AM 255: Problem Set 6

Douglas Lanman

5 December 2006

Problem 1

Consider the following initial value problem.

$$
\begin{gather*}
u_{t}=-u_{x x x x}, \quad-\infty<x<\infty, 0 \leq t \tag{1}\\
u(x, 0)=f(x)=\sin (x), \quad-\infty<x<\infty
\end{gather*}
$$

Find the analytic solution and implement the Crank-Nicholson approximation for Equation 1. Evaluate the numerical solution at time $T=2 \pi$ with discrete grids of size $N=$ $\{20,40,80,160,320\}$ and $k=h$. Graphically compare the exact solution to the numerical solution and tabulate the L_{2}-errors. Finally, estimate the order of approximation achieved.

Let's begin by deriving a closed-form solution for Equation 1. Following the derivation on pages 38 and 39 of [1] we assume a solution of the following form.

$$
\begin{equation*}
u(x, t)=\frac{1}{\sqrt{2 \pi}} e^{i \omega x} \hat{u}(\omega, t) \tag{2}
\end{equation*}
$$

Substituting Equation 2 into Equation 1 yields the following ordinary differential equation

$$
\hat{u}_{t}(\omega, t)=-\omega^{4} \hat{u}(\omega, t), \quad \hat{u}(\omega, 0)=\hat{f}(\omega),
$$

which has the general solution

$$
\begin{equation*}
\hat{u}(\omega, t)=e^{-\omega^{4} t} \hat{f}(\omega) \Rightarrow u(x, t)=\frac{1}{\sqrt{2 \pi}} \sum_{\omega=-\infty}^{\infty} e^{i \omega x} e^{-\omega^{4} t} \hat{f}(\omega) \tag{3}
\end{equation*}
$$

At this point, we require the Fourier series for the initial condition. As was found in Problem 3 of Problem Set 4, the Fourier coefficients $\hat{f}(\omega)$ can be obtained by inspection.

$$
\begin{align*}
f(x)= & \sin (x)=\frac{e^{i x}-e^{-i x}}{2 i}=\frac{1}{\sqrt{2 \pi}} \sum_{\omega=-\infty}^{\infty} e^{i \omega x} \hat{f}(\omega) \\
& \Rightarrow \hat{f}(\omega)=\left\{\begin{array}{cl}
-i \sqrt{\frac{\pi}{2}} & \text { if } \omega=1 \\
i \sqrt{\frac{\pi}{2}} & \text { if } \omega=-1 \\
0 & \text { otherwise }
\end{array}\right. \tag{4}
\end{align*}
$$

Substituting Equation 4 into Equation 3 gives the desired analytic solution.

$$
u(x, t)=e^{-t}\left(\frac{e^{i x}-e^{-i x}}{2 i}\right) \Rightarrow u(x, t)=e^{-t} \sin (x)
$$

Now we turn our attention to deriving the Crank-Nicholson approximation to Equation 1. Recall (from Equation 2.3.3 in [1]) that the Crank-Nicholson scheme for $u_{t}=u_{x}$ is given by

$$
\begin{equation*}
\left(I-\frac{k}{2} D_{0}\right) v_{j}^{n+1}=\left(I+\frac{k}{2} D_{0}\right) v_{j}^{n}, j=0,1, \ldots, N . \tag{5}
\end{equation*}
$$

Similarly, recall (from Equation 2.5.19 in [1]) that the Crank-Nicholson scheme for $u_{t}=u_{x x}$ is given by

$$
\begin{equation*}
\left(I-\frac{k}{2} D_{+} D_{-}\right) v_{j}^{n+1}=\left(I+\frac{k}{2} D_{+} D_{-}\right) v_{j}^{n}, j=0,1, \ldots, N . \tag{6}
\end{equation*}
$$

Finally, note that (according to Equation 2.7.7 in [1]) the most natural centered difference approximation to the fourth partial derivative is given by

$$
\begin{equation*}
\frac{\partial^{4}}{\partial x^{4}} \rightarrow Q_{4}=\left(D_{+} D_{-}\right)^{2}=D_{+} D_{-} D_{+} D_{-} . \tag{7}
\end{equation*}
$$

Combining Equations 5, 6, and 7, it is apparent that the corresponding Crank-Nicholson scheme for $u_{t}=-u_{x x x x}$ is given by

$$
\begin{equation*}
\left(I+\frac{k}{2}\left(D_{+} D_{-} D_{+} D_{-}\right)\right) v_{j}^{n+1}=\left(I-\frac{k}{2}\left(D_{+} D_{-} D_{+} D_{-}\right)\right) v_{j}^{n}, j=0,1, \ldots, N . \tag{8}
\end{equation*}
$$

My implementation of the discrete difference approximation, as defined by Equation 8, was completed using Matlab and is included as CrankNicholson.m. Before presenting the results of my program, I will briefly outline the architecture of the source code. On lines $11-51 \mathrm{I}$ select the values of $\{N, h, k\}$ and determine the resulting grid points $\{x, t\}$. (Note that on lines 41-43 I ensure that the last time is given by $T=2 \pi$.) Lines $53-83$ implement Equation 8. Note that I directly solve for the amplification factor Q on lines 65-67 using the difference operators D_{+}and D_{-}evaluated on lines 61 and 62 . Finally, lines 85-123 create the tables and plots shown in this write-up.

Recall from class on 11/20/06 that we expect the Crank-Nicholson scheme in Equation 8 to be second-order in both space in time. As tabulated below, the approximation results for $k=h$ (i.e., equal space and time step sizes) confirm this expectation.

N	L_{2}-error	order
10	$6.593 \mathrm{e}-4$	NA
20	$1.617 \mathrm{e}-4$	2.03
40	$4.115 \mathrm{e}-5$	1.97
80	$1.046 \mathrm{e}-5$	1.98
160	$2.641 \mathrm{e}-6$	1.99
320	$6.642 \mathrm{e}-7$	1.99

Note that the standard definition of the discrete L_{2}-norm was used to evaluate the total error as

$$
L_{2}-\operatorname{error}(N) \triangleq \sqrt{\sum_{j=0}^{N}\left|u\left(x_{j}, t^{n}\right)-v_{j}^{n}\right|^{2} h}
$$

In addition, the following definition of order of approximation was given in class.

$$
\operatorname{order} \triangleq \log _{2}\left(\frac{L_{2}-\operatorname{error}(N)}{L_{2}-\operatorname{error}(2 N)}\right)
$$

Figure 1: Comparison between the Crank-Nicholson difference approximation and the analytic solution of Equation 1 at time $T=2 \pi$, for $N=\{10,20,40,80,160,320\}$ and $k=h$.

Problem 2

Consider the following two-dimensional initial value problem.

$$
\begin{gather*}
u_{t}=-u_{x x x x}-u_{y y y y}, \quad-\infty<x, y<\infty, 0 \leq t \tag{9}\\
u(x, y, 0)=f(x, y)=\sin (x+y),-\infty<x, y<\infty
\end{gather*}
$$

Find the analytic solution and implement the Crank-Nicholson approximation for Equation 9. Evaluate the numerical solution at time $T=2 \pi$ with discrete grids of size $N=$ $\{20,40,80,160,320\}$ and $k=h$. Graphically compare the exact solution to the numerical solution and tabulate the L_{2}-errors. Finally, estimate the order of approximation achieved.

Let's begin by making the change of variables such that $z \triangleq x+y$. Furthermore, let's assume that the solution has the separable form $u(z, t)=Z(z) T(t)$, where $Z(z)$ is a function of a single variable $z=x+y$ and $T(t)$ is a function of time. Under this change of variables, Equation 9 is transformed as follows.

$$
u_{t}=-2 u_{z z z z}, \quad u(z, 0)=f(z)=\sin (z)
$$

Note that this expression has a similar form as Equation 1 - only differing by the constant multiplier on the right-hand side. As a result, the Fourier transform is given by

$$
\hat{u}_{t}(\omega, t)=-2 \omega^{4} \hat{u}(\omega, t), \quad \hat{u}(\omega, 0)=\hat{f}(\omega)
$$

which has the general solution

$$
\hat{u}(\omega, t)=e^{-2 \omega^{4} t} \hat{f}(\omega) \Rightarrow u(z, t)=\frac{1}{\sqrt{2 \pi}} \sum_{\omega=-\infty}^{\infty} e^{i \omega z} e^{-2 \omega^{4} t} \hat{f}(\omega) .
$$

Substituting Equation 4 into this expression gives the analytic solution for Equation 9.

$$
u(z, t)=e^{-2 t}\left(\frac{e^{i z}-e^{-i z}}{2 i}\right) \Rightarrow u(x, y, t)=e^{-2 t} \sin (x+y)
$$

Now we turn our attention to deriving a second-order approximation scheme for Equation 9. First, note that the full Crank-Nicholson scheme is given by

$$
\left(I+\frac{k}{2}\left(\left(D_{+x} D_{-x}\right)^{2}+\left(D_{+y} D_{-y}\right)^{2}\right)\right) v^{n+1}=\left(I-\frac{k}{2}\left(\left(D_{+x} D_{-x}\right)^{2}+\left(D_{+y} D_{-y}\right)^{2}\right)\right) v^{n} .
$$

Rather than directly implementing this scheme, we will use the Stang-splitting technique to reduce the computation complexity. As described on pages 195-200 in [1], Strang-splitting can be used to implement general one step methods for $u_{t}=\left(P_{1}+P_{2}\right) u$, where P_{1} and P_{2} are linear differential operators in space. If we let Q_{1} and Q_{2} denote the amplification factors for each component, then $v^{n+1}=Q_{1} v^{n}$ is an approximation of $v_{t}=P_{1} v$, and $w^{n+1}=Q_{2} w^{n}$ is an approximation of $w_{t}=P_{2} w$. For this problem, $P_{1}=-\partial / \partial_{x x x x}$ and $P_{2}=-\partial / \partial_{\text {yyyy }}$. Using the one-dimensional Crank-Nicholson scheme, Q_{1} and Q_{2} have the following forms.

$$
\begin{align*}
& Q_{1}(k)=\left(I+\frac{k}{2}\left(D_{+x} D_{-x} D_{+x} D_{-x}\right)\right)^{-1}\left(I-\frac{k}{2}\left(D_{+x} D_{-x} D_{+x} D_{-x}\right)\right) \tag{10}\\
& Q_{2}(k)=\left(I+\frac{k}{2}\left(D_{+y} D_{-y} D_{+y} D_{-y}\right)\right)^{-1}\left(I-\frac{k}{2}\left(D_{+y} D_{-y} D_{+y} D_{-y}\right)\right) \tag{11}
\end{align*}
$$

Substituting Equations 10 and 11 into Equation 5.4.12 in [1] provides the following secondorder splitting scheme for Equation 9.

$$
\begin{equation*}
v^{n+1}=Q_{1}\left(\frac{k}{2}, t_{n+1 / 2}\right) Q_{2}\left(k, t_{n}\right) Q_{1}\left(\frac{k}{2}, t_{n}\right) v^{n} \tag{12}
\end{equation*}
$$

My implementation of the second-order Stang-splitting scheme, as defined by Equation 12, was completed using Matlab and is included as StrangSplitting.m. Before presenting the results of my program, I will briefly outline the architecture of the source code. On lines 11-54 I select the values of $\{N, h, k\}$ and determine the resulting grid points $\{x, y, t\}$. (Note that on lines $44-46$ I ensure that the last time is given by $T=2 \pi$.) Lines $56-95$ implement Equation 12. Note that I directly solve for the amplification factors Q_{1} and Q_{2} on lines 67-75 using the difference operators D_{+}and D_{-}evaluated on lines 64 and 65 . Finally, lines 97-147 create the tables and plots shown in this write-up.

Recall from class on 11/20/06 that we expect the Strang-splitting scheme in Equation 12 to be second-order in both space in time. As tabulated below, the approximation results for $k=h$ (i.e., equal space and time step sizes) confirm this expectation.

N	L_{2}-error	order
10	$9.506 \mathrm{e}-6$	NA
20	$2.144 \mathrm{e}-6$	2.15
40	$5.337 \mathrm{e}-7$	2.01
80	$1.349 \mathrm{e}-7$	1.98
160	$3.402 \mathrm{e}-8$	1.99
320	$8.551 \mathrm{e}-9$	1.99

Note that the discrete L_{2}-norm was used to evaluate the total error as

$$
L_{2}-\operatorname{error}(N) \triangleq \sqrt{\sum_{j=0}^{N} \sum_{k=0}^{N}\left|u\left(x_{j}, y_{k}, t^{n}\right)-v_{j k}^{n}\right|^{2} h^{2}}
$$

As in Problem 1, the following definition of order of approximation was used in this analysis.

$$
\text { order } \triangleq \log _{2}\left(\frac{L_{2}-\operatorname{error}(N)}{L_{2}-\operatorname{error}(2 N)}\right)
$$

References

[1] Bertil Gustafsson, Heinz-Otto Kreiss, and Joseph Oliger. Time Dependent Problems and Difference Methods. John Wiley \& Sons, 1995.

Figure 2: Comparison between the Strang-splitting difference approximation and the analytic solution of Equation 9 at time $T=2 \pi$, for $N=\{20,40,80,160,320\}$ and $k=h$.

```
1 % AM 255, Problem Set 6, Problem 1
2 % Solves u_t = -u_xxxx IVP using the Crank-Nicholson
3% scheme. Results are displayed graphically and
4% tabulated for inclusion in the write-up.
5%
6 ~ \% ~ D o u g l a s ~ L a n m a n , ~ B r o w n ~ U n i v e r s i t y , ~ D e c . ~ 2 0 0 6 ~
7
8 % Reset Matlab environment and command window.
clear all; clc;
11 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1 2 ~ \% ~ P a r t ~ I : ~ S p e c i f y ~ d i s c r e t e ~ g r i d ~ p a r a m e t e r s .
14 % Define the initial condition.
IC = @(x) sin(x);
% Define the exact solution.
ES = @(x,t) exp(-t)*sin(x);
20 % Define space grid interval(s) for evaluation.
N = [10 20 40 80 160 320]; % #gridpoints s.t. N+2 on [0,2*pi]
h = 2*pi./(N+1); % resulting space steps
24 % Select the final time for evaluation.
25 % Note: Initial time is assumed to be zero.
tf = 2*pi;
28 % Select time step.
29 % Note: This scheme is unconditionally stable.
30 k = h;
32 % Set discrete positions/time-steps for evaluation.
33 % Note: All time steps will be equal, except the
34 % last; it will be adjusted so that the final
% time will be exactly 'tf'.
x = cell(1,length(N));
t = cell(1,length(N));
for i = 1:length(N)
        x{i} = h(i)*(0:N(i));
        t{i} = (0:k(i):tf);
        if t{i}(end) ~= tf
            t{i}(end+1) = tf;
        end
end
% Initialize the numerical solution(s).
v = cell(1,length(N));
for i = 1:length(N)
    v{i} = zeros(length(t{i}),N(i)+1);
    v{i}(1,:) = IC(x{i}); % boundary values
```

10
13
19
23
27
31

51 end
52
53 \%
54 \% Part II: Solve the IVP using Crank-Nicholson scheme.
55
56 \% Update solution sequentially (beginning with I.C.).
57 for i = 1:length(N)
58
89 xe $=$ linspace $(0,2 *$ pi,1000);
$\mathrm{fe}=\mathrm{ES}(\mathrm{xe}, \mathrm{tf})$;
91
\% Store forward/backward difference operators.
I = eye (N(i)+1);
$D p=(1 / h(i)) *(c i r c s h i f t(I,[0 \quad 1])-I) ;$
$\operatorname{Dm}=(1 / h(i)) *(I-c i r c s h i f t(I,[0-1])) ;$
\% Evaluate amplification factor.
$A=I+(k(i) / 2) *(D p * D m * D p * D m) ;$
$B=I-(k(i) / 2) *(D p * D m * D p * D m) ;$
$Q=B / A ;$
\% Calculate Crank-Nicholson solution.
\% Note: Modify amplication factor for the last time step.
for $n=1:(l e n g t h(t\{i\})-1)$
if $n \sim=$ (length(t\{i\})-1)
$\mathrm{v}\{\mathrm{i}\}(\mathrm{n}+1,:)=\left(\mathrm{Q}^{*} \mathrm{v}\{\mathrm{i}\}(\mathrm{n},:)^{\prime}\right)^{\prime}$;
else
$k f=\operatorname{diff}(t\{i\}(e n d-1: e n d)) ;$
$A=I+(k f / 2) *(D p * D m * D p * D m)$;
$B=I-(k f / 2) *(D p * D m * D p * D m) ;$
Q $=B / A$;
$\mathrm{v}\{\mathrm{i}\}(\mathrm{n}+1,:)=\left(\mathrm{Q}^{*} \mathrm{v}\{\mathrm{i}\}(\mathrm{n},:)^{\prime}\right)^{\prime}$;
end
end
end \% End of Crank-Nicholson solution.
\%
\% Part III: Plot/tabulate modeling results.
\% Determine the L2-error and the approximation order.
L2_error $=$ zeros (1,length(N));
order $=$ zeros(1,length(N));
for $i=1$:length(N)
L2_error(i) $=\operatorname{sqrt}\left(\operatorname{sum}\left(\left(\operatorname{abs}(E S(x\{i\}, t\{i\}(e n d))-v\{i\}(e n d,:)) .{ }^{\wedge} 2\right) * h(i)\right)\right)$;
if $i>1$
order(i) = log2(L2_error(i-1)/L2_error(i));
end
100 end

```
101
102 % Tabulate results.
103 disp(' N L2-error order');
104 disp('--------------------------');
105 for i = 1:length(N)
106 if i > 1
107 fprintf('%3d %.5g %+2.2f\n',N(i),L2_error(i),order(i));
108
109
110
1 1 1 ~ e n d
112
113 % Compare approximation to exact solution.
114 figure(1); clf;
1 1 5 \text { plot(xe,fe,'r-','LineWidth',3);}
116 hold on;
117 plot(x{3},v{3}(end,:),'.','MarkerSize',20,'LineWidth',3);
118 hold off;
1 1 9 \text { set(gca,'LineWidth',2,'FontSize',14,'FontWeight','normal');}
120 xlabel('$x$','FontName','Times','Interpreter','Latex','FontSize',16);
121 %title('Difference Approximation vs. Analytic Solution');
122 grid on; xlim([0 2*pi]); ylim(2e-3*[-1 1]);
123 legend('Analytic Solution','Difference Approx.');
```

```
1 % AM 255, Problem Set 6, Problem 2
2 % Solves u_t = -u_xxxx-u_yyyy IVP using Strang Splitting
3% and the Crank-Nicholson scheme. Results are displayed
4 % graphically and tabulated for the write-up.
5%
% Douglas Lanman, Brown University, Dec. 2006
7
8 % Reset Matlab environment and command window.
clear all; clc;
11 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Part I: Specify discrete grid parameters.
14 % Define the initial condition.
IC = @(x,y) sin(x+y);
1 6
17 % Define the exact solution.
ES = @(x,y,t) exp(-2*t)*sin(x+y);
20 % Define space grid interval(s) for evaluation.
21 % Note: Use equal number of points along x and y axes.
22 N = [10 20 40 80 160 320]; % #gridpoints s.t. N+2 on [0,2*pi]
h = 2*pi./(N+1); % resulting space steps
25 % Select the final time for evaluation.
26 % Note: Initial time is assumed to be zero.
tf = 2*pi;
29 % Select time step.
30 % Note: This scheme is unconditionally stable.
k = h;
33 % Set discrete positions/time-steps for evaluation.
34 % Note: All time steps will be equal, except the
35 % last; it will be adjusted so that the final
36 % time will be exactly 'tf'.
37 x = cell(1,length(N));
38 y = cell(1,length(N));
39 t = cell(1,length(N));
40 for i = 1:length(N)
49 % Initialize the numerical solution(s).
50 v = cell(1,length(N));
```

10
13
19
24
28
32
48

```
for i = 1:length(N)
    v{i} = zeros(N(i)+1,N(i)+1,length(t{i}));
    v{i}(:,:,1) = IC(x{i},y{i}); % boundary values
end
56 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
57 % Part II: Solve IVP using Strang Splitting with Crank-Nicholson scheme.
59 % Update solution sequentially (beginning with I.C.).
60 for i = 1:length(N)
55
58
61
62
63
64
65
66
```

101 xe = repmat(linspace(0,2*pi,1000),1000,1);
102 ye = repmat(linspace(0,2*pi,1000)',1,1000);
103 fe = ES(xe,ye,tf);
104
105 % Determine the L2-error and the approximation order (in space and time).
106 L2_error = zeros(1,length(N));
107 order = zeros(1,length(N));
108 for i = 1:length(N)
109 L2_error(i) = ...
110 sqrt(sum(sum((abs(ES(x{i},y{i},t{i}(end))-v{i}(:,:,end)).^2)*(h(i)^2))));
111 if i > 1
112 order(i) = log2(L2_error(i-1)/L2_error(i));
113 end
114 end
115
116 % Tabulate results.
117 disp(' N L2-error order');
118 disp('-------------------------');
119 for i = 1:length(N)
120 if i > 1
121
122
123
124
125 end
126
127 % Display numerical approximation.
128 figure(1); clf; pInd = length(N);
129 imagesc(x{pInd} (1,:),y{pInd}(:,1),v{pInd}(:,:,end));
130 set(gca,'LineWidth',2,'FontSize',14,'FontWeight','normal','YDir','normal');
131 xlabel('x','FontName','Times','Interpreter','Latex','FontSize',16);
132 ylabel('y','FontName','Times','Interpreter','Latex','FontSize',16);
133 %title('Difference Approximation');
134 axis square; grid on; axis([0 x{pInd}(1,end) 0 y{pInd}(end,1)]);
135 set(gca,'XTick',0:1:6); set(gca,'YTick',0:1:6);
136 h = colorbar; set(h,'LineWidth',2,'FontSize',14,'FontWeight','normal');
137
138 % Display exact solution.
139 figure(2); clf;
140 imagesc(xe(1,:),ye(:,1),fe);
141 set(gca,'LineWidth',2,'FontSize',14,'FontWeight','normal','YDir','normal');
142 xlabel('x','FontName','Times','Interpreter','Latex','FontSize',16);
143 ylabel('y','FontName','Times','Interpreter','Latex','FontSize',16);
144 %title('Analytic Solution');
145 axis([0 2*pi 0 2*pi]); axis square; grid on;
146 set(gca,'XTick',0:1:6); set(gca,'YTick',0:1:6);
147 h = colorbar; set(h,'LineWidth',2,'FontSize',14,'FontWeight','normal');

```
```

