AM 255: Problem Set 6

Douglas Lanman
5 December 2006

Problem 1

Consider the following initial value problem.

Up = —Ugges, — 00 < T <00,0< 1 (1)
u(z,0) = f(z) =sin(z), —oco <z <00

Find the analytic solution and implement the Crank-Nicholson approximation for Equa-

tion 1. Evaluate the numerical solution at time 7" = 27 with discrete grids of size N =

{20, 40, 80, 160,320} and k& = h. Graphically compare the exact solution to the numerical

solution and tabulate the Lo-errors. Finally, estimate the order of approximation achieved.

Let’s begin by deriving a closed-form solution for Equation 1. Following the derivation on
pages 38 and 39 of [1] we assume a solution of the following form.

u(z,t) = e ii(w, t) (2)

1
V2T
Substituting Equation 2 into Equation 1 yields the following ordinary differential equation

y(w,t) = —wti(w, t),  a(w,0) = f(w),

which has the general solution

iw,t) = e flw) = ult) = \/ﬂ Z et f(w). (3)

W=—00

At this point, we require the Fourier series for the initial condition. As was found in Problem
3 of Problem Set 4, the Fourier coefficients f(w) can be obtained by inspection.

f(x) =sin(x) = ¢ _2; \/_W_X_:OO Zwcf
—iy/5 fw=1
= flw) =4 i/Z ifw=-1 (4)

0 otherwise

u(z,t) =€’ (%) = |u(z,t) = e "sin(x)
i

Now we turn our attention to deriving the Crank-Nicholson approximation to Equation 1.
Recall (from Equation 2.3.3 in [1]) that the Crank-Nicholson scheme for u; = u, is given by

k k
(I—§D) ntl — (I+§Do)vy,j:o,1,...,N. (5)

1
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Similarly, recall (from Equation 2.5.19 in [1]) that the Crank-Nicholson scheme for u; =
is given by

k " k N
(I— §D+D_) ij = (I—i— §D+D_) vy, j=0,1,...,N. (6)

Finally, note that (according to Equation 2.7.7 in [1]) the most natural centered difference
approximation to the fourth partial derivative is given by

84
Ot

Combining Equations 5, 6, and 7, it is apparent that the corresponding Crank-Nicholson
scheme for u; = —ugp.. 1S given by

—~ Q= (D,D_)*=D,D_D,D_. (7)

k k

My implementation of the discrete difference approximation, as defined by Equation 8,
was completed using Matlab and is included as CrankNicholson.m. Before presenting the
results of my program, I will briefly outline the architecture of the source code. On lines
11-51 I select the values of {N,h, k} and determine the resulting grid points {x,t}. (Note
that on lines 41-43 I ensure that the last time is given by 7" = 27.) Lines 53-83 implement
Equation 8. Note that I directly solve for the amplification factor () on lines 65-67 using the
difference operators D, and D_ evaluated on lines 61 and 62. Finally, lines 85-123 create
the tables and plots shown in this write-up.

Recall from class on 11/20/06 that we expect the Crank-Nicholson scheme in Equation 8
to be second-order in both space in time. As tabulated below, the approximation results for
k = h (i.e., equal space and time step sizes) confirm this expectation.

N | La-error | order
10 | 6.593e-4 | NA

20 | 1.617e-4 | 2.03

40 | 4.115e-5 | 1.97
80 | 1.046e-5 | 1.98
160 | 2.641e-6 | 1.99
320 | 6.642e-7 | 1.99

Note that the standard definition of the discrete Lo-norm was used to evaluate the total
erTor as

N
Lo-error(N) £ Z [u(a;, tv) — v7|2h.
5=0
In addition, the following definition of order of approximation was given in class.

Lo-error(2N)
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lytic solution of Equation 1 at time T = 27, for N = {10, 20, 40, 80, 160,320} and k = h.
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Problem 2

Consider the following two-dimensional initial value problem.
Up = —Uggpe — Uyyyy, — 00 < T,y <00,0< 1

(9)

Find the analytic solution and implement the Crank-Nicholson approximation for Equa-
tion 9. Evaluate the numerical solution at time 7" = 27 with discrete grids of size N =
{20, 40, 80, 160,320} and k& = h. Graphically compare the exact solution to the numerical
solution and tabulate the Lo-errors. Finally, estimate the order of approximation achieved.

u(z,y,0) = f(z,y) =sin(z +y), —oo<z,y <0

Let’s begin by making the change of variables such that z £ 2 +y. Furthermore, let’s assume
that the solution has the separable form u(z,t) = Z(2)T(t), where Z(z) is a function of a
single variable z = x + y and T'(¢) is a function of time. Under this change of variables,
Equation 9 is transformed as follows.

Uy = _2uzzzza U(Z, 0) = f(Z) = Sin(Z)

Note that this expression has a similar form as Equation 1 — only differing by the constant
multiplier on the right-hand side. As a result, the Fourier transform is given by

y(w, t) = —2wi(w, t), a(w,0) = f(w),

which has the general solution

[e.9]

Z eiwz6—2w4tf(w>‘

wW=—00

t(w,t) = 6_2“’4tf(u)) = u(z,t)=

5l
3

Substituting Equation 4 into this expression gives the analytic solution for Equation 9.

U(Z, t) = e (l) = U(l‘, Y, t) = Sin(I + y)

Now we turn our attention to deriving a second-order approximation scheme for Equa-
tion 9. First, note that the full Crank-Nicholson scheme is given by

k

(I + g ((D42D_p)* + (D+yDy)2)> " = (I -3 ((D42D_p)* + (D+yDy)2)> "

Rather than directly implementing this scheme, we will use the Stang-splitting technique to
reduce the computation complexity. As described on pages 195-200 in [1], Strang-splitting
can be used to implement general one step methods for u; = (P + P3)u, where P; and P, are
linear differential operators in space. If we let ()1 and () denote the amplification factors
for each component, then v"*! = Q;v" is an approximation of v; = Pjv, and w" ™! = Qouw™
is an approximation of wy = Pw. For this problem, P, = —0/0434, and Py = —0/0yyy,-
Using the one-dimensional Crank-Nicholson scheme, ()7 and ()2 have the following forms.

Q) = (145 (DD R (1-§0up.0ap) (o
Qs(k) = <I + g (Dﬂ,DyDﬂ,Dy)) B (1 - g (Dﬂ,DyDﬂ,Dy)) (11)
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Substituting Equations 10 and 11 into Equation 5.4.12 in [1] provides the following second-
order splitting scheme for Equation 9.

o= (Etes) @bt () w

My implementation of the second-order Stang-splitting scheme, as defined by Equation
12, was completed using Matlab and is included as StrangSplitting.m. Before presenting
the results of my program, I will briefly outline the architecture of the source code. On lines
11-54 I select the values of {NV, h, k} and determine the resulting grid points {z,y,t}. (Note
that on lines 44-46 I ensure that the last time is given by 7" = 27.) Lines 56-95 implement
Equation 12. Note that I directly solve for the amplification factors (; and ()5 on lines 67-75
using the difference operators D, and D_ evaluated on lines 64 and 65. Finally, lines 97-147
create the tables and plots shown in this write-up.

Recall from class on 11/20/06 that we expect the Strang-splitting scheme in Equation 12
to be second-order in both space in time. As tabulated below, the approximation results for
k = h (i.e., equal space and time step sizes) confirm this expectation.

N | Lo-error | order
10 | 9.506e-6 | NA

20 | 2.144e-6 | 2.15

40 | 5.337e-7 | 2.01

80 | 1.349e-7 | 1.98

160 | 3.402e-8 | 1.99
320 | 8.551e-9 | 1.99

Note that the discrete Lo-norm was used to evaluate the total error as

N N
Ly-error(N) £ Z Z [u(zy, yr, t") — vj, [2h2.
As in Problem 1, the following definition of order of approximation was used in this analysis.

Lo- N
order £ log, (ﬂ)

Lo-error(2N)

References

[1] Bertil Gustafsson, Heinz-Otto Kreiss, and Joseph Oliger. Time Dependent Problems and
Difference Methods. John Wiley & Sons, 1995.
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(e) N =320 (f) exact solution

Figure 2: Comparison between the Strang-splitting difference approximation and the analytic
solution of Equation 9 at time T = 27, for N = {20, 40, 80, 160, 320} and k = h.
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% AM 255, Problem Set 6, Problem 1

% Solves u_t = -u_xxxx IVP using the Crank-Nicholson
% scheme. Results are displayed graphically and
% tabulated for inclusion in the write-up.

%
% Douglas Lanman, Brown University, Dec. 2006

% Reset Matlab environment and command window.
clear all; clc;

96%6%%%%%6%6%6%6%%%% % %6%6%6%6%%% % % %6%%6%%% % % %%6%6%%% % % % %%6%6%%% % % % %%%%%
% Part 1: Specify discrete grid parameters.

% Define the initial condition.
IC = @(x) sin(x);

% Define the exact solution.
ES = @(x,t) exp(-t)*sin(x);

% Define space grid interval(s) for evaluation.
[10 20 40 80 160 320]; % #gridpoints s.t. N+2 on [0,2*pi]
= 2*pi./ (N+1); % resulting space steps

=
|

% Select the final time for evaluation.
% Note: Initial time is assumed to be zero.
tf = 2*pi;

% Select time step.
% Note: This scheme is unconditionally stable.
k = h;

% Set discrete positions/time-steps for evaluation.
% Note: All time steps will be equal, except the

% last; it will be adjusted so that the final
% time will be exactly "tf-".
x = cell(l,length(N));

o+
Il

cell (1,length(N));
for i = 1:length(N)

x{i} = h(1)*(0:N(1));
t{i} = (0:k(i):tf);
if t{i}(end) ~= tf
t{i} (end+1l) = tf;
end
end
% Initialize the numerical solution(s).

v = cell(l,length(N));
for 1 = 1:length(N)
v{i} = zeros(length(t{i}),N(i)+1);
v{i} (1,:) = IC(x{i}); % boundary values
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end

%6%%%%%%%6%%%%%% % %%%%% %% % % %%%%%% %% % %6%%% %% % % %%6%% %% % % % % %% %%
% Part 11: Solve the IVP using Crank-Nicholson scheme.

% Update solution sequentially (beginning with 1.C.).
for 1 = 1:length(N)

% Store forward/backward difference operators.
I eye (N(i)+1);

Dp = (1/h(i))*(circshift(I, [0 1])-1I);

Dm (1/h(i))*(I-circshift (I, [0 -11));

% Evaluate amplification factor.

A =1+ (k(i)/2)* (Dp*Dm*Dp*Dm) ;
B=1I- (k(i)/2)* (Dp*Dm*Dp*Dm) ;
Q = B/A;

% Calculate Crank-Nicholson solution.
% Note: Modify amplication factor for the last time step.
for n = 1:(length(t{i})-1)

if n ~—= (length(t{i})-1)

v{i}(n+l,:) = (Q*v{i}(n,:)")"';
else

kf = diff(t{i} (end-1l:end));

A =1 + (kf/2)* (Dp*Dm*Dp*Dm) ;

B =1 - (kf/2)* (Dp*Dm*Dp*Dm) ;

Q = B/A;

v{i}(n+l,:) = (Q*v{i}(n,:)")"';
end

end
end % End of Crank-Nicholson solution.

96%6%%%%%6%6%6%6%%%% % %6%6%%6%%% % % %6%%6%%% % % %%6%%6%% % % % %%6%%%% % % % % %% %%
% Part 111: Plot/tabulate modeling results.

% Evaluate the exact solution.
xe = linspace (0,2*pi,1000);
fe ES (xe,tf);

% Determine the L2-error and the approximation order.

L2 error = zeros(l,length(N));
order = zeros (1l,length(N));
for 1 = 1:length(N)

L2 error (i) = sqgrt(sum((abs(ES(x{i},t{i} (end))-v{i} (end,:
ifi>1
order (i) = log2(L2_error(i—l)/L2_error(i));
end
end

.72)*h(1)))
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102 % Tabulate results.

103 disp(" N L2-error order”®) ;

104 disp("-—-———————— ")

105 for i = 1:length(N)

106 ifi>1

107 fprintf("%3d %.59 %+2.2f\n",N(i),L2 error(i),order(i));
108 else

109 fprintf("%3d %.50\n",N(i),L2 error(i));

110 end

111 end

112

113 % Compare approximation to exact solution.

114 figure(l); clf;

115 plot(xe,fe,"r-","LineWidth", 3) ;

116 hold on;

117 plot(x{3},v{3}(end,:),".", "MarkerSize",20, "LineWidth", 3) ;
118 hold off;

119 set(gca, "LineWidth",2, "FontSize",14, "FontWeight", "normal ") ;
120 xlabel ("$x$", "FontName®,"Times", "Interpreter®, "Latex", "FontSize",16) ;
121 %title('Difference Approximation vs. Analytic Solution');
122 grid on; x1im ([0 2*pi]); ylim(2e-3*[-1 1]);

123 legend("Analytic Solution”, "Difference Approx.-);
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% AM 255, Problem Set 6, Problem 2

% Solves u_t = -u_xxxx-u_yyyy IVP using Strang Splitting
% and the Crank-Nicholson scheme. Results are displayed
% graphically and tabulated for the write-up.

%

% Douglas Lanman, Brown University, Dec. 2006

% Reset Matlab environment and command window.
clear all; clc;

96%6%%%%%%6%6%%6%%% % % %6%6%6%% %% % %%6%6%6%% %% % % %6%6%6%% %% % % %6%6%6%6% % % % % %6%6%6%6% % % % % %%6%% %% % % % %%6%%%
% Part 1: Specify discrete grid parameters.

% Define the initial condition.
IC = @(x,y) sin(x+y);

% Define the exact solution.
ES = @(x,y,t) exp(-2*t) *sin (xty);

o Define space grid interval(s) for evaluation.

% Note: Use equal number of points along x and y axes.

N = [10 20 40 80 160 320]; % #gridpoints s.t. N+2 on [0,2*pi]
h = 2*pi./ (N+1); % resulting space steps

% Select the final time for evaluation.
% Note: Initial time is assumed to be zero.
tf = 2*pi;

% Select time step.
% Note: This scheme is unconditionally stable.
k = h;

% Set discrete positions/time-steps for evaluation.
% Note: All time steps will be equal, except the

% last; it will be adjusted so that the final
% time will be exactly "tf-".
x = cell(l,length(N));

(N

y = cell(l,length(N));
t = cell(l,length(N));
for i = 1:length(N)

x{i} = repmat(h(i)*(0:N(i)),N(i)+1,1);
y{i} = repmat (h(i)*(0:N(i))"',1,N(1)+1);
t{i} = (0:k(1):tf);
if t{i}(end) ~= tf
t{i} (end+1l) = tf;
end
end
% Initialize the numerical solution(s).

v = cell(l,length(N));
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51 for i1 = 1l:length(N)
52 v{i} = zeros(N(i)+1,N(i)+1,length(t{i}));
53 v{i}(:,:,1) = IC(x{i},y{i}); % boundary values
54 end
55
56 %%%%%%%%%%6%%%%6%%%%6%%%%6%%% %6%%% %6%%% %6%%% %6%6%% %6%6%% %6%6% % Y6%6% % Y6%6% % %6%6%% % %% % % %% % % %% %% %
57 % Part 11: Solve 1VP using Strang Splitting with Crank-Nicholson scheme.
58
59 % Update solution sequentially (beginning with 1.C.).
60 for i = 1:length(N)
61
62 % Store forward/backward difference operators.
63 I = eye(N(i)+1);
64 Dp = (1/h(i))*(circshift (I, [0 1])-1I);
65 Dm = (1/h(i))*(I-circshift (I, [0 -11));
66
67 % Evaluate amplification factors (for a full step).
68 Af = I + (k(i)/2)* (Dp*Dm*Dp*Dm) ;
69 Bf = I - (k(i)/2)* (Dp*Dm*Dp*Dm) ;
70 Qf = Bf/Af;
71
72 % Evaluate amplification factors (for a half step).
73 Ah = I + (k(i)/4)* (Dp*Dm*Dp*Dm) ;
74 Bh = I - (k(i)/4)* (Dp*Dm*Dp*Dm) ;
75 Oh = Bh/Ah;
76
77 % Calculate (second-order accurate) splitting solution.
78 % Note: Use the 1D Crank-Nicholson amplification factors.
79 % Modify amplication factors for the last time step.
80 for n = 1:(length(t{i})-1)
81 if n ~—= (length(t{i})-1)
82 v{i} (:,:,n+l) = (Qh* (Qf* (Qh*v{i} (:,:,n) ") ") ") ";
83 else
84 kf = diff(t{i} (end-1l:end));
85 Af = I + (kf/2)* (Dp*Dm*Dp*Dm) ;
86 Bf = I - (kf/2)*(Dp*Dm*Dp*Dm) ;
87 Qf = Bf/Af;
88 Ah = I + (kf/4)* (Dp*Dm*Dp*Dm) ;
89 Bh = I - (k£f/4)* (Dp*Dm*Dp*Dm) ;
90 Qh = Bh/Ah;
91 v{i} (:,:,n+l) = (Qh* (Qf* (Qh*v{i} (:,:,n) ") ") ") ";
92 end
93 end
94
95 end % End of Strang Splitting solution.
96
97 %%%%%%6%%%6%6%%%%6%%%%6%%%%6%%% %% %% %%%% %%%% %6%6% % %6%6% % %6%6% % %6%6% % Y6%6% % Y6%6%% % %% % % %% % % %% %% %
98 % Part 111: Plot/tabulate modeling results.

99
100

% Evaluate the exact solution.
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101 xe = repmat (linspace(0,2*pi,1000),1000,1);

102 ye = repmat (linspace (0,2*pi,1000)"',1,1000);
103 fe = ES(xe,ye, tf);
104

105 % Determine the L2-error and the approximation order (in space and time).
106 L2 error = zeros(l,length(N));

107 order = zeros (1l,length(N));

108 for i = 1:length(N)

109 L2 _error(i) = ...

110 sgrt (sum(sum( (abs (ES (x{i},y{i},t{i} (end))-v{i}(:,:,end))."2)*(h(i)"2))));
111 ifi>1

112 order (i) = log2 (L2 error(i-1)/L2 error(i));

113 end

114 end

115

116 % Tabulate results.

117 disp(® N L2-error order”) ;

118 disp("-———————— - ")

119 for i = 1:length(N)

120 ifi>1

121 fprintf("%3d %.59g %+2.2f\n",N(i),L2 error(i),order(i));
122 else

123 fprintf("%3d %.50\n",N(i),L2 error(i));

124 end

125 end

126

127 % Display numerical approximation.

128 figure(l); clf; pInd = length(N);

129 imagesc (x{pInd} (1,:),y{pInd} (:,1),v{pInd} (:,:,end));

130 set(gca, "LineWidth",2,*FontSize~",14, "FontWeight®, "normal*,*YDir", "*normal ") ;
131 xlabel ("$x$", "FontName","Times", "Interpreter”, "Latex", "FontSize",16) ;
132 ylabel ("$y$", "FontName","Times", "Interpreter”, "Latex", "FontSize", 16) ;
133 stitle('Difference Approximation');

134 axis square; grid on; axis ([0 x{pInd} (1l,end) 0 y{pInd}(end,1)]);

135 set(gca, "XTick",0:1:6); set(gca, "YTick",0:1:6);

136 h = colorbar; set(h, "LineWidth®,2, "FontSize",14, "FontWeight®, "normal ™) ;
137

138 % Display exact solution.

139 figure(2); clf;

140 imagesc(xe(1l,:),ye(:,1),fe);

141 set(gca, "LineWidth",2, "FontSize",14, "FontWeight", "normal ", "YDir", "normal ") ;
142 xlabel ("$x$", "FontName®,"Times", "Interpreter®, "Latex", "FontSize",16) ;
143 ylabel ("$y$", "FontName®,"Times", "Interpreter®, "Latex", "FontSize",16) ;
144 Stitle('Analytic Solution');

145 axis ([0 2*pi 0 2*pi]); axis square; grid on;

146 set(gca, "XTick",0:1:6); set(gca, "YTick",0:1:6);

147 h = colorbar; set(h, "LineWidth",2,"FontSize",14, "FontWeight®, "normal ™) ;
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