CS 157: Assignment 2

Douglas R. Lanman
27 February 2006

Problem 1: Union-Find with Deletions

The union-find data structure, utilizing the “union-by-rank” and “path compression” heuristics, is
one of the most efficient disjoint-set data structures known [1]. In general, union-find can be applied
to any problem in which one must determine membership within a set. For instance, in class we
studied its application within Kruskal’s algorithm, where it was used to efficiently detect connected
component of a graph. In general, union-find supports three primary operations: insertion, union,
and find. As discussed by Kaplan et al., in many applications it is also desirable to support deletion
[3].

In this write-up we present “lazy-deletion”: a straightforward modification of the classic union-
find data structure which will allow deletions. In particular, lazy deletion will not alter the asymp-
totic worst-case running times of either the union or find procedures. Recall that the union-find
data structure maintains a number of rooted trees. If a node has no children, then we can delete
it without incident (i.e., free any memory or other resources associated with it). If a node has
children then we cannot eliminate it immediately — otherwise its children would become isolated
from the root node. As a result, we adopt the “lazy deletion” policy, in which nodes with children
are marked for deletion and, as their children are removed over time, eventually deleted.

This write-up is organized into four sections. In Section 1 we will discuss the basic modifications
that must be made to MAKE-SET and UNION to implement lazy deletion. In Section 2, the
pseudocode for insertion and deletion will be presented. In Section 3, the necessary modifications
for FIND-SET will be presented. Finally, in Section 4, the relative merits of lazy deletion will be
discussed in the context of alternate implementations.

1 Modifying MAKE-SET and UNION

We can implement union-find with lazy deletion in a manner similar to [1]. As previously discussed,
in order to implement lazy deletion we will need to keep track of the number of children for each
node. In addition, we will need to add an attribute to each node that indicates whether it has been
marked for deletion. As a result, MAKE-SET (from CLRS page 508) must be modified to initialize
these new attributes as follows.

MAKE-SET(x)

1 plx] — =z

2 ranklz] — 0

3 children[z] — 0
4 marked[z] < 0

In this case, children is used to store the number of children for each node and marked is a binary
attribute indicating whether the node has been marked for deletion. Clearly, lines 3 and 4 can
execute in constant time. As a result, the asymptotic worst-case running time of MAKE-SET
remains ©(1), as shown in [2].

At this point, we turn our attention to the UNION procedure — used to join two disjoint-sets
given pointers to a member in each. For this write-up we utilize the UNION procedure presented
on CLRS page 508 (repeated below).

Assignment 2 CS 157 Douglas R. Lanman

UNION(z, y)
1 LINK(FIND-SET(z), FIND-SET(y))

In this case UNION simply calls FIND-SET to determine the representatives for each set. Since
the problem statement requires that our modifications do not alter the runtimes of either union
or insertion, it is important to note that we cannot alter the runtime of FIND-SET either — since
this would alter UNION. Notice that the LINK procedure called by UNION could potentially change
the number of children for a given node (in addition to its rank). As a result, we introduce the
following modifications.

LiNK(z,y)

1 if rank[z] > rank[y]

2 then ply] «— =

3 children[z] < children|z] + children[y] + 1
4 else plx] — vy

5 children[y] < children[y] + children[z] + 1
6 if rank[z] = rankly]

7 then rankly] — rankly] + 1

The modifications on lines 3 and 5 ensure that the children counters are incremented correctly. Since
the number of children will only increase for the new “parent” tree, we must increment by the size
of its new “child” tree plus one (for the tree’s root). In the absence of additional operations, such
as INSERT, DELETE, or FIND-SET, these modifications correctly increment the number of children
whenever two trees are joined.

For completeness, we briefly review the asymptotic running times of UNION and its LINK
subroutine. First, notice that the modifications of LINK on lines 3 and 5 are O(1). As a result,
LINK continues to have O(1) running time [1]. Examining the pseudocode for UNION, we find that
it is composed of two calls to FIND-SET and a single call to LINK. As a result, its running time is
only O(1) in addition to the two calls to FIND-SET [2]. In conclusion, the asymptotic worst-case
running time of UNION is identical to that of FIND-SET, which will be discussed in Section 3.

2 Implementing INSERT and DELETE

2.1 High-level Description

At this point, we have a basic union-find data structure that can keep track of its children. We
now turn our attention to implementing insertion and deletion. As presented in [3], INSERT can be
implemented trivially as follows.

INSERT(z, y)
1 MAKE-SET(x)
2 UNION(z,y)

First, we call MAKE-SET to form a singleton set for x. Afterwards, we insert this set into the tree
containing y using UNION. The correctness of INSERT is immediate. Similarly, since MAKE-SET
has O(1) running time, the asymptotic worst-case running time of INSERT is identical to FIND-SET.

Before we implement deletion, lets consider some some characteristic examples. In Figure 1(a)
notice that nodes ¢, e, and g could be deleted immediately, whereas nodes a, b, d, and f could only
be marked for deletion. In either case, once a node has been “deleted”, the number of children

Assignment 2 CS 157 Douglas R. Lanman

ay G

Yo @

et

(a) Example using lazy deletion (b) Example using child pointers

0,
©)
©

Figure 1: Examples considered for union-find with deletion

for each of its ancestors will decrease by one. For example, if we mark node d for deletion, the
children attributes for nodes a and b must be decremented by one. Since both removing a node
and marking a node for deletion decreases the number of children for any ancestors, we must also
ensure that DELETE removes any nodes that have been marked for deletion and, as a result of a
deletion, no longer have any children.

From these simple examples it is apparent that DELETE must accomplish three goals: (1) either
immediately remove a node or mark it for deletion, (2) decrement all children attributes for the
“deleted” node’s ancestors, and (3) remove any nodes marked for deletion that no longer have any
children. The following pseudocode for DELETE, and its CLEAN subroutine, accomplishes all of
these goals.

DELETE(x)

1 if x # plx]

2 then CLEAN(p[x])

3 if childrenz] # 0

4 then marked[z] — 1

5 else FREE(z)
CLEAN(z)

1 children|x] < children|zx] — 1
2 if x # p[z]

3 then CLEAN(p[z])

4 if marked[z] =1

5 then if children[z] =0
6 then FREE(x)

2.2 Proof of Correctness for DELETE

To begin our analysis, consider lines 3 through 5 of DELETE. In the absence of lines 1 and 2, this
segment of pseudocode correctly implements lazy deletion — removing a node if it has no children
or marking it for deletion if it does. Notice that, in this write-up, FREE is used to represent any
operations which are necessary to free the memory or other resources associated with a node. [t is
assumed that FREE has a constant running time of O(1).

As previously discussed, once a node has been deleted (or marked for deletion), we must decre-
ment the children attributes of its ancestors and delete any marked nodes that no longer have
children. These tasks are achieved on lines 1 and 2 of DELETE. Taking our inspiration from the

Assignment 2 CS 157 Douglas R. Lanman

£)
a) 3
& 8
PN TETE o
©
®
(a) Before FIND-SET(f) (b) After FIND-SET(f)

Figure 2: Result of path compression within FIND-SET

FIND-SET routine presented in CLRS on page 508, we recursively call CLEAN, starting at the
“deleted” node, until we reach the root of the tree (where p[z] = x). Line 1 of CLEAN decreases
the children attribute by one — ensuring that the children counters are correct for all ancestors.
Notice that lines 4 through 6 of CLEAN will only be called after the children attributes have been
updated. These lines check to see if any nodes marked for deletion no longer have any children and
delete the node permanently if that is the case.

As an example, once again consider Figure 1(a). Initially, no nodes are marked for deletion and
{a,b,c,d,e} have {4,2,0,1,0} children, respectively. If we call DELETE(d), then nodes {a,b,c,d,e}
will now have {3,1,0,1,0} children. In addition node d will be marked for deletion. If we subse-
quently call DELETE(e), then nodes {a,b,c,d,e} will have {2,0,0,0,0} children. Since node d was
marked for deletion and now has no children, it will be deleted along with node e — exactly the
outcome we desired.

2.3 Analysis of Running Time for DELETE

Since DELETE was derived from FIND-SET, we expect it will have a similar running time. It is
important to note, however, that this implementation of DELETE does not perform path compres-
sion (i.e., the parent pointers are not set to the root after updating the children attributes). Since
CLEAN will be called once for every node on the path between the “deleted” node and the root,
the asymptotic worst-case running time will be proportional to the number of nodes on this path —
similar to the analysis presented in [2] and [4]. Since path compression will not be preformed, there
will be no amortized benefit for repeated calls to DELETE and the asymptotic worst-case running
time is O(logn) — identical to FIND-SET without path compression [1]. Note that n is the number
of nodes created by MAKE-SET.

3 Modifying FIND-SET

3.1 High-level Description

At this point, all that remains is to modify FIND-SET, without changing its runtime, to ensure:
(1) that it updates the children attributes correctly and (2) that is removes any nodes that have
been marked for deletion and no longer have any children due to path compression. As was done
for deletion, we begin by considering a characteristic example. In Figure 2 we show a rooted tree
and its configuration after FIND-SET(f). In general, the path compression heuristic will cause all
ancestors between node f and the root to become immediate children of the root. As a result, if
a node has no children (other than an ancestor of node f or node f itself) and is included on the

Assignment 2 CS 157 Douglas R. Lanman

path between node f and the root, then it will become a leaf node after path compression. This
property is important because it can cause marked nodes to become leaf nodes (and therefore able
to be deleted). It is also important to note that FIND-SET(f) will modify the number of children
for all nodes between node f and the root.

From this example it is apparent that FIND-SET must: (1) update the children attribute for
all nodes between the search node and the root of the tree and (2) remove any marked nodes that
no longer have children due to path compression. The following pseudocode achieves both of these
goals.

FIND-SET(x)

1 if x # plx]

2 then p[z] «— FIND-SET(p[z], children[z] + 1)
3 return p|x]

FIND-SET(z, ¢)

1 parent « p[z]

2 if x # p[x]

3 then parent «— FIND-SET(p[z], children[z] + 1)
4 plz] < parent

5 children|z] < children|z] — ¢
6 if marked[z] =1

7 then if children[z] =0

8 then FREE(z)

9 return parent

3.2 Proof of Correctness for FIND-SET

To begin our analysis, consider FIND-SET(z). Notice that this pseudocode is nearly identical to
CLRS page 508, except for the addition of a second argument in FIND-SET(z,c). This second
form of FIND-SET uses the argument ¢ to pass the number of children contained in a subtree. For
example, if x is not the root node, then it has children[z] children and, after path compression, the
parent of z will no longer have x as a child; as a result, the parent of = will lose children|z] + 1
children. Line 5 of FIND-SET(z, ¢) is required to correctly update the children attributes as a result
of path compression.

In addition to correctly updating the children counters for each node, FIND-SET must also
remove any nodes marked for deletion that have become leaf nodes. This is accomplished on lines
6 through 8 of FIND-SET(z,c). First, notice that the node at which a FIND-SET is initiated will
still have the same number of children after path compression. As a result, we are not required to
check for deletion in FIND-SET(x). Alternatively, the number of children will change for all nodes
between x and the root node. This is why the deletion is placed inside FIND-SET(z, ¢).

3.3 Analysis of Running Time for FIND-SET

Examining the pseudocode provided for FIND-SET(x) and its FIND-SET(x, ¢) subroutine, we see
that only O(1) modifications have been made to the original version from CLRS page 508. In par-
ticular, lines 5 through 8 of FIND-SET(z, ¢) have constant running time (assuming FREE is O(1)).
In addition, passing the number of children using the argument ¢ does not alter the asymptotic
worst-case running time. In conclusion, we find that the running time of FIND-SET, and corre-
spondingly UNION, is not altered by the modifications required for lazy deletion. As presented
in [2], the asymptotic worst-case running time is proportional to the length of the path from the

Assignment 2 CS 157 Douglas R. Lanman

search node to the root and is given by ©(logn) for a set with n nodes. It is important to note,
however, that the amortized cost is only O(log* n) [2].

4 Discussion

As presented, union-find with lazy deletion is a straightforward modification of the classic union-
find data structure. In the previous sections we showed how the pseudocode from CLRS on page
508 could be modified to allow deletion without changing the asymptotic worst-case running times
of UNION, INSERT, or FIND-SET. The greatest drawback of this approach, however, is that is
doesn’t achieve immediate deletion. When nodes are marked for deletion, they continue to consume
memory (or other resources) until they no longer have any children. It is easy to think of examples
where marked nodes could persist indefinitely. For example, if a root node is marked for deletion
and there are no subsequent calls to UNION involving this set, then the root node will never be
deleted (unless all of its children are removed). For resource-constrained problems, this behavior
could be problematic — requiring an additional “garbage collection” procedure to ensure that all
deleted nodes are immediately removed from memory. Since there are no child pointers, it is
not immediately apparent how to implement such a policy. In any case, it is likely that garbage
collection would be an expensive operation — limiting the utility of this implementation.

As suggested in the problem statement, deleting a node with children is only difficult because
nodes do not have pointers to their children. If nodes did maintain child pointers, then when a
node was deleted it could be replaced with one of its children. While this strategy would ensure
that nodes are immediately deleted, it requires additional resources to be allocated for each node —
namely, the set of child pointers. Consider the simple example shown in Figure 1(b). In this case,
if node b only maintains a pointer to one child, then we could potentially cause an error. That is,
if we delete node b and replace it with node d, then if we subsequently try to delete node d it will
not report any children and, as a result, its deletion will cut off node e from the root. From this
example, it is apparent that nodes must keep points to all of their immediate children. It is not
apparent what data structure will work best in such a situation; it seems difficult to maintain a
linked list of children for each node and not alter the running times of UNION, INSERT, or FIND-
SET. As a result, one benefit of lazy deletion is it does not significantly alter the resources required
for each node (i.e., it only adds the children and marked attributes).

In conclusion, we find that union-find with lazy deletion is relatively easy to both implement and
analyze. In particular, it achieves the goal of adding deletion to the classic union-find data struc-
ture without modifying the running time of UNION, INSERT, or FIND-SET. For a more advanced
treatment of the union-find with deletion data structure, see Kaplan et al. [3].

References

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, Second Edition. The MIT Press and McGraw-Hill, 2001.

[2] Jeff Erickson. Union-find. http://compgeom.cs.uiuc.edu/~jeffe/teaching/373/notes/
09-unionfind.pdf, 2003.

[3] H. Kaplan, N. Shafrir, and R. Tarjan. Union-find with deletions. In Proceedings of 13th SODA,
pages 19-28, 2002.

[4] Claire Kenyon. Analysis of union-find tree data structure. http://www.cs.brown.edu/
courses/cs157/unionFind.ps, 2006.

