
CS 157: Assignment 1

Douglas R. Lanman
6 February 2006

Problem 4

Consider the following situation: power lines along a country road have been modified to carry
broadband internet. Wi-Fi towers must be placed along the power line to provide the community
with internet access. It is the goal of this write-up to develop efficient algorithms to place a
minimum number of towers such that each house is sufficiently close to at least one tower.

In Part (a) the simple case of customers distributed on a line segment will be considered. In
Part (b) the algorithm will be generalized such that customers can be distributed throughout a
planar region rather than on a straight line segment. Finally, in Part (c), the algorithm will be
further extended to more general power line paths. It will be shown that this problem is very
similar to the interval scheduling task presented in class on 1/25/06.

Part (a): Customers located on a line segment

Given a line segment l, n locations of the customers on l, and a distance d, we wish to find a
minimum number of points on l such that each location is at most d from some point. Give an
efficient algorithm which returns a minimum size set of points.

High-level Description: This problem can be solved using a greedy algorithm. Consider a set of
n points {xi} on the line l with −∞ < xi <∞,∀xi. Begin by sorting the points in ascending order
such that x1 < x2 < · · · < xn. (Note that xi 6= xj for i 6= j since the locations of customers must
be unique.) Next, place a tower at x1 + d. Find the first point xi to the right of x1 + d which is
not included within the coverage region {x : x1 − d ≤ x ≤ x1 + d} of the first tower. Place another
tower at xi + d (i.e., as far to the right as allowed). Iterate this process until all points have been
covered (always placing a tower as far to the right as possible). A pseudocode description of this
algorithm is provided below in Find-Towers-Line.

Find-Towers-Line(x, d)
1 sort x into monotonically increasing order
2 T ← ∅
3 c← −∞
4 for i← 1 to length[x]
5 do if x[i] > c
6 then c← x[i] + 2d
7 T ← T ∪ {x[i] + d}
8 return T

Analysis of Running Time: The asymptotic worst-case running time of this algorithm is
O(n log n). On line 1 of Find-Towers-Line the set of customer positions is sorted into as-
cending order. From class on 1/26/06 we know that sorting is O(n log n). For instance, we could
use Merge-Sort from CLRS p. 32 to achieve this result [1]. Lines 2 and 3 can be evaluated in
constant time (i.e., O(1)). Finally, the for loop on lines 4 through 7 must be evaluated for each
customer, resulting in a linear running time (i.e., O(n)). Since O(n log n + n + 1) = O(n log n) we
have proved our claim. Note, if the input array x is sorted, then the running time is only O(n).

1



Assignment 1 CS 157 Douglas R. Lanman

Proof of Correctness: First, note that the selected tower positions produced by Find-Towers-
Line ensure that all customers are “covered” (i.e., are within a distance d of at least one tower).
This is immediate from the placement of towers made on lines 4 through 7 – a tower is always
placed such that any exposed point is covered and proceeds until all points have been considered.

Now we must prove that the proposed algorithm returns a set with minimum cardinality. We
proceed by adopting the typical strategy for analyzing greedy algorithms: assume an ideal solution
and seek a contradiction. Consider an optimal, lexicographically ordered set T ′ = {t′

1, t
′
2, . . . , t

′
m′}

of m′ towers that covers all customers with the minimum number of antennas. If the output of our
algorithm is a set T with m towers, then assume m > m′ (i.e., that our solution is not optimal).
Now compare the first optimal tower position t′

1 with the algorithm’s first tower choice t1. Since
t1 covers the first customer at x1 and is as far as possible to the right of x1, then t′

1 ≤ t1. As a
result, we can substitute t1 for t′

1 in T ′ without changing its cardinality (or causing a customer to
go outside the coverage region). We can repeat this process for the ith tower t′

i in T ′. Since ti is
as far to the right as possible from the currently uncovered customer, we know that t′

i ≤ ti. As a
result we can replace t′

i with ti in T ′. If we repeat this replacement policy we will eventually reach
tower t′

m′ in T ′. Since the modified set T ′ and T are identical up until tower m′, then T ′ cannot
be optimal because tower tm′+1 is required to cover all neighbors by our algorithm. As a result, T ′

cannot be optimal and the set of towers T produced by Find-Towers-Line must have minimum
cardinality.

Part (b): Customers located in a planar region

Given n locations of customers on a plane, a line segment l, and a distance d, we wish to find a
minimum number of points on l such that each location is at most d from some point. We assume
that all locations are at most a distance d from l. Give an efficient algorithm which returns a
minimum size set of points.

Canonical Coordinates: We begin our analysis by introducing the notion of a canonical coordi-
nate system. In this system, the power line is located along the x̂-axis and customers are located
within the region R given by {R : −∞ < x <∞,−d ≤ y ≤ d}. This coordinate system is depicted
in Figure 1 (customers are shown in blue).

Notice that, for any given customer at position (xi, yi), the minimum distance to the power line
is given by yi. Let us define the following interval [si, fi] with

si = xi −
√

d2 − y2
i (1)

fi = xi +
√

d2 − y2
i (2)

as the “customer-required coverage interval”. For a given customer, the Wi-Fi tower must be
located within the region si ≤ x ≤ fi, y = 0 in order to be at most a distance d from the user.
(Notice that this interval corresponds to the intersection of the line l with a circle of radius d
centered on the customer). From this specification it is clear that, when a customer is located a
distance d from the power line, then si = fi = xi and the tower can only be placed at (xi, 0) to
cover this individual.

In general, we can parameterize an arbitrary line in the plane by a point (x0, y0) on the line and
a counterclockwise angle θ (in radians) with respect to the x̂-axis. We can transform this line and
the set of customers {(x′

i, y
′
i)} to our canonical coordinate system {(xi, yi)} by a simple translation

and rotation using Equation 3.[
xi

yi

]
=

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

] [
x′

i − x0

y′
i − y0

]
(3)

2



Assignment 1 CS 157 Douglas R. Lanman

Figure 1: Sample Wi-Fi Tower placement achieved using Find-Towers-Plane.

Similarly, we can invert this transformation to convert points in the canonical system to our original
system using Equation 4. [

x′
i

y′
i

]
=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
xi

yi

]
+

[
x0

y0

]
(4)

Since Equations 3 and 4 can be used to transform any input line parameterized by {xo, yo, θ} to the
canonical coordinate system shown in Figure 1, we can continue our analysis by only addressing
the solution in the canonical frame.

High-level Description: In the canonical coordinate system we are given a set of points {(xi, yi)}.
Using Equations 1 and 2 we can determine a set of intervals which constrain the location of the
towers. As for the interval sorting task considered in class, we begin by sorting these intervals in
order of monotonically increasing finishing time. (For example, examine the set of sorted intervals
in Figure 1). Unlike Part (a), where each interval had length 2d, the intervals can now have any
length within [0, 2d]. Notice that, for the first interval in order of finishing time, we can once again
place a tower as far to the right as possible at f1. As in Part (a), we can exclude any customers
that are covered by the first tower (i.e., those whose coverage intervals [si, fi] include f1). Once

3



Assignment 1 CS 157 Douglas R. Lanman

we encounter a customer at xi which isn’t covered, we place a tower at fi. This process continues
until all customers have been considered. A pseudocode description of this algorithm is provided
below in Find-Towers-Plane.

Find-Towers-Plane(x, y, d)
1 n← length[x]
2 transform each point (xi, yi) to the canonical coordinate system
3 for i← 1 to n
4 do o←

√
d2 − y[i]2

5 s[i]← x[i]− o
6 f [i]← x[i] + o
7 sort intervals {[si, fi]} into monotonically increasing finishing time fi

8 T ← ∅
9 c← −∞

10 for i← 1 to n
11 do if s[i] > c
12 then c← f [i]
13 T ← T ∪ {c}
14 transform each tower’s position to the input coordinate system
15 return T

Analysis of Running Time: The asymptotic worst-case running time of this algorithm is also
O(n log n). As in Part (a), the sorting step on line 7 is O(n log n). The transformations on lines
2 and 14 can be implemented using Equations 3 and 4; since they must be applied for each point
they have a running time of O(n). Similarly, the determination of the coverage intervals on lines 3
through 6 will require looping over each customer and will having running time O(n). As before,
lines 10 through 13 require evaluating a condition at each customer and have a total running time
of O(n). The remaining lines can be evaluated in constant time and do not effect the asymptotic
worst-case running time.

Proof of Correctness: First, note that the selected tower positions produced by Find-Towers-
Plane ensure that all customers are covered. This is immediate from the placement of towers
made on lines 10 through 13 – a tower is always placed such that any exposed point is covered and
proceeds until all points have been considered.

In order to prove that the cardinality of T is minimal, we must first prove a subclaim; Note that,
in Part (a), we made a claim that a tower could be replaced in T ′ without causing any customers
to lose coverage. We begin by showing that, in general, if a tower t′

k located at (x′
k,0) provides

coverage to a set of users at {(xi, yi)}, then we can replace this tower with one located at the
minimum value of {fi} given by Equation 2. Put simply, if a tower provides coverage to a set of
users, then we could move that tower to the right until any user was separated by a distance d.
As shown in Figure 1, once the intervals {[si, fi]} have been sorted, we can determine if two users
{i, j} overlap if sj ≤ fi for j > i. As a result, if we move a tower to the right until it reaches the
end of the earliest interval (by finishing time), all users originally covered by the tower will remain
covered. In fact, by performing this operation we may actually include more users (see below).

Given this subclaim, the proof can proceed as in Part (a). Consider the first tower t1 produced
by Find-Towers-Plane. This tower must be located within x ∈ [s1, f1]. In general, the first
tower t′

1 cannot be in the region x > f1 (since the first user interval would not be covered). As a
result, we have t′

1 ≤ t1. Given the previous subclaim, we can replace t′
1 with t1 without causing

any users covered by t′
1 to lose coverage. Now consider the ith tower t′

i in T ′. In general, this tower

4



Assignment 1 CS 157 Douglas R. Lanman

(a) allowed path (b) prohibited path

Figure 2: Sample of power line paths allowed/prohibited by Find-Towers-General.

must satisfy t′
i ≤ ti, since ti is placed as far to the right as possible in order to cover the currently

uncovered user. As a result, we can once again invoke the subclaim and replace t′
i with ti in T ′.

By induction, we find that all towers in T ′ can be replaced with those in T . As a result, T is also
an optimal solution which produces a set of towers with minimum cardinality.

Part (c): Handling an arbitrary power line path

In your algorithm, how important is it that the line l is a line segment and not some arbitrary
curve? If it is important, give an example which illustrates the problem. If it is not important,
explain how you can adapt your algorithm.

High-level Description: While we previously restricted our analysis to line segments, Find-
Towers-Plane can be extended to handle a broader class of planar curves. In Part (b) we found
that each customer placed a restriction on the tower which provided its coverage (i.e., that it must
be within the interval [si, fi]). In general, if the power line curve Γ intersects every customer’s
coverage perimeter no more than twice then a modified form of Find-Towers-Plane can be used
to determine a minimal set of tower locations.

Consider as an example the situation depicted in Figure 2(a). Here a customer is located at the
origin and d = 1. The shaded green circle represents the locations where a tower could be placed
in order to provide service to the customer – in general, this is a circle of radius d center at (xi, yi).
The black curve represents the power line. Notice that, for this example, the power line enters
and exits the the customer’s coverage region exactly once. As a result, if the power line curve Γ is
written in parametric form (with tracing parameter ξ), then the customer-required interval can be
expressed as si ≤ ξ ≤ fi, where si and fi represent the value of ξ when the curve enters and leaves
the region, respectively.

In general, if we can determine the set of intervals {[si, fi]} given by the intersection of the para-
metric curve Γ and each customer’s coverage circle, then we can apply Find-Towers-General,
shown below, to find the locations of the towers. This algorithm is very similar to that provided
in Part (b), however the tower locations are now given in the tracing parameter ξ.

5



Assignment 1 CS 157 Douglas R. Lanman

Find-Towers-General(x, y, d)
1 determine intervals {[si, fi]} along parametric curve Γ
2 sort intervals {[si, fi]} into monotonically increasing finishing time fi

3 T ← ∅
4 ξ ← −∞
5 for i← 1 to length[x]
6 do if s[i] > ξ
7 then ξ ← f [i]
8 T ← T ∪ {ξ}
9 return T

While handling more than simple line segments, Find-Towers-General can fail if the power
line curve Γ intersects a customer’s coverage circle more than twice. As an example, consider the
case depicted in Figure 2(b). In this scenario, the power line enter and exists the coverage region
twice. As a result, the interval {[si, fi]} no longer specifies all possible values of ξ, if si represents
the first time Γ enters the circle and fi represents the first exit. While a more general algorithm
could be developed, it is not required for this write-up.

Analysis of Running Time: Assuming that the customer-required intervals {[si, fi]} can be
evaluated with a running time no greater than O(n log n), then the asymptotic worst-case running
time of this algorithm is also O(n log n). Once again, the overall running time of the algorithm is
dependent on the running time of the sorting procedure.

Proof of Correctness: Follows directly from Part (b) with the assumption that each customer’s
coverage region intersects the power line curve Γ no more than twice.

References

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, Second Edition. The MIT Press and McGraw-Hill, 2001.

6


