § | :

Multiplying by the denominator gives

’1+4(9— 1)asm2§ < ‘1—1—46081112%’.

Further simplifying, we can eliminate the dependence on ¢ and ¢ as follows.

1] + 4|0 — 1]

asin2g‘ < |1 +4|6|

€
g S1n 2'

=101 < 6]

Note that, for 0 < 6 < 1, we must have |§ — 1| = 1 — 0 and |#| = 6. Substituting these
identities into the previous expression gives the desired result.

1-60<6 = |0>

N | —

In conclusion, this proves that Equation 1 is unconditionally stable (i.e., stable for all values
of \) if and only if > 1. (QED)
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Problem 2

Prove that the truncation errors for the backward Euler and Crank-Nicholson schemes, ap-
plied to u; = Uy, are O(h* + k) and O(h? + k?), respectively. Despite having the same order
of approximation, explain why at certain times the backward FEuler method is more accurate
for the example in §2.5 in [1].

Recall (from Equation 2.5.17 in [1]) that the backward Euler scheme for u; = u,, is given by

(I — kD D_)oi*t =7, j=0,1,...,N. (5)

Rearranging terms, we obtain the following expression.

UTLH — "

1
]TJ — Z)+Z),'UJT~L+ =0 (6)
In order to estimate the truncation error, we follow the approach outlined in §2.4 from [1].
Specifically, we will calculate how well w satisfies the difference approximation in Equa-
tion 6. Assuming wu is a smooth function, substitution into the previous expression yields
the following form for the truncation error 7.

uﬂ"'l —u”

T;Z = % — D+D_U§L+1

w(xj, t, + k) —u(zj, t,)
k

Recall that the following Taylor series expansions about (x,t) are given on page 59 of [1]

= T(xjvtn) = - D+D—u(xjvtn + k) (7)

u(z + h,t) — 2u(z,t) + u(x — h,t)

D, D _u(x,t) = 2
2h? 2h4
u(z,t + k) —u(x,t k k2 k4
( ) ( ) = ut(ili',t) + _Utt(x;t> + _uttt(x;t> + —wo(:v, t)? (9)
k 2 3! 4!
where 56 ) o (2,€)
u u(x
< — A\ < T\ ST
|¢1(x7t)| = :rthg?SXerh| B | and W}O(‘T?tﬂ = tgl?gat)ik’ Ot ’

Note that we must modify Equation 8 such that it represents the correct expansion about
(x,t + k); this can be achieved by applying the following Taylor series expansions.

2
Uz (T, 1+ k) = Upe (2, 1) + Kugge(z,t) + Eumtt(m, )+ ...
k’2
= uy(x,t) + kug(x,t) + Euttt(x, )+ ... (10)
:utt(:c,t) +kuttt(l’,t)+... (11)
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Note that in the previous equations we have applied the condition u; = u,,. Substituting
Equations 10 and 11 into Equation 8 gives the following Taylor series expansion.

2h? 2nt  k?  2h%k
DyD_u(x,t+k) =wu(z,t)+ (T + k) ug(x,t) + (F 5t > w(x,t)+ ... (12)

At this point, we can substitute Equations 9 and 12 into Equation 7 to estimate the trunca-
tion error.

k 2h?
2h2  k
- <T+§) (2, ta) + ... = O(h2 + k) (13)

Recall that the truncation error is said to be accurate of order (p,q) if 7 = O(h? 4+ k?). As
a result, the backward Euler scheme in Equation 5 is accurate of order (2,1) by
Equation 13. (QED)

Now let’s consider the Crank-Nicholson scheme (as defined by Equation 2.5.19 in [1]).

k

k n n N
(I — §D+D> UjH = ([—l— §D+D) vy, j=0,1,...,N. (14)

Rearranging terms, we obtain the following expression.

Uﬂ‘i’l _ ,Un 1 1
<2 DD ' — =D, D =0 15
L 9 + j 92 + J ( )
Assuming u is a smooth function, substitution into this expression yields the following form
for the truncation error 7;".

w1 1
n __ J J n+1 n __
Tj = T — §D+D_U,j - §D+D_Uj =0
N T(:Ej, tn) _ u(ﬂfja + ]i U(x] ) - §D+D_U(C(7j,tn + ]{;) _ §D+D_u(xj,tn) (16)

Conveniently, we have already derived all of the necessary Taylor expansions. Substituting
Equations 8, 9, and 12 into Equation 16 gives the following estimate of the truncation error.

k k2
() = {utm?tn) (o) + —uttt<x]~,tn)} _

2 3!
1 2h? 2nt  k? 2R%k
B (g, ty) + I+k uw(z5,t,) + F+E+ 1 Ut (25, t0) p —
1 2h? 4
5 {Ut(iﬁj,tn) + Zutt(il?j, tn) + Futtt(iﬁj,tn)} + ...

Simplifying, we obtain the following expression.

2h? k> 2n* Rk
T(l’j,tn) = —Tutt(:cj,tn) - (E -+ F —+ T) Uttt(ill'j,tn) = O(h2 =+ kQ) (17)

4
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In conclusion, the Crank-Nicholson scheme in Equation 14 is accurate of order
(2,2), by Equation 17. (QED)

As discussed on pages 67-69 in [1], both the backward Euler and Crank-Nicholson schemes
are unconditionally stable, with symbols given by
1 — 20 sin’

1 + 20 sin?

1

1 4 -2 ¢ and QCmnk-Nicholson ==
+ 4o sin” 3

Qbackwards Euler —

B [y [N o

for o = k/h?. In general, we would like to use time steps of the same order as the space step;
in this case, 0 = O(1/h) and Q Crank-Nichotson — —1. Correspondingly, we find that there is
very little damping for the Crank-Nicholson scheme in this situation (i.e., |Qc’mnk— Nicholson| —
1). As a result, we expect that backward Euler scheme will have better numerical stability
for all possible values of o.
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Problem 3

Consider the convection-diffusion equation given on page 70 in [1].

Ut + AUy = NUyy, —00 < x < 00,018
u(z,0) =sin(z), —oo <z < 0

Compute the discrete difference approximation at time 7' =1 given by

vt =0 + k (nDyD_ —aDg) v}, j=0,1,...,N, (18)

J

where a = n = 1. Consider discrete grids of size N = {10, 20, 40, 80, 160, 320}. Evaluate the

time step k consistent with
_ Bk <
SR

and also the time step k consistent with
ak
A= —, [N < 1.
h ) | | —_—

Graphically compare the exact solution to the numerical solutions and tabulate the Lo-errors.
Finally, estimate the order of approximation achieved for each value of the time step.

My implementation of the discrete difference approximation, as defined by Equation 18, was
completed using Matlab and is included as prob3.m. Before presenting the results of my
program, I will briefly outline the architecture of the source code. On lines 19-56 I select the
values of {N, h, k} and determine the resulting grid points {x,t}. (Note that on lines 47-49
I ensure that the last time is given by 7" = 1.) Lines 58-68 implement Equation 18. Note
that I have implemented the difference operators Dy and D, D_ with stand-alone programs
DO.m and DpDm.m, respectively. Finally, lines 70-107 create the tables and plots shown in
this write-up.

To complete our analysis we require a closed-form solution for u(z,t) at time 7" = 1
with a = n = 1. Recall (from Equation 2.6.3 in [1]) that the Fourier-space solution to the
convection-diffusion equation is given by

A(w, t) = e (ot f ) = G(w,1) = e @ fw), fora=n=1t=1.
By the superposition principle, the solution for u(x, 1) can be written as
Wt o= (iw+w?) ¢ e —w? zw(a: 1) ¢ w). 19
u(z, wz_oo f(w) m Z f(w) (19)

Note that the Fourier coefficients f(w) for f(z) = sin(x) can be obtained by inspection.

oy =) = TS =L 3
A —iy/5 ifw=1
= f(w) = i3 ifw=-1 (20)
0 otherwise
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2 2
: : : Analytic Solution : : : Analytic Solution

L5p SRRRRRARRER HEREREREER ~1 e Difference Approx. 15p EEREEREE T =1 @ Difference Approx. |
-2 i -2

0 1 2 3 4 5 6 0 1 2 3 4 5 6

Ly Ly
(a) k=hand N =10 (b) k=h?/2 and N = 10
2 2

: : : Analytic Solution : : : Analytic Solution
15 SRRRRRARRER HEREREREER ~{ _® Difference Approx. 15 e HEREREEEER +{ e Difference Approx. |1

-2 ; -2
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Ty Zj
(¢) k=hand N =20 (d) k= h?/2 and N =20
2 2
: : : Analytic Solution : : : Analytic Solution
15 RERKRRERRER HEREREERERE ~{ e Difference Approx. 15 e HEREREERERE +| e Difference Approx. |{

-2 : -2
0 1 2 3 4 5 6 0 1 2 3 4 5 6
x; Zj
(e) k=hand N =40 (f) k=h?/2 and N = 40

Figure 1: Comparison between difference approximations and the analytic solution of the
convection-diffusion equation at time 7" = 1. The left column shows the results for the time
step k = h, whereas the right column shows the results for the time step k = h?/2.
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Substituting Equation 20 into Equation 19 gives the desired analytic solution at T' = 1.

61’(27—1) _ e—i(r—l)
u(z,1) =e ! ( 5 ) = |u(x,1) =e tsin(x — 1)
1
Given the analytic solution, all that remains to be done is to select the appropriate time
steps. As required by the problem statement, we use the following two values for the time

step k.
h? Ah
k=2 and ke =2
2n a

Specifically, we choose o = A = 1 such that
2

h
]{71 = ? and k‘g = h.

The approximation results for both & = h and k = h?/2 are tabulated below. In addition,
the corresponding plots for 7' =1 are included in Figure 1.

N | Ls-error order N | La-error | order
10 0.602 NA 10 0.178 NA
20 0.366 ho-72 20 | 4.133e-2 | h*10
40 0.161 p119 40 | 1.262e-2 | AT
80 4.004e5 | h72125 80 | 2.666e-3 | h%*
160 | 7.659e35 | h—100:59 160 | 8.108e-4 | h'™
319 | 7.620e103 | h=225-88 319 | 2.131e-4 | A'93

Table 3.1: k=1 Table 3.2: k= h?/2

Note that the standard definition of the discrete L, norm was used to evaluate the total
error as

N
Ly-error(N) £ Z [u(z;, 1) — v} |*h.
=0

In addition, the following definition of order of approximation was given in class.

Lo-error(N) )

order = log,
Ly-error(2N)

In conclusion, we find that only & = h?/2 results in a stable solution for large N. As
shown in Table 3.1, when the number of points N > 80, the numerical solution with time
step K = h is unstable. Alternatively, we find the the numerical solution with time step
k = h?/2 is accurate to second-order for all values of N considered in this test. As a result,
we can conclude that the discrete difference approximation in Equation 18 is stable for
k = h?/2. Note that, despite the fact that Equation 18 can achieve stability, the scheme
remains undesirable as it requires too many time steps to compute a robust estimate in
practical situations.
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Problem 4

What explicit method could be used for the Schrodinger type equation

Uy = zum7

Derive the stability condition.

From an examination of a variety of schemes, we found that the backwards Euler method
was both simple and unconditionally stable for the Schrodinger type equation u; = tu,,. To
begin our analysis, recall (from Equation 2.5.17 in [1]) that the backwards Euler scheme for
the heat equation u; = u,, is given by

(I —kDyD_)oi*' =7, j=0,1,...,N.

J

By inspection, we can modify this expression to model the Schrodinger type equation u; =
Uy, such that

(I —ikD.D_)ui*' =7, j=0,1,...,N. (21)
Rearranging terms in this expression gives the following form for the approximation scheme.
n+1 n
[ — "
~——L = iD.D_vI"!

k

Clearly, the first term in this expression approximates u; using the backward difference in
time. Similarly, the second term approximates iu,, using the “natural” centered difference
operator D, D_ applied to UJT-LH and scaled by i. As a result, we verify that Equation 21
represents a valid backward Euler approximation for the Schrédinger type equation.

In order to analyze the stability of the proposed scheme, we make the typical ansatz

V! = ——= I (W),

J V2T

where the solution is composed of a single Fourier component. Substituting this expression
into Equation 21, we obtain the following result.

@n—l—l(w)(eiwxj _ Z'kD+D_€iwxj) — @n(w)

Recall (from Equations 2.7.7 and 2.7.8 in [1]) the following expression holds for £ = wh.

D, D_e™" = <_ﬁ sin’ g) et (22)

Substituting this identity into the previous equation gives the following solution for the
symbol @ (with o = k/h?).

1

" w) = 0"w), Q0= — 23
W)= Q). @ 1 + ido sin? (23)

[Nl

Recall from Problem 1 that we consider a method stable if

sup |Q"| < K(T),

0<tn <T\w,k,h
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as h,k — 0. As was done in previously, we can choose o, k, and h such that
QI <1=|QP <L

Substituting the expression for the symbol Q from Equation 23, we derive the following

inequalities.

2 2

> 1

1
1+ idosin® §

QFF =

<1l = ’1+i4asin2g

Following the method presented on page 45 in [1], we can rewrite this expression as follows.

2 2
:1+(4asin2—) >1 = 1602sin4gZO

. 9&
1+ idosin? 2
' + 140 sin 5 5

Simplifying this expression gives the following constraint on o = k/h?.
>0

Since this expression holds of all A, then we can conclude that the proposed backward Euler
scheme in Equation 21 is unconditionally stable.

10
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Problem 5

Define the Crank-Nicholson approximation for the Korteweg de Vries type equation

Ut = Ugpe + AUy

Prove unconditional stability.

Recall (from Equation 2.3.3 in [1]) that the Crank-Nicholson scheme for u; = u, is given by

k k :
(I—gDo) 'UJT»L—H: ([—FgDo) U;L, jZO,l,...,N. (24)

Similarly, recall (from Equation 2.5.19 in [1]) that the Crank-Nicholson scheme for u; =
is given by

k " k .
(I — §D+D) ij = ([—l— §D+D) vy, j=0,1,...,N. (25)

Finally, note that (according to Equation 2.7.7 in [1]) the most natural centered difference
approximation to the third partial derivative is given by

83

05 Q3 = Do(D1D-). (26)
Combining Equations 24, 25, and 26, it is apparent that the corresponding Crank-Nicholson
scheme for u; = Uy, + au, is given by

k k
(1 -3 (aDy + D0D+D_)) ot = (1 +5 (aDg + D0D+D_)) o, j=0,1,...,N.| (27)

In order to analyze the stability condition for this scheme, we made the typical ansatz

1 )
v = — e (W),

J V2T

where the solution is composed of a single Fourier component. Substituting this expression
into Equation 27, we obtain the following result.

L , k ;
(W) (1 -3 (aDy + D0D+D)> et =" (w) <1 + 5 (aDo + D0D+D)) et (28)

Recall (from Equations 1.2.3 and 2.7.8 in [1]) the following expressions hold for £ = wh.

l

Dye®i = 7 sin(&)e™" (29)
DyD,D_e*% = %sin(ﬁ) <_ﬁ sin? g) e (30)

11
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Substituting Equations 29 and 30 into Equation 28 and canceling the common terms in %
gives the following expression in A = k/h.

() {1 i @) sin(¢) — 2iAsin(6) (Sm’;@) } )
B

Simplifying this expression gives a closed-form solution for the symbol Q.

1—7))\( sin & — h2smfsm E)
1—1—2’)\(551115 h251n581n25)

W) = Qin(w), Q= (31)

Recall from Problem 1 that we consider a method stable if

sup |Q"| < K(T),

0<tn<T'\w,k,h

as h,k — 0. As was done in previously, we can choose o, k, and h such that

Q] < 1.

Substituting the expression for the symbol Q from Equation 31, we derive the following
equation.

~

I —iA(5siné — 55 2 sin € sin? &
Qf = (5 )

1+z)\( sin & — h2 sin & sin® %)

<1

Recall that, for complex numbers z; and z, the modulus satisfies: |27 + 22| < |21] + |22],
|z122] = |21]|22|, and |z1/22] = |z1]/]22|. Applying these identities to the previous expression,
we derive the following result.

2 2
‘1—1)\ (—sm{— e sin & sin® g)‘ ‘1+@)\ (—sm{— 2 sin & sin® g)‘

Simplifying further, we obtain the following expressions.
2 2
\1]+])\|’<—Sln§— sin € sin® 5)‘ <|1|+|)\|‘(—sm§— sin ¢ sin® g)‘
= [A[ <[

Since this expression holds of all A\, then we can conclude that the Crank-Nicholson scheme
in Equation 27 is unconditionally stable. (QED)

12
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Problem 6

Derive the stability condition for the Euler approximation to u; = Uy, + Uzyz, + Uzszs-
Prove the DuFort-Frankel method is unconditionally stable for the same equation.

Recall (from Equation 2.5.6 in [1]) that the Euler approximation to the one-dimensional heat
equation u; = u,, is given by

vl = (I +kDyD_)v}, j=0,1,...,N. (32)

Following the approach outlined in §2.8 in [1], we can extend this equation to three space
dimensions as follows.

U;H_l ([+k<D+x1Dfx1 +D+x2Df:r2 +D+13D713))U;’L7 ] :0,1,...,N. (33)

Recall (from Equation 2.5.8 in [1]) that the transformed difference scheme in Equation 32 is
given by
" w) = Qi"w), Q=1—4o st 5

where £ = wh and 0 = k/h%. Once again, we can extend this expression to represent the
equivalent tranformed difference scheme in Equation 33 such that

) = Q). Q=10 (st St & &), 39

Recall from Problems 1 and 5 that we consider a method stable if

sup Q"] < K(T),

0<tn<Tw,k,h

as h,k — 0. As was done several times previously, we can choose o, k, and h such that

Q| < 1.

Substituting the expression for the symbol Q from Equation 34, we derive the following

equation.
Q| = ‘1 — 4o (sinz% —i—sinQ% + sin? %)‘ <1

:>—1§1—4a(sm %+sm 524— 2523)

Simplifying this expression gives the following result.
0< 20( 25 + sin? 2= 52 + sin? 53)

Note that (sin2 %1 + sin? %2 + sin? %3) < 3; substituting this upper bound in the previous
expression yields the stability criterion for the Euler approximation given by Equation 33.

o<

=

13
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We now turn our attention to proving that the DuFort-Frankel method is unconditionally
stable for u; = Uy, + Upyzy + Usgzs. Recall (from Equation 2.5.12 in [1]) that the DuFort-
Frankel approximation to the one-dimensional heat equation u; = u,, is given by

ntl

Yj

=200y — o =0l 4 )+l =01, N, (35)

for o = k/h?. Note that we can rewrite the previous expression as follows.

20 1— 20
n+l n n n—1
R (1 +20) (0Fr i) (1 +za) K

As done on page 66 in [1], we can make the ansatz 0"(w) = 2" to obtain the following
characteristic equation with z € C and £ = wh.

40 1—20
<= (1+20) (cost)z = (1+20> =0

Applying the quadratic formula, we obtain the following two solutions for z given by

20 1
2= (1 +20> (cos€) £ (1 +20> z

where A = 40%cos? € + 1 — 462, As shown on page 66 in [1] we can prove that |z12] <1 as
follows. First, if A >0, then A <1 and

20 1
< + —1
1420 1420
Similarly, if A < 0, then we have
9 402 — 1 20—1
C (1+420)2 20+1

|21 2 = |zl <1

|2172 <1 = |ZLQ| < 1.

Combining these two expressions we have the desired unconditional result: |21 2| < 1. Since
our ansatz was 0" (w) = 2", then we must have [0"(w)| = |2]4| = 212" < 1. In other words,
the solution is bounded, so the DuFort-Frankel scheme in Equation 35 is unconditionally
stable. In three spatial dimensions, the derivation proceeds in an identical manner. Following
the notion on page 77 in [1], we have

vy =v(xj,t,), for ; = (jih, j2h, jsh) and t,, = nk.

By inspection, the previous characteristic equation will be modified as follows

4 1-2
22— (1 +020) (cos&y + cos&y + cosés)z — (1 n QZ> =0

Note that the form of the characteristic equation is unchanged, therefore the DuFort-Frankel
approximation to Uy = Uy, 4y + Uszyey + Uszses Will also be unconditionally stable. (QED)

References

[1] Bertil Gustafsson, Heinz-Otto Kreiss, and Joseph Oliger. Time Dependent Problems and
Difference Methods. John Wiley & Sons, 1995.
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function prob3

% AM 255, Problem Set 4, Problem 3

% Solves the convection-diffusion equation I1VP using
% a difference approximation. Results are displayed
% graphically and tabulated for the write-up.

%

% Input:

% None

%

% Output:

% Tables/plots required for the write-up.

%

% Douglas Lanman, Brown University, Oct. 2006

% Reset Matlab command window.
clc;

96%%%%%%6%6%6%%%%% % %6%6%6%% %% % % %6%%6%%% %% %%6%6%%% % % % 6%6%6%%% % % % %%%%%
% Part 1: Specify discrete grid parameters.

% Specify the initial condition and analytic solution at t=1.
IC = @(x) sin(x);
AS = Q(x) sin(x-1)/exp(l);

% Set the convection-diffusion parameters.
a = 1;

nu ;
alpha =
lambda =

’

B oe e e

’

% Define space/time grid interval(s) for evaluation.
N = [10 20 40 80 160 320]; % #gridpoints s.t. N+2 on [0,2*pi]
h = 2*pi./(N+1); % resulting space steps

% Select time step.
k = (lambda*h)/a;
%k = (alpha*h.”2)./(2*nu);

% Set discrete positions/time-steps for evaluation.
% Note: All time steps will be equal, except the

% last; it will be adjusted so that the final
% time will be exactly 1.
for i = 1:length(N)

x{i} = h(1)*[0:N(1)];

t{i} = [0:k(1):1];
if t{i}(end) ~= 1
t{i} (end+1l) = 1;
end
end
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51
52 % Initialize the numerical solution(s).
53 for i = 1:length(N)

54 v{i} = zeros(length(t{i}),N(i)+1);

55 v{i}(1,:) = IC(x{i}); % boundary values
56 end

57

58  %%%%%%%%%%%%%%%6%%6%%%% % %%6%6%6%% %% % %%6%6%%% %% % % %%6%% %% % % % %%6%%%

59 % Part 11: Solve 1VP using difference approximation.

60

61 % Update solution sequentially (beginning with 1.C.).

62 % Note: DO.m and DpDm.m implement the difference operators.
63 for i = 1:length(N)

64 for n = 1:(length(t{i})-1)

65 v{i}(n+1,:) = v{i}(n,:) + ...

66 k(i)* (nu*DpDm(v{i} (n,:),h(i)) - a*DO(v{i}(n,:),h(i)));
67 end

68 end

69

70 %%%%%%%%%%6%%%%6%%%%6%%% %%%% %% %% %%%% %%%% % %6%% % %6%% % %% %% %% %% %
71 % Part 111: Plot/tabulate modeling results.

72

73 % Evaluate the analytic solution.

74 xe = linspace(0,2*pi,1000);

75 fe AS (xe) ;

76

77 % Determine the L2-error and the approximation order.
78 for i1 = 1:length(N)

79 L2 error (i) = sqgrt(sum((abs(AS(x{i})-v{i}(end,:)).”2)*h(i)));
80 ifi>1

81 order (i) = log2 (L2 error(i-1)/L2 error(i));

82 end

83 end

84

85 % Tabulate results.

86 disp(® N L2-error order”) ;

87 disp("-——------"-"""" ")

88 for i = 1l:length(N)

89 ifi>1

90 fprintf("%3d %.59 %+2.2f\n",N(i),L2 error(i),order(i));
91 else

92 fprintf("%3d %.59\n",N(i),L2 error(i));

93 end

94 end

95

96 % Compare approximation to exact solution.

97 figure(l); clf;

98 plot(xe,fe,"r-", "LineWidth®, 3);

99 hold on;

100 plot(x{1},v{1}(end,:),".", "MarkerSize~", 20) ;
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101 hold off;

102 set(gca, "LineWidth",2, "FontSize",14,"FontWeight®", "normal ") ;
103 xlabel ("$x_j$", "FontName®,"Times", ...

104 "Interpreter®, “Latex”, "FontSize", 16) ;

105 %title('Difference Approximation vs. Analytic Solution');
106 grid on; axis ([0 2*pi -2 2]);

107 legend("Analytic Solution®, "Difference Approx.~");
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function b = DO(a,h)

% DO Central difference operator.
% DO(A,H) evaluates the central difference of the
array A with grid-spacing H, as defined in:

% "Time Dependent Problems and Difference Methods™,
% B. Gustafsson, H.-0O. Kreiss, and J. Oliger, 1995.

O© 0O ~NOULA WNEPR
=

=
o

% Douglas Lanman, Brown University, Sept. 2006

ol
N

% Determine the length of the input array.

13 N = length(a);

14

15 % Shift array indices (modulo the array length).
16 £ = mod([1:N]-2,N)+1; % shift Forward

17 bj = mod([1:N],N)+1; % shift backward

18

19 % Evaluate the central difference.

N
o

b = (a(bj)-a(fj))/(2*h);
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PO OO~NOUONMWNERO

function b = DpDm(a,h)

% DpDm Sequential backward/forward difference operator.

% DpDm(A,H) evaluates the sequential backward/forward
% difference of the array A with grid-spacing H, as

% defined in:

%

% “"Time Dependent Problems and Difference Methods™,

% B. Gustafsson, H.-0O. Kreiss, and J. Oliger, 1995.
% Douglas Lanman, Brown University, Oct. 2006

% Determine the length of the input array.
N = length(a);

% Shift array indices (modulo the array length).
fj = mod([1:N]-2,N)+1; % shift Forward
bj = mod ([1:N],N)+1; % shift backward

% Evaluate the sequential backward/forward difference.
b = (a(bj)-2*a+a(fj))/ (h"2);
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