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Problem 1

Consider the partial differential equation
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Derive the condition for well-posedness. Is the problem always well posed if Re(ay) < 07

We begin our analysis by rewriting Equation 1 for ¢ > ¢, as
U (2,1) = AqUppes (T, 1) + a3Upes (T, 1) + QoUgy (2, 1) + aquy(z,t) + agu(x, t), (2)

with 27-periodic initial data
u(zto) = f(x).

As done in previous problem sets, we proceed by assuming f(z) is composed of a single wave

1 W £
flz) = N f(w).

As a result, we have the following simple wave solution

u(z,t) = e“ri(w, t),  a(w,0) = f(w). (3)
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Equation 3 leads to the following solutions for the partial derivatives of u(x,t).

w(z,t) = ei””ﬁt(u),t) (4)
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Substituting Equations 3 through 6 into Equation 2 gives the following expression.
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N el (w,t) = E e (a4w —iw’az — asw” + itway + ao) t(w,t)
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Canceling the common terms in Wor e gives the following ordinary differential equation

Uy (w,t) = ki(w,t), kK= aw* —iwdas — agw?® + iwa; + ag, (7)
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with the the general solution given by

A~

(w,t) = e™ f(w). (8)

The Ly norm of the general solution u(z,t) can be written in the following form.
luC )12 = e f ()P = [P | (@)P = e £
= Jlu, )] = e £ (9)

Note that, in the proceeding equation, the following identities were applied: |e"|* = e2Relr)t

and |[f(w)[>2 = ||f(-)||>. The first expression naturally follows from the properties of the
modulus of a complex exponential. The second identity corresponds to Parseval’s relation.

At this point, we recall Definition 4.1.1. from page 110 in [1]. To briefly summarize, the
general system of partial differential equations

0
ut:P(x,t,%) u, t>ty,

with initial data
u(z,to) = f(),

will be well posed if, for every ¢y and every f € C°°(x): 1. there exists a unique solution
u(z,t) € C®(x,t), which is 2r-periodic in every space dimension and 2. there are constants
a and K, independent of f and ¢y, such that

lu(-, )] < Ke O f()]. (10)

Comparing Equation 9 to Equation 10, it is apparent that Definition 4.1.1. will only hold
for K <1 and

Re(k) < a, k= aw' —iw’as — aw® + iway + ap, (11)

where « is a real constant. As a result, Equation 11 expresses the necessary condition for
Equation 1 to be well posed. To complete our proof we must show that Equation 10 holds
for any initial data

u(@,0) = f(x me

Assuming Equation 11 holds, the general solution exists and is given by the following ex-
pression.
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Applying Parseval’s relation we find that the Ly norm satisfies the following inequality.

-, 1)]* = Z R fw)? < O

W=—00

In conclusion, Equation 10 holds for any initial data u(z,0) if and only if the condition in
Equation 11 is satisfied.
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To complete our analysis we observe that the problem is always well posed if
Re(ay) < 0. This can be shown by examining the behavior of Equation 11 for a, = Re(a4) <
0. In this situation we have

Re(k) = Re(agw* — iwas — apw? + iwa; + ag)
< agw? + |agl|w?| + Jaz|w® + |a1[[w] + |aol
= —‘CLT’(,U4 + |(13HW|3 + |a2\w2 + |CL1||CL)| + |CLO|.
In the limit of large omega the highest order term —|a,|w? dominates and, because the
coefficient of this term is negative, we can always satisfy the well-posedness condition given

by Equation 11 such that
limy,_+0Re(k) < a.

In addition, for any finite w, we can always choose a value of o such that Re(k) < . In
conclusion, we find that the problem is always well-posed if Re(ay) < 0.
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