AM 255: Problem Set 6

Douglas Lanman
5 December 2006

Problem 1

Consider the following initial value problem.

Up = —Ugges, — 00 < T <00,0< 1 (1)
u(z,0) = f(z) =sin(z), —oco <z <00

Find the analytic solution and implement the Crank-Nicholson approximation for Equa-

tion 1. Evaluate the numerical solution at time 7" = 27 with discrete grids of size N =

{20, 40, 80, 160,320} and k& = h. Graphically compare the exact solution to the numerical

solution and tabulate the Lo-errors. Finally, estimate the order of approximation achieved.

Let’s begin by deriving a closed-form solution for Equation 1. Following the derivation on
pages 38 and 39 of [1] we assume a solution of the following form.

u(z,t) = e ii(w, t) (2)

1
V2T
Substituting Equation 2 into Equation 1 yields the following ordinary differential equation

y(w,t) = —wti(w, t), a(w,0) = f(w),

which has the general solution

iw,t) = e flw) = ult) = \/ﬂ Z et f(w). (3)

W=—00

At this point, we require the Fourier series for the initial condition. As was found in Problem
3 of Problem Set 4, the Fourier coefficients f(w) can be obtained by inspection.

f(x) =sin(x) = ¢ _2; \/_W_X_:OO Zwcf
—iy/5 fw=1
= flw) =4 i/Z ifw=-1 (4)

0 otherwise

u(z,t) =€’ (%) = |u(z,t) = e "sin(x)
i

Now we turn our attention to deriving the Crank-Nicholson approximation to Equation 1.
Recall (from Equation 2.3.3 in [1]) that the Crank-Nicholson scheme for u; = u, is given by

k k
(I—§D) ntl — (I+§Do)vy,j:o,1,...,N. (5)

1

AM 255 Problem Set 6 Douglas Lanman

Similarly, recall (from Equation 2.5.19 in [1]) that the Crank-Nicholson scheme for u; =
is given by

k " k N
(I— §D+D_) ij = (I—i— §D+D_) vy, j=0,1,...,N. (6)

Finally, note that (according to Equation 2.7.7 in [1]) the most natural centered difference
approximation to the fourth partial derivative is given by

84
Ot

Combining Equations 5, 6, and 7, it is apparent that the corresponding Crank-Nicholson
scheme for u; = —ugp.. 1S given by

—~ Q= (D,D_)*=D,D_D,D_. (7)

k k

My implementation of the discrete difference approximation, as defined by Equation 8,
was completed using Matlab and is included as CrankNicholson.m. Before presenting the
results of my program, I will briefly outline the architecture of the source code. On lines
11-51 I select the values of {N,h, k} and determine the resulting grid points {x,t}. (Note
that on lines 41-43 I ensure that the last time is given by 7" = 27.) Lines 53-83 implement
Equation 8. Note that I directly solve for the amplification factor () on lines 65-67 using the
difference operators D, and D_ evaluated on lines 61 and 62. Finally, lines 85-123 create
the tables and plots shown in this write-up.

Recall from class on 11/20/06 that we expect the Crank-Nicholson scheme in Equation 8
to be second-order in both space in time. As tabulated below, the approximation results for
k = h (i.e., equal space and time step sizes) confirm this expectation.

N | La-error | order
10 | 6.593e-4 | NA

20 | 1.617e-4 | 2.03

40 | 4.115e-5 | 1.97
80 | 1.046e-5 | 1.98
160 | 2.641e-6 | 1.99
320 | 6.642e-7 | 1.99

Note that the standard definition of the discrete Lo-norm was used to evaluate the total
erTor as

N
Lo-error(N) £ Z [u(a;, tv) — v7|2h.
5=0
In addition, the following definition of order of approximation was given in class.

Lo-error(2N)

AM 255

Problem Set 6

x107°

: : | === Analytic Solution
15k oo TN ~1 e Difference Approx.

X 10~

: : Analytic Solution
15F o TN ~{ e Difference Approx.

x 10

: = Analytic Solution
15F oy fron PN - = = =Difference Approx.

(e) N =160

Figure 1: Comparison between the Crank-Nicholson difference approximation and the ana-

-3

x 10

: = Analytic Solution
15k e PN =1 @ Difference Approx. |

x 10

: : Analytic Solution
Sk AR B YRR =1 @ Difference Approx. |

0 1 2 3 4 5 6
T
(d) N =80
-3
2x 10

: = Analytic Solution
15F ey e TN - = = =Difference Approx. |

(f) N =320

lytic solution of Equation 1 at time T = 27, for N = {10, 20, 40, 80, 160,320} and k = h.

Douglas Lanman

AM 255 Problem Set 6 Douglas Lanman

Problem 2

Consider the following two-dimensional initial value problem.
Up = —Uggpe — Uyyyy, — 00 < T,y <00,0< 1

(9)

Find the analytic solution and implement the Crank-Nicholson approximation for Equa-
tion 9. Evaluate the numerical solution at time 7" = 27 with discrete grids of size N =
{20, 40, 80, 160,320} and k& = h. Graphically compare the exact solution to the numerical
solution and tabulate the Lo-errors. Finally, estimate the order of approximation achieved.

u(z,y,0) = f(z,y) =sin(z +y), —oo<z,y <0

Let’s begin by making the change of variables such that z £ 2 +y. Furthermore, let’s assume
that the solution has the separable form u(z,t) = Z(2)T(t), where Z(z) is a function of a
single variable z = x + y and T'(¢) is a function of time. Under this change of variables,
Equation 9 is transformed as follows.

Uy = _2uzzzza U(Z, 0) = f(Z) = Sin(Z)

Note that this expression has a similar form as Equation 1 — only differing by the constant
multiplier on the right-hand side. As a result, the Fourier transform is given by

y(w, t) = —2wi(w, t), a(w,0) = f(w),

which has the general solution

[e.9]

Z eiwz6—2w4tf(w>‘

wW=—00

t(w,t) = 6_2“’4tf(u)) = u(z,t)=

5l
3

Substituting Equation 4 into this expression gives the analytic solution for Equation 9.

U(Z, t) = e (l) = U(l‘, Y, t) = Sin(I + y)

Now we turn our attention to deriving a second-order approximation scheme for Equa-
tion 9. First, note that the full Crank-Nicholson scheme is given by

k

(I + g ((D42D_p)* + (D+yDy)2)> " = (I -3 ((D42D_p)* + (D+yDy)2)> "

Rather than directly implementing this scheme, we will use the Stang-splitting technique to
reduce the computation complexity. As described on pages 195-200 in [1], Strang-splitting
can be used to implement general one step methods for u; = (P + P3)u, where P; and P, are
linear differential operators in space. If we let ()1 and () denote the amplification factors
for each component, then v"*! = Q;v" is an approximation of v; = Pjv, and w" ™! = Qouw™
is an approximation of wy = Pw. For this problem, P, = —0/0434, and Py = —0/0yyy,-
Using the one-dimensional Crank-Nicholson scheme, ()7 and ()2 have the following forms.

Q) = (145 (DD R (1-§0up.0ap) (o
Qs(k) = <I + g (Dﬂ,DyDﬂ,Dy)) B (1 - g (Dﬂ,DyDﬂ,Dy)) (11)

AM 255 Problem Set 6 Douglas Lanman

Substituting Equations 10 and 11 into Equation 5.4.12 in [1] provides the following second-
order splitting scheme for Equation 9.

o= (Etes) @bt () w

My implementation of the second-order Stang-splitting scheme, as defined by Equation
12, was completed using Matlab and is included as StrangSplitting.m. Before presenting
the results of my program, I will briefly outline the architecture of the source code. On lines
11-54 I select the values of {NV, h, k} and determine the resulting grid points {z,y,t}. (Note
that on lines 44-46 I ensure that the last time is given by 7" = 27.) Lines 56-95 implement
Equation 12. Note that I directly solve for the amplification factors (; and ()5 on lines 67-75
using the difference operators D, and D_ evaluated on lines 64 and 65. Finally, lines 97-147
create the tables and plots shown in this write-up.

Recall from class on 11/20/06 that we expect the Strang-splitting scheme in Equation 12
to be second-order in both space in time. As tabulated below, the approximation results for
k = h (i.e., equal space and time step sizes) confirm this expectation.

N | Lo-error | order
10 | 9.506e-6 | NA

20 | 2.144e-6 | 2.15

40 | 5.337e-7 | 2.01

80 | 1.349e-7 | 1.98

160 | 3.402e-8 | 1.99
320 | 8.551e-9 | 1.99

Note that the discrete Lo-norm was used to evaluate the total error as

N N
Ly-error(N) £ Z Z [u(zy, yr, t") — vj, [2h2.
As in Problem 1, the following definition of order of approximation was used in this analysis.

Lo- N
order £ log, (ﬂ)

Lo-error(2N)

References

[1] Bertil Gustafsson, Heinz-Otto Kreiss, and Joseph Oliger. Time Dependent Problems and
Difference Methods. John Wiley & Sons, 1995.

AM 255 Problem Set 6 Douglas Lanman

(e) N =320 (f) exact solution

Figure 2: Comparison between the Strang-splitting difference approximation and the analytic
solution of Equation 9 at time T = 27, for N = {20, 40, 80, 160, 320} and k = h.

CrankNicholson.m
E:\Work\AM 255\Problem Set 9

Page 1
December 4, 2006

©oOo~NOOP~WNLER

OBDDNADMDADNDIDDNADNDOWWWWWWWWWWNNNNNNNNNNRRPRRPRPRERLPRPR
OCOLOINODIRNWMNNROOONNOONRERONPRPOOO~NOUNRNNRPOOONOUTANWNERO
[y
|

% AM 255, Problem Set 6, Problem 1

% Solves u_t = -u_xxxx IVP using the Crank-Nicholson
% scheme. Results are displayed graphically and
% tabulated for inclusion in the write-up.

%
% Douglas Lanman, Brown University, Dec. 2006

% Reset Matlab environment and command window.
clear all; clc;

96%6%%%%%6%6%6%6%%%% % %6%6%6%6%%% % % %6%%6%%% % % %%6%6%%% % % % %%6%6%%% % % % %%%%%
% Part 1: Specify discrete grid parameters.

% Define the initial condition.
IC = @(x) sin(x);

% Define the exact solution.
ES = @(x,t) exp(-t)*sin(x);

% Define space grid interval(s) for evaluation.
[10 20 40 80 160 320]; % #gridpoints s.t. N+2 on [0,2*pi]
= 2*pi./ (N+1); % resulting space steps

=
|

% Select the final time for evaluation.
% Note: Initial time is assumed to be zero.
tf = 2*pi;

% Select time step.
% Note: This scheme is unconditionally stable.
k = h;

% Set discrete positions/time-steps for evaluation.
% Note: All time steps will be equal, except the

% last; it will be adjusted so that the final
% time will be exactly "tf-".
x = cell(l,length(N));

o+
Il

cell (1,length(N));
for i = 1:length(N)

x{i} = h(1)*(0:N(1));
t{i} = (0:k(i):tf);
if t{i}(end) ~= tf
t{i} (end+1l) = tf;
end
end
% Initialize the numerical solution(s).

v = cell(l,length(N));
for 1 = 1:length(N)
v{i} = zeros(length(t{i}),N(i)+1);
v{i} (1,:) = IC(x{i}); % boundary values

CrankNicholson.m
E:\Work\AM 255\Problem Set 9

Page 2
December 4, 2006

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

end

%6%%%%%%%6%%%%%% % %%%%% %% % % %%%%%% %% % %6%%% %% % % %%6%% %% % % % % %% %%
% Part 11: Solve the IVP using Crank-Nicholson scheme.

% Update solution sequentially (beginning with 1.C.).
for 1 = 1:length(N)

% Store forward/backward difference operators.
I eye (N(i)+1);

Dp = (1/h(i))*(circshift(I, [0 1])-1I);

Dm (1/h(i))*(I-circshift (I, [0 -11));

% Evaluate amplification factor.

A =1+ (k(i)/2)* (Dp*Dm*Dp*Dm) ;
B=1I- (k(i)/2)* (Dp*Dm*Dp*Dm) ;
Q = B/A;

% Calculate Crank-Nicholson solution.
% Note: Modify amplication factor for the last time step.
for n = 1:(length(t{i})-1)

if n ~—= (length(t{i})-1)

v{i}(n+l,:) = (Q*v{i}(n,:)")"';
else

kf = diff(t{i} (end-1l:end));

A =1 + (kf/2)* (Dp*Dm*Dp*Dm) ;

B =1 - (kf/2)* (Dp*Dm*Dp*Dm) ;

Q = B/A;

v{i}(n+l,:) = (Q*v{i}(n,:)")"';
end

end
end % End of Crank-Nicholson solution.

96%6%%%%%6%6%6%6%%%% % %6%6%%6%%% % % %6%%6%%% % % %%6%%6%% % % % %%6%%%% % % % % %% %%
% Part 111: Plot/tabulate modeling results.

% Evaluate the exact solution.
xe = linspace (0,2*pi,1000);
fe ES (xe,tf);

% Determine the L2-error and the approximation order.

L2 error = zeros(l,length(N));
order = zeros (1l,length(N));
for 1 = 1:length(N)

L2 error (i) = sqgrt(sum((abs(ES(x{i},t{i} (end))-v{i} (end,:
ifi>1
order (i) = log2(L2_error(i—l)/L2_error(i));
end
end

.72)*h(1)))

CrankNicholson.m Page 3

E:\Work\AM 255\Problem Set 9 December 4, 2006
101

102 % Tabulate results.

103 disp(" N L2-error order”®) ;

104 disp("-—-———————— ")

105 for i = 1:length(N)

106 ifi>1

107 fprintf("%3d %.59 %+2.2f\n",N(i),L2 error(i),order(i));
108 else

109 fprintf("%3d %.50\n",N(i),L2 error(i));

110 end

111 end

112

113 % Compare approximation to exact solution.

114 figure(l); clf;

115 plot(xe,fe,"r-","LineWidth", 3) ;

116 hold on;

117 plot(x{3},v{3}(end,:),".", "MarkerSize",20, "LineWidth", 3) ;
118 hold off;

119 set(gca, "LineWidth",2, "FontSize",14, "FontWeight", "normal ") ;
120 xlabel ("x", "FontName®,"Times", "Interpreter®, "Latex", "FontSize",16) ;
121 %title('Difference Approximation vs. Analytic Solution');
122 grid on; x1im ([0 2*pi]); ylim(2e-3*[-1 1]);

123 legend("Analytic Solution”, "Difference Approx.-);

StrangSplitting.m

E:\Work\AM 255\Problem Set 9

Page 1

December 4, 2006

©oOo~NOOP~WNLER

DAADANADNADNRADNOWWWWWWWWWWWRNNNNNNNNNNRRRRPRERRRRRR
CONOIROMNPROOXNVNODITIRAINPOODNOUIRWNPOO®ONODUNWNERO
=

50

% AM 255, Problem Set 6, Problem 2

% Solves u_t = -u_xxxx-u_yyyy IVP using Strang Splitting
% and the Crank-Nicholson scheme. Results are displayed
% graphically and tabulated for the write-up.

%

% Douglas Lanman, Brown University, Dec. 2006

% Reset Matlab environment and command window.
clear all; clc;

96%6%%%%%%6%6%%6%%% % % %6%6%6%% %% % %%6%6%6%% %% % % %6%6%6%% %% % % %6%6%6%6% % % % % %6%6%6%6% % % % % %%6%% %% % % % %%6%%%
% Part 1: Specify discrete grid parameters.

% Define the initial condition.
IC = @(x,y) sin(x+y);

% Define the exact solution.
ES = @(x,y,t) exp(-2*t) *sin (xty);

o Define space grid interval(s) for evaluation.

% Note: Use equal number of points along x and y axes.

N = [10 20 40 80 160 320]; % #gridpoints s.t. N+2 on [0,2*pi]
h = 2*pi./ (N+1); % resulting space steps

% Select the final time for evaluation.
% Note: Initial time is assumed to be zero.
tf = 2*pi;

% Select time step.
% Note: This scheme is unconditionally stable.
k = h;

% Set discrete positions/time-steps for evaluation.
% Note: All time steps will be equal, except the

% last; it will be adjusted so that the final
% time will be exactly "tf-".
x = cell(l,length(N));

(N

y = cell(l,length(N));
t = cell(l,length(N));
for i = 1:length(N)

x{i} = repmat(h(i)*(0:N(i)),N(i)+1,1);
y{i} = repmat (h(i)*(0:N(i))"',1,N(1)+1);
t{i} = (0:k(1):tf);
if t{i}(end) ~= tf
t{i} (end+1l) = tf;
end
end
% Initialize the numerical solution(s).

v = cell(l,length(N));

StrangSplitting.m Page 2

E:\Work\AM 255\Problem Set 9 December 4, 2006
51 for i1 = 1l:length(N)
52 v{i} = zeros(N(i)+1,N(i)+1,length(t{i}));
53 v{i}(:,:,1) = IC(x{i},y{i}); % boundary values
54 end
55
56 %%%%%%%%%%6%%%%6%%%%6%%%%6%%% %6%%% %6%%% %6%%% %6%6%% %6%6%% %6%6% % Y6%6% % Y6%6% % %6%6%% % %% % % %% % % %% %% %
57 % Part 11: Solve 1VP using Strang Splitting with Crank-Nicholson scheme.
58
59 % Update solution sequentially (beginning with 1.C.).
60 for i = 1:length(N)
61
62 % Store forward/backward difference operators.
63 I = eye(N(i)+1);
64 Dp = (1/h(i))*(circshift (I, [0 1])-1I);
65 Dm = (1/h(i))*(I-circshift (I, [0 -11));
66
67 % Evaluate amplification factors (for a full step).
68 Af = I + (k(i)/2)* (Dp*Dm*Dp*Dm) ;
69 Bf = I - (k(i)/2)* (Dp*Dm*Dp*Dm) ;
70 Qf = Bf/Af;
71
72 % Evaluate amplification factors (for a half step).
73 Ah = I + (k(i)/4)* (Dp*Dm*Dp*Dm) ;
74 Bh = I - (k(i)/4)* (Dp*Dm*Dp*Dm) ;
75 Oh = Bh/Ah;
76
77 % Calculate (second-order accurate) splitting solution.
78 % Note: Use the 1D Crank-Nicholson amplification factors.
79 % Modify amplication factors for the last time step.
80 for n = 1:(length(t{i})-1)
81 if n ~—= (length(t{i})-1)
82 v{i} (:,:,n+l) = (Qh* (Qf* (Qh*v{i} (:,:,n) ") ") ") ";
83 else
84 kf = diff(t{i} (end-1l:end));
85 Af = I + (kf/2)* (Dp*Dm*Dp*Dm) ;
86 Bf = I - (kf/2)*(Dp*Dm*Dp*Dm) ;
87 Qf = Bf/Af;
88 Ah = I + (kf/4)* (Dp*Dm*Dp*Dm) ;
89 Bh = I - (k£f/4)* (Dp*Dm*Dp*Dm) ;
90 Qh = Bh/Ah;
91 v{i} (:,:,n+l) = (Qh* (Qf* (Qh*v{i} (:,:,n) ") ") ") ";
92 end
93 end
94
95 end % End of Strang Splitting solution.
96
97 %%%%%%6%%%6%6%%%%6%%%%6%%%%6%%% %% %% %%%% %%%% %6%6% % %6%6% % %6%6% % %6%6% % Y6%6% % Y6%6%% % %% % % %% % % %% %% %
98 % Part 111: Plot/tabulate modeling results.

99
100

% Evaluate the exact solution.

StrangSplitting.m

Page 3

E:\Work\AM 255\Problem Set 9 December 4, 2006

101 xe = repmat (linspace(0,2*pi,1000),1000,1);

102 ye = repmat (linspace (0,2*pi,1000)"',1,1000);
103 fe = ES(xe,ye, tf);
104

105 % Determine the L2-error and the approximation order (in space and time).
106 L2 error = zeros(l,length(N));

107 order = zeros (1l,length(N));

108 for i = 1:length(N)

109 L2 _error(i) = ...

110 sgrt (sum(sum((abs (ES (x{i},y{i},t{i} (end))-v{i}(:,:,end))."2)*(h(i)"2))));
111 ifi>1

112 order (i) = log2 (L2 error(i-1)/L2 error(i));

113 end

114 end

115

116 % Tabulate results.

117 disp(® N L2-error order”) ;

118 disp("-———————— - ")

119 for i = 1:length(N)

120 ifi>1

121 fprintf("%3d %.59g %+2.2f\n",N(i),L2 error(i),order(i));
122 else

123 fprintf("%3d %.50\n",N(i),L2 error(i));

124 end

125 end

126

127 % Display numerical approximation.

128 figure(l); clf; pInd = length(N);

129 imagesc (x{pInd} (1,:),y{pInd} (:,1),v{pInd} (:,:,end));

130 set(gca, "LineWidth",2,*FontSize~",14, "FontWeight®, "normal*,*YDir", "*normal ") ;
131 xlabel ("x", "FontName","Times", "Interpreter”, "Latex", "FontSize",16) ;
132 ylabel ("y", "FontName","Times", "Interpreter”, "Latex", "FontSize", 16) ;
133 stitle('Difference Approximation');

134 axis square; grid on; axis ([0 x{pInd} (1l,end) 0 y{pInd}(end,1)]);

135 set(gca, "XTick",0:1:6); set(gca, "YTick",0:1:6);

136 h = colorbar; set(h, "LineWidth®,2, "FontSize",14, "FontWeight®, "normal ™) ;
137

138 % Display exact solution.

139 figure(2); clf;

140 imagesc(xe(1l,:),ye(:,1),fe);

141 set(gca, "LineWidth",2, "FontSize",14, "FontWeight", "normal ", "YDir", "normal ") ;
142 xlabel ("x", "FontName®,"Times", "Interpreter®, "Latex", "FontSize",16) ;
143 ylabel ("y", "FontName®,"Times", "Interpreter®, "Latex", "FontSize",16) ;
144 Stitle('Analytic Solution');

145 axis ([0 2*pi 0 2*pi]); axis square; grid on;

146 set(gca, "XTick",0:1:6); set(gca, "YTick",0:1:6);

147 h = colorbar; set(h, "LineWidth",2,"FontSize",14, "FontWeight®, "normal ™) ;

	PS6_writeup.pdf
	CrankNicholson.pdf
	StrangSplitting.pdf

